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Abstract of the Dissertation

Efficient Modeling of Plasma Wake Field

Acceleration Experiments Using Particle-In-Cell

Methods

by

Weiming An

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2013

Professor Warren B. Mori, Chair

There is no clear path for building a particle accelerator at the energy frontier

beyond the Large Hadron Collider (LHC). One option that is receiving attention

is to use plasma wave wakefields driven by intense particle beams. Recent exper-

iments conducted at the Stanford Linear Accelerator Center (SLAC) show that

accelerating gradients in such wakefields in excess of 50 GeV/m can be sustained

over meter scales. Based on this, a linear collider concept of staging one-meter

long plasma cells together has been proposed. A facility at SLAC has been built to

study the physics in one stage. In this dissertation we describe improvements and

enhancements to a highly efficient simulation model for simulating current exper-

iments at SLAC as well as parameters beyond the reach of current experiments.

The model is the quasi-static particle-in-cell (PIC) code QuickPIC. A modified

set of quasi-static field equations were developed, which reduced the number of

predictor corrector iteration loops and an improved source deposit scheme was

developed to reduce the parallel communication. These improvements led to a

factor of 5 to 8 (depending on the simulation parameters) speedup compared with

the previous set of field equations and deposition scheme. Several new modules

ii



were also added to QuickPIC, including the multiple field ionization and improved

beam and plasma particle diagnostics. We also used QuickPIC to study the opti-

mum plasma density for maximizing the acceleration field for fixed electron beam

parameters. QuickPIC simulations were also used to study and design two-bunch

PWFA experiments at SLAC including methods for mitigating the ionization-

induced beam head erosion. The mitigation methods can enhance the energy

gain in two-bunch PWFA experiments at SLAC by a factor of 10 for the same

beam parameters. For beam parameters beyond SLAC but perhaps necessary for

a future collider, QuickPIC was used to study how the ultra high electric fields

of a tightly focused second electron bunch could lead to ion motion, which dis-

rupts the focusing fields on the second bunch. The resulting nonlinearity in the

transverse focusing force of the plasma wake will lead to emittance growth. We

used QuickPIC to carry out the first fully self-consistent high resolution simula-

tion on the effects of ion motion for PWFA linear collider problems. Preliminary

results showed that the plasma-ion-motion-induced emittance growth was limited

to less than a factor of 2. In addition to the electron beam driven PWFA, we

also study how a short proton beam can excite a large plasma wake. Such short

proton beams are currently not experimentally available. We therefore also study

how long proton beams such as those at Fermi National Laboratory and CERN

may drive a large plasma wake through a self-modulation instability. A linear

theory for the self-modulation instability is presented under the wide beam limit.

QuickPIC simulations show that the self-modulation of a long proton beam in a

plasma may lead to the micro-bunching of the beam and excite a large plasma

wake.
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CHAPTER 1

Introduction

1.1 The LHC and ILC

The development of particle accelerators can be traced back to the year of 1911

when Rutherford discovered his model of the atom in the famous gold foil exper-

iment. Subsequently, many different kinds of accelerators have been built mainly

for studying and discovery new particles, although significant applications for the

accelerator such as radiation sources and medical treatment have also been discov-

ered. On September 10th, 2008, almost 100 years after Rutherford’s experiments,

the large hadron collider (LHC) built by the European organization for nuclear

research (CERN) began to operate with proton beams circulating in its main

ring [1]. However, the LHC was shut down 9 days later due to a faulty electrical

connection and was brought back to full operation 14 months later on November

20th, 2009. The LHC is designed for colliding two opposing particle beams of

either protons at an energy up to 7 TeV, or lead nuclei at an energy of 574 TeV.

The maximum collision energy per nucleon-pair reaches around 14 TeV, which is

seven times larger than its predecessor at Fermi National Laboratory (FNAL).

The main ring of LHC lies in a 27 km circular tunnel, which is as deep as 175

m beneath the border of France and Switzerland close to the Switzerland city of

Geneva. Building this gigantic machine involved 10,000 scientists and engineers

from over 100 countries, as well as hundreds of universities and laboratories. It is

the largest and most expensive scientific instrument ever built, with a construction

budget alone of 7.5 billion euros.
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Even though the LHC is in its early stages of use and has led to new discoveries,

the community has already begun to plan for the future and think about the next

high energy accelerator. The international linear collider (ILC) is one concept for

a future high energy accelerator [2]. The ILC would have a collision energy of

500 GeV initially, with the possibility for a later upgrade to 1000 GeV (1 TeV).

It would collide electrons with positrons that are accelerated through a 30 km (or

even longer) linear accelerator, which is more than 10 times as long as the longest

existing linear accelerator (which had a maximum energy of 50 GeV) at Stanford

Linear Accelerator Center (SLAC). Although the ILC has a lower collision energy

than the LHC, it is expected to make more precision measurements as the collision

between leptons such as electrons and positrons are much easier to analyze and

no energy is needed to overcome the strong forces that keep quarks together in

a proton. The ILC is designed to discover physics beyond the current standard

model. However, the estimated total construction cost for this machine is over 20

billion dollars, which makes it unlikely to be built in the foreseeable future.

The primary reason for the high cost of building high energy accelerators such

as the LHC and ILC is that the size of the accelerator is so large. As a circular

accelerator, the main ring of the LHC is 27 km in circumstance. Such a long

circumference is mainly needed for reducing the energy loss of the particle from

synchrotron radiation. The power radiated is proportional to the energy of the

particle divided by its rest mass to the 4th power and inversely proportional to

the circumference. Specifically during each turn, the particle losses

∆E[TeV] ≈ 5.5
(E[100GeV]/(mb/me))

4

C[km]
,

where E is the particle energy, mb and me are the rest masses for the parti-

cle and the electron and C is the circumference of circular accelerator. That is

also why the LHC is accelerating protons or lead nuclei instead of electrons and

positrons. Although the synchrotron radiation losses can be made relatively small

when hadrons are used, the bending magnets used to keep particles moving in
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a circle need larger magnetic fields as the particle energy goes up. The power

needed to generate these bending fields can become large and this also requires

a large circumference for the accelerator. Considering the cost of the LHC, it is

very unlikely that a circular collider will be built at higher energy. Even if new

accelerator technology is developed, the issues related to synchrotron radiation

for Leptons and magnetic field strength for bending Hadrons means that the size

of a future circular machine will be prohibitive.

However, the cost of a linear accelerator can be reduced if new accelerator

technology is developed. In a linear accelerator (also called a linac) such as the

proposed ILC [2], electrons and positrons are accelerated along a straight line in

a single pass. This linear geometry implies that the maximum energy gain of the

accelerator is equal to the product of the acceleration gradient (which is the energy

gain per unit length) and the accelerator length. If the acceleration gradient is 20

MeV/m, the ILC would need two 25 km accelerators (50 km in total) to obtain 500

GeV electron and positron beams. An efficient way to reduce the length as well

as the cost of a linac is to increase the acceleration gradient. In the conventional

accelerator, the accelerating electric field is usually built up within a cavity having

conductive boundaries. The electric breakdown and the heat congregation (which

affects the superconductive cavity) will limit the acceleration gradient to less than

100 MeV/m. Thus, to overcome this limit one needs to replace the current radio-

frequency (RF) conducting cavities. One way is using a plasma as the acceleration

medium. Such an accelerator is called a plasma-based accelerator. Because the

fields are formed by the freely moving plasma electrons and ions, the electric

breakdown problem does not exist in the plasma. A plasma-based accelerator

turns out to be an attractive candidate for a future linear accelerator.
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1.2 The development of plasma-based accelerator

In 1979, T. Tajima and J. Dawson [3] proposed a new method for accelerating

electrons by exciting a plasma wave using a high power and short pulse length

laser. This plasma wave is actually a wake field excited by the pump laser pulse

(i.e. the laser drive beam). It is analogous to the water wave wake propagating

right after a boat moving faster than the “group” velocity of the wake. This idea

was originally called a wake plasmon accelerator, but it is now referred to the laser

wake field accelerator (LWFA). In the LWFA, the phase velocity of the plasma

wave will be equal to the laser drive beam’s group velocity, which can be very close

to the speed of light. Its group velocity is essentially zero. Therefore the laser

wake field is suitable for accelerating charged particles to high energy. In 1985, it

was proposed to use an electron beam to drive the plasma wake field instead of the

laser [4]. A second charged particle beam (the trailing beam), which is following

the drive beam and sitting in a proper phase inside the plasma wave wake, can be

accelerated to a high energy before the drive beam stops due to its energy loss in

creating the wake. The prevailing name for this scheme is the plasma wake field

accelerator (PWFA). In fact the laser scheme was called the LWFA after the term

wake field accelerator was used to describe the particle beam driver scheme.

As a charged particle acceleration method, the most important property of

LWFA and PWFA is that the plasma wave can sustain a much higher accelerating

gradient than a conventional accelerator. We can estimate the amplitude of this

plasma wave by using Gauss’s law. For simplicity, we consider the one dimensional

Gauss’s law and assume the ions in the plasma are fixed,

∂

∂x
Ew = −4πeñe,

where ñe = ne−ne0 is the density perturbation of the plasma electrons. We assume

the plasma wave has a phase velocity equal to c (this is reasonable because in

both PWFA and LWFA the plasma wake has a phase velocity equal to the drive
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beam’s velocity that is very close to c) and the plasma wave oscillates at the

plasma frequency ωp =

√

4πe2np

me
(where np is the initial plasma density). If

|∂/∂x| → |k| = ωp/c, then we have the equation,

|Ew| =
meωpc

e
· ñe

np
≈ 100[GV/m]×

√

np

1018 [cm−3]
· ñe

np

This means in a plasma with a background density of 1018 cm−3, the amplitude of

the plasma wave can reach as high as 100 GV/m when the harmonic perturbation

of the plasma electron density is equal to the initial plasma density. That is 1000

times larger than the breakdown limit of a conventional accelerator’s accelerating

gradient. For large density perturbations, the wake is nonlinear but this simple

estimate is still a useful guide.

Driven by the potential for producing high acceleration gradients, research

in plasma-based accelerator has been actively conducted for over 30 years. In

the early 1990s, an acceleration gradient as high as 100 GeV/m in a laser driven

plasma wake field accelerator was reported experimentally [5]. However, this

experiment was not carried out in the LWFA regime [3], which requires an ultra

short (comparable to the plasma skin depth) and intense laser drive beam. This

is because all intense lasers existing at that time were generally not short enough.

Therefore, many alternative methods were explored to drive a large amplitude

plasma wake field (often in a high density ∼ 1018 cm−3 plasma) using long pulse

laser drive beams. One is the plasma beat wave accelerator (PBWA) [6] that

uses two long laser pulses that have a frequency difference close to the plasma

frequency to resonantly drive a plasma wave. Another is the self-modulated laser

wake field accelerator (SM-LWFA) [5] that relies on the long laser pulse to self-

modulate through an instability into a series of short laser pulses much like in the

PBWA and hence to drive a large wake field in the plasma. The experiment that

reached the 100 GeV/m acceleration gradient operated in the SM-LWFA regime.

Although the acceleration gradient was very high, the acceleration length was
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rather small (∼ 1mm) and the energy gain of the accelerated electrons was only

tens of MeV in those early SM-LWFA experiments [5, 7]. A similar energy gain

of electrons using the PWFA scheme was also reported in the early 1990s [8]. But

the acceleration gradient in the experiment is only 30 MeV/m. The relatively low

gradient is obtained because the drive beam used in the experiment had a low

current.

With the further development of the chirped pulse amplification (CPA) tech-

nology for lasers [9, 10, 11], high intensity short pulse lasers for the LWFA exper-

iments became available in the early part of 21st century. In 2004, three different

groups published their LWFA experiments results [12, 13, 14]. All of them detected

accelerated and self-trapped electron beams coming out of the plasma with ener-

gies around 100 MeV as well as with relatively narrow energy spreads (2 ∼ 24%),

a small divergence angle, a short pulse length (∼ 10 fs) and a reasonable amount

of charge (∼ 109 electrons). In addition, these experiments all had compact setups

(which were referred as “table-top” systems in many publications). These LWFA

results led to active research efforts on using plasma-based accelerator not only

for a high energy collider but also for driving a compact free electron laser (FEL)

[15].

However, the lasers used in the experiments of [12, 13, 14] were still not ideal.

They were cigar shaped not spherical. To obtain better results, research has

continued on building stable laser systems that operate at higher energy and at

higher repetition rate. Such lasers will reliably produce high brightness mono-

energetic electron beams. In addition, many theoretical and experimental work

has contributed to a better understanding of the plasma wake formation, the self-

injection of the plasma electrons and the guiding of the laser. For example, a

theoretical model [16, 17] was developed for analyzing a nonlinear plasma wake

driven by an intense laser pulse or electron beam (which was called the blow-out

regime). Note that most of the current schemes for accelerating electrons in a
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plasma wake belong to this regime. A new plasma electron injection scheme that

relies on field-ionization of electrons inside the wake [18, 19, 20] was proposed and

tested through experiments. This ionization-induced injection is typically easier

to control than the self-injection of background plasma electrons in very nonlinear

wakes. Simulations have played an invaluable role in the progress.

While the recent LWFA results in the 2000s were impressive, recent PWFA

research has also produced transformative results. Beginning in the late 1990s,

a series of experiments using the SLAC electron/positron beams were performed

[21, 22, 23, 24, 25, 26, 27]. These experiments motivated significant theoretical de-

velopments as well. The research culminated in 2007 with the observation of more

than 40 GeV energy gain on the tail of an electron beam (with an initial energy of

42 GeV) after it passed through ONLY 85 cm of Li plasma [28]. This demonstrated

for the first time an accelerating gradient exceeding 50 GeV/m sustained over al-

most one meter in a plasma. This distance was nearly the pump depletion length

of the drive beam. And the energy gain observed in the experiment remains the

highest from any plasma-based accelerator concept. The experiments were car-

ried out at the final focus test beam (FFTB) facility at SLAC, which was able to

deliver a 42 GeV beam containing 1.8× 1010 electrons (or positrons) and with an

r.m.s. pulse length as short as 15µm (120 J/50 fs pulses or 2.4 PW (1015W)). The

electron beam at SLAC is the most intense in the world, and is essential to the

success of a PWFA experiments.

The success of the PWFA experiments at FFTB were widely noticed through-

out the world and caused accelerator physicist to take plasma-based accelera-

tors seriously. Several new facilities have been proposed and built to explore the

LWFA and PWFA. In the area of LWFA, the Berkeley laboratory laser accelerator

(BELLA) project at the Lawrence Berkeley national laboratory (LBNL) aims at

accelerating electrons as well as positrons to an energy of 10 GeV in one meter

using 30 J/30 fs, i.e., PW pulses [29]. The BELLA laser will deliver pulses at 2
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Hz repetition rates. The extreme light infrastructure (ELI) project in Europe

[30] also includes research plans in LWFA. In the area of PWFA, a new facil-

ity for advanced accelerator experimental tests (FACET) [31] was constructed at

SLAC mainly for demonstrating high quality accelerated electron (or positron)

beam generation through the PWFA. This facility includes 23GeV, 3.2 nC, 30µm

(70 J/100 fs) electron and positron bunches.

Both CERN and the Fermi national accelerator laboratory (FNAL) are in-

terested in accelerating electrons using high energy and long pulse-length proton

beams [32, 33], which generate wakes through the self-modulation of the long drive

beam to excite a large plasma wave in the plasma (a similar idea to the SM-LWFA

in the early 1990s). These experiments are motivated by the observation in sim-

ulations that ultra-short (highly compressed) proton bunches can create nearly

ideal plasma wakes for accelerating electrons [34]. A compressed 7TeV (LHC)

proton beam could generate ∼ 1TeV electrons in a single stage.

These facilities (current and proposed) show the intense interest in the possi-

bility of building a compact high energy accelerator in the future. Although there

are several unsolved issues including how to efficiently load positron beams into a

plasma wake and that tightly focused trailing beams can cause the ions to move

leading to emittance growth, these new facilities illustrate that the accelerator

community sees possible paths towards colliders based on plasma-based accelera-

tors. In addition, as noted earlier, plasma-based accelerator may be the basis for

a compact XFEL in the future.

1.3 The particle-in-cell simulation

The tremendous progress in experiments in the plasma-based accelerator in the

past 20 years would not have occurred without tremendous advances in simulation

and theory. High fidelity simulations are now an indispensable part of any research
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effort in plasma-based acceleration. Even the original papers on LWFA and PWFA

relied heavily on simulation. Numerical simulation is now one of the three pillars

of the scientific method alongside theory and experiment. Not only can it provide

complementary evidence for experimental observations or theoretical predictions,

it can also play a leading role in the discovery of new physics and hence guide

both theoretical and experimental research. This has been especially true for

plasma-based accelerator research.

There are different methods for simulating the plasma. One of them is the

particle-in-cell (PIC) method [35, 36]. In the PIC method, the motion of a large

number of plasma electrons and ions are tracked while they are self-consistantly

interacting with their self-generated electromagnetic fields (and external fields).

The electromagnetic fields and the charge and current densities are defined on the

discretized spatial grid points while the particles are defined with continuous posi-

tions and momenta. At each time step of the PIC code, the electromagnetic fields

are first interpolated on the particle’s position from the grid points. Then, accord-

ing to the interpolated electromagnetic fields, each particle is advanced (pushed)

to the next time step with a new velocity and position by a finite difference inte-

gration of the equations of motion. Next, the charge and current densities from

each particle are deposited on the grid points according to the particle’s new po-

sition and velocity. Lastly, the electromagnetic fields at the next time step are

obtained by a finite difference or Fast Fourier transform (FFT) based integration

of Maxwell’s equation using the new charge and current densities. This is the end

of the loop for one time step. The loop is repeated until the desired number of

time steps is reached. The concept of a finite size macro particle (particle cloud)

with the same charge to mass ratio as a real particle is used when depositing the

charge and current density on the grid point, thus allowing the PIC code to use a

small number of macro particles to represent the real plasma when quantitative

details of thermal fluctuation and Coulomb collisions are not needed.
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The PIC code is suitable for simulating a non-equilibrium and very nonlinear

problem, especially when the kinetic effects are important and the fluid models

cannot be used. Therefore, the PIC code is the best choice for simulating the laser-

plasma or beam-plasma interactions in plasma-based accelerators. Although the

use of macro particles dramatically reduces the requirement of particle number

in the PIC code, the full scale multidimensional simulation of the plasma-based

accelerator is still a massive task. The development of parallel computing and

its application in the PIC algorithm [37, 38] meet this need. A large amount

of research has contributed to enable parallel PIC codes to simulate very large

problems in an efficient way. For example, the PIC code OSIRIS [39] has been

scaled to more than 1 million cores without losing much efficiency.

OSIRIS and other so-called “full” PIC codes are fully explicit and solve the

full set of Maxwell equations using small time steps that resolve the highest fre-

quencies, i.e., waves at the shortest wave lengths that are resolved. These codes

make very little approximation. On today’s largest computers, they can simulate

a variety of problems including plasma-based acceleration. However, in terms of

CPU-hours, it is still very expensive to use a full PIC code for multidimensional

plasma-based accelerator simulations. Alternative PIC-based methods have there-

fore been developed to complement the use of full PIC codes. One method is to

simulate the problem in a Lorentz-boosted frame instead of the lab frame [40, 41].

This method is based on the fact that either a short laser beam or the particle

beam moves almost at the speed of light through long regions of plasma in a

plasma-based accelerator. With Lorentz transformations the laser or the particle

beam may have a comparable spatial scale to the plasma and hence in this frame

the number of cells needed to resolve the laser or particle beam is the same as

before. The pulse (and wave length of the laser) are Lorentz expanded. So that

each cell and time step are also larger. This combined with the shorter plasma

leads to large computational savings. Another method is applying the quasi-static
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approximation in the PIC algorithm [42, 43]. It calculates the plasma response

to a non-evolving laser or particle beam (which is moving at the speed of light)

under the quasi-static approximation. Then the plasma wake fields are used for

updating the laser or particle beam. The quasi-static approximation is based on

the fact that the laser or particle beam evolves on a much slower time scale than

the plasma particles. With the quasi-static approximation, the plasma response

is only updated when the laser or particle beam is updated, which could make

such a code several orders of magnitude faster than the full PIC code.

QuickPIC [43] is a three dimensional (3D) PIC code, which applies the quasi-

static approximation. It is developed based on a PIC framework called UPIC [38]

and is able to simulate both laser driven (using the pondermotive guiding center

approach [44]) and high energy particle beam driven plasma-based accelerator.

In QuickPIC, the plasma response is calculated for a static (fixed) laser/particle

beam. Then the nonlinear index of refraction is used to advance the laser and the

wake fields are used to advance the particle beam. The code uses the coordinates

(x, y, ξ = ct− z, s = z) instead of the coordinates (x, y, z, t). The laser/particle

beam evolves on a slow time scale of s. At each step of s, the plasma response

is advanced with a fast time scale of ξ and is not dependent on the variable

s. The Figure 1.1 (taken from reference [43]) shows different time scales for the

laser/particle drive beam and the plasma evolution in QuickPIC.

Figure 1.2 shows the flow chart of the basic algorithm in QuickPIC, which has

a 2D routine embedded in a 3D routine. The 3D routine is used to calculate the

evolution of the laser/particle drive beam in respect of s. In each 3D loop, the 2D

routine is used to calculate the plasma response to the static laser/particle beam

driver in respect of ξ. Both the 3D routine and the 2D routine are parallelized. The

use of a pipeline method [45] allows QuickPIC to scale up to 100000 processors.
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Figure 1.1: The two variables s and ξ for the different time scales for laser/particle

drive beam and plasma evolution. ∆s is the time step in s while ∆ξ is the time

step in ξ (taken from reference [43]).

Figure 1.2: Flow chart of the QuickPIC quasi-static algorithm (taken from refer-

ence [43]).
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1.4 The dissertation outline

Using the 3D quasi-static PIC code QuickPIC [43], several problems associated

with PWFA are investigated in the dissertation. We begin by presenting important

improvements to QuickPIC in Chapter 2. With these improvements, the new

QuickPIC shows better accuracy, performance and parallel scalability, and is able

to be used for all the simulation work in this dissertation. In Chapter 3, we discuss

the two-bunch PWFA, which is a major experiment ongoing at FACET in SLAC.

It aims at demonstrating a high energy gain as well as maintaining a narrow

energy spread on a trailing beam. We also discuss two other issues that can be

studied at FACET. They are the mitigation of ionization-induced head erosion

and the optimum density for a given electron beam driver. For narrow trailing

beams needed in some PWFA linear collider designs, the Coulomb force of the

beam is large enough to pull plasma ions inwards during the transit time of the

beam. This modifies the focusing force on the beam leading to emittance growth.

In Chapter 4, we focus on the ion motion problem when accelerating an ultra-

intense electron beam in the PWFA. The emittance growth of the accelerated

electron beam is simulated with the sufficient resolution for the first time. In

Chapter 5, we study the self-modulation of a long drive beam in the PWFA. The

growth rate of the self-modulation instability (for electron, positron or proton

beams) is theoretically analyzed under the wide-beam assumption. Preliminary

simulation results are presented. In Chapter 6, we summarize the results presented

in the dissertation and provide thoughts for future work.
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CHAPTER 2

Developments in QuickPIC

As discussed in chapter 1, intense and short-pulse laser and particle beam–plasma

interactions are now widely studied for a variety of applications most notably be-

ing plasma-based accelerators and light sources. In such interactions the radiation

pressure of the laser or the electromagnetic forces of the particle beam create a

plasma wave wake, which has a phase velocity roughly equal to that of the in-

coming laser/particle beam. This wake in turn provides an index of refraction

modulation to the laser or electromagnetic forces on the particle beam causing its

shape and frequency/energy content to change. The evolution of the laser/particle

beam is on a much slower time and longer spatial scale than the period and wave-

length of the wake. Therefore, the quasi-static description of these interactions

was developed. This description is useful both theoretically and computationally.

In this description the wake is calculated for a static (fixed) laser/particle beam.

Then the nonlinear index of refraction is used to advance the laser and the wake

fields are used to advance the particle beam. For quasi-static codes the time step

used to advance the laser/particle beam is orders of magnitude larger than the

frequency of the wake and this leads to significant speed ups compared to tradi-

tional codes. For most current problems of interest, the interactions are nonlinear

and relevant particle based descriptions are desired.

Several particle-in-cell codes based on quasi-static assumption have been de-

veloped. WAKE [42] and LCODE [46] are two-dimensional (2D) azimuthally

symmetric. WAKE can model both laser and particle-beam interactions while
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LCODE can only model particle beam-plasma interactions. Whittum [47] devel-

oped a 3D quasi-static code for modeling particle beam-plasma interactions but

he also applied further assumptions to simplify the algorithm. He assumed that

plasma particles are only displaced in the transverse directions which is only ap-

propriate for weakly nonlinear interactions. On the other hand QuickPIC [48] is

a nonlinear, fully 3D quasi-static Particle-In-Cell (PIC) code. It was developed

based on a fully nonlinear 3D algorithm, which is not just a simple extension

from the 2D algorithms. QuickPIC can simulate the interaction of both a laser

pulse and relativistic particle beam with a plasma. It can provide computational

speed ups of 102 ∼ 104 with no loss in accuracy compared with a full PIC code

(e.g. OSIRIS[39]). The speedup depends on the simulation parameters. QuickPIC

has been widely used for investigating three dimensional effects in PWFA studies

[49, 50, 51, 52, 53].

QuickPIC was developed using the UPIC framework [38]. It contains simi-

lar procedures as in a conventional PIC code, including the four basic modules:

pushing the particles, depositing the current (charge) density, updating the fields,

and interpolating the fields on each particle for pushing them. Furthermore, it is

fully parallelized including a pipeline algorithm [45] allowing it to scale to more

than 100,000 processors. The field equations are currently solved in Fourier space.

The radiation pressure from the laser is derived from the ponderomotive guiding

center approximation and the laser is advanced using an equation for its envelope.

In this chapter, several improvements to the algorithm used in QuickPIC will

be presented. In the previous version of QuickPIC henceforth referred to as Quick-

PIC 1.0, a set of equations for the scalar and vector potential based on the Lorentz

gauge were used. The QuickPIC 1.0 algorithm and the field equations in WAKE

and LCODE are reviewed in section 2.1. In the newer version henceforth referred

to as QuickPIC 2.0, a set of gauge invariant equations are solved. It is found

that when using this new set of equations the number of iterations needed to get
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accurate results (results that agree with OSIRIS) is significantly reduced (by at

least a factor of 2.5) for a wide range of problems. The new algorithm is described

in section 2.2. In addition, the predictor corrector loop requires pushing the parti-

cles forward to new positions in order to calculate the “time” (ξ) derivative of the

current density. In the previous scheme in QuickPIC 1.0, the current density was

calculated at a forward “time” (and position) and the derivative was obtained by

subtracting the two values. This requires knowledge of the position of the parti-

cle at the forward time. Therefore, in parallel computations particles need to be

moved to new processors according to their new positions inside the iteration loop.

In the new scheme in QuickPIC 2.0, the “time” derivative of the current density

is analytically calculated by taking the derivative for a finite size particle. As will

be shown, this only requires calculating particle momentum at the forward time

and not the particle position, so that no message passing of particle information

is needed inside the iteration loop. This new deposition algorithm for the time

derivative of the current density is described in section 2.3. In section 2.4, we

compare the simulation results from QuickPIC 1.0, 2.0 and OSIRIS. In section

2.5, an improved field ionization module in QuickPIC is introduced. It allows

us to simulate gases that have multiple ionization levels. In section 2.6 and 2.7,

improvements to the initialization and diagnostic routines for the particle beam

and plasma are presented respectively. Possible areas for the future development

on QuickPIC are discussed in section 2.8. Lastly, a summary is given in section

2.9

2.1 The fields equations in QuickPIC 1.0

The basic difference between a quasi-static PIC code, e.g. QuickPIC, and a fully

explicit PIC code, e.g. OSIRIS, is that the quasi-static code separates the time

scale for the evolution (advancing in time) of the plasma from that of a short-pulse
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laser or particle beam moving near the speed of light, c. The quasi-static approx-

imation uses the coordinates (x, y, ξ = ct− z, s = z) rather than the coordinates

(x, y, z, t). The plasma particle trajectories are parameterized with the variable

ξ (i.e., [x(ξ), y(ξ), s(ξ)]) while the trajectory of a beam particle is parameterized

with the variable s (i.e., [x(s), y(s), ξ(s)]). The approximation uses the fact that

for short pulses the s value for each plasma particle is essentially the same, so for

a given value of s the trajectory is in a 2D (x, y) plane. In addition, the beam

evolves very slowly in the variable s compared to the wavelength of the plasma

response in the variable ξ. So when solving the field equations, it is assumed

that ∂/∂s = 0, which means we can drop all ∂/∂s and ∂2/∂s2 terms in the fields

equations that are solved.

In QuickPIC 1.0, we started from the potential equations for the potentials in

the Lorentz gauge,

(
∂2

∂t2
−∇2)φ = ρ,

(
∂2

∂t2
−∇2) ~A = ~J ,

and

∇ · ~A +
∂φ

∂t
= 0,

where henceforth we use normalized units. The potentials (φ, ~A) are normalized to

mec
2/e, the charge density is normalized to en0, the current density is normalized

to en0c, the time is normalized to ω−1
p0 and the distance is normalized to c/ωp0,

where ωp0 = 4πe2n0/me is the plasma frequency for a plasma of density n0. Upon

applying the quasi-static approximation, the wave equations for the potentials in

the Lorentz gauge condition reduce to,
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∇2
⊥φ = −ρ,

∇2
⊥
~A = − ~J ,

and

∇⊥ · ~A⊥ = −∂ψ
∂ξ

,

where ∇⊥ ≡ ∂/∂x x̂+ ∂/∂y ŷ, ~A⊥ = Axx̂+Ay ŷ and ψ = φ−Az is the pseudo or

wake potential. According to the above potential equations, ψ must satisfy,

∇2
⊥ψ = −(ρ− Jz) (2.1)

The pseudo potential determines all the forces on a particle moving near c (i.e.,

a beam particle) along z, and it is needed to obtain the forces on and the current

density from the plasma particles in QuickPIC [48]. In addition to ψ, we also need

to calculate other fields to obtain the full electromagnetic force on the plasma

particles. In terms of potentials, the electric and magnetic fields are given by

~E = −∇φ− ∂ ~A/∂t and ~B = ∇× ~A. After taking the quasi-static approximation,

the various components of the fields are,

~E⊥ = −∇⊥φ− ∂ ~A⊥
∂ξ

, (2.2)

Ez =
∂ψ

∂ξ
, (2.3)

~B⊥ = (∇⊥Az +
∂ ~A⊥
∂ξ

)× ẑ, (2.4)

and

Bz = ∇⊥ · ( ~A⊥ × ẑ). (2.5)

In the above equations the electric and magnetic fields are normalized to mecω0/e.
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Besides ~A⊥, we also need ∂ ~A⊥/∂ξ to calculate the forces. According to the equa-

tions in the Lorentz gauge, it satisfies

∇2
⊥
∂ ~A⊥
∂ξ

= −∂
~J⊥
∂ξ

,

which is obtained by taking the derivative with respect to ξ of both sides of the

equation ∇2
⊥
~A = − ~J .

In the PIC method, the field (force) equations are advanced forward in time

together with the particle’s momentum and position. In a fully explicit code the

equations can be leap frogged forward due to the natural time centering of the

quantities. However, in the quasi-static algorithm the equations for φ and ∂ ~A⊥/∂ξ

(which are needed to calculate the electromagnetic fields) at a given time step

require knowledge of ρ and ∂ ~J⊥/∂ξ, which depend on the electromagnetic fields

(and potentials) at the next step. For example, to calculate ρ in the quasi-static

variables (at a given ξ) one needs γ while ∂ ~J⊥/∂ξ is due to the acceleration ∂~v⊥/∂ξ

for each particle. Therefore, we handle these implicitly coupled relationships

between fields and particle quantities using an iteration predictor corrector scheme

by solving the following potential equations instead,

∇2
⊥φ

new − φnew = −ρ− φold,

and

∇2
⊥
∂ ~Anew

⊥
∂ξ

− ∂ ~Anew
⊥
∂ξ

= −∂
~J⊥
∂ξ

− ∂ ~Aold
⊥

∂ξ
.

As noted in [48], these equations can be viewed as diffusion equations where the

time is the iteration index. In each iteration, we predict the particles’ positions and

momenta at the advanced time step. These are used to calculate the predicted

fields (from predicted potentials), which are then used to update the particle

position and momentum to obtain corrected fields and then corrected particle

position and momentum. In QuickPIC the field (potential) equations are solved
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in ~k space using the Fast Fourier Transforms (FFT) method [48]. This iteration

loop can be run an arbitrary number of times. More details can be found in [48]

and we reproduce Table 2.1 from the paper [48] to list which quantities are known

and which need to be predicted at a given time step.

ξ − 1/2∆ξ ξ ξ + 1/2∆ξ ξ +∆ξ ξ + 3/2∆ξ

(1) ψ,∂
~J⊥
∂ξ

~p⊥, ~J⊥ ~x⊥

(2) ~A⊥,∇⊥ · ~A⊥ ψ

(3) ~J⊥,
∂ ~J⊥
∂ξ

,γ,ρ

(4) φ,A‖,
∂ ~A⊥

∂ξ
,∇⊥ · ~A⊥, ψ,~p⊥,pz, ~J⊥ ~x⊥

~B⊥,Bz, ~E⊥

Table 2.1: Quantities solved in QuickPIC 1.0:(1) Known quantities;(2)Quantities

calculated before the iteration;(3)Quantities predicted (in the first iteration) or

corrected (after the first iteration);(4)Quantities known after the iteration.

For many cases, we need to run through the iteration loop at least 4 times to

obtain an accurate result (we will show the simulation results later).

There are two 2D quasi-static PIC codes that have been described in detail,

WAKE [42] and LCODE [46]. WAKE was the first quasi-static PIC simulation

code. It uses 2D cylindrical coordinates and it can model both a laser (using the

ponderomotive guiding center method) and a particle beam driver. It assumes

azimuthal symmetry and currently does not allow applied fields. Therefore, it

only needs two fields to push the particles. They are Bθ and ∂ψ/∂r (note that

∂ψ/∂r = (∇⊥ψ)r = −Er +Bθ). The field equations used in WAKE are,

∇2
⊥
∂2ψ

∂ξ2
=

1

r

∂

∂r

∂Jr
∂ξ

,

and

1

r

∂

∂r
rBθ =

∂2ψ

∂ξ2
+ Jz.
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In WAKE, ∂2ψ/∂ξ2 is solved in order to obtain ψ and ∂ψ/∂r. Just as in QuickPIC,

WAKE also needs an iteration loop for solving those equations. The equation for

∂2ψ/∂ξ2 is therefore modified to,

(∇2
⊥ − 1)

∂2ψnew

∂ξ2
=

1

r

∂

∂r
(
∂Jold

r

∂ξ
− rBold

θ ) + Jold
z .

LCODE also uses 2D cylindrical coordinates and therefore assumes azimuthal

symmetry. However, it uses a different set of fields equations,

∂

∂r

1

r

∂

∂r
rEr =

∂ρ

∂r
− ∂Jr

∂ξ
,

∂

∂ξ
(Er − Bθ) =

∂Ez

∂r
= Jr,

and

1

r

∂

∂r
rEr = ρ− ∂Ez

∂ξ
.

Note that in LCODE there are additional equations for the field components Eθ,

Br and Bz. It assumes azimuthal symmetry but it allows for including applied

fields such as an axial magnetic field. However, without applied fields, Eθ, Br

and Bz are zero (this is the reason that WAKE does not need to solve for these

terms), so for simplicity we do not include them here. Just as for QuickPIC and

WAKE, the fields equations and particle advances need to be solved iteratively.

In LCODE, the equation of Er is modified into the following form,

∂

∂r

1

r

∂

∂r
rEnew

r − Enew
r =

∂ρ

∂r
− ∂Jr

∂ξ
− Eold

r .

Once Er is known then Bθ andEz can be obtained from the other two equations.

In LCODE the electric and magnetic fields are solved for directly without using the

potentials, so the equations are gauge invariant. Although the equations used in

WAKE are derived using the transverse Coulomb gauge, the final set of equations

is also gauge invariant (note the pseudo potential is gauge invariant).

Unlike in WAKE and LCODE, the equations for φ and ~A⊥ used in QuickPIC

1.0 are gauge dependent. In QuickPIC 1.0 we use diffusion like equations in
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the iteration loop for two potentials (three scalar quantities) while in WAKE

and LCODE only one equation (one scalar) cast in a diffusion like form. In

addition, WAKE typically needs only 1 iteration to obtain an accurate result while

QuickPIC 1.0 typically requires 4 or more for nonlinear cases. Motivated by these

observations we have designed a new field solver using gauge invariant equations

and that uses only one diffusion like vector equation (two scalar quantities). This

is described next.

2.2 The new EM field solver in QuickPIC: QuickPIC 2.0

Instead of solving the equations for the scalar and vector potential based on

the Lorentz gauge, we want to calculate ψ and the electromagnetic fields di-

rectly from the current and charge densities. We start from the Eq. (2.1) and

the whole set of Maxwell equations under the quasi-static approximation. Af-

ter transforming Maxwell equations into (x, y, ξ, s) coordinates using ∂/∂z =

−∂/∂ξ + ∂/∂s , ∂/∂t = ∂/∂ξ and omitting the terms with ∂/∂s and ∂2/∂s2,

we are left with,

∇⊥ × ~E⊥ = − ∂

∂ξ
Bz ẑ, (2.6)

∇⊥ ×Ez ẑ = − ∂

∂ξ
( ~B⊥ − ẑ × ~E⊥), (2.7)

∇⊥ × ~B⊥ − Jz ẑ =
∂

∂ξ
Ez ẑ, (2.8)

∇⊥ ×Bz ẑ − ~J⊥ =
∂

∂ξ
( ~E⊥ + ẑ × ~B⊥), (2.9)

∇⊥ · ~E⊥ − ρ =
∂

∂ξ
Ez, (2.10)

∇⊥ · ~B⊥ =
∂

∂ξ
Bz, (2.11)

where ∇⊥ = x̂∂/∂x + ŷ∂/∂y. We write the equations for the transverse (x, y)

and longitudinal (z) fields separately. In each of these equations, all the ∂/∂ξ

like terms are gathered on the right hand side. That is because, in the part of
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QuickPIC in which the plasma response is calculated, ξ acts like the time variable

and all the quantities are advanced forward in ξ. In Eqs. (2.7) and (2.9), we see

two linear combinations of ~E⊥ and ~B⊥, ~B⊥− ẑ× ~E⊥ and ~E⊥+ ẑ× ~B⊥. The second

one is the transverse force (so called focusing force) on a charge moving near c in

the ẑ direction (the sign depends on the sign of the charge). In addition, these

two linear combinations are related because ~B⊥ − ẑ × ~E⊥ = ( ~E⊥ + ẑ × ~B⊥)× ẑ.

Furthermore, we can deduce the following equations from Eqs. (2.6), (2.8), (2.10)

and (2.11),

∇⊥ × ( ~E⊥ + ẑ × ~B⊥) = 0, (2.12)

and

∇⊥ · ( ~E⊥ + ẑ × ~B⊥) = ρ− Jz, (2.13)

Those two equations show that focusing force ~E⊥ + ẑ × ~B⊥ can be obtained from

a scalar potential and that this potential is the pseudo potential ψ, i.e.,

~E⊥ + ẑ × ~B⊥ = −∇⊥ψ. (2.14)

If one solves directly for the focusing force rather than for ψ, we just need to apply

the operator ∇⊥× on both sides of equaiton (2.12). Then we will have,

∇2
⊥(
~E⊥ + ẑ × ~B⊥) = ∇⊥(ρ− Jz).

The self-consistency of these equations and the quasi-static continuity equation

can be obtained by taking the divergence of Eq. (2.9),

∇⊥ · (∇⊥ × Bz ẑ − ~J⊥) =
∂

∂ξ
∇⊥ · ( ~E⊥ + ẑ × ~B⊥)

After substituting Eq. (2.13) into the above equation, we have the continuity

equation under the quasi-static approximation,

∂

∂ξ
(ρ− Jz) +∇ · ~J⊥ = 0. (2.15)
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Because the linear combinations of ~E⊥ and ~B⊥ in Eqs. (2.7) and (2.9) are not

independent then we cannot advance ~E⊥ and ~B⊥ forward in ξ, so we need to solve

for them directly using Poisson like equations. To derive these equations, we start

from the wave equations for ~E and ~B that result from Maxwell’s equations,

∇2 ~E − ∂2 ~E

∂t2
= ∇ρ+ ∂ ~J

∂t
,

and

∇2 ~B − ∂2 ~B

∂t2
= −∇× ~J .

We then apply the quasi-static approximation to these equations to obtain,

∇2
⊥ ~B⊥ = ẑ × (

∂

∂ξ
~J⊥ +∇⊥Jz), (2.16)

∇2
⊥Bz = −∇⊥ × ~J⊥, (2.17)

∇2
⊥
~E⊥ = ∇⊥ρ+

∂

∂ξ
~J⊥, (2.18)

and

∇2
⊥Ez = ∇⊥ · ~J⊥. (2.19)

Note that we have used the quasi-static continuity equation (equation (2.15)) to

obtain equation (2.19). These equations are all 2D Poisson like equations so the

fields all follow from 2D electrostatics.

For the new algorithm of QuickPIC 2.0, we use (2.1), (2.14), (2.16), (2.17) and

(2.19) to solve for the electromagnetic fields in QuickPIC. We first solve the 2D

like Poisson Eqs. (2.1) and (2.16) to obtain the pseudo potential ψ and ~B⊥. We

then obtain ~E⊥ by subtracting ẑ× ~B⊥ from −∇⊥ψ according to Eq. (2.14). While

the source term for Eq. (2.1) is known at time centered values of ξ, the source

term in Eq. (2.16) depends on the ∂ ~J⊥/∂ξ, which is not known at the appropriate
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value of ξ so an iteration method is needed. We therefore change Eq. (2.16) into

an iterative equation,

∇2
⊥
~Bnew
⊥ − ~Bnew

⊥ = ẑ × (
∂

∂ξ
~J⊥ +∇⊥ · Jz)− ~Bold

⊥ . (2.20)

In QuickPIC 2.0, the coordinate ξ has a step length ∆ξ and quantities are

advanced in ξ step by step. The particles are initialized with the particle mo-

mentum ~p(ξ) at an integer time step. In the code we use the proper velocity

~p(ξ) = γ~v(ξ) instead of the particle momentum, and the particle velocity can

be obtained through ~v = ~p/γ = ~p/
√

1 + p2 + a2/2, where ~a is the normalized

vector potential of the laser drive beam.The particle position ~x(ξ +∆ξ/2) is ini-

tialized at a half integer time step (Note that the particle position is also known

at ~x(ξ −∆ξ/2)). The position is on the staggered ξ grid because we use the leap

frog method to solve the particle motion equation. We now need to advance the

particle momentum forward to the next integer step. From Eqs. (21) and (22) in

Ref. [48], we know that,

ρ− Jz =
1

V olume

∑

i

qi
1− viz

− 1

V olume

∑

i

qi · viz
1− viz

=
1

V olume

∑

i

qi,

which means ρ − Jz is independent of the particle velocity. Therefore, ρ − Jz is

known at values of ξ for which the position is known (half integer steps). We can

thus determine ψ using Eq. (2.1) before we enter the iteration loop. In the iteration

loop, we need to predict the current density ~J(ξ + ∆ξ/2) and the derivative of

the current density ∂ ~J⊥(ξ +∆ξ/2)/∂ξ and this is done similarly as in QuickPIC

1.0. We use these predicted source terms in Eq. (2.20) to obtain the predicted

value of ~B⊥(ξ +∆ξ/2), where we use ~Bold
⊥ (ξ +∆ξ/2) = ~B⊥(ξ −∆ξ/2). We then

solve Eqs. (2.14), (2.17) and (2.19) to obtain all the predicted electromagnetic

field components at ξ + ∆ξ/2. We note that in WAKE the fields are predicted

from previous values and their derivatives.

We then use the predicted forces to obtain the predicted particle momentum.

The new particle momentum will be ~p(ξ + ∆ξ) and the new particle position
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will be ~x(ξ + 1.5∆ξ). We can obtain ~x(ξ + ∆ξ) through ~x(ξ + ∆ξ) = (~x(ξ +

∆ξ/2)+~x(ξ+1.5∆ξ))/2 and then we deposit the current density and its derivative

to get the corrected values. Similar to QuickPIC 1.0, this could be done by

depositing the new (corrected) current density at the next integer step ~J(ξ+∆ξ)

and then obtaining ~J(ξ + ∆ξ/2) by averaging the quantities between ξ and ξ +

∆ξ. The derivative of the current ∂ ~J⊥(ξ +∆ξ/2)/∂ξ can then be obtained from

∂ ~J⊥(ξ + ∆ξ/2)/∂ξ = ( ~J⊥(ξ + ∆ξ)− ~J⊥(ξ))/∆ξ. Actually, the calculation of the

corrected derivative of the current density ∂ ~J⊥(ξ+∆ξ/2)/∂ξ is done differently in

QuickPIC 2.0 in order to reduce the communication between processors in parallel

computations, and this will be described in the next section. With the new current

density and its time derivative, we finish the iteration loop by recalculating the

~B⊥ and other fields to obtain corrected forces to advance the particles to their

corrected momenta and positions. If desired, the iteration can be repeated. At

the end, the values for the current density and its derivative are calculated for the

next ξ. Table 2.2 describes the quantities we solve in QuickPIC 2.0 and their roles

in each iteration loop. In the next section, we will introduce the new method for

calculating ∂ ~J⊥(ξ +∆ξ/2)/∂ξ.

ξ − 1/2∆ξ ξ ξ + 1/2∆ξ ξ +∆ξ ξ + 3/2∆ξ

(1) ψ, ~J , ∂ ~J⊥
∂ξ

~p, γ ~x⊥

(2) ρ− Jz, ψ, ∇⊥ψ

(3) ~J , ∂ ~J⊥
∂ξ

, γ

(4) ~E, ~B ~p, γ ~x⊥

Table 2.2: Quantities solved in QuickPIC 2.0:(1) Known quantities;(2)Quantities

calculated before the iteration;(3)Quantities predicted (in the first iteration) or

corrected (after the first iteration);(4)Quantities known after the iteration.
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2.3 Depositing the time derivative of the current density

In the last section, we showed that in the iteration loop we need to calculate

~J⊥(ξ+∆ξ/2) and ∂ ~J⊥(ξ+∆ξ/2)/∂ξ. In QuickPIC 1.0 this is done by calculating

~J⊥(ξ +∆ξ) and the average and difference of it with ~J⊥(ξ). When using domain

decomposition, such a scheme requires repartitioning the particles twice within

a single pass through the iteration loop. The first particle repartition happens

because we need to update the particle position from ~x(ξ + ∆ξ/2) to ~x(ξ + ∆ξ)

in order to deposit the current density at ξ + ∆ξ. When the particle position

changes, the code needs to move some particles among the processors to make

sure they stay in the right partition. The other particle repartition happens at

the end of the each pass through the iteration loop. Before we correct the particle

position and momentum we need to restore the particle position ~x(ξ+∆ξ/2) (the

code stores the particle positions at ξ +∆ξ/2 in the extra memory as well as the

velocities at ξ) in order to correct the particle push. This requires redistributing

the particles among the processors once again.

If we do not change the particle position within the iteration loop, we will

not need to repartition the particles during each iteration. This will save the

computer memory needed to store the original particle data and more importantly

will speed up the loop since particle repartitioning is a parallel procedure which

requires message passing among the processors. We accomplish this by depositing

~J(ξ +∆ξ/2) and ∂ ~J⊥(ξ +∆ξ/2)/∂ξ directly at ξ +∆ξ/2. This method was first

introduced in developing a PIC code using the Darwin model [54, 55]. Although

different, the quasi-static and Darwin algorithms have many similarities including

the ability to use this method. In QuickPIC, for calculating ~J(ξ+∆ξ/2), we need

to know the particle momentum at ξ+∆ξ/2. It can be easily calculated by using

~p(ξ+∆ξ/2) = (~p(ξ) + ~p(ξ+∆ξ))/2, where the ~p(ξ+∆ξ) is the corrected particle

momentum obtained through the particle pushing. To deposit ∂ ~J⊥(ξ+∆ξ/2)/∂ξ,
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we use a new method to directly deposit it at ξ + ∆ξ/2 without changing the

particle position. In QuickPIC, the following equation is used for depositing the

current density[48],

~J =
q

Volume

∑

i

~vi
1− vz

S(~x⊥ − ~xi⊥)

=
q

Volume

∑

i

γ~vi
γ(1− vz)

S(~x⊥ − ~xi⊥)

=
q

Volume

∑

i

~pi
1− q

m
ψ
S(~x⊥ − ~xi⊥),

where S(~x) is the particle shape function. For S(~x) we include the interpolation

function (we use linear particle shapes) and any smoothing function (we use Gaus-

sions). In the above equation, we also utilize the constant of motion that exists

under the quasi-static approximation[42], γ − pz = 1 − (q/m)ψ (note that this

equation is for a plasma particle with an arbitrary charge mass ratio, and the pz

in the equation is the particle proper velocity in the z direction). After taking the

ξ derivative of the current density, we obtain

∂

∂ξ
~J⊥ =

∂

∂ξ

q

Volume

∑

i

~pi⊥
1− q

m
ψ
S(~x⊥ − ~xi⊥)

=
q

Volume

(

∑

i

∂
∂ξ
~pi⊥

1− q
m
ψ
S(~x⊥ − ~xi⊥) +

∑

i

~pi⊥
∂
∂ξ
( q
m
ψ)

(1 − q
m
ψ)2

S(~x⊥ − ~xi⊥)

−
∑

i

~pi⊥
1− q

m
ψ

∂~xi⊥
∂ξ

∇⊥ · S(~x⊥ − ~xi⊥)

)

=
q

Volume

(

∑

i

∂
∂ξ
~pi⊥

1− q
m
ψ
S(~x⊥ − ~xi⊥) +

∑

i

~pi⊥
∂
∂ξ
( q
m
ψ)

(1 − q
m
ψ)2

S(~x⊥ − ~xi⊥)

−
∑

i

~pi⊥
1− q

m
ψ

~pi⊥
1− q

m
ψ
∇⊥ · S(~x⊥ − ~xi⊥)

)

=
q

Volume

(

∑

i

∂
∂ξ
~pi⊥

1− q
m
ψ
S(~x⊥ − ~xi⊥) +

∑

i

~pi⊥
∂
∂ξ
( q
m
ψ)

(1 − q
m
ψ)2

S(~x⊥ − ~xi⊥)

− ∇⊥ ·
∑

i

~pi⊥~pi⊥
(1− q

m
ψ)2

S(~x⊥ − ~xi⊥)

)

,
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where ~pi⊥~pi⊥ is a dyadic.

This equation shows that ∂ ~J⊥/∂ξ can be obtained by depositing three different

densities evaluated at the particles position at ξ+∆ξ/2. In the first term, ∂~pi⊥/∂ξ

at ξ +∆ξ/2 is the acceleration of the particle. In the second term, ~pi⊥(ξ+∆ξ/2)

is calculated from ~pi⊥(ξ + ∆ξ/2) = (~pi⊥(ξ) + ~pi⊥(ξ + ∆ξ))/2 and ∂(q/m · ψ)/∂ξ
(note that here ψ is actually ψ(~xi⊥))is calculated by

∂

∂ξ
(
q

m
ψ) =

q

m
(
∂

∂ξ
ψ +∇⊥ψ · ∂~xi⊥

∂ξ
) =

q

m
(Ez +∇⊥ψ · ~pi⊥

1− q
m
ψ
)

Finally, in the third term, after depositing the density dyadic, ~pi⊥~pi⊥, we calculate

its divergence in Fourier space. None of these three parts requires updating the

particle position, which ensures that we can calculate the ∂ ~J⊥(ξ+∆ξ/2)/∂ξ locally

within each processor and no particle relocation is required.

2.4 Simulation result comparison between QuickPIC 1.0

and 2.0

In this section, we compare the results from QuickPIC 1.0, 2.0 and OSIRIS when

simulating physics of relevance to the PWFA. The PWFA uses a high energy

particle beam to excite a large plasma wave wakefield inside the plasma. A second

beam properly phased inside the wakefield can be focused and accelerated to

high energy. QuickPIC is a very important tool for modeling PWFA and is used

extensively in the later chapters of this dissertation.

We begin by simulating two PWFA cases in the linear regime. In the linear

regime the density of the drive beam nb is much smaller than the plasma density

np. In one case, the drive beam has a spot size which is much smaller than the

plasma skin depth, c/ωp ≡ k−1
p . In the other case, the spot size is much larger

than the plasma skin depth. In each case the drive beam has a Gaussian profile

nb exp(−r2/2σ2
r) exp(−z2/2σ2

z) and a 20 GeV initial energy. The narrow drive
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Figure 2.1: The longitudinal electric field lineouts on the axis from the elec-

tron-beam-driven PWFA simulations in the linear regime: (a) Results for the nar-

row beam case with QuickPIC 1.0 and 2.0 using 1 iteration and OSIRIS result;

(b) Results for the wide beam case with QuickPIC 1.0 using 1 and 4 iterations,

and QuickPIC 2.0 using 1 iteration and from OSIRIS.
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beam has kpσr = 0.2, kpσz = 0.75 and nb/np = 0.1 and the wide drive beam has

kpσr = 5.64, kpσz = 0.75 and nb/np = 0.1.

The simulation results are shown in the Fig. 2.1. In these plots, ξ = 0 is the

beam center and the beam is moving to the left. In the linear regime, the drive

beam excites a sinusoidal wave wakefield as shown in Fig. 2.1. In the narrow beam

case, results from QuickPIC 1.0 and 2.0 both agree with OSIRIS [39] (red dashed

line) after only 1 iteration. In the wide beam case, there is a slight difference

between QuickPIC 1.0 with only 1 iteration and OSIRIS, while the results from

QuickPIC 2.0 with only 1 iteration are still in excellent agreement with OSIRIS.

By increasing the iteration number to 4, QuickPIC 1.0 agrees with the OSIRIS

result as well as with the QuickPIC 2.0 result with only 1 iteration in this “wide”

beam case.

Modeling nonlinear wakes is more challenging. The drive beam will excite

a nonlinear plasma wave wakefield if the beam density is much larger than the

plasma density (i.e., nb/np ≫ 1) or its normalized charge per unit length is larger

than 1 (i.e., Λ = (nb/np)k
2
pσ

2
r > 1) [49]. We next present results from two nonlinear

PWFA examples. In one the drive beam is narrow and in the other drive beam

is wide. In the narrow drive beam case, the beam parameters are kpσr = 0.2,

kpσz = 0.75 and nb/np = 20. In the wide drive beam case, the beam parameters

are kpσr = 5.64, kpσz = 0.75 and nb/np = 0.5. For the wide beam case, the drive

beam has a normalized charge per unit length equal to Λ = (nb/np)k
2
pσ

2
r = 1.6,

which is in the nonlinear regime even though the beam density nb/np = 0.5 is not

very large. The simulation results are shown in Fig. 2.2 for the narrow beam case

and Fig. 2.3 for the wide beam case.

In the narrow beam case, the Ez field increases along the ξ axis at the front

and reaches its maximum value near the beam center. It then drops down almost

linearly until it forms a deep spike at the rear of an ion bubble after which it

rapidly rises. The positive Ez field around ξ = 0 (where is the center of the drive
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Figure 2.2: The longitudinal electric field lineouts on the axis from narrow elec-

tron-beam-driven PWFA simulations in the nonlinear regime: (a)Results from

QuickPIC 1.0 and 2.0 simulations using 6 iterations and from OSIRIS; (b) Re-

sults from QuickPIC 1.0 and 2.0 simulation using 1 iteration and from OSIRIS.
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Figure 2.3: The longitudinal electric field lineouts on the axis from wide elec-

tron-beam-driven PWFA simulations in the nonlinear regime: (a) Results from

QuickPIC 1.0 and 2.0 simulations using 7 iterations and from OSIRIS; (b) Results

from QuickPIC 1.0 and 2.0 simulations with fewer iterations and from OSIRIS.
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beam) will decelerate the drive beam, while the negative Ez can accelerate another

electron beam. In Fig. 2.2(a), we can see that the solver in QuickPIC 1.0 and

in QuickPIC 2.0 give the same results and agree with OSIRIS after 6 iterations.

When only one iteration is used in each case (Fig. 2.2(b)), the results from the 2.0

version already overlap and are in excellent agreement with the OSIRIS result.

However, results from the 1.0 version deviate from the OSIRIS result and require

4 or more iterations to obtain an accurate answer. In the wide beam case, wakes

obtained from both versions of QuickPIC with 7 iterations agree well with OSIRIS.

However, QuickPIC 2.0 converges much faster to the OSIRIS result. From Fig.

2.3(b), we can see that QuickPIC 2.0 needs only 2 iterations while QuickPIC 1.0

needs at least 5 iterations to converge.

The nonlinear plasma wake field driven by an electron beam is perfect for accel-

erating another electron beam. When a second trailing electron beam is properly

loaded and shaped inside the wake field, the accelerating field can be flattened

due to beam loading. The flattened accelerating field will result in a narrow en-

ergy spread of the accelerated beam. The Fig. 2.4 shows the simulation results

from such a beam loading scenario. In this case, the drive beam’s parameters are

kpσr = 0.06, kpσz = 1.78 and nb/np = 634.9 and the trailing beam’s parameters

are kpσr = 0.06, kpσz = 0.59 and nb/np = 634.9. The distance between two beam

centers is kpL = 6.83. QuickPIC 2.0 requires only 1 iteration to obtain excellent

result with OSIRIS.

In addition to an electron beam, a short positron or proton beam can also

excite a “bubble” like wake field [34] that can be used for accelerating an electron

trailing beam. Figure 2.5 shows the simulation results for such a case. The

positron (proton) drive beam’s parameters are kpσr = 0.93, kpσz = 0.46 and

nb/np = 3.15.

In this case, results from QuickPIC 2.0 are in excellent agreement with OSIRIS

after 1 iteration. On the other hand QuickPIC 1.0 still does not converge to the
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Figure 2.4: Lineouts of the longitudinal electric field on the axis from elec-

tron-beam-driven PWFA simulations in the nonlinear regime with a beam load.

The lineouts include QuickPIC 2.0 simulation results with 1 iteration, QuickPIC

1.0 simulation results with 1 and 3 iterations and OSIRIS simulation results.
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Figure 2.5: Lineouts of the longitudinal electric field on the axis from short

positron-beam-driven PWFA simulations. The lineouts include QuickPIC 2.0

simulation results with 1 iteration, QuickPIC 1.0 simulation results with 1 and 3

iterations and OSIRIS simulation results.
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correct result even after 3 iterations.

From all the simulations shown above, the results obtained from the algorithm

in QuickPIC 2.0 converges more rapidly to the “correct”, OSIRIS, result than the

results from QuickPIC 1.0 do. In most of the cases, the QuickPIC 2.0 only needs 1

iteration to provide a correct result while QuickPIC 1.0 needs at least 4 iterations

to reach the correct result. Note that by 1 iteration we mean that the field solve

and particle push has been done twice and by 4 iterations we mean that they have

been run for 5 times. Because the iteration loop contains all the particle pushing,

current deposition, fields solving and field interpolation procedures, it takes most

of the computing time in QuickPIC. The charge and current density deposition

and particle update for the drive beam is typically less. Therefore, QuickPIC 2.0

is generally at least 5/2=2.5 times faster.

In addition, the new scheme for depositing ∂ ~J⊥/∂ξ can also save much com-

puting time on parallel computations. Figure 2.6 shows the QuickPIC 2.0 speedup

compared with QuickPIC 1.0 for a test simulation. The test simulation is a nonlin-

ear PWFA case with 512×512×512 cells. Each simulation is run on 64 processors.

We use double precision fro both the new and old versions of QuickPIC. For this

test case, QuickPIC 1.0 used 4 iterations (the field solve and particle push loop is

run 5 times) and QuickPIC 2.0 used only 1 iteration (the loop is run twice). From

Fig. 2.6, we can see that the new code is 5 times faster than the old code when we

use 4 particles per cell in the test simulation. And the speedup increases to 8.5

times when there are 25 particles per cell (i.e., more particles on each processor).

This additional speed up and the increasing speed up with increasing particle

number (5 or 8.5 rather than 2.5) is because of the reduced amount of parallel

communication in the new deposition scheme in QuickPIC 2.0.

It is also worth commenting on the relative speed of the new version of Quick-

PIC and a full PIC code, e.g., OSIRIS. In the original QuickPIC paper [48], the

number of particle updates needed to calculate the wake (a single 3D quasi-static
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Figure 2.6: Total speed up of QuickPIC 2.0

time step for QuickPIC) or to propagate a beam a betatron wavelength for both a

quasi-static and fully explicit PIC code was given. To translate this into the how

long a simulation would take requires the speed of a particle update. The time

it takes to update each particle (including the charge/current deposit and field

solves) differs between QuickPIC and full PIC codes such as OSIRIS. The quasi-

static code uses a 2D push not a 3D push, but it requires an iteration loop and a

more complicated field solve. In addition, QuickPIC is spectral based and OSIRIS

is FDTD based. Providing general estimates of the speeds is further complicated

by the fact that the code timing depends on many factors, including numbers of

processors (parallel scalability and load balancing), interpolation order, the use of

SIMD units on each core, the problem (nonlinear or weakly nonlinear), and the

number of particles per cell (in QuickPIC the field solve can dominate for a low

number of particles per cell). Therefore, we simply provide timings for a 2D step

in QuickPIC for one full iteration as well as some timing for OSIRIS for a thermal

plasma test case.

The QuickPIC simulations used domains with 512×512×512 cells and a typical

beam driver. We used 64 processors for QuickPIC which is a typical number for
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each 2D copy when using the pipelining method [45] for parallelization. We use

double precision and linear interpolation. On Blue Waters, each 2D step (with

1 iteration) in QuickPIC takes 2500 ns/particle when using 4 particles per cell

and 770 ns/particle when using 25 particles per cell for a weakly nonlinear PWFA

case. And for a strongly nonlinear PWFA case the timings are very similar. On

thermal plasma test cases, when applying the SSE vector units on Blue Waters,

each 3D step in OSIRIS has achieved timings of ∼150 ns per particle using linear

interpolation and ∼300 ns/particle using quadratic interpolation. On the new

Intel E5-2680 (@2.7GHz), each 3D step in OSIRIS achieves 59.5 ns/particle with

linear interpolation and 108.7 ns/particle with quadratic interpolation. Without

the SSEs, OSIRIS is ∼2-3 times slower on most systems. In addition, for a

nonlinear PWFA case the effective speed of OSIRIS can be ∼5 times slower due

to load imbalance when running on a large number of processors. As mentioned

earlier, the timings for QuickPIC do not differ that much between a nonlinear

case and a linear as load balancing is not a significant problem. While it is not

straightforward to compare these timings for the reasons stated, it is generally

true that each 2D step in QuickPIC 2.0 including the iteration and field solve is

comparable to a 3D step using OSIRIS.

2.5 The Field Ionization Module

In PWFA experiments, if the plasma is produced by ionizing the neutral gas

using the particle beam’s self Coulomb field, this so-called field-ionized plasma

will have a nonuniform distribution in the space (we will show this later) since

the beam’s self Coulomb field is not uniform (which is zero on axis and falls off as

1/r for large r). The nonuniform field-ionized plasma will affect the particle beam

evolution and can lead to a significant differences on wake excitation compared to

a preformed uniform plasma conditions. Therefore we must include field ionization
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into the PIC code to accurately study ongoing (and future) experiments. Here we

describe the field ionization module, and recent improvements to it. Dr. Zhou first

implemented the ionization module in QuickPIC [56, 57] based on the Ammosov-

Deloine-Krainov (ADK) model [58, 59]. But that ionization module only included

one ionization level for each neutral species and it was developed on the QuickPIC

1.0 without the pipeline algorithm. Therefore, we have updated the ionization

module in order to make it work under the QuickPIC 2.0 with multiple ionization

as well as the pipeline algorithm.

The ADK model can calculate the tunneling ionization rate of the neutral

atoms or atomic ions in an external electric field whose amplitude is smaller than

the critical value Ecrit = (
√
2 − 1)|ξi|3/2 [59]. The ADK model is very suitable

to be implemented in the PIC code for modeling the PWFA and LWFA because

for many cases of interest the Keldysh parameter γ ≪ 1 indicating the external

electric field has a low frequency [60] (rather than the multi-photon ionization

γ ≫ 1 indicating the external electric field has a high frequency and where multi-

photo ionization [60]). For γ ≪ 1 the ionization rate in the ADK model only

depends on the local electric field and the ionization rate is given by [59]

w[s−1] ≈ 1.52× 1015
4n

∗

ξi[eV]

n∗Γ(2n∗)

(

20.5
ξ
3/2
i [eV]

E[GV/m]

)2n∗−1

× exp

(

−6.83
ξ
3/2
i [eV]

E[GV/m]

)

,

where ξi is the ionization energy of the atom or the atomic ion, n∗ ≈ 3.69Z/ξ
1/2
i [eV]

is the effective principle quantum number, Z is the charge number of the ion after

ionization, Γ is the standard gamma function and E is the magnitude of the local

electric field. The density of the atoms being ionized n0 satisfies,

dn0(~x, t)

dt
= −w0(E(~x, t))n0(~x, t), (2.21)

where w0 is the ionization rate of the neutral atom. QuickPIC uses the coordinates

(~x⊥, ξ = t − z, s = z) rather than (~x⊥, z, t). The density is considered at fixed

s = s0 but different t (i.e., different ξ). Therefore dξ = dt(1 − vz) and the above
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rate equation becomes

dn0(~x⊥, ξ)

dξ
= −w0(E(~x⊥, ξ))

1− vz
n0(~x⊥, ξ).

However, for neutral (and ionized ions) vz ∼ 0, so one can simply replace t with ξ

in the rate equation (2.21). To solve this equation along the ξ with a step length

∆ξ, we can discretize the above equation into

n0(ξ0 +∆ξ) = n0(ξ0)(1− w0(ξ0)∆ξ),

where w0(ξ0) ≡ w0(E(~x⊥, ξ0)) for simplicity. Thus, when we know the quantities

n0 and w0 on ξ0, we can calculate the n0 on the next step ξ0 +∆ξ. But this is a

first order method and w0(ξ0)∆ξ need to be less than 1. To solve this equation

more accurately, we can assume the ionization rate does not change between ξ0

and ξ0 +∆ξ. By integrating the rate equation for n0, we have

n0(ξ0 +∆ξ) = n0(ξ0)e
−w0(ξ0)∆ξ.

This solution is more accurate and does not need w0(ξ0)∆ξ to be less than 1. If

the second (or more) ionization is allowed, we need to calculate the density of the

singly charged ion species n1. The equation for n1 is

dn1(ξ)

dξ
= w0(ξ)n0(ξ)− w1(ξ)n1(ξ),

where w1 is the ionization rate of the singly charged ion. Assuming w1 also

does not change during the interval of ∆ξ, we can solve the above equation by

substituting the solution of n0 = n0(ξ0) exp(−w0(ξ0)ξ). Then we can have

n1(ξ0+∆ξ) =

(

n1(ξ0)−
w0(ξ0)n0(ξ0)

w1(ξ0)− w0(ξ0)

)

e−w1(ξ0)∆ξ +
w0(ξ0)n0(ξ0)

w1(ξ0)− w0(ξ0)
e−w0(ξ0)∆ξ.

These can be straight forwardly generalized for more ionization steps. The

rate equation for the ion density nm + 1 is,

dnm+1(ξ)

dξ
= wm(ξ)nm(ξ)− wm+1(ξ)nm+1(ξ).
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Note that the other ion densities n0, . . . nm−1do not appear in the above equation

because the ADK model can only calculate the single ionization rate for an atom

or an atomic ion but not the rate of the spontaneous multiple ionization. Suppose

we know the ion density nm,

nm(ξ) =

m
∑

i=0

Cm
i e

−wiξ,

where wi = wi(ξ0) (i = 0, . . . , m) is the ionization rate for the neutral atom (i = 0)

or the i-valent ion (i > 0) and Cm
i (i = 0, . . . , m) is the coefficient in front of each

term of e−wiξ. Upon substituting nm into the rate equation for nm+1, we can solve

it to get

nm+1(ξ0+∆ξ) =

(

nm+1(ξ0)−
m
∑

i=0

Cm
i

wm+1 − wi

)

e−wm+1∆ξ +

m
∑

i=0

Cm
i

wm+1 − wi
e−wi∆ξ.

Then we know the coefficient Cm+1
i , (i = 0, . . . , m+ 1) for the ion density nm+1,

Cm+1
m+1 = nm+1(ξ0)−

m
∑

i=0

Cm
i

wm+1 − wi

, Cm+1
i =

Cm
i

wm+1 − wi

, (i = 0, . . . , m).

These coefficients can be used to calculate Cm+2
i for the next ionization level and

so on.

After all ion densities nm(ξ0 + ∆ξ) are calculated, we can inject the macro

particles at the ξ0 +∆ξ according to the sum of ion density increments,

M
∑

m=1

∆nm =

M
∑

m=1

(nm(ξ0 +∆ξ)− nm(ξ0)),

whereM is the maximum ionization level in the simulation. To enable the pipeline

algorithm, we need to send the ion densities at the last slice (i.e., the last ξ step)

of the current stage to the next stage as its initial value for the first ξ step.

Figures 2.7 and 2.8 show the results from a QuickPIC 2.0 simulation for a

PWFA case with a field ionization produced plasma. The electron drive beam’s

parameters are kpσr = 0.42, kpσz = 1.43 and nb/np = 3.56. The neutral gas used

in the simulation is Cesium. Excellent agreement between OSIRIS and QuickPIC

2.0 is obtained after 1 iteration.
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Figure 2.7: The field-ionized plasma density: (a) OSIRIS result; (b) QuickPIC

2.0 result.
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2.6 Improvements to beam initialization and particle di-

agnostics

In QuickPIC, we normally initialize the beam particles’ positions and velocities

according to a given distribution profile (e.g. the Gaussian profile). But in the

real PWFA experiments, the particle beam usually does not have a distribution

given by a known function in the six dimensional phase space. The distribution

can be obtained from accelerator simulations using codes (such as the Elegant

[61]). Furthermore, the distribution is generally not separate f(x, y, z, px, py, pz) 6=
X(x)Y (y)Z(z)Px(px)Py(py)Pz(pz). We have developed the ability to initialize a

particle beam in QuickPIC using the raw data from an accelerator code. Pre-

viously, we developed the ability to take raw data from an accelerator code and

use it to generate a distribution of the form fx(x, px)fy(y, py)fz(z, pz) and then

use this to initialize a beam in QuickPIC [62]. This method cannot reconstruct

the correlation between all six dimensional phase space coordinates. In order to

do that, we need to directly import the beam particles’ raw data into QuickPIC.

This was implemented into the current version of QuickPIC. When QuickPIC is

initialized, all the computing processors will read the same external file that con-

tains all the beam particles’ raw data, which is obtained through the accelerator

simulation code. Each processor then checks through all the beam particles and

only keeps those belonging to its partition. This method requires that the number

of the beam particles imported into QuickPIC should be large enough in order to

reduce the numerical noise when depositing the beam charge density on the grid

point. Normally, the particle number we need is N = 63(σx/∆x)(σy/∆y)(σz/∆z),

where σx,y,z is the r.m.s. beam length in each direction and ∆x,y,z is the cell size in

each direction. In Figure 2.9 we show an example of an external beam initialized

in QuickPIC from an Elegant simulation. The raw particle data comes from a

simulation of a SLAC electron beam. The peak energy of the beam is around
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23 GeV. The beam has 45.1µm and 9.8µm r.m.s. spot sizes (calculated from the

raw data) in two transverse directions. There is also a little bump at the beam

tail if we look at the projections in the plot. But this bump tail is dispersed in a

complicated manner in the transverse directions.

Figure 2.9: Density isosurface plots of an electron beam initially imported from

the raw data of a SLAC beam. The plots (in blue) on the walls are projected

density plots in three directions. The beam is moving to the right.

When studying the beam evolution in the PWFA, we are not only interested

in the beam density but also the beam’s phase space distribution. We directly

dump the beam particles’ raw data during the simulation and analyze then post-

process the data. We use the parallel I/O libraries from the HDF5 package [63]

in QuickPIC. When QuickPIC is running with multiple pipeline stages, only the

beam particles belonging to the same stage are synchronized to the same time

step. The beam particles belonging to different stages may be at different s steps.

Therefore, when dumping the particles’ raw data at a given s step, the first stage

to reach that step will create a new file and all processors within that stage will

45



p
x [

m
ec

/ω
p
]

60

40

20

0

-20

-40

-60

x1 [c/ωp]
151050-5-10-15

s = 0 [ c / ωp ]

p
3 

[c
/ω

p
]

4.65× 104

4.60× 104

4.55× 104

4.50× 104

p
y 

[m
ec

/ω
p
]

6

4

2

0

-2

-4

y [c/ωp]
420-2-4

s = 0 [ c / ωp ]

p
3 

[c
/ω

p
]

4.65× 104

4.60× 104

4.55× 104

4.50× 104

p
x [

m
ec

/ω
p
]

100

50

0

-50

-100

-150

x1 [c/ωp]
151050-5-10-15

s = 200 [ c / ωp ]
p

3 
[c

/ω
p
]

4.70× 104

4.65× 104

4.60× 104

4.55× 104

4.50× 104

p
y 

[m
ec

/ω
p
]

100

50

0

-50

-100

-150

y [c/ωp]
420-2-4

s = 200 [ c / ωp ]

p
3 

[c
/ω

p
]

4.70× 104

4.65× 104

4.60× 104

4.55× 104

4.50× 104

p
x [

m
ec

/ω
p
]

200

100

0

-100

-200

x1 [c/ωp]
151050-5-10-15

s = 400 [ c / ωp ]

p
3 

[c
/ω

p
]

4.70× 104

4.65× 104

4.60× 104

4.55× 104

4.50× 104

4.45× 104

p
y 

[m
ec

/ω
p
]

200

100

0

-100

-200

y [c/ωp]
420-2-4

s = 400 [ c / ωp ]

p
3 

[c
/ω

p
]

4.70× 104

4.65× 104

4.60× 104

4.55× 104

4.50× 104

4.45× 104

x− px y − py

Figure 2.10: Snapshots of an electron drive beam phase space from a PWFA

simulation.
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dump the data (if there are any particles in this stage) into this file using parallel

I/O. After the first stage in the pipeline finish writing the data, the next stage will

open the file created by the first stage and all processors within the second stage

write data into that file. If there are more stages, this process is repeated until

the last stagehas written out data. As an example, Fig. 2.10 shows an electron

beam phase space snapshots at different values of s as a beam propagates in a

5.0× 1016 cm−3 plasma. The electron beam is the same as shown in the Fig. 2.9.

Figure 2.11: Illustration plot of the drive beam particles’ trajectories in a PWFA.

Beam particle tracking is another useful diagnostic. This diagnostic allows

us to obtain the trajectories (x(s), y(s), ξ(s)) of interested beam particles. It

requires adding a tag on each beam particle. The tag is stored as an additional

particle coordinate and is passed together with particle’s position and velocity

when the particle moves from one processor to another. Figure 2.11 shows the

beam particle trajectories using the tracking diagnostic. The simulated case is an

electron-beam-driven PWFA in the nonlinear regime. The beam parameters are

kpσr = 0.2, kpσz = 0.75 and nb/np = 20. Each line in Fig. 2.11 represents one

beam particle’s trajectory (x1(s), x2(s), x3(s)), where x1 = x, x2 = y and x3 = ξ.
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It shows that all the selected particles circulate in a closed elliptical orbits in

the (x, y, ξ) space. Therefore these beam particles are doing simple harmonic

oscillation in two transverse directions, which indicates that they all feel linear

focusing force from the plasma wake field.

2.7 The plasma particle diagnostic and initialization

Similarly, we have implemented particle diagnostics for the plasma particles in

QuickPIC. For a given s time step (i.e., the 3D step), the plasma raw data is stored

at each ξ step allowing (x, y, px, py, pz) phase space plots to be generated at each

value of ξ. Figure 2.12 shows snapshots of the plasma electrons’ phase space

at different ξ positions. The simulated case is an electron-beam-driven PWFA

in the nonlinear regime. The beam parameters are kpσr = 0.36, kpσz = 1.08

and nb/np = 6.86. On top of the Fig. 2.12, there is a plasma and beam density

plot showing a bubble-like nonlinear plasma wake driven by the intense electron

beam with given parameters. Each snapshot of the plasma phase space is taken

at different location of ξ (ξ = 0,−1,−2,−3,−4,−5). The snapshots show the

process of the plasma electrons being first expelled by the drive beam and most

of them finally being pulled back by the ion column.

In addition, the plasma particles can also be tagged so that the trajectories

(x(ξ), y(ξ), px(ξ), py(ξ), pz(ξ)) of interested plasma particles can be generated.

We can also include the values of the wake fields the particles feel in the particle

trackes. Figure 2.13 shows some plasma electron tracks (together with the drive

beam isosurface) from the same simulation shown in Fig. 2.12. The selected

plasma electrons initially stay in a line in the middle of the simulation box. The

color of the track represents the energy (the Lorentz factor γ) of the plasma

electron at different locations. We can see that the plasma electrons far away

from the drive beam have small perturbations, which can be considered as linear
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Figure 2.12: Snapshots of the plasma electrons’ phase space from an elec-

tron-beam-driven PWFA simulation.
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response, while the plasma electrons close to the drive beam feel large Coulomb

field and are expelled to a large radius. Trajectory crossing happens for these

electrons.

Figure 2.13: The trajectories of plasma electrons from an electron-beam-driven

PWFA simulation.

Another important new feathur in QuickPIC 2.0 is the ability to initialize the

plasma particles including the wake fields at a given ξ. In QuickPIC, the plasma

particles are all stay in a two dimensional slice (with the same coordinate of ξ).

They are advanced step by step along the ξ. After this plasma slice sweep over all

the ξ steps in the simulation box, the drive beam will be pushed one step forward

in s according to the fields obtained from the plasma response. Then all the

procedures will start over with a re-initialized plasma slice at the very beginning

position of ξ. At each s step, the plasma slice usually starts from the rest with

a given transverse distribution profile (e.g. a uniform distribution) in front of the

drive beam.

However, in some beam loading scenarios the trailing beam might evolve more
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rapidly than the drive beam. If the drive beam is not evolving, we can initialize

the plasma particles at a value of ξ behind it. The new plasma initialization allows

us to start the plasma calculation from a certain ξ in the middle of the original

simulation box. In order to do that, we need to first calculate the plasma response

from the first ξ = ξ0 position (where the plasma particles are in rest) and store

the plasma particles information as well as the fields at the ξ position we want to

start later. Then we can launch a new simulation, for which at each s step of we

initialize the plasma particles and the fields with the same values at ξ0. By using

this plasma initialization method, we assume that everything does not evolve in s

before the ξ we start from. This method can help us save much computing time

on the non-evolving part and focus on what we really interested in. In chapter 4,

this method is introduced in more details and used for studying the ion motion

problem in a two-bunch PWFA.

2.8 Directions for future work

There are still several areas for developing numerical algorithms within QuickPIC

in the future. One area is to compare and explore different options of using

conservation laws for the motion of plasma particles. Within the quasi-static

approximation, the quantity γ − pz = 1 − (q/m)ψ is a constant of the motion.

This can be used in a variety of ways including comparing how well it is conserved

between different choices in algorithms. It is necessary to obtain pz and γ for both

predicting the currents and fields and calculating the final momentum and position

at the end of the iteration loop. One choice is to use the following equation

pz =
1 + p2⊥ − (1− (q/m)ψ)2 + a2/2

2(1− (q/m)ψ)
,

which is derived by combining the constant motion with the quasi-static definition

for γ, which is γ2 = 1 + p2⊥ + p2z + a2/2. This equation is used in both WAKE

and QuickPIC. It involves the pseudo potential ψ, the particle position ~x⊥ (for
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interpolating ψ) and the particle momentum ~p⊥, which all should be known at

the same ξ. The second choice is to calculate pz using the constant of the motion

within the iteration loop to obtain Jz at the half step (using a predicted ~p⊥) but

to calculate pz at the next full step using the equation of motion,

dpz
dξ

=
q/m

1− (q/m)ψ

[

γEz + ~p⊥ × ~B⊥

]

,

at the end of the iteration loop. Note that we have used the constant of motion

in the above equation. This is what is currently done in QuickPIC 2.0. Another

choice would be to use the equation of motion for both a half step to predict pz

within the iteration loop and a full step at the end of the iteration loop. We have

experimented with all of these choices but have not carefully compared the results

to see which ultimately maintains the constant of the motion best within or after

the iteration loop. So this will be an area for our future work.

There are also two choices for updating the particle’s position. One choice is

to use the following equation as was done in QuickPIC 1.0 [48]

d~x⊥
dξ

=
~p⊥

1− (q/m)ψ
.

In order for this equation to be time centered, ψ and ~p⊥ need to be defined at

the same ξ . This means we need to calculate the ψ at both full and half integer

time steps (see Table 2.1). This requires calculating ψ and interpolating ψ at

each particle position at least twice during each iteration loop which also leads to

additional parallel communication between each processors.

The other choice, which we use in QuickPIC 2.0, is to use the equation

d~x⊥
dξ

=
~p⊥

γ − pz
.

This requires that we know pz at the same ξ as ~p⊥ (and hence know γ at the same

ξ). The correct time centering is kept if we calculate pz using the equation of

motion at the end of the iteration loop and we do not need to update the particle
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position within the iteration loop. This method does not rely on the constant of

the motion directly. Exploring how well the constant of the motion as maintained

between these two choices is also an area for our future work.

Other areas for the future work include incorporating the laser solver and

ponderomotive guiding center force into QuickPIC 2.0 with its new algorithm for

the iteration loop, developing a recipe for determining when a plasma particle is

trapped and become a beam-like particle, implementing adaptive 2D and 3D time

steps, experimenting with load balancing in the 2D part of the code, porting the

code to GPUs, mesh refinement, and experimenting with using a ~k⊥ dependent

coefficient in front of the ~Bnew
⊥ and ~Bold

⊥ terms in equation (2.20).

2.9 Summary

In this chapter, we have described a new field solver for a fully three-dimensional

quasi-static PIC code. This solver is used in QuickPIC. Instead of calculating the

scalar and vector potentials using the Lorentz gauge to obtain the electromag-

netic fields, we solve for the electromagnetic field directly (these equations are

therefore gauge invariant) using the appropriate charge and current densities. In

addition, a new deposition scheme for the time derivative of the current density

is implemented in QuickPIC. The new method can locally deposit the ∂ ~J⊥/∂ξ

without updating and repartitioning the particles two times during each iteration

loop. By simulating many different scenarios of beam driven PWFA, we show

that results from the new QuickPIC, QuickPIC 2.0, are in excellent agreement

from the full PIC code OSIRIS after only 1 iteration in the most cases, while the

old QuickPIC, QuickPIC 1.0, typically requires at least 4 iterations to obtain the

same results. For a typical nonlinear PWFA simulation used for timing results,

QuickPIC 2.0 is 5 to 8.5 times faster than QuickPIC 1.0 version depending on the

number of particles per cell. A new field ionization module in QuickPIC 2.0 is
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introduced, which allows us to simulate gas species with multiple ionization levels.

Other improvements to QuickPIC 2.0 are also presented, including the beam and

plasma initialization and diagnostic routines.
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CHAPTER 3

Two-Bunch PWFA

Earlier experiments at the final focus test beam (FFTB) facility at the Stanford

Linear Accelerator Center (SLAC) [28] have shown that a PWFA can sustain an

accelerating gradient exceeding 50 GeV/m over almost a meter long distance. The

large-amplitude plasma wave or wake was excited by a high energy electron beam

operating in the so-called “blow-out” regime [64, 16], where the electron beam

density nb is much larger than the plasma density np or the beam current exceeds

a few 10’s of kA. The plasma was formed in these experiments by ionizing a column

of lithium (Li) using the transverse electric field Er of the 42 GeV electron bunch

[65]. When the high energy electron bunch (the drive beam) travels through the

neutral gas, the Er field of the beam ionizes the neutral gas into the plasma state.

If nb > np (or if the beam current exceeds 10’s of kAs), it expels all the plasma

electrons within a certain radius of the bunch thereby creating an ion cavity

(resembling a bubble) around the beam. The expelled plasma electrons form a

sheath around this ion cavity and are pulled back to the axis at the rear part of

the bubble by the restoring force exerted by the plasma ions, thereby forming a

classic wake field configuration. This highly-nonlinear plasma wake contains both

a transverse focusing field (which increases linearly away from the axis with the

transverse distance r) and a longitudinal accelerating field (which is uniform in

the transverse direction), which are ideal conditions for accelerating an electron

beam. The amplitude of the longitudinal electric field in such a nonlinear plasma

wake can be on the order of mecωp/e ≈ 10[GV/m]
√

np/1016[cm−3], where np is
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the plasma density and ωp is the plasma frequency [66]. In the experiments at the

FFTB, only a single electron bunch was used. Electrons in the head of the beam

created the plasma and excited the wake. Electrons in the tail of the beam were

accelerated. Since they resided in all phases of the wave, there was a large energy

spread (∼100%) on the accelerated electrons. Furthermore, in this experiment the

acceleration distance was limited by ionization-induced beam head erosion. The

very head of the beam is not guided by any plasma focusing fields. Therefore, it

expands as in vacuum, and the self-fields of the beam head get smaller causing

the ionization front to slip backwards and leading to more electrons in the bunch

to expand.

At FACET, a primary focus will be demonstrating that good beam quality can

be maintained if a second electron bunch is properly placed in the wake created

by a first bunch (drive beam). While the drive beam transfers its energy to the

wake, a second electron bunch (the trailing beam) can be placed at an appropriate

distance behind the drive beam, i.e., in the accelerating field of the wake, to gains

energy. If the trailing beam contains a sufficient number of electrons it can load the

wake and flatten the accelerating field [67] so that all the electrons gain energy

at nearly the same rate, thus minimizing the energy spread of the beam and

increasing the energy extraction efficiency. Such a “two-bunch” PWFA scenario

will be tested on the newly completed facility FACET at SLAC [31].

In this chapter, several important issues related to the two-bunch PWFA will

be discussed. In section 3.1, we will review the electron-beam-driven plasma wake

in the nonlinear regime. In section 3.2, we will discuss the decelerating field in an

electron-beam-driven nonlinear plasma wake. In section 3.3, we discuss how to

find the optimal plasma density to excite largest accelerating field for a given beam

parameters. Simulations of two-bunch PWFA experiments at FACET are shown

in 3.4. In section 3.5, the drive beam head erosion in the two-bunch experiments

and the methods for mitigating head erosion in the field ionized plasma will be
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discussed. Lastly, we summarize the chapter in section 3.6.

3.1 The electron-beam-driven nonlinear plasma wake field

A high energy electron beam (the drive beam) can excite a nonlinear plasma

wake when the space charge forces of this beam are strong enough to expel all the

plasma electrons within a radius greater than or equal to the plasma skin depth.

This results in a bubble-like cavity around the drive beam filled with only ions.

The expelled plasma electrons flow backwards in a thin sheath around the ion

cavity which are eventually pulled back to the axis by the ions (Fig. 3.1).

A theory based on the quasi-static approximation (this was described in the

last chapter) was developed to analytically describe the wake field in this blow-out

regime [16, 17]. The theory assumes the drive beam has an axisymmetric profile

and does not evolve as it propagates through the plasma. It is shown in references

[16] and [17] that inside the bubble, the pseudo potential (recall this is ψ ≡ φ−Az)

has a solution

ψ(r, ξ) =
r2b (ξ)

4
(1 + β(ξ))− r2

4
, (3.1)

where rb(ξ) is the bubble radius at ξ and β(ξ) is a parameter related to the width

of the sheath ∆ around the bubble. The formula for β(ξ) is

β(ξ) =
(1 + α)2ln(1 + α)2

(1 + α)2 − 1
− 1,

where α ≡ ∆

rb(ξ)
. The solution of ψ is derived by solving the equation (2.1)

directly. It also assumes that ρ − Jz (which is conserved at each slice of ξ, i.e.,
∫ ∞

0

dr r(ρ− Jz) = 0) is equal to 1 for r < rb and is a constant within the sheath

around the bubble (where rb < r < rb + ∆, ∆ is the sheath width) and is equal

to 0 outside the sheath. This assumption gives a very good agreement with the

simulation. Note that the existence of the high energy beam inside the bubble will

not change the profile of ρ−Jz and hence not change the form of the solution of ψ,
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Figure 3.1: Plot from a QuickPIC simulation of a two-bunch PWFA in the

“Blow-Out” regime. This plot is a combination of (a) A projection of the plasma

electron density (three blue plots on the walls) along the x, y and ξ axes, (b)

three dimensional isosurface of the plasma electron density (green surfaces which

stand for the inside and outside surfaces of the plasma electron sheath around the

bubble) and (c) the beam particles (plotted as colored dots: blue represents low

energy and red represents high energy). The two bunches are moving from the

left to the right.
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because for any beam moving at the speed close to c, the beam’s ρ− Jz equals to

∼zero. But the beam will influence the bubble radius rb(ξ) and therefore influence

ψ indirectly. In references [16] and [17], it is shown that rb(ξ) obeys the equation,

A(rb)
d2rb
dξ2

+B(rb)rb(
drb
dξ

)2 + C(rb)rb =
λ(ξ)

rb
, (3.2)

where

A(rb) = 1 + [
1

4
+
β

2
+

1

8
rb
dβ

drb
]r2b ,

B(rb) =
1

2
+

3β

4
+

3

4
rb
dβ

drb
+

1

8
r2b
d2β

dr2b
,

C(rb) =
1

4
[1 +

1

(1 + β
4
r2b )

2
],

and λ(ξ) =

∫ r≫σr

0

rnbdr is the total beam charge per unit length. This equation

together with the equation for ψ constitutes a complete analytical model for the

nonlinear plasma wake driven by an electron beam.

By assuming the beam particles move at the speed of light, we can separate

the transverse motion and the longitudinal motion of the beam. In the transverse

direction, the particle’s equation of motion is

d~p⊥
dt

=
q

m
( ~E⊥ + ~v⊥ × Bz ẑ + vz ẑ × ~B⊥).

Because |~v⊥| ≪ vz = 1, the above equation becomes

d~p⊥
dt

=
q

m
( ~E⊥ + ẑ × ~B⊥).

In the longitudinal direction,

dpz
dt

=
q

m
(Ez + ~v⊥ × ~B⊥) ≈

q

m
Ez.

Therefore, both the transverse and longitudinal motion of a beam particle behaves

like a particle moving in the pseudo potential field. In the transverse direction,

~E⊥+ẑ× ~B⊥ = −∇⊥ψ (which is equation (2.14)) while in the longitudinal direction
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Ez = ∂ψ/∂ξ (which is equation (2.3)). If we take the derivative of ξ on the

transverse field, we can get

∂

∂ξ

(

~E⊥ + ẑ × ~B⊥

)

= − ∂

∂ξ
∇⊥ψ = −∇⊥

(

∂

∂ξ
ψ

)

= −∇⊥Ez. (3.3)

Therefore the dependency between the transverse field and the longitudinal field

is shown in the following equation

∂

∂ξ

(

~E⊥ + ẑ × ~B⊥

)

= −∇⊥Ez, (3.4)

which is called the Panofsky-Wenzel theorem [68].

Note that in the azimuthal symmetric system, the transverse field becomes

Er −Bθ = −∂ψ/∂r. By combining this with equation (3.1), we can find that the

transverse field (inside the bubble) felt by the beam particle is

Er − Bθ = −∂ψ(r, ξ)/∂r = r/2,

and the longitudinal field felt by the beam particle is

Ez = ∂ψ(r, ξ)/∂ξ = ∂ψ(0, ξ)/∂ξ,

where ψ(0, ξ) =
r2
b
(ξ)

4
(1+β(ξ)). These fields are favorable for accelerating electron

beams, since the transverse field is a focusing force for electrons and it is longitudi-

nally uniform (does not depend on ξ) and radially linear, which means that when

the electron beam is accelerated inside the bubble the transverse emittance of the

beam at every slice along ξ can be conserved. On the other hand, the longitudinal

field is transversely uniform (does not depend on r), which means the transverse

motion of beam particles will not lead to any energy spread. However, an energy

spread can still arise due to the non-uniformity of Ez along the longitudinal direc-

tion. A locally uniform accelerating field can nevertheless be obtained if we load

a second electron beam (which has a proper beam current) appropriately inside

the plasma wake of the first beam (which is the beam loading effect and will be

discussed in the next section). Figures 3.2 and 3.3 show QuickPIC simulation
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results of a PWFA case in the bubble regime, which illustrates the properties of

the fields within the bubble wake. In the simulation, the drive beam contains

N = 3.0× 1010 electrons. It has a Gaussian profile and the r.m.s. spot size of the

beam is σr = 10µm. The r.m.s. pulse length of the beam is σz = 30.0µm. There

is also a trailing beam that contains N = 1.0×1010 electrons. The r.m.s. spot size

of this beam is σr = 10µm. The r.m.s. pulse length of the beam is σz = 10.0µm.

The distance between two beams’ centers is 115µm. Both two beams have an

initial energy of 23 GeV.

Both Fig. 3.2(b) and 3.3(a) show that Ez is uniform in the transverse direction

within the bubble (where r < rb) and this property is not affected when the wake

is loaded. Therefore, by knowing the on-axis lineout of Ez (the red line in Fig.

3.2(b)), we knowl the Ez everywhere within the bubble. Note that due to the beam

loading effect mentioned before, there is a flat region of Ez where the trailing beam

is located. Figure 3.2(c) shows that Er −Bθ is uniform along ξ within the bubble

and it is still true when the wake is loaded by a second beam. Figure 3.3(b) shows

that Er − Bθ is equal to r/2 inside the bubble, which is a perfect focusing force

for electron beams to maintain their normailzed emittance. For an axisymmetric

drive beam, Er − Bθ does not change within the bubble plasma wake unless the

ion motion occurs under extreme beam conditions. This will be discussed in the

next chapter.

3.2 The decelerating field in a nonlinear electron-beam-

driven PWFA

When the plasma ions are fixed (which is a reasonable assumption when the

duration of the interaction between the plasma ion and the particle beam is very

short and/or the Coulomb field around the particle beam is not very strong) and

the drive beam is axisymmetric, the focusing force Er − Bθ on the drive beam
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(a)

(b)

(c)

Figure 3.2: Nonlinear plasma wakefields with two electron beams. (a) Plasma

density (in blue) and beams densities (in brown); (b) Ez slice plot across the center

of the simulation box. The red line is the on-axis lineout of Ez. (c) Focusing field

(Er −Bθ) slice plot across the center of the simulation box. The two bunches are

moving from left to the right.
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ξ = 0 ξ = −6.0

Figure 3.3: Lineouts of the fields shown in Fig. 3.2: (a) The lineout of Ez at two

different ξ slices;(b) The The lineout of Er −Bθ at two different ξ slices.

is equal to r/2 inside the bubble. The electrons of the drive beam will oscillate

laterally (i.e., execute betatron oscillation). However, the Ez field of the plasma

wake will change the drive beam’s energy. From energy conservation, if the drive

beam is creating a wake then it must be losing energy. As seen in the Fig. 3.2(b),

Ez does indeed provide a decelerating field (positive value) for the electron drive

beam as well as an accelerating field (negative value) for a trailing beam that is

properly placed. And we can manipulate Ez on the trailing beam by changing the

beam(s) density profile(s) λ(ξ). In this section, we use QuickPIC simulations to

show how the decelerating field in a nonlinear plasma wake changes as the drive

beam (with a Gaussian profile) parameters are changed.

We begin by discussing the beam’s spot size influence on the nonlinear plasma
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wake. Equation (3.2) indicates that the bubble radius rb(ξ) only depends on λ(ξ),

which does not depend on the beam spot size σr. Therefore, Ez = ∂ψ(0, ξ)/∂ξ

(where ψ(0, ξ) =
r2
b
(ξ)

4
(1 + β(ξ))) does not depend on σr either. This is based

on the assumption that σr is much smaller than rb. However, the plasma wake

may either have a rb smaller than σr or not have a totally blow-out region at the

front part of the beam’s rising edge, in which case the assumptions used to obtain

ψ(0, ξ) are not valid. This may result in different rb(ξ) solutions to equation (3.2)

since the initial evolution of rb(ξ) and drb(ξ)/dξ will depend on the σr of the drive

beam. Figure 3.4 shows QuickPIC simulation results of Ez on-axis lineouts in

the nonlinear plasma wakes driven by the electron beams with the same λ(ξ) but

different spot sizes. The plasma density is 1.0 × 1017 cm−3. The drive beam has

N = 1.8× 1010 electrons. It has a Gaussian profile and the r.m.s. pulse length of

the beam is σz = 30.0µm (kpσz=1.78).
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Figure 3.4: Ez on-axis lineouts of the nonlinear plasma wake driven by the electron

beams with different spot sizes.

From Fig. 3.4, we can see that Ez does not change much when kpσr < 0.5.
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Note that in obtaining the simulation results of Fig. 3.4 we used a non-evolving

drive beam. Normally when the initial normalized beam spot size kpσr > 1.0,

the transverse profile of beam’s rising edge (i.e., the beam head) will change and

finally converge to a new profile during the beam propagating in the plasma be-

cause the focusing force at the beam head is not linear in r, i.e., proportional to

r/2. The beam head’s modification inside the plasma will lead to a perturbation

of the plasma wake, which we usually want to avoid. This perturbation can be

negligible when the initial beam spot size is small (or the initial beam emittance

is very small). For practical reasons, we will look at the Ez field of the plasma

wake exited by a non-evolving electron drive beam, which has a fixed normal-

ized beam spot size kpσr = 0.1 but different normalized charge per unit length

Λ (Λ = (nb/np)k
2
pσ

2
r is the peak value of λ(ξ)) and different kpσz. Note that al-

though Λ is a dimensionless quantity in which nb is normalized to np, it does not

depend on np due to the k−2
p term, i.e., Λ = (nb/np)k

2
pσ

2
r = 2.242×10−13N/σz[cm]

for a Gaussian profile beam, where N is the beam particle number. So for fixed

beam parameters, Λ does not change if the beam propagates in plasma with dif-

ferent plasma densities, while kpσr and kpσz will change when the plasma density

changes.

Figure 3.5 shows QuickPIC simulation results of the normalized peak decelerat-

ing field for an electron-beam-driven nonlinear plasma wake versus the normalized

beam pulse length. In each case, the drive beam has a Gaussian density profile.

As mentioned before, the drive beam has a fixed normalized spot size kpσr = 0.1,

and its normalized pulse length kpσz varies from 1 to 6. Each line in the plot

has the same Λ for the drive beam, and the Λ varies from 1 to 5. Note that the

scales of kpσz and Λ in this plot can cover almost all of the current and future

electron beams that can be used in PWFA experiments. From Fig. 3.5 we can

see that with the same beam Λ, the peak normalized decelerating field Ez gets

smaller when the drive beam’s pulse length increases while with the same beam
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Figure 3.5: Peak decelerating field in the electron-beam-driven nonlinear plasma

wake with different beam normalized pulse length and Λ.

pulse length, the peak decelerating field will increase as the beam’s Λ increases.

The peak decelerating field can be used to calculate the beam’s pump depletion

length Ld in the plasma, which is kpLd = γ/Ez,de for the electron drive beam,

where γ is the initial Lorentz factor of the electron beam. For example, for a 20

GeV electron beam (γ = 40, 000) with Λ = 2 and kpσz = 1, the normalized peak

decelerating field is around 0.82. The normalized pump depletion length of this

beam is therefore kpLd = 40000/0.82 = 4.88 × 104, which is around 82 cm in a

1.0× 1017 cm−3 plasma. For an arbitrary beam pulse length and beam Λ, we can

estimate the peak decelerating field through simple linear interpolation according

to the data shown in Fig. 3.5.

We can also make a rough estimation of the peak decelerating field by using

the equation Ez,de = Λ/
√
ekpσz [69]. To obtain this result, we should first look at

the plasma wake field driven by an electron beam with a linear ramped profile,

λ(ξ) =
Λ0

L0
ξ, 0 < ξ < L0. In the relativistic blow-out regime, where the maximum
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blow-out radius kprb,max ≫ 1, the pseudo-potential of the plasma wake becomes

ψ(r, ξ) =
r2b (ξ)

4
− r2

4
, (3.5)

where we neglect the term β(ξ) in equation (3.1) because it becomes much less

than 1 in this case. The longitudinal electric field will then be,

Ez = ∂ψ(r, ξ)/∂ξ = ∂ψ(0, ξ)/∂ξ =
1

2
rb
drb
dξ
. (3.6)

The equation of the blow-out radius rb, equation (3.2), will then reduce to

rb
d2rb
dξ2

+ 2(
drb
dξ

)2 + 1 =
4λ(ξ)

r2b
. (3.7)

For a linear ramped beam profile, λ(ξ) =
Λ0

L0
ξ, 0 < ξ < L0, equation (3.7) has an

exact solution,

rb(ξ) = 2

√

Λ0

L0
(ξ − Λ0

L0
),

when ξ >
Λ0

L0

. By substituting this solution into the equation for Ez (equation

(3.6)), we then have

Ez = Λ0/L0,
Λ0

L0

< ξ < L0,

which is the decelerating field felt by the linear ramped beam. For a Gaussian

beam profile, the rising edge of the beam can be approximated as a linear ramp

with L0 =
√
ekpσz. If we assume the decelerating field reaches its maximum value

at the center of the beam, then the peak decelerating field for a Gaussian beam is

Ez,de ≈ Λ/
√
ekpσz, where Λ is the peak value of the Gaussian beam. To validate

this approximation, we multiply the Ez,de in Fig. 3.5 by
√
ekpσz at each point and

plot them in Fig. 3.6. If the approximation is reasonable then
√
ekpσzEz,de will

be constant for each value of Λ. We can see that for a range kpσz (between the

two yellow dashed lines) the equation Ez,de = Λ/
√
ekpσz is satisfied. The range of

kpσz between the yellow lines gets smaller as Λ increases.
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Figure 3.6: Product of peak decelerating field and
√
ekpσz with different beam

normalized pulse length and Λ.

3.3 The optimum plasma density for achieving the largest

accelerating field in a nonlinear PWFA

As shown in Fig. 3.2(b), Ez of the plasma wake field can also provide an acceler-

ating field (negative value) for electrons in the rear of the bubble. It can be used

to accelerate either a trailing beam or the tail of the drive beam. In figure 3.5, we

showed how the normalized field varied with Λ and kpσz (two other normalized

quantities). A simple but fundamental question regarding the accelerating field

is: For a given absolute (not normalized) electron beam parameters (e.g. the total

number of beam particles N , the beam spot size σr, the pulse length σz, the beam

energy γ and the normalized beam emittance ǫN), what is the optimum plasma

density that provides the largest absolute accelerating field? We start from the

linear theory for determining the optimum density. In linear theory, the density

compressions and rarefactions of the wave are assumed to be small compared to

the background plasma density np and a rough condition for this is that the beam
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density is small nb ≪ np. The limitations and usefulness of the linear theory

can be found in the reference [70]. We begin with the expression of the absolute

wakefield amplitude Ez0 (not normalized) for a Gaussian drive beam

Ez0 =
√
2π
mec

2

e

nb0

np

k2pσz exp(−k2pσ2
z/2)R(0), (3.8)

where R(0) = (k2pσ
2
r/2) exp(k

2
pσ

2
z/2)Γ(k

2
pσ

2
z/2),Γ(y) =

∫ ∞

y

t−1e−tdt and the drive

beam density is nb = nb0 exp[−(z2/2σ2
z)− (r2/2σ2

r)].

Next, we find the plasma density that maximizes the absolute wakefield ampli-

tude. At this point, it is important to be clear about what is being held fixed. For

example, in the one dimensional (1D) or the wide beam limit (kpσr ≫ 1), if we

assume that nb0/np and σz are fixed, the absolute wakefield Ez0 is maximized for

kpσz =
√
2 or no [cm

−3] = 5.6×1019/σ2
z [µm]. On the other hand (as shown below),

if we assume that the beam particle number N as well as σr and σz remain fixed,

then for σr ≫ σz the absolute wakefield is instead maximized for kp
√
σrσz =

√
2

or equivalently kpσz =
√

2σz/σr ≪
√
2.

Next, we will assume the beam parameters are fixed and only the plasma den-

sity varies. This is usually the situation of relevance when designing an accelerator.

For this situation it is useful to explicitly write out nb0 as nb0 = N/[(2π)3/2σ2
rσz].

Equation (3.8) now becomes

Ez0 = ek2pN exp−(k2p/2)[σ
2
z − σ2

r ]Γ(k
2
pσ

2
r/2). (3.9)

In the reference [70], it was shown that when optimizing Ez0 as a function of

k2p, i.e., np, the optimized wakefield amplitude EzM can be written as

EzM =
eN

σrσz
Θ

(

σr
σz

)

, (3.10)

and the universal function Θ was plotted in figure 2 of [70]. It is straightforward

to obtain asymptotic expressions for kp that optimizes Ez0 in the σr/σz ≪ 1

and σr/σz ≫ 1 limits. When σr/σz ≪ 1, we call the bunch shape a cigar. In
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the opposite limit where σr/σz ≫ 1 we call the bunch shape a pancake. In the

cigar limit, one can obtain kpσz ≈
√
2[1 − (1/ln(2/k2pσ

2
r))]

1/2 which is essentially

kpσz =
√
2 for kpσr ≪ 1. Interestingly although the limits are very different, for

both the 1D limit (kpσr ≫ 1) when nb0/np and σz are held fixed and the narrow

(σr ≪ σz) 3D limit where N, σr and σz are held fixed, the optimum density is

no [cm
−3] = 5.6 × 1017/σ2

z [10µm]. In the pancake limit, where k2pσ
2
r ≫ 1 and

Γ(y) ∼ ((1/y) + (1/y2) + · · · )e−y, one can easily show that the density which

optimizes Ez0 corresponds to kp =
√

2/(σrσz) or kpσz =
√

2σzσr) ≪
√
2. To

determine the optimum density for beams with σr ≈ σz , one can refer to figure 2

in [70], where for a round beam kpσz ≈ 0.9.

While linear theory provides a useful starting point, its assumptions fail for

most current and planned PWFA experiments, such as those at FACET. As shown

in the reference [70], even if the assumptions fail the expressions for the wake

amplitude can still be useful. The figure of merit to determine if the results

from linear theory are valid is the normalized charge per unit length of the beam

Λ = 2Ip/IA, where Ip is the peak current of the beam and IA ≈ 17 kA is the

Alfven current. For kpσr <
√
Λ, i.e., nb0/np > 1, the wakes are excited in a highly

nonlinear multi-dimensional regime (the blowout regime) for which linear theory

is invalid.

To illustrate the usefulness and the limitation of the linear prediction, we show

two examples based on the parameters of PWFA experiments done on FFTB

at SLAC, and on the parameters available at FACET. In one of the examples,

although nb/np ≫ 1 (so linear theory should not apply), the quantity Λ ≪ 1 and

the prediction from linear theory remains useful. For the other example, Λ ≥ 1

and the prediction for the optimum density from linear theory is actually off by a

factor of ten.

At SLAC, the electron bunches typically have a total number of electrons

N ≈ 2 × 1010, which is around 3 nC of charge. The beams can be focused
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down to a few tens of microns by beam focusing optics. The pulse duration

can be varied from ps down to 50 fs through a three-stage bunch compression

method. The first example corresponds to the E157 experiment on FFTB at

SLAC, where N = 1.9 × 1010, σz = 700µm and nb0 = 1.9 × 1015cm−3. For these

parameters, Λ ≈ 0.06 and the linear theory predicts the optimum plasma density

is no ≈ 1.15× 1014 cm−3. For this density, the peak beam density nb0 is about 17

times higher than the plasma density, which suggests that the nonlinear blowout

regime is indeed reached. This can be easily seen in Figure 3.7(a), where the beam

and plasma densities are plotted for np = 1.15× 1014 cm−3.

The second example is from the E164 experiment at FFTB and for experiments

at FACET, where the bunch length was significantly reduced through compression.

For typical E164 parameters, N = 1.8 × 1010, σz = 32µm, σr = 10µm and nb0 =

3.6×1017cm−3. For these parameters, Λ ≈ 1.27 and the linear theory predicts the

optimum plasma density np ≈ 3.5×1016 cm−3. We note that for these parameters

the asymptotic expression for the optimum density for σr/σz ≪ 1 is no longer

applicable since σr/σz ∼ 0.3. Therefore, we use a value from figure 2 in [70],

where one sees that kpσz ≈ 1.13 is less than kpσz =
√
2 consistent with the

asymptotic formula.

To find out how well the linear theory predictions work, we performed simula-

tions with QuickPIC by scanning the plasma density for the above two examples.

The results are shown in Figures 3.7(b) and 3.8(b), where we plot both the abso-

lute (in units of GV/m) and the normalized (by mecωp/e) useful accelerating field

amplitude against the plasma density. For the first example (the Fig. 3.7), the

density range scanned is from 1013 cm−3 to 1015 cm−3. One can see clearly for this

weakly nonlinear case the plasma density that maximizes the absolute accelerating

field amplitude is very close to the linear theory prediction, no = 1.15×1014 cm−3.

For the second example (the Fig. 3.8), the density range scanned is from

1016 cm−3 to 1018 cm−3 . For this more strongly nonlinear example, the absolute
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Figure 3.7: (a) The beam and plasma density distributions at the opti-

mum density no = 1.15 × 1014 cm−3 for a Gaussian electron beam with

N = 1.9 × 1010, σz = 700µm and σr = 30µm. (b) The normalized and abso-

lute useful accelerating field of the plasma wake.

72



maximum amplitude occurs at a density near 4.0×1017 cm−3, which is surprisingly

more than ten times larger than the linear theory prediction 3.5× 1016 cm−3.

Figure 3.8: (a) The beam and plasma density distributions at the optimum density

no = 4.0×1017 cm−3 for a Gaussian electron beam withN = 1.8×1010, σz = 32µm

and σr = 10µm. (b) The normalized and absolute useful accelerating field of the

plasma wake.

The above two examples clearly demonstrate the usefulness and limitation

of the linear theory predictions regarding to the optimum plasma density for

wakefield amplitude. The question then is how can we understand these results?

It turns out that a clear understanding and a simple estimation can be obtained

based on physical intuition from the nonlinear wake field theory in [16, 17] (which

is summarized in section 3.1).
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In the nonlinear framework of the blowout regime [16, 17], the plasma response

to the electron beam driver can be divided into three distinct regions, namely the

ion channel, the narrow electron sheath and the linear response region beyond the

sheath. The key parameter for identifying the different regimes is the maximum

normalized blowout radius kpRb. In the non-relativistic blowout regime where

kpRb ≪ 1, the contribution from the linear response region dominates the wake-

field structure; therefore, a formula similar to the linear theory expression can be

used even though blowout occurs. In the regime where kpRb ∼ 1, the contribution

from both the ion channel and the linear response region is important. In the

relativistic blowout regime where kpRb ≥ 2, the ion channel dominates the contri-

bution. The maximum normalized blowout radius kpRb is mainly determined by

the peak beam current Ip (slightly dependent on the beam pulse length) and an

approximate formula for a narrow drive beam (σr < Rb) is [17]

kpRb = 2
√
Λ = 2

√

2Ip/IA, (3.11)

This formula has been verified in self-consistent simulations, and it can be

approximately obtained by equating the wake field forces on an electron moving

backward in the sheath with the peak charge force of the beam [17]. As shown

in [17], the normalized accelerating field amplitude scales as Λln(1/Λ) in the non-

relativistic blowout regime (Λ ≪ 1), which is similar to the prediction of linear

theory. While in the relativistic blowout regime (Λ ≥ 1) the normalized acceler-

ating field amplitude scales as
√
Λ. For the given total beam particle number N,

Λ is independent of the plasma density np and the beam spot size σr and only

depends on the pulse length σz . However, for equation 3.11 to be meaningful in

the blowout regime, there are indeed two implicit conditions: the first one is that

the beam should not be much shorter than a plasma skin depth k−1
p , otherwise the

plasma blowout will not occur within the bunch and the plasma electrons simply

receive an impulse from the beam, in which case the blowout radius will be deter-

mined by the total charge in the beam rather than the peak current of the beam
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[17]; the other condition is that the beam density nb0 should be comparable or

larger than the ambient plasma density np, such that the condition for trajectory

crossing and blowout is satisfied. The first condition implies a lower limit on the

plasma density, e.g. kpσz ≥ 0.2 and the second implies an upper limit on the

plasma density, e.g. np ≤ nb0 or kpσr ≤
√
Λ.

We are now in a position to determine the optimum density in the blowout

regime for either the non-relativisitic (Λ ≪ 1) or relativistic (Λ ≥ 1) regimes

for cigar-shaped beams (σr ≪ σz). We fix the beam parameters (N, σr, σz) and

then gradually increase the density. We start at a sufficiently low density, such

that the first condition in the previous paragraph is not met (e.g. kpσz ≤ 0.2).

In this regime, the meaningful parameter for determining the blowout radius and

wakefield amplitude is the normalized total charge Q ≡ Λkpσz, because only the

total impulse from the beam matters (kpRb ∝
√
Q) [17]. Q increases as the

plasma density increases from zero to the lower limit; therefore, for both the

non-relativistic and relativistic blowout regimes in this density range, both the

normalized and the absolute wakefield amplitudes increase as the density increases.

As the density is increased further into an intermediate range (where kpσz ≥
0.2 and kpσr ≤

√
Λ, assuming σr < σz), we need to treat the non-relativistic and

relativistic blowout regimes differently. In the non-relativistic blowout regime, the

wake amplitude is roughly determined from the linear theory so the optimum den-

sity is about kpσz =
√
2. On the other hand, for the relativistic blowout regime,

the normalized wakefield amplitude is determined by the normalized blowout ra-

dius kpRb , which for this density range is approximately given by kpRb ≈ 2
√
Λ.

Since Λ does not depend on the plasma density, the normalized wakefield ampli-

tude is insensitive to the density. Therefore, the absolute wake field amplitude

will increase with the plasma density in this density range, implying we should

continue to increase the density.

For the relativistic blowout regime (Λ ≥ 1), as the density is increased further
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it eventually exceeds the upper limit (e.g. np ≥ nb0 or kpσr ≥
√
Λ). At this

point the wake is now marginally excited in the blowout regime and the linear

expression becomes valid again. Therefore, if kpσz <
√
2, then the density can be

increased further to increase the amplitude until kpσz =
√
2. However, for cigar-

shaped beams if kpσr ≥
√
Λ, then kpσz ≫

√
2. As a result the wake amplitude

will decrease as the density is increased further. We therefore conclude that

the maximum wakefield amplitude is reached near nb0/np ∼ 1. For Λ ≥ 1 and

nb0 ∼ np, the normalized beam spot size is kpσr =
√
Λ ∼ kpRb/2. Therefore, the

absolute accelerating field is maximized when the spot size is roughly matched

to the blowout radius (for example, one can see this from the beam and plasma

density plot in figure 3.8(a)).

We note that for the above analysis to be valid, an additional condition, σz ≤
5Rb ≈ 10σr, should be imposed. Otherwise the beam plasma interaction will be

in the adiabatic blowout regime where the ion channel is balanced by the electric

and magnetic force of the beam and the wake amplitude scales as ∼
√
Λ/kpσz

[70].

To see the validity of the above analysis and reasoning, we revisit the two

examples given earlier in this section. In the first example, the electron pulse

is relatively long (σz = 700µm) and it has Λ = 0.06; therefore, it is within the

non-relativistic blowout regime and the optimum plasma density should be close

to the linear theory prediction. This was confirmed in Figure 3.7(b) as mentioned

earlier. For the second example, the pulse length is much shorter (σz = 32µm)

and it has Λ = 1.27 and nb0 = 3.6× 1017 cm−3. Therefore, it is in the relativistic

blowout regime and an optimum plasma density close to the beam peak density

nb0 should be expected. The QuickPIC simulation results shown in Figure 3.8(b)

confirmed this: the trend of the absolute accelerating field amplitude increasing

with density and the optimum density, no ≈ 4×1017 cm−3, is close to the prediction

of 3.6 × 1017 cm−3. In light of the factor of ten difference of the plasma density
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between the linear and nonlinear predictions, this agreement clearly shows the

usefulness of the above reasoning.

Figure 3.9: The normalized beam parameters kpσr, kpσz and the

maximum normalized blow-out radius kpRb for a Gaussian beam with

N = 1.8× 1010, σz = 32µm and σr = 10µm.

In the above we argued that kpRb is very insensitive to the density for fixed Λ.

To show this we also plot the normalized blowout radius against plasma density

for the simulations in Figure 3.8(b). In Figure 3.9, it is evident that the maximum

normalized blowout radius kpRb changes very little for plasma densities spanning

two order of magnitude. The average kpRb is around 2.2 and is close to the

theoretical estimate of 2
√
Λ ≈ 2.25. We note that for np > nb0 in Figure 3.9, the

maximum blow-out radius is not clearly defined and it is roughly deduced from

the density perturbation in the simulations.
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3.4 Two-bunch PWFA at FACET

Recent experiments on FFTB at SLAC [51] demonstrated that a PWFA could

be produced with an accelerating gradient of ∼ 52GeV/m over a meter-long

scale. However, as shown in Ref.[51], electrons accelerated in the beam tail have

an almost 100% energy spread, which is surely not what one wants for a high

energy particle accelerator. Nevertheless, a locally uniform accelerating field can

be obtained if we load a second electron beam (which has a proper beam current)

appropriately inside the plasma wake of the first beam (Fig. 3.11). As shown in

reference [67], even a trailing beam with a Gaussian current profile can flatten

the wake in the nonlinear regime. This second bunch needs to have a high initial

energy so that the phase slippage between the accelerated beam and the wakefield

of the first beam can be ignored during the acceleration process in the plasma. In

this manner the energy spread of the second bunch will be significantly decreased.

This two-bunch PWFA scheme is an important part of upcoming experiments

at FACET (Facilities for Accelerator Science and Experimental Test Beams) at

SLAC [52] for demonstrating a high energy gain while maintaining a narrow energy

spread. The two bunches are produced from a single bunch by placing a mask

in the middle of the last chicane (for compressing the bunch) on the beamline.

Before the last chicane, the single bunch has already been given an energy spread

that is correlated to its longitudinal (or temporal) position within the bunch. In

the middle of the chicane the dispersion of the bunch will be correlated to its

energy spread as well as the longitudinal distribution of the bunch. When the

bunch passes through the mask the dispersion space of the bunch will be modified

resulting in a modulation of the longitudinal distribution of the bunch after it gets

out of the chicane. In this way a single bunch will finally turn into two bunches

with a separation between them.

Extensive QuickPIC simulations were carried out to motivate the construction
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Figure 3.10: Plasma wakefields with different beam loads. (a) Lineouts of different

longitudinal beam profiles; (b) Lineouts of Ez along the axis. The two bunches

are moving from right to the left.
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of FACET and to help design the two-bunch experiments. Two cases of these

simulations are presented in this section. The initial electron beam parameters

of these two cases are both based on the overall simulation of the entire FACET

system. QuickPIC is used to model the process of the two electron bunches

traveling through the neutral gas (Lithium and Cesium). For each case we are

using a plasma density which is optimized to minimize the energy spread of the

accelerated bunch.

3.4.1 Case I

In case I the r.m.s. spot size of each electron beam is σr1 = σr2 = 10µm (1 stands

for the drive beam, 2 stands for the trailing beam); the r.m.s. beam length of each

beam is σz1 = 18µm, σz2 = 25µm; the transverse r.m.s. normalized emittance of

each beam is ǫx1,2 = ǫy1,2 = 50mm ·mrad; the particle number of each beam is

N1 = 6.7×109 , N2 = 2.3×109; the distance between two beam centers is 115µm

and the initial energy of each beam is E01 = E02 = 23GeV.

Figure 3.11 shows the difference between using Li and using Cs. The initial

gas density is 5.0 × 1016 cm−3 in both cases. For the Li gas the ionized plasma

column is wide enough to maintain a large plasma wake over long distances. The

drive beam intensity drops significantly after traveling 64.18 cm in Li while in Cs

the drive beam remains intense at the same distance, which means the drive beam

can propagate longer in Cs. Therefore, the acceleration length and final energy

gain of the second electron bunch will be increased when using Cs instead of Li.

However, even though the acceleration length can be increased with Cs, for the

beam parameters of Case I there does not appear to be an ideal plasma density

which can be used to generate a narrow energy spread of the accelerated beam.

This is because the second bunch does not have a strong enough beam current

(similar as the second case shown in Fig. 3.10) to flatten (load) the wake. Figure
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Li Plasma

Cs Plasma

(a) s = 14.3 cm (b) s = 30.9 cm (c) s = 47.5 cm (d) s = 64.2 cm

Figure 3.11: Snapshots of plasma electron charge density (in blue) and the beam

charge densities (in brown) at different propagation distances. The plots of the

first row are simulation results using Li and the second row are results using Cs.

The beams are moving downwards.

(a) s = 5.0 cm (b) s = 35.2 cm (c) s = 65.3 cm (d) s = 95.6 cm

Figure 3.12: Snapshots of plasma electron charge density (blue) and the beam

charge densities (brown) at different propagation distances when using Cs with

the density of 7× 1016 cm−3. The beams are moving downwards.
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3.12 shows snapshots of plasma and electron beam densities when the Cs density is

increased to 7×1016 cm−3. The drive beam can travel almost one meter inside the

plasma before the plasma wake terminates. Figure 3.13 shows the energy spectrum

of the trailing beam at the final point. Since the rear part of the trailing beam

is located outside the first bucket, this part will feel a decelerating field. As a

result one peak with an energy loss appears in the spectrum. The accelerated

part of the trailing beam has a peak energy of 37GeV and the maximum energy

gain is around 20GeV. The energy spread is around 35% (FWHM value) which

is rather large. If the plasma density is increased further, fewer particles in the

trailing beam will get accelerated and the energy spread of these beam particles

will approach 100%.

Figure 3.13: The energy spectrum of the trailing beam at s = 95.6 cm. The

numbers on the y axis are reference values with arbitrary units.

3.4.2 Case II

In case II the r.m.s. spot size of each electron beam is still σr1 = σr2 = 10µm;

the r.m.s. beam length of each beam is now σz1 = 34.1µm, σz2 = 19.3µm;

the transverse r.m.s. normalized emittance of each beam is now ǫx1,2 = ǫy1,2 =

100mm ·mrad; the particle number of each beam is now N1 = 9.57 × 109 ,
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N2 = 4.33 × 109; the distance between two beam centers is now 130µm and

the initial energy of each beam is still E01 = E02 = 23GeV. Note that for Case

II although N is larger, the peak current of the drive beam (∝ N1

σz1
) is 0.75 times

less than that for Case I.
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Figure 3.14: The energy spectra of both beams at (a) s = 88.6 cm for a plasma den-

sity of 3.7×1016 cm−3 and (b) s = 76.2 cm for a plasma density of 5.0×1016 cm−3.

The numbers on the y axis are reference values with arbitrary units.

For this case we only consider Cs and find two optimal plasma densities, 3.7×
1016 cm−3 and 5.0 × 1016 cm−3. For the lower initial plasma density, the trailing
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beam is almost located inside the first bubble of the plasma wake while for the

higher initial plasma density, a part of the trailing beam is in the second bucket

resulting in a broader energy spread. Nevertheless, both of these cases still have

very small energy spreads, which are less than 3% (FWHM value). But the energy

gain (5GeV for low plasma density and 7GeV for high plasma density) are less

than that in Case I. The final energy spectrum (Fig. 3.14) also shows that the

drive beam still has a lot of energy when the plasma wake terminates. This is

mainly caused by the ionization-induced drive beam head erosion, which will be

discussed in the next section.

3.5 Mitigating the ionization-induced beam head erosion

in an electron-beam-driven PWFA

Beam head erosion can occur in a preformed plasma because of a lack of focusing

force from the wake at the rising edge (head) of the beam due to the finite inertia

of the electrons. When the plasma is produced by field ionization from the space

charge field of the beam, the head erosion is significantly exacerbated due to the

gradual recession (in the beam frame) of the 100% ionization contour [62]. Beam

particles in front of the ionization front cannot be focused (guided) causing them

to expand as in vacuum. When they expand, the location of the ionization front

recedes such that even more beam particles are completely unguided. Eventu-

ally this process terminates the wake formation prematurely, i.e., well before the

beam is depleted of its energy. Ionization-induced head erosion can be mitigated

by controlling the beam parameters (emittance, charge and energy) and/or the

plasma conditions. In this section we explore how the latter can be optimized so

as to extend the beam propagation distance and thereby increase the energy gain.

In particular we show that, by using a combination of the alkali atoms (Cs) of the

lowest practical ionization potential for plasma formation and a precursor laser
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pulse to generate a narrow plasma filament in front of the beam, the head erosion

rate can be dramatically reduced. Simulation results show that in the upcoming

“two-bunch PWFA experiments” on the FACET facility at SLAC national accel-

erator laboratory the energy gain of the trailing beam can be 10 times larger for

the given parameters when employing these techniques.

In the two-bunch PWFA scenario described earlier, it is imperative that the

drive beam transfer most of its energy to the plasma wake in order to efficiently

transfer energy to the trailing beam. Since both the drive and the trailing beams

are usually highly relativistic there is no significant relative motion between the

two until the drive beam has lost most of its energy. This allows high efficiency

in principle. But because of the excessive beam head erosion, the acceleration

distance and hence energy gain can be terminated if the drive beam is no longer

able to create the plasma (and therefore the wake) through the field ionization

process. In this case the energy gain of the particles in the trailing bunch is not

limited by the energy depletion of the drive beam (pump depletion) but by head

erosion. When the plasma is produced by Er of the drive beam that has a tempo-

rally rising charge distribution, then the front of the beam (before the ionization

threshold has been reached) expands as if it were in vacuum. Once the ionization

threshold is exceeded then the beam begins to ionize the gas and expel the plasma

electrons. However, due to the finite inertia of the electrons, the ion channel is

not formed immediately after the ionization front and the focusing force of the

ions is thus not strong enough to confine electrons behind the ionization front

until enough plasma electrons have been blown out. This leads to different longi-

tudinal slices of the beam expanding laterally at different rates because of their

finite emittance, albeit at a rate smaller than they would if they were propagating

in vacuum. This reduces the Er from the beam near the ionization front causing

the front to recede backward in the beam frame and leading to an even smaller

portion of the beam to be confined. As more of the beam is not confined and the
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ionization front recedes, a portion of the wake becomes smaller until eventually

the wake can no longer be excited.

Figure 3.15 illustrates the phenomenon of beam head erosion by comparing the

propagation of otherwise identical drive beams through either a neutral Lithium

gas (where it produces plasma via field ionization) or through a preformed plasma

with a transverse radius much larger than the electron blowout radius Rb caused

by the drive beam. The preformed plasma density and the neutral Li gas density

are both 5× 1016 cm−3. The drive beam contains N = 9.6× 109 electrons. It has

a Gaussian profile and the r.m.s. spot size of the beam is σr = 10µm (0.42 c/ωp).

The r.m.s. pulse length of the beam is σz = 34.1µm (1.43 c/ωp). The initial energy

of the beam is 22.5 GeV. The 3D parallel quasi-static PIC code QuickPIC [43, 71]

is used for the simulations. The simulation box uses the coordinate ξ = ct − z

instead of z in the longitudinal direction, which is equivalent to following the beam

in the speed of light frame. The initial drive beam center is at ξ = 0, and the

beam is moving downwards in the simulation box.

In contrast to the case of the fully pre-formed plasma which is initially uniform

(see Fig. 3.15(b)), the field-ionized plasma has a “W” shape contour at the beam

head because the beam’s Coulomb field is not strong enough to ionize the neu-

tral gas near the axis, i.e., recall that for a cylindrically symmetric, transversely

Gaussian beam the Er is zero on axis. Nevertheless in both cases a region of

complete electron blowout does exist and the position where the expelled plasma

electrons return to and cross the axis (also the position where the accelerating

field is at its maximum) is at almost the same location, whereas in the preformed

plasma case the expelled electrons form a very thin sheath around the ions, in

the self ionized case this sheath is somewhat diffused. As time progresses, and

as the beam propagates further into the gas, the ionization front recedes further

and further (in the beam frame) and eventually limits the distance over which the

beam can form the wake as discussed earlier.
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Figure 3.15: Snapshot of the plasma electron density from the wake exited by an

electron beam in (a) a field ionized plasma and (b) a pre-formed plasma. The

plots are 2D cross sections at the center of the 3D simulation box. The drive

beam is moving downwards.
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The rate at which the ionization front recedes, i.e., the “etching speed”, can be

used as a figure of merit to quantify the beam head erosion. The slower the etching

speed , the longer is the distance over which a plasma wake can be sustained. In

reference [62], the etching speed was found to be a constant for a drive beam with

a flat top longitudinal profile, being proportional to ǫN/γN
1.5, where ǫN is the

normalized emittance of the beam, γ is the beam Lorentz factor and N is the

beam particle number. Thus we can mitigate the head erosion by reducing the

emittance ǫN or increasing the beam particle number (N) or energy of the beam

γ. For fixed beam parameters the only other way to mitigate the beam head

erosion is to manipulate the plasma source. Next, we explore two techniques for

doing this. The first is to use a neutral gas with as low an ionization potential

as possible so that the onset of ionization will occur sooner during the rise-time

of the beam. The second is to use a precursor laser pulse to form a very narrow

plasma filament. We have found that both techniques (particularly when used

together) dramatically reduce the beam etching speed and thereby increase the

distance over which the beam can form the wake.

3.5.1 Dependence of the etching speed on the ionization potential

Different neutral atoms have different electron ionization potentials. For PWFA

experiments a long column of neutral gas that typically has a low ionization po-

tential is used. Using the ADK model [72], we can calculate each gas’s ionization

threshold Eth, defined as the external DC electric field at which the neutral gas

can be fully ionized during a given time duration. This model has been shown to

give reasonable agreement in experiments where the peak electric field of a 23.5

GeV electron beam necessary for the ionization of different simple and complex

gases (noble, diatomic homopolar, polyatomic and monoatomic metal vapor) was

determined [73]. In this work we consider different Group 1 alkali metal atoms

because they have a very low threshold, Eth, for the outermost electron to be
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ionized and a relatively larger difference between the ionization potentials of the

first and the second electron (see Fig. 3.16).
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Figure 3.16: Fraction of Ionized Gas vs. the amplitude of the electric field.

Figure 3.16 shows the fractional ionization of different Group 1 alkali metal

atoms as the magnitude of E field is increased. The ionization time duration is

chosen to be 50 fs (which is the risetime of a typical electron beam pulse-length in
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PWFA experiments). From this plot, we can see that for fully ionizing (> 99%)

the first electron (Fig. 3.16(a)) the threshold electric field Eth is 6.4 GV/m for Li,

4.3 GV/m for K, 4.0 GV/m for Rb and 3.5 GV/m for Cs and for fully ionizing

(> 99%) the second electron Eth is 409.2 GV/m for Li, 90.8 GV/m for K, 69.5

GV/m for Rb and 51.8 GV/m for Cs. This large gap of Eth between the first and

the second ionization is one reason why it is possible to generate 100%, singly-

ionized metal-vapor plasmas using the self-field of a short, dense electron beam.

Nevertheless under certain conditions, the combined accelerating field of the wake

Ez and the Er of the beam can cause ionization of the second electron which can

inject dark current into the plasma accelerator structure [74]. One therefore has

to choose the right beam and plasma parameters so that
√

E2
r + E2

z should be

smaller than Eth for the second electron.

The first generation of PWFA experiments used Li vapor to generate field-

ionized plasmas. However the ionization potential of the heavier alkali metal

atoms becomes progressively smaller (5.4 eV for Li vs. 3.9 eV for Cs for the

outermost electron) with a corresponding decrease in the electric field needed to

fully ionize them as stated earlier. This in turn means that as the drive beam

propagates through a column of say Cs vapor compared to Li vapor, ionization will

occur sooner during the risetime of the pulse and the rate at which the ionization

front recedes as the beam propagates further into the vapor will be smaller.

To quantify this ionization potential dependence on the head erosion speed,

we have carried out several QuickPIC simulations with the same electron beam

parameters but with the beam propagating through different alkali vapor columns.

The electron beam has a flat top longitudinal profile and a Gaussian transverse

profile. The beam contains N = 9.6 × 109 electrons, its r.m.s. spot size is σr =

10µm (0.42 c/ωp), and its pulse length is L = 85.5µm (3.59 c/ωp). The normalized

emittance of the beam is ǫN = 150mm ·mrad and the initial energy of the beam

is 22.5 GeV (the energy of the beam particle is fixed during the simulation in
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Figure 3.17: Beam head erosion in the field-ionized Lithium plasma. The plasma

electron density is shown in blue and the beam density is in brown. ξ = ct− z is

the distance in the speed of light frame and s = z is the propagation distance in

the lab frame. Dotted lines in (a) - (d) show the position of the ionization front.

order to eliminate the dependence of the etching speed on the beam energy). The

initial neutral gas density is 5× 1016 cm−3. Figure 3.17 shows the beam evolution

in neutral Li.

We can see that the ionization front moves backwards in the frame of the

beam during its propagation due to continuous expansion of the front slices of

the beam. After around 50 cm of propagation, the remainder of the beam is no

longer able to form the wake and as a consequence, an on axis hole in the plasma

(due to the on axis Er being below the ionization threshold) is evident. We can

visualize the recession of the ionization front by plotting the on-axis amplitude of

the accelerating electric field Ez of the plasma wake field at different propagation

distances, Ez(r = 0, ξ, s) as shown in Figure 3.18 for the alkali metals Li, K, Rb

and Cs.

In these plots, the red dashed line shows the trajectory of the onset of the

wake field (a contour for Ez = 0.1). The line has a positive slope indicating that

the ionization front is receding as the beam propagates in the plasma. In the Li

gas, the plasma wake is gone at around s = 50 cm, which is the same distance

as that shown in the Fig. 3.17. But in other neutral gases with lower ionization
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(a) Li (b) K

(c) Rb (d) Cs

Figure 3.18: Ez evolution during the beam propagating in different Alkaline metal

gases. The beam is moving downwards.
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potential than Li, the slopes are progressively smaller indicating that the plasma

wakes can be sustained over a longer distance. We define the etching speed for

the different gases to be the slope of the dashed red lines. In Fig. 3.19 we plot the

etching speed for the various gasses.

Figure 3.19(b) shows that the etching velocity is linearly proportional to the

ionization threshold [62] indicating that as expected it is better to use a neutral

gas with as low an ionization threshold as possible like Rb or Cs to slow down the

speed at which head erosion occurs if field ionization is employed to both produce

the plasma and excite the wake.

0 5 10 15 20 25 30 35
0

10

20

30

40

50
Li, v_etch = 1.44

K, v_etch = 0.82

Rb, v_etch = 0.76

Cs, v_etch = 0.70

Io
n

iz
a

ti
o

n
 F

ro
n

t 
P

o
s

it
io

n
 [

μ
m

]

s [cm]

(a)

3.5 4 4.5 5 5.5 6 6.5
0.6

0.8

1

1.2

1.4

Eth [GV/m]

  
V

e
tc

h
[μ

m
 p

e
r 

c
m

]

(b)

Figure 3.19: Ionization front etching in different gases: (a)Receding of the ion-

ization front in different Alkaline metal gases; (b) The etching velocity verses the

neutral gas ionization threshold.

3.5.2 Further mitigation of the head erosion rate using a laser-produced

plasma filament

As already shown by the comparison of the snapshot of Fig. 3.15(a) with that

of Fig. 3.15(b), in a pre-formed plasma the phenomenon of beam head erosion is

significantly less and relatively unimportant. Using the Ez time-evolution format
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of Fig. 3.18, the effects of additional pre-formation of a plasma in Li is shown in

Fig. 3.20 for various pre-plasma conditions. These range from the extremes of the

fully pre-formed plasma of Fig. 3.20(a), to that of field ionization only with no pre-

formed plasma as in Fig. 3.20(c), together with the interesting intermediate case

of Fig. 3.20(b), where the plasma is pre-formed over a much smaller volume, i.e.,

only along a narrow filament. The electron beam used in the simulation has the

same parameters as those in the last section except it now has a Gaussian (rather

than flat top) longitudinal profile with a pulse length σz = 34.1µm (1.43 c/ωp).

(a) (b) (c)

Figure 3.20: Ez evolution during the beam propagating in (a) a fully pre-formed

plasma;(b) a field ionized Li plasma;(c) a field ionized Li plasma with the narrow

plasma filament. The beam is moving downwards.

One can immediately see from Fig. 3.20(a) that in contrast to the self-ionized

plasma case depicted in Fig. 3.20(c), there is almost no head erosion in the pre-

formed Li plasma (Note that the slope of the red dashed line in this figure is not

constant because the beam now has a Gaussian current profile).

Unfortunately it is not easy to produce large diameter, uniform density plasmas

in the 1.0 × 1016 ∼ 5.0 × 1017cm−3 range. To fully ionize the gas in front of the

drive beam, a laser pulse that tunnel or multi-photon ionizes the gas ahead of the

drive beam can be used. The drive beam can then excite the plasma wake in this

pre-formed plasma. The radius of the pre-formed plasma column should be larger

than several times the blow out radius of the wake. This in turn implies that
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the laser pulse should have enough energy to maintain the intensity above the

ionization threshold over the entire volume of the gas that needs to be converted

into plasma. This can require rather expensive laser infrastructure particularly if

plasma columns that are several meters in length are needed.

We therefore explored whether a laser precursor pulse that generates only a

narrow filament of Li plasma in front of the drive beam is sufficient to drastically

reduce the beam head erosion. In this case the laser beam ionizes a plasma column

that is only σr (the beam spot size) in radius. The Li plasma is then pre-produced

by the laser pulse only where the laser intensity is sufficiently high (and in the

case of interest, with a radius not nearly as large as the blow-out radius). This

allows the very front of the beam, where the beam’s Er is too weak to ionize the

neutral Li gas, to be more correctly guided, thereby greatly reducing the rate of

ionization-induced head erosion. Such narrow but long plasma columns can be

produced using axicon (a conically formed refractor element forming an extended

line focus) optics to focus the laser pulse. Figure 3.21 shows density plots from

a simulation depicting the propagation of the drive beam in a narrow pre-formed

plasma column.

Figure 3.21: Density snapshot of the plasma wake with a small preformed plasma

column. The plasma electron density has the blue color and the beam density is

in brown.
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In this simulation, we use Lithium for the gas and the pre-formed plasma

column has a radius of 10µm, which is equal to the spot size of the electron

beam. Although the plasma filament is not wide enough to include the whole

bubble of the wake, it can provide a fully ionized plasma region for the head of

the beam. The Coulomb field of the main part of the electron beam subsequently

ionizes the neutral gas around the narrow plasma filament allowing a wake to be

formed.The two plots correspond to when the electron beam enters the plasma

(Fig 3.21 a) and after it has propagated 40 cm into the plasma (Fig 3.21 b).

Returning now to Fig. 3.20 we compare the result (in Fig. 3.20(b)) of axial

Li pre-ionization with that of full volume Li pre-ionization (Fig. 3.20(a)), where

we see that the performance in terms of beam persistence is nearly as good, with

excellent propagation beyond 100 cm. This is because head of the beam can

now begin to expel plasma electrons in the filament thereby providing a focusing

force on the front slices of the electron beam as in the preformed case keeping

it from expanding or reducing the rate of expansion and thus reducing the head

erosion rate. In comparison, the result with no Li pre-ionization (Fig. 3.20(c))

is disastrous (rapid erosion and ionization front movement resulting in a much

shorter penetration of about 30 cm). The method of axial Li pre-ionization can

drastically reduce the energy required in the laser pulse by a factor of (Rb/σr)
2,

thereby making the laser infrastructure needed more manageable. We have also

used Cesium for the gas. For these beam parameters the head erosion looks similar

while the wake looks better for Cesium because the gas is ionized out to a radius

closer to the blowout radius.

3.5.3 Simulation results for two-bunch FACET experiments

We next investigate the use of a laser precursor and the choice of either Lithium

or Cesium for the oven gas with parameters of relevance to the upcoming two-

bunch experiments at FACET. As discussed earlier, by employing lower ionization
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energy atoms and/or a laser precursor to form a thin plasma filament ahead of the

drive beam it is possible to mitigate the head erosion rate. We now show that it

is possible to propagate the drive beam until it is efficiently depleted of its energy

while forming a high gradient wake by combining both the precursor and Cesium

gas for the FACET parameters. We also show that by beam loading such a wake

with a trailing beam it is possible to transfer much of the energy in the wake to

this trailing beam while obtaining a narrow energy spread. We simulated such a

two-bunch PWFA scenario in the field-ionized Li plasma and then, in view of the

behavior seen in Li, again in a Cs plasma, with results for both shown in Figs.

3.22 and 3.23. In Fig. 3.22(a) we show the plasma and beam densities for the Li

case as the beams enter the gas.

In the simulation, the beams parameters are the same as the case II in the

section 3.4.2. The plasma density is 5 × 1016 cm−3, which is properly chosen so

that the plasma wake contains the trailing beam in the accelerating phase of the

wake. The beams’ energy spectra after propagation through the Li plasma are

shown in Fig. 3.23(a). As a comparison, we also show the beams’ spectra after

200 cm acceleration in a fully pre-formed Li plasma in the same plot. We explored

the use of different gas densities. The tradeoff is that for higher densities the blow

out radius is less so a narrow ionization column is needed (allowing Lithium to be

used) while on the other hand at high densities the wake wavelength is shorter and

the spacing between the drive and trailing beams will be too short. The plasma

density used represents a starting choice for the FACET parameters where the

beam parameters including the spacing and charge are fixed. Note that the drive

beam parameters are identical to the case shown in Fig. 3.21(a) but that the beam

appears longer in Fig. 3.21(a) because the beam has been pinched.

We can see that in the fully pre-formed plasma (brown curve in Fig. 3.23(a))

the trailing beam obtains an energy gain of around 30 GeV (at an average rate of

15 GeV/m) while more importantly the FWHM (Full Width at Half Maximum)
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(a) Li

(b) Cs

Figure 3.22: Snapshot of a two-bunche PWFA in (a) a field ionized Li plasma (b)

a field ionized Cs plasma. The plasma electron density has the blue color and the

beam density is in brown.
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Figure 3.23: Energy spectra of the drive beam and the trailing beam at the end of

the acceleration: (a) In a field ionized Li plasma; (b)In a field ionized Cs plasma.
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energy spread is around 5% (note that this energy spread can be reduced further

by optimizing the pre-formed plasma density for a given drive-trailing beam com-

bination). The energy transfer efficiency from the drive to the trailing beam is

69.3%.

However if we use the beam’s self-field to ionize the Li vapor the acceleration

length is only 16.7 cm (as compared to 200 cm) and the energy gain of the trailing

beam is only 2 GeV (the green line in Fig. 3.23(a)). The large spike in the middle

of the spectrum shows that a considerable fraction of the electrons in the drive

beam do not lose energy due to head erosion. The maximum energy loss of the

drive beam electrons is around 2 GeV.

If however the head erosion is mitigated by using a plasma filament that has

a radius of 10µm, which is equal to the drive beam spot size then there is some

additional energy gain as the drive beam now propagates further. The blue line

in Fig. 3.23(a) shows the energy spectrum of two beams at s = 171.3 cm where

the acceleration terminates. The energy gain of the trailing beam increases to

around 10 GeV due to the reduced the beam head erosion rate. This is a factor

of 5 improvement in energy gain compared with the case of no pre-plasma, but

still only one third of the energy gain with full pre-plasma.

Figure 3.24: Snapshots of beam and plasma densities from a simulation where the

laser precursor drifts to the left in the rest frame of the beam.

Although the energy gain on the trailing beam has indeed been increased over

the case with no pre-plasma by employing the plasma filament in Li, the energy
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spread is no better and is much worse than when a fully pre-formed plasma is used.

This is because the drive beam is simply not intense enough to ionize the plasma

to the distance of one Rb (as shown in Fig. 3.22(a)), which is necessary to form

a nice ion cavity as it does in the completely pre-ionized case discussed above.

However if one now uses Rb or Cs instead of the Li the same drive beam can

ionize a plasma column out to a larger radius for the same beam parameters and

form a wake that resembles the wake formed in a completely pre-ionizd plasma.

Figure 3.22b shows the density plot of the same two-bunch PWFA case but in a

field ionized Cs plasma. Compared with Fig. 3.22(a), the plasma wake shows an

ion cavity clearly enclosed by the electron sheath in Cs than that in Li. Most of

the trailing bunch is now inside the bubble.

Fig. 3.23(b) shows the energy spectra of the same beams using field ionized Cs

plasma (the green line). Now, the acceleration length has increased to 76.2 cm,

which is longer than the 16.7 cm observed in Li. The energy gain of the trailing

beam is consequently increased to 5 GeV (from 2 GeV value for Li) and the energy

spread is narrower. Now when one uses a 10µm radius plasma filament in front of

the Cs plasma the acceleration length reaches 200 cm. From the energy spectrum

(the blue line in Fig. 3.23(b)), one can see that the energy gain of the trailing

beam is around 20 GeV and the FWHM energy spread of the trailing beam is

around 3%.

When using the laser precursor to ionize the plasma filament in front of the

beam, the alignment accuracy between the laser precursor and the drive beam

will affect the acceleration. We have explored the effect of an alignment error via

a simulation that has a 10 µrad angle between the propagation directions of the

laser precursor and the drive beam. At the entrance of the plasma, the center of

the laser precursor pulse is offset by 10 µm (which is equal to the electron beam

spot size) from the center of the drive beam. Since the laser precursor propagates

with an angle to the drive beam, the plasma filament ionized by the laser will
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drift at a small speed (which is 10 µm for every meter the laser propagates when

the angle is equal to 10 µrad) along the transverse direction in the rest frame of

the beam. The density snapshots from the simulation are shown in the Fig. 3.24.

Although there is a misalignment between the laser precursor and the drive

electron beam, the acceleration still lasts for 200 cm. The final energy gain on

the trailing beam is almost the same as that with the aligned laser precursor.

But as the laser pulse and therefore the plasma filament drift to the left in the

simulation box, the drive beam as well as the trailing beam also drift to the

left together with the plasma filament. This appears to strongly seed the hosing

instability on the beams, especially on the trailing beam. In the experiments, the

hosing motion of the trailing beam will cause particle loss as the beam propagates

between the plasma exit and the spectrometer. The hosing motion of the beam

will also generate more betatron radiation. In fact alignment accuracy of the laser

pulse and the electron beams can be optimized in the experiments by monitoring

the betatron x-ray radiation coming out of the plasma. When the laser and the

drive beam are aligned, the radiation will reach its smallest value.

It should also be pointed out that when we use a neutral gas with lower

ionization threshold such as Cs or Rb, the second ionization threshold becomes

smaller as well. In section 2, we have showed that the second ionization threshold

for Cs is 51.8 GV/m, which is close to the electric field magnitude of the plasma

wake. Therefore, it is possible that the second ionization of Cs occurs under some

situations. If this happens inside the plasma bubble, the plasma wake field may

trap the ionized electrons and accelerate them into a high energy. But the number

of the electrons produced from the second ionization is much less than that of the

trailing beam. So the acceleration of the trailing beam should not be affected in

this case. In other cases with more dense and shorter drive beams propagating in

a higher density plasma, this additional ionization of the second electron inside

the wake can act as a source of dark current that depletes the energy from the
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wake [74].

3.6 Summary

In this chapter, we reviewed the theory for the nonlinear plasma wake fields driven

by an intense electron beam. The bubble-like plasma wake is perfect for focusing

and accelerating the electron beam. The electron beam inside the plasma wake

will lose or gain energy in the longitudinal electric field of the plasma wake. The

decelerating field of the plasma wake driven by different electron beams (with

Gaussian profiles) were obtained through QuickPIC simulation. It was found that

the decelerating field is approximately equal to Λ/
√
ekpσz for kpσz in a range

centered near 3. We also analyzed the optimum plasma density for achieving

the largest accelerating field in an electron-beam-driven PWFA. It was found

that the peak beam current Ip (charge per unit time) plays an important role in

determining the optimum density. For the relativistic blowout regime (Λ ≥ 1),

the optimum plasma density is no = nb0, where nb0 is the peak beam density,

as long as 1 ≥ σr/σz ≥ 1. We also showed the two-bunch PWFA simulation

results using QuickPIC. We studied what was feasible at FACET and found that

30 GeV energy gain over two meter with a 3% energy spread was psossible in a

preformed plasma. However, for FACET parameters, the ionization-induced beam

head erosion affects the drive beam’s ability to ionize the neutral gas and therefore

form the wake and thus terminates the acceleration process even though the drive

beam still contains much energy. We devised effective strategies for mitigating the

drive beam head erosion in a PWFA that employ a low energy laser to pre-ionize

a narrow column plasma as to guide the head of the beam and relies on beam

self-fields to produce the bulk of the plasma. We found that head erosion can

indeed be mitigated by employing a combination of lower ionization threshold gas

and a laser-produced plasma filament in front of the drive beam. These strategies
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will be employed in the upcoming two-bunch PWFA experiments on the FACET

facility.
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CHAPTER 4

Simulations of PWFA Linear Collider Stages

As discussed in chapter 3, the two-bunch PWFA is a promising scheme for building

a future linear collider (LC) while experiments at FACET are aimed at studying

key aspects of PWFA. The parameters of the FACET experiments differ from

those required in a future LC in several important aspects. Most importantly,

the normalized emittance of the trailing beam needs to be much smaller. In

order for the emittance growth to be minimized, the beam’s spot size needs to

be “matched” to the focusing force of plasma wake. For a “matched” beam, the

vacuum diffraction length, β∗, equals the beam’s betatron wave length [75]. For

the small emittances needed in a LC, the matched spot sizes are sub 100 nm. As

a result, the self-fields of the beam are very intense. In fact, it has been shown

[76] that they are intense enough to pull the massive plasma ions inward during

the transit time of the short bunch, and this modifies the wake fields felt by the

bunch. Therefore, ion motion needs to be included in the simulations.

In this chapter, we will present QuickPIC simulations of a two-bunch PWFA

design including the plasma ion motion. We use the beam parameters similar

to the PWFA-LC design [77]. The QuickPIC simulations are performed with a

resolution that resolves the matched beam spot size for the first time. In section

4.1, we will introduce the PWFA-LC concept and the related plasma ion motion

issue. In section 4.2, we will discuss the computing requirements and the work

we have done on QuickPIC to enable it to perform the PWFA-LC simulations. In

section 4.3, we present the simulation results of a PWFA-LC case including the
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plasma ion motion. The evolution of the trailing beam’s emittance is discussed

in section 4.4. In section sec4-5, we summarize the results and discuss areas for

future work.

4.1 The concept of PWFA-LC

The PWFA-LC uses the PWFA as the main accelerator to obtain electron (or

positron) beam(s) for collision experiments. In a future linear collider design, the

final goal for the main accelerator is to deliver electron or positron beams with

enough energy (500 GeV or greater) as well as enough luminosity (on the order

of 1034 cm−2 · s−1) in order to meet the requirements for studying the desired

physics. In addition, the accelerator must be able to operate at a high power

transfer efficiency from the power source to the main beams which collide. Table

4.1 (which is taken from reference [77]) shows the key parameters of a conceptual

PWFA-LC.

In Table 4.1, we can see that the loaded acceleration gradient is 25GeV/m in

each plasma cell. And the plasma cell is 1 meter long. Therefore, the final energy

(500 GeV or up) of the main beam can be achieved by staging multiple two-bunch

PWFA stages (i.e., plasma cells). Reference [78] provides another conceptual

design of a PWFA-LC. Although the basic concept is the same in references [77]

and [78], the drive beam and plasma parameters are different. Figure 4.1 (taken

from reference [78]) shows an schematic plot of modified PWFA-LC design. The

collision energy in both PWFA-LC designs is 1 TeV (each of the electron and

positron beams has 500 GeV). In the new design [78], the entire accelerator is

roughly 4.5 km in length, which is dominated by the beam final focusing and

delivery system (3.5 km long as shown in Fig. 4.1). The designed accelerating

gradient in the PWFA stage is 1 GeV/m (which is less than that in reference [77]),

the main accelerators (for accelerating the main electron and positron beams) are
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Main beam: bunch population, bunches per train, rate 1× 1010, 125, 100Hz

Total power of two main beams 20MW

Drive beam’s energy 25GeV

Drive beam’s peak current 2.3A

Drive beam’s active pulse length 10µs

Main beam emittances, x, y 2, 0.05mm ·mrad

Main beam sizes at Interaction Point, x, y, z 0.14, 0.0032, 10µm

Luminosity 3.5× 1034 cm−2 · s−1

Luminosity in 1% of energy 1.3× 1034 cm−2 · s−1

Average power of the drive beam 58MW

Plasma density 1× 1017 cm−3

Accelerating gradient 25GeV/m

Plasma cell length 1m

Power transfer efficiency drive beam⇒main beam 35%

Efficiency: Wall plug⇒RF⇒drive beam 50%× 90% = 45%

Overall efficiency and wall plug power for acceleration 15.7%, 127MW

Site power estimate 170MW

Table 4.1: The key parameters of a conceptual PWFA-LC design [77].
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both 0.5 km long. In reference [77], the acceleration gradient in each cell is

∼ 25GeV/m and each cell is 1 meter long. In both cases, the main beam will

obtain 25 GeV energy from each PWFA stage and each main accelerator consists

of 20 PWFA stages. All the PWFA stages for accelerating the main electron and

positron beams use an electron beam as the drive beam. Note that in our opinion

there has not been an established method for accelerating a positron beam using

plasma-based acceleration. Several methods have been proposed [79, 80], and

further investigation is ongoing. The drive beams are delivered by a continuous

wave (CW) superconducting radio frequency (RF) recirculating linac, which can

provide an excellent power efficiency together with a high flexibility in the number

of bunches[78]. The main electron and positron beams are generated separately

through additional linacs.

Figure 4.1: Conceptual design of a 1 TeV PWFA-LC[78].
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Besides the high accelerating field, a high power transfer efficiency should also

be achieved within each PWFA stage. In the two-bunch PWFA, the drive beam

will lose its energy because of the decelerating field in the plasma wake. As shown

in the chapter 3, the deceleration is not uniform along the longitudinal direction.

It will reach a maximum value around the beam center (the beam has a Gaussian

density profile). The drive beam energy depletion length is kpLd = γ/Ez,dec, where

γ is the Lorentz factor of each particle in the drive beam and Ez,dec is the maximum

decelerating field (in normalized units). Therefore, only the beam particles feeling

the maximum decelerating field will lose all their energy at the depletion length,

while many other particles still have energy. This leads to a lower efficiency.

In order to maximize the efficiency, the ideal situation is that every drive beam

particle loses energy at the same rate. Therefore, a locally uniform decelerating

field in the plasma wake is desirable to enhance the efficiency of the drive beam’s

energy depletion. This can be achieved by modifying the longitudinal density

profile of the drive beam into a linearly rising ramp, which has been discussed in

chapter 3, section 3.2. Such a drive beam profile can lead to a uniform decelerating

field equal to Λ0/L0, where Λ0 is the peak normalized charge per unit length

and L0 is the beam length. Shaping the trailing beam can also enhance the

efficiency for the trailing beam to extract energy from the plasma wake (i.e., the

beam loading efficiency). In reference [67], it was found that in the relativistic

blowout regime (where the beam has Λ ≥ 2), the beam loading efficiency can

be maximized by using a trailing beam with a trapezoidal density profile. Note

that this is obtained under the condition of minimizing the energy spread of the

trailing beam (i.e., flattening the accelerating field Ez through the beam loading

effect). More interestingly, the maximum beam loading efficiency was found to be

a constant no matter where you load the trailing beam in the acceleration phase

of the plasma wake field, which implies that for larger loaded accelerating fields

felt by the trailing beam, less total charge can be accelerated, i.e., EaccQbeam is
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constant. In reference [81], a high efficiency two-bunch PWFA case was shown.

In that case, both the drive electron beam and the trailing electron beam have

shaped longitudinal density profiles. The trailing beam has a trapezoidal profile

as [67] suggested while the drive beam has a linearly rising ramp (with the head

of the beam cut off) combined with a density spike at the beam front. Figure 4.2

(taken from reference [81]) illustrates this scenario. In this case, the efficiency of

the energy transfer from the drive beam to the trailing beam reaches 51%, which

satisfies the requirement in Table 4.1. At the same time, the FWHM energy

spread of the trailing beam is limited to less than 0.5%.

Figure 4.2: The on-axis line-out of the drive and trailing beam’s density profiles

(green curve) and the longitudinal accelerating field (red curve) produced by these

beams. The plasma electron density is on the background in blue [81].

A future LC also requires high beam luminosity. This is achieved by focusing

a low emittance beam to a transverse size on the order of 1 nm at the final inter-

action point. Based on existing final focus designs, this requires that at the final

focus the beam should have small emittance. For example, as shown in Table 4.1,

the trailing beam’s (i.e., the main beam) emittance in the conceptual design is
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2mm ·mrad and 0.05mm ·mrad in the two different transverse directions. In a

two-bunch PWFA stage, a trailing beam with a small transverse emittance, e.g.

0.1mm ·mrad, will have a matched spot size on the order of 100 nm in the non-

linear plasma wake. The matched spot size is the spot size of the beam at the

equilibrium state when propagating in the plasma wake. The transverse equilib-

rium state of the beam occurs when the focusing force balances the expansion of

the beam due to the emittance. As described in Chapter 3, the focusing force

Er − Bθ (in normalized units) from the nonlinear plasma wake driven by an in-

tense electron beam is exactly r/2 within the bubble. By looking at the Vlasov

equation of the equilibrium transverse distribution function of the beam, we can

easily obtain the matched spot size of a Gaussian beam [75],

σr,matched =

(

2mǫ2N
γ

)
1

4

,

where m is the mass of the beam particle, ǫN is the normalized beam emittance

and γ is the Lorentz factor of the beam particle. Note that all the quantities in

the above equation are in normalized units. A useful engineering formula for the

electron beam is

σr,matched[µm] = 7.33

(

ǫ2N [mm ·mrad]

E[GeV]np[1016cm−3]

)
1

4

,

where np is the plasma density and E is the beam energy. Therefore, the matched

spot size is proportional to the square root of ǫN and inversely proportional to

the fourth square root of the energy. For a beam with a normalized emittance

of 0.1mm ·mrad and an energy of 25GeV, the matched spot size of the beam

is around 0.1µm in a 1.0 × 1017 cm−3 plasma. For an energy of 500 GeV, the

matched spot size is ∼ 50 nm.

In reference [76], a simple method for estimating the severity of the ion motion

was given by calculating the plasma ion motion in the Coulomb field close to the

beam. Assuming the beam has a transverse flat-top density profile with a spot
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size σr, the Coulomb field Er close to beam (say r < σr) is

Er =
nbr

2
,

where nb is the beam density. Note that we still use the normalized units. Then

assuming beam fields dominate over the plasma fields, the equation of a plasma

ion is

mion
d2r

dξ2
+
Znb

2
r = 0,

where Z is the ion charge state and we assume the plasma ion motion is non-

relativistic and the ions have vφ = 0. This equation implies that the ions close

to the beam will oscillate around the axis and the oscillation wave number with

respect to ξ is kion =

√

Znb

2mion
. Therefore, the total phase advance of the ion

within the duration of the beam pulse length (which is equal to the transit time

of the beam passing by an ion) is

∆φ ≈ kionσz.

For most of the cases we interested, the beam pulse length is on the order of the

plasma skin depth kpσz ∼ 1. Thus,

∆φ ≈ kion
kp

kpσz ≈
kion
kp

=

√

Znb

2mion

,

since kpσz ∼ 1. Because the beam density is normalized by the plasma density

and the mass of the plasma ion is normalized by the rest mess of the electron, the

phase advance of the ion becomes

∆φ ≈
√

Znbme

2npmion

. (4.1)

Although the self-field of the plasma electrons and ions are not included in the

above derivation, we can still expect significant ion motion when ∆φ ≫ 1. Ac-

cording to the equation (4.1), ∆φ ≫ 1 will occur when the beam-plasma density

ratio is much larger than the plasma ion-electron mass ratio.
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In linear collider designs, the beams have elliptical spots. For simplicity we

consider round beams with the same r.m.s. spot size in both transverse directions.

With a spot size of 0.1µm (which is the matched spot size for a beam emittance

equal to 0.1mm ·mrad in a 1.0 × 1017 cm−3 plasma), the trailing beam’s peak

density will be 6.35 × 104 times larger than the plasma density (which is 1.0 ×
1017 cm−3), if the trailing beam contains 1 × 1010 electrons and the pulse length

is 10µm (the same parameters as shown in Table 4.1). This ratio is much larger

than the plasma ion-electron mass ratio 1.27× 104 for a Li plasma. Therefore, we

must consider the plasma ion motion for the existing PWFA-LC designs.

In previous work [76, 82, 83], the plasma ion motion in PWFA was analyzed

using reduced theoretical models and methods for mitigation of the ion-motion-

induced emittance growth were also proposed. However, to date no fully self-

consistent simulations have been performed, which study the actual emittance

growth due to ion motion inside a wake for PWFA-LC parameters.

4.2 Code preparation for the full scale PWFA-LC simula-

tion

For the PWFA-LC design in reference [77], there are a few big differences from the

two-bunch PWFA in FACET experiments discussed in the last chapter. The main

difference is that the main electron beam (i.e., the trailing beam) has a very small

emittance, which is on the order of 0.1mm ·mrad. This will result in a matched

beam spot size on the order of 100 nm in a 1.0× 1017 cm−3 plasma (for a 25 GeV

trailing beam). Therefore, in order to include the ion motion that results for such

a tightly focused beam, we must at a minimum resolve the 100 nm beam spot size

in the PIC simulation. The simulation box usually has a much larger transverse

scale so as to contain the entire bubble-like plasma wake. Normally, the maximum

bubble radius of the plasma wake driven by an intense electron beam is several
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times the plasma skin depth (∼ 100µm). A simulation box with a transverse size

of 400 × 400µm2 is therefore needed for the PWFA-LC case. Thus, we need at

least 8000×8000×1000 cells for the PWFA-LC simulations to have at least 2 cells

per σr. Such a simulation cannot be done by using a full PIC code like OSIRIS

since the resulting number of time steps is around 2 × 107 and around 1 billion

cpu-hours are needed for a single simulation (for 1 meter long plasma).

The quasi-static PIC code QuickPIC is currently the only 3D code that can

simulate the PWFA case with such a fine resolution. With the new algorithm

described in Chapter 2, QuickPIC 2.0 will only need around 1 million cpu-hours to

simulate a PWFA-LC case for 1 meter long acceleration using a proper resolution.

In addition, we can decrease the computing time by making further assumptions.

In a two-bunch PWFA with PWFA-LC beam parameters, only the trailing

beam has the extreme parameters that will cause significant plasma ion motion.

The drive beam can therefore have a larger emittance and larger matched spot

size. Although the drive beam will evolve as it propagates inside the plasma, until

the drive beam has nearly stopped, the plasma wake driven by the drive beam will

hardly change. As we will show, the trailing beam’s emittance evolves only during

a short initial time. Therefore, we can make a further assumption that the drive

beam does not evolve while studying the emittance growth. The evolution of the

trailing beam and how the plasma wake (including the ion motion) is affected by

the trailing beam are what we are really interested in.

In QuickPIC, the plasma particles (electrons and ions) all stay in a 2D slice

(with the same coordinate of ξ). They are advanced step by step along ξ. At each

ξ step, the plasma particle information and the electromagnetic fields within the

slice can be considered as the initial value for the next ξ step. After this plasma

slice sweeps over all the ξ steps in the simulation box, the particle beams will be

pushed one step forward in s according to the fields obtained from the plasma

response. Then all the procedures will start over with a re-initialized plasma slice
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at the “origin” ξ (largest value for ξ). For example, Figure 4.3(a) shows results

from the same simulation of a two-bunch PWFA as was shown in Figure 3.2(a).

In this simulation, the 2D plasma slice is swept from ξ = 7.5 to ξ = −10 (the

center of the drive beam is at ξ = 0). In a normal simulation, both the beams are

pushed forward in s using the calculated plasma wake field and the 2D plasma

slice is then swept over the two beams again. If we assume the drive beam does

not evolve, then in every 3D step when the plasma slice reaches ξ = −5 (which is

the end of the drive beam and the starting point of the trailing beam), all results

should be the same. Therefore, we do not need to calculate the plasma response

from ξ = 7.5 to ξ = −5, if we assume the drive beam is a non-evolving beam. We

need to calculate the wake fields for −5 < ξ < 7.5 only once (as shown in Figure

4.3(b)), and then store all the information in the slice at ξ = −5, including the

plasma particles positions and velocities as well as the electromagnetic fields. We

then start to simulate the region ξ < −5 including the evolution of the trailing

beam for the desired number of 3D time steps. The trailing beam will be updated

at a proper 3D time step as usual. The only difference is that the plasma particles

and the electromagnetic field at the first slice (where ξ = −5 in the example shown

in Figure 4.3(c)) will be initialized using the stored data. As a result, the amount

of calculation can be reduced by a factor of ∼ 4 since we do not need to include

the drive beam in the simulation. The stored plasma and field data in the 2D

slice can be used for simulating any trailing beam evolution. It is a time-saving

method for the trailing beam parameter scanning. In the following sections, all

the simulations were performed using this method.

4.3 The plasma ion motion in a PWFA-LC case

In this section, we will present the simulation results of a two-bunch PWFA in

a Li plasma using the PWFA-LC main beam parameters of reference [77]. The
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(a)

(b) (c)

Figure 4.3: Illustration of plasma response from the middle of the simulation

box: (a) for the whole simulation box;(b) for a non-evolving drive beam;(c) for a

simulation with only a trailing beam using the stored information of the plasma

slice.
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Li ion has a mass equal to 12852me (for simplicity we assume singly ionized Li

and in the future we will include the additional ionization from the self-fields of

the trailing beam). We assume the drive beam does not evolve in the simulation.

The drive beam contains N = 3.0 × 1010 electrons and has an initial energy

of 25 GeV. For simplicity we use a Gaussian profile (not the optimized profile

for high efficiency) and the r.m.s. spot size of the beam is σr = 1µm. The

r.m.s. pulse length of the beam is σz = 30.0µm. The transverse normalized

r.m.s. emittance of the beam is ǫN = 10mm ·mrad. We calculate the plasma

response untill the slice located at 85µm after the drive beam’s center. The

stored information at that slice is used for the simulation that only includes the

trailing beam. The trailing beam contains N = 1.0 × 1010 electrons and has

an initial energy of 25 GeV. It also has a Gaussian profile (not an optimized

profile) and the r.m.s. spot size of the beam is σr = 100nm. The r.m.s. pulse

length of the beam is σz = 10.0µm. The transverse normalized r.m.s. emittance

of the beam is ǫN = 0.093mm ·mrad. The distance between two beams centers

is 115µm (i.e., the trailing beam’s center is 30µm away from the simulation

box boundary at the front). The initial plasma density is 1.0 × 1017 cm−3, so

kpσr = 5.94 × 10−3. The simulation box is 400µm × 400µm × 59µm in size.

There are 8192×8192×512 cells in the simulation box. Therefore the size of each

cell is 48.83nm × 48.83nm × 115.23nm. The time step for pushing the trailing

beam particles is 5ω−1
p . We use 4 ions per cell, which corresponds to only ten

times fewer ions than the number of the real plasma ions within the cell volume.

Figure 4.4(a) shows a 3D surface plot of the plasma ion density (in the 2D x−ξ
plane) after the trailing beam propagated 9.33 cm inside the plasma. The plasma

ion density has a large perturbation within the region |kpx| < 0.1. Outside this

region, the plasma ion density remains almost unchanged. This is because only

the plasma ions close to the trailing beam can feel the strong Coulomb field, and

in the region of |kpx| > 0.1 the Coulomb field of the beam is not strong enough

117



to move the plasma ions. At different transverse positions (x), the Coulomb field

around the trailing beam has a maximum value at the beam center (in these

simulations ξ = 0 is now defined to be the center of the trailing beam). From the

longitudinal line-outs of the plasma ion density (shown in Fig. 4.4(c)), we can see

that the on-axis line-out (at x = 0) rises quickly around the beam center (where

ξ = 0) and reaches its maximum value after the beam center at around ξ = 0.5.

The line-outs in the transverse direction (Fig. 4.6(b)) show the plasma ions are

attracted by the tightly focused trailing beam and form a density peak around

the axis. After reaching the maximum density, the plasma ions spread out, and

the maximum density decreases.

The ion motion will affect the plasma wake. Figure 4.5(a) shows a 3D surface

plot of the focusing force (which is Ex − By in the x − ξ plane) in the plasma

wake at s = 9.33 cm (the same time as Fig. 4.4). From this plot, we can see that

in the region of |kpx| > 0.3 the focusing force is not affected very much by the

ion motion as compared with the plasma wake when no ion motion is considered

(recall that the focusing force within the bubble is equal to r/2 without any

plasma ion motion). But the focusing force has large modulation within the region

|kpx| < 0.3 (recall that kpσr ∼ 0.01). The transverse line-outs of the focusing

force (Fig. 4.5(b)) shows that the slope of the focusing force in the transverse

direction converges to kpx/2 when |kpx| > 0.3 and becomes much larger than

1/2 on the axis. The on-axis slope also grows along the ξ direction and becomes

steepened after the beam center. From the longitudinal line-outs (Fig. 4.5(c)),

we can see that the focusing force cannot remain uniform along the ξ direction

within the region close to the axis (say |kpx| < 0.3). When |kpx| is larger, the

focusing force becomes uniform along ξ, which is similar to that of the plasma

wake without the ion motion. The focusing force within the beam is therefore

no longer perfectly linear and constant in ξ. As a result, the matched beam will

no longer have a Gaussian distribution in the transverse direction, and will have
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Figure 4.4: A snapshot of the plasma ion density in the x−ξ plane at s = 9.33 cm:

(a) A 3D surface plot;(b) Line-outs along the transverse (x) direction together with

the trailing beam’s transverse profile using arbitrary units for the beam density;(c)

Line-outs along the longitudinal (ξ) direction.

119



a smaller “matched” spot size which will depend on ξ. As the beam evolves, its

emittance will therefore increase and we will discuss this shortly.

In contrast to the significant modulation of the focusing force in the region

close to the beam axis, the accelerating field Ez remains relatively unchanged.

This can be seen from Figure 4.6. Figure 4.6(a) shows the 3D surface plot of

Ez in the x − ξ plane at s = 9.33 (the same time step as Figures 4.4 and 4.5).

The Ez is flattened by the trailing beam because of the beam-loading effect. This

is good for maintaining a small energy spread in the trailing beam. Although

the plasma ions move drastically in the region close to the axis, the Ez field still

remains uniform along the transverse direction within the bubble of the plasma

wake. Only a very small perturbation can be seen in the transverse line-out at

kpξ = 0.5 (as shown in Fig. 4.6(b)). This means that the acceleration of the

trailing beam particles will not be affected much when ion motion occurs.

This can also be seen from equationg (3.1). The first term in equation (3.1) is

from the plasma electrons in the sheath while the second term is due to the plasma

ions. When the ions move, we can approximate the second term as K(ξ)
r2

4
, where

K(ξ) is chosen such that the focusing force is K(ξ)
r

2
. The accelerating field is

now
∂ψ

∂ξ

∣

∣

∣

∣

r=0

≈ rb
2

drb
dξ

− dK

dξ

r

2
≈ rb

2

drb
dξ
,

which is the same result as for stationary ions.

4.4 The evolution of the trailing beam

The ion-motion-induced modulation of the plasma wake will affect the evolution

of the trailing beam mainly in the transverse direction since the accelerating field

of the plasma wake does not change very much. As described in section 4.1, the

most important issue appears to be how the emittance of the trailing beam evolves

in this situation. In this section, we will present QuickPIC simulation results of
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Figure 4.5: A snapshot of the focusing force in the x− ξ plane at s = 9.33 cm: (a)

A 3D surface plot;(b) Line-outs along the transverse (x) direction together with a

zoom-in plot in the range −0.02 < kpx < 0.02;(c) Line-outs along the longitudinal

(ξ) direction.
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Figure 4.6: A snapshot of the plasma ion density in the x−ξ plane at s = 9.33 cm:

(a) A 3D surface plot;(b) Line-outs along the transverse (x) direction;(c) Line-outs

along the longitudinal (ξ) direction.
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the evolution of the trailing beam’s emittance and spot size.

We will use the same drive beam parameters as in section 4.3 (Gaussian beams)

and still assume the drive beam does not evolve in the plasma. The simulation

resolution is also kept the same. We first simulate the same trailing beam as in

secion 4.3 but do not include the plasma ion motion. In this case, the trailing

beam should feel a focusing force equal to r/2, and its normalized emittance should

be conserved. Figure 4.7(a) shows the trailing beam’s emittance evolution in the

first 20 cm of propagation inside the plasma, and the emittance is preserved at the

initial value of 0.093mm ·mrad. This also implies that QuickPIC is a high fidelity

tool for studying the evolution of the beam emittance for highly relativistic beams.

The spot size of beam oscillates around a central value with a small amplitude,

and the central value gradually decreases as the beam is accelerated at a slow rate

shown in Figure 4.7(b). This is because as the trailing beam gains energy from

the plasma wake, the matched spot size decreases adiabatically. In addition, there

is a small oscillation.
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Figure 4.7: The evolution of the trailing beam’s (a) normalized emittance and (b)

spot size. The ion motion is not included in the simulation.

When the plasma ion motion is turned on in the simulation, the trailing beam
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evolves differently. As shown in Figure 4.8(a), the trailing beam’s emittance in-

creases rapidly in the first 2 cm of propagation, and reaches an equilibrium value

of around 0.2mm ·mrad, which is twice as large as the initial value. Although the

emittance is increasing, the beam’s spot size (shown in Fig. 4.8(b)) experiences

a damped oscillation in the first 2 cm and finally reaches an equilibrium value of

around 0.07µm, which is 70% of the initial value (Note that this is exactly the

same simulation as in the section 4.3, other than the inclusion of ion motion).

Therefore, the entire trailing beam is tightly focused within a small region, say

r < 0.2µm (i.e., kpr < 0.012). As shown in Fig. 4.5, this is the region with a

steepened slope of the focusing force, and the on-axis slope changes along the ξ

direction. Thus, it would be useful to check the emittance of the trailing beam’s

particles at different slices of ξ (note that the trailing beam’s particles barely

move in ξ (no phase slip) because they all move at a speed very close to c), in-

stead of the emittance for the whole range of ξ (which is called the projected

beam emittance). In order to do this, we divide the trailing beam into 10 slices

with a length of 5µm for each slice (recall that the beam’s r.m.s. pulse length is

10µm). In Figure 4.9(a), we show the emittance evolution of each slice. Similarly

to the projected emittance, each slice emittance grows rapidly in a short prop-

agation distance (except for the first two slices whose emittance grows slowly)

and reaches an equilibrium value larger than the initial value. The slices at front

part of the beam have a smaller emittance growth than the projected emittance

growth, and the slices at rear part of the beam have a larger growth than that of

the projected emittance. The different growth of the emittance for each slice is

caused by the different focusing forces (slopes) at different ξ. At the position of

ξ which has the largest on-axis slope of the focusing force, the emittance growth

is largest. The spot size of each beam slice has a damped oscillation which is

similar to the projected beam spot size. Except for the first two slices (which feel

the least increase in the focusing force), each slice quickly reaches an equilibrium
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value. The equilibrium value of the spot size for each slice varies from each other

because the equilibrium emittance of each slice is different.
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Figure 4.8: The evolution of the trailing beam’s (a) normalized emittance and (b)

spot size when the plasma ion motion is included in the simulation.

The above simulation results indicate that when significant plasma ion motion

exists the trailing beam (as well as the plasma ion density) will reach an equi-

librium state after a period of time much less than the acceleration length. The

beam’s normalized emittance increases, but can then be preserved at a different

equilibrium value. In the example shown above, the trailing beam with an initial

emittance of 0.093mm ·mrad reaches an equilibrium emittance of 0.2mm ·mrad,

which is a growth of only a factor of 2. It would be useful to quantify the emittance

growth with different trailing beam initial conditions. Figure 4.10 shows the simu-

lation results from three cases with different initial emittances of the trailing beam

(all other parameters are kept the same). In the case of Fig. 4.10(i), the emit-

tance of the trailing beam increases from 0.5mm ·mrad to around 0.61mm ·mrad,

which is only a 20% growth. The spot size of the beam also grows by 50%, from

0.1µm to 0.15µm. In the case of Fig. 4.10(ii), the emittance of the trailing beam

increases from 0.2mm ·mrad to around 0.25mm ·mrad, which is a 25% growth

and the spot size of the beam decreases to 0.08µm from an initial value of 0.1µm.
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Figure 4.9: The evolution of the trailing beam’s (a) slice normalized emittance

and (b) slice spot size in the x direction, when the plasma ion motion is included in

the simulation. The trailing beam is divided into 10 slices and each slice is around

5µm long (recall that the r.m.s. pulse length of the trailing beam is 10µm). Slice

1 is at the head of the beam and slice 10 is at the tail of the beam.
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In the case of Fig. 4.10(iii), the emittance of the trailing beam increases from

0.05mm ·mrad to around 0.19mm ·mrad, which is a growth of a factor of 4, and

the spot size of the beam decreases to 0.07µm. Note that this is almost the same

equilibrium state as the case shown in Fig. 4.8. Although the emittance still grows

in these three cases, it does not grow as much as for the large initial emittance

case. This implies that the emittance growth depends on the initial condition of

the trailing beam and for certain situations, the growth of the emittance can be

small. In these cases we did not start with a matched spot size, and in the later

case the spot size was not adequately resolved.

Because the beam eventually reaches an equilibrium state, we also examined

what happens if we initialize the trailing beam with those equilibrium parameters.

Figure 4.11 shows the simulation results of three cases. In the case of Fig. 4.11(i),

the initial emittance of the trailing beam is 0.2mm ·mrad and the initial spot

size is 0.07µm. This is the equilibrium state for both cases shown in Fig. 4.8

and 4.10(iii). The simulation results show that both the emittance and spot size

only increase by ∼ 10%. In the case of Fig. 4.11(ii), the initial emittance of the

trailing beam is 0.61mm ·mrad and the initial spot size is 0.143µm. This is the

equilibrium state of the case shown in Fig. 4.10(i). The simulation results also

show ∼ 10% growth for both the emittance and spot size. In the case of Fig.

4.11(iii), the initial emittance of the trailing beam is around 0.25mm ·mrad and

the initial spot size is around 0.08µm. This is the equilibrium state of the case

shown in Fig. 4.10(ii). There is also only a ∼ 10% growth of the final emittance

and spot size of the trailing beam. Therefore, these results indicate that we might

be able to limit the emittance growth to only 10% when using the equilibrium

beam parameters obtained from the simulations. Note that in the cases shown in

Fig. 4.11, we initialized the trailing beam with the projected emittance and spot

size of the equilibrium state and used bi-Gaussian density profiles.
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Figure 4.10: The evolution of three different trailing beams’ normalized emittance

(column (a)) and spot size (column (b)). The initial normalized emittance of the

trailing beam is (i) 0.5mm ·mrad; (ii) 0.2mm ·mrad; (iii) 0.05mm ·mrad
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Figure 4.11: The evolution of the three different trailing beams’ normalized emit-

tance (column (a)) and spot size (column (b)). The initial normalized emittance

of the trailing beam is (i) 0.5mm ·mrad; (ii) 0.2mm ·mrad; (iii) 0.05mm ·mrad
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4.5 Summary

In this Chapter, we discussed the role of plasma ion motion in an electron-beam-

driven PWFA-LC stage. It is well accepted that when accelerating an electron

beam in the blow-out regime with the beam parameter requirements of a future

linear collider, the plasma ion motion must be considered because the peak beam

density becomes very large compared with the plasma density. Such a high beam

density is the result of the very small initial beam emittance and large focusing

force in the ion channel, which results in an extremely small matched spot size

of the beam. 3D full scale PIC simulations using parameters that resolve the

matched spot size of the beam require prohibitive computing time. Furthermore,

2D PIC codes using standard methods have numerical dispersion issues for these

parameters. Currently, only QuickPIC can perform the simulation with a proper

resolution for this case. We present some preliminary QuickPIC results with dif-

ferent trailing beam parameters. The plasma ion density as well as the trailing

beam profile reach an equilibrium state after a relatively short propagation dis-

tance in the plasma. For an initially matched beam condition with the normalized

emittance of 0.093mm ·mrad and the spot size of 0.1µm, the plasma ions move

drastically within a region kpr < 0.1 (inside the trailing beam). The focusing force

of the plasma wake close to the axis is therefore modulated due to the ion motion.

The transverse slope of the focusing force becomes steepened near the axis, and

the slope varies along the ξ direction. The accelerating field Ez is not affected

very much by the ion motion. With different trailing beam initial parameters, the

emittance always grows but at different rates. However, the simulations indicate

we can limit the emttance growth to a low level ∼ 10%, if we initialize the trailing

beam with the previously obtained equilibrium beam parameters.

The results are very preliminary and point to areas for future work. The

simulation used round beams and only marginally resolved the matched spot size.
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We also used singly ionized Li plasma. Therefore, future work should use at

least 8 cells across the σmatched, non-round beams, non-Gaussian profiles (in both

transverse and longitudinal directions), and include radiation reaction losses.
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CHAPTER 5

Proton-Beam-Driven PWFA

Recently it has been shown that ultra-short and intense proton bunches can gen-

erate a nonlinear plasma wave wake field that can be used to accelerate electrons

and perhaps positrons [34]. The motivation for considering so called proton-driven

PWFA is the existence of very high energy proton beams (such as the 7TeV LHC

beams). The pump depletion length of a 7TeV proton beam is Ld = Ep/eE−,

where Ep is the energy of the proton and E− is the decelerating field in the wake.

The energy gain of an electron over this distance could potentially be

Ee = eE+
Ep
eE−

=
E+

E−
Ep,

where Ee is the energy of the electron and
E+

E−
is called the transformer ratio.

Therefore, it could be possible to use a 7 TeV proton (Hadron) beam to generate

7 TeV electron (Lepton) beams in a single stage if the transformer ratio is 1. In

the original afterburner concept [79], the idea was to use the output electron beam

from the ILC and double its energy (transformer ratio of unity) in a short but

single plasma stage. As the construction of the ILC has become doubtful, the

idea of a staged PWFA-LC has emerged. The proton-driven PWFA is similar to

the original afterburner except that even higher energy hadron beams exist. Note

that the energy gain in proton-driven PWFA could be limited from dephasing

(not an issue for lepton drivers) to ∼ 1TeV. The dephasing length of a wake field

accelerator can be estimated to be

Ldp =
λa

1− vb
,
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where λa is the length of the acceleration phase of the wake and vb is the velocity

of the drive beam (all quantities are in normalized units and henceforth). In the

blowout regime, λa ∼ Rb, where Rb is the maximum blowout radius of the wake.

This leads to

Ldp = 2γ2bRb,

where γb = 1/
√

1− v2b . The pump depletion distance can be obtained from

E−Lpd = Eb = mbγb.

In the relativistic blowout regime [17], the maximum accelerating field is E+ =

Rb/2. If we assume the transformer ratio equals to 1, the decelerating field is

E− = E+ = Rb/2 [16, 17]. Therefore

Lpd =
2mbγb
Rb

.

Comparing Ldp and Lpd, we can see that

Ldp

Lpd

=
R2

bγb
mb

∼ γb
mb

,

where we assume the maximum blowout radius Rb ≈ 1. The above equation shows

that dephasing is an issue unless γb ≫ mb or Eb ≫ 2TeV for proton drive beams.

In order to make a clean wakefield, the required pulse length of the proton

drive beam should be less than a plasma skin depth [34]. Unfortunately the pulse

lengths of the existing high energy proton beams (e.g. at LHC) are around 10 cm,

which is much longer than the required pulse length (less than 50µm) in PWFA.

It is unlikely that existing proton beams will be compressed in the foreseeable

future. However, such long proton beams self-modulate during the interaction

with the plasma. The beam self-modulation in a plasma is almost completely

analogous to the laser self-modulation in a plasma, which was widely investigated

in the 1990s [5, 7].

Like the laser micro-bunching, the beam self-modulation due to the beam

transverse self-focusing will result in a string of micro bunches and drive large
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amplitude plasma wake fields. Self-modulation of lasers was studied because suffi-

ciently short pulse lasers did not exist. Importantly, the significant experimental,

computational, and theoretical work in the self-modulated LWFA set the stage

for the great progress in the 2000s on true LWFA. In this chapter, we will first

introduce the short proton beam drive PWFA in section 5.1. In section 5.2, we

will describe a theoretical model for the long beam self-modulation in the plasma.

In section 5.3, we will show QuickPIC simulation results for proton beam self-

modulation in a plasma. Lastly, we will make a summary of the chapter in section

5.4.

5.1 The short proton-beam-driven PWFA

Unlike a negatively charged particle drive beam that can expel the plasma elec-

trons away from it, a positively charged particle drive beam will attract the plasma

electrons towards it when the beam propagates in a plasma. When the beam den-

sity is much less than the plasma density, the linear fluid model can describe the

plasma wake driven by either positively or negatively charged particle beams, and

these wakes have no difference in structure. When the beam density becomes

larger than the plasma density, the plasma wakes driven by positively and neg-

atively charged beams can be very different. However, a short drive beam of

positively charged particles (e.g. positrons and protons) can drive a plasma wake

similar to the bubble-like nonlinear plasma wake driven by an intense electron

beam (but in a different way). Figure 5.1 shows a nonlinear plasma wake ex-

cited by a proton beam together with an electron beam loaded in it. The initial

plasma density is 1.0× 1015 cm−3. The drive beam contains 1× 1011 protons and

has a Gaussian density profile with a spot size σr = 130µm and a pulse length

σz = 50µm. The initial energy of the proton beam is 120 GeV. The trailing

beam contains 8 × 109 electrons and has a Gaussian density profile with a spot
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size σr = 30µm and a pulse length σz = 30µm. The initial energy of the trail-

ing beam is 30 MeV. In the Figure 5.1(a), we can see that there is a bubble-like

plasma wake excited by the proton drive beam. This is because the proton drive

beam is so intense that the Coulomb field around the beam will rapidly pull the

plasma electrons towards the axis. This occurs inside the proton beam. After

they cross the axis, they expand outward similarly to how an electron beam blows

them outwards. This results in a bubble-like plasma wake formed right after the

drive beam. The pulse length of the drive beam must therefore be short enough

to avoid further interaction with the “blown-out” plasma electrons. Otherwise,

the plasma electrons crossing the axis would be attracted back to the drive beam

and return to the axis again. This would result in plasma electrons oscillating at

a frequency ωpbeam =
√

4πe2nb/m. An electron beam can be properly loaded in

the wake so as to flatten the acceleration field (as shown in Fig. 5.1(b)). Figure

5.1(c) shows the energy gain of the trailing electron beam. A 1GeV/m averaged

acceleration gradient is reached in this case. The electrons eventually dephase as

discussed earlier. We note that proton-driven wakes differ from electron-driven

wakes in that there is a residual density of electrons inside the bubble.

5.2 The linear theory of the long beam self-modulation in

a plasmas

Although an intense proton beam with a short pulse length can be used as a

drive beam in a two-bunch PWFA, such a proton beam does not exist in current

high energy proton accelerators. For example, the proton beam at LHC has a

∼ 10 cm long pulse length. Such a high energy beam is very difficult to compress.

Recently, driving large amplitude wake fields using the long proton beam self-

modulation in the plasma was proposed [84, 85, 86]. As noted earlier, it is a

very similar idea to the SM-LWFA (which we introduced in chapter 1). The long
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Figure 5.1: Simulation results for a two-bunch PWFA with an intense short proton

drive beam. (a) Plasma density (in blue) and beam densities (in brown); (b) Ez

slice plot across the center of the simulation box. The red line is the on-axis

line-out of Ez; (c) The energy spectrum of the electron trailing beam at different

propagation distance.
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beam self-modulation behaves like a convective instability in the lab frame and an

absolute instability in the Galilean frame of the coordinate ξ = ct − z. For long

bunches, nb/np ≪ 1, so the linear theory of the beam driven plasma wake field

can be used to analyze the process. In previous work, either a narrow spot size of

the beam[84, 86] or a transverse flat top profile of the beam [85] was assumed to

obtain the solution of the plasma wake field driven by the long pulse drive beam.

In this section, we present an alternative theoretical description for analyzing the

long beam self-modulation under the wide beam limit with a Gaussian transverse

beam profile. The wide beam has a normalized beam spot size kpσr > 1. This is

the usual situation when beams propagate in a high density plasma, which has a

small plasma skin depth k−1
p .

5.2.1 The linear theory of the plasma wake driven by a particle beam

To obtain the linear theory of the plasma response to a charged particle beam,

we start from the continuity equation of the plasma electrons (note that all the

quantities are in normalized units),

∂ρe
∂t

+∇ · ~Je = 0, (5.1)

where ρe is the electron charge density and Je is the electron current density. By

assuming the plasma response is a small perturbation compared with the initial

state, we can linearize this equation and get

∂ρ̃e
∂t

−∇ · ~̃ve = 0, (5.2)

where ρ̃e = ρe − ρe0 is the perturbation of the electron charge density (with an

uniform initial value of ρe0 = −1) and ~̃ve is the perturbation of the electron

velocity. Both ρ̃e and ~̃ve are much less than 1. From the linearized equation of

motion for the plasma electrons, we have

∂~̃ve
∂t

= − ~̃E. (5.3)
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We then take the time derivative of equation (5.2) and substitute equation (5.3)

into it to get
∂2ρ̃e
∂t2

+∇ · ~̃E = 0. (5.4)

Gauss’s Law gives,

∇ · ~̃E = ρ̃e + ρb,

where ρb is the charge density of the particle beam. Plugging it into equation

(5.4), we obtain the equation for the plasma electron density perturbation

∂2ρ̃e
∂t2

+ ρ̃e = −ρb. (5.5)

Upon applying the quasi-static approximation (as described in chapter 2), equa-

tion (5.5) becomes,
∂2ρ̃e
∂ξ2

+ ρ̃e = −ρb, (5.6)

where ξ = t−z. Equation (5.6) is the plasma response to a charged particle beam.

The solution to this equation is

ρ̃e(ξ) =

∫ ∞

ξ

dξ′ρb(ξ
′) sin(ξ − ξ′). (5.7)

Note that ρ̃e is also dependent on ~x⊥ and s. We henceforth omit these dependent

variables in the above equation for convenience. As described in chapter 3, section

3.1, both the transverse and longitudinal fields of the wake that act on the relativis-

tic beam particles can be calculated from the pseudo potential ψ. The longitudinal

field is F‖ = Ez = ∂ψ/∂ξ and the transverse field is F⊥ = ~E⊥ + ẑ× ~B⊥ = −∇⊥ψ.

Under the quasi-static approximation, the equation for ψ is (which is equation

(2.1)) ,

∇2
⊥ψ = −ρ+ Jz.

Assuming the plasma ions are fixed, the linearized equation for ψ is

∇2
⊥ψ = −ρ̃e − ṽez. (5.8)
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Under the quasi-static approximation, the plasma electrons satisfy the conserva-

tion law [42],

γ − pz = 1 + ψ.

By assuming the plasma electron velocity (normalized by the speed of light c) is

much less than 1, this equation can also be linearized to 1− ṽez = 1+ψ, therefore

ṽez = −ψ. Upon substituting this into the equation (5.8), we get

∇2
⊥ψ − ψ = −ρ̃e. (5.9)

We can easily write the solution to equation (5.9) using the Green’s function,

ψ =
1

2π

∫ 2π

0

dθ′
∫ ∞

0

r′dr′ρ̃e(~r
′)K0(|~r − ~r′|), (5.10)

where K0 is the zeroth-order modified Bessel function of the second kind. We

can substitute the solution of ρ̃e (equation (5.7)) into equation (5.10) to get the

solution for ψ directly from the particle beam density,

ψ =
1

2π

∫ ∞

ξ

dξ′
∫ 2π

0

dθ′
∫ ∞

0

r′dr′ρb(~r
′, ξ′) sin(ξ − ξ′)K0(|~r − ~r′|). (5.11)

The solutions for F‖ and F⊥ can then be easily obtained from the solution for ψ.

In previous work [84, 85, 86], these solutions are directly used for analyzing the

particle beam evolution. However, as shown later, it is not necessary to directly

use these solutions. Instead, we keep the following set of equations,










































































∂2ρ̃e
∂ξ2

+ ρ̃e = −ρb

∇2
⊥ψ − ψ = −ρ̃e

F⊥ = −∇⊥ψ

F‖ =
∂ψ

∂ξ

(5.12)

The above set of equations can describe the plasma response and the wake fields

acting on the particle beam.
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5.2.2 The envelop equation of the particle beam

To describe the evolution of the particle beam, we can use the transverse envelope

equation [87, 88]. Here we also assume that the beam particles barely move in

the direction of ξ = t− z due to their high energy. Therefore, the beam is mainly

evolving laterally under the transverse plasma wake field force. The envelope of

the particle beam can be represented by the r.m.s. spot size of the beam,

Rx =
√
< x2 >,

where the bracket means taking the average value of the quantity over all of the

beam particles and x stands for the transverse coordinate of the beam particle.

Note that we assume < x >= 0 (ignore the beam hosing). The normalized r.m.s.

emittance of beam is defined as

ǫNx = γ
√
< x2 >< x′2 > − < xx′ >2,

where x′ = dx/ds = dx/dt · dt/ds ≈ vx is the transverse velocity of the beam

particle (note that dt/ds = dt/dz = 1/vz ≈ 1 for the high energy particle beam),

and we assume < x′ >= 0 (no beam hosing or drift) and all the beam particles

have the same energy (γ). This definition for the emittance follows naturally from

the following derivation of the spot size equation.

We then look at the second derivative of the beam spot size [88],

R′′
x =

√
< x2 >

′′

= (
< x2 >′

2
√
< x2 >

)′ = (
< xx′ >√
< x2 >

)′

=
< xx′ >′ √< x2 >− < xx′ > <xx′>√

<x2>

< x2 >

=
< xx′′ >√
< x2 >

+
< x2 >< x′2 > − < xx′ >2

< x2 >3/2
,

(5.13)
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where x′′ is the acceleration of the beam particle. The acceleration would be equal

to
qbFx

mbγ
, where Fx is the transverse focusing field felt by the particle, qb and mb

are beam particle’s charge and rest mass and γ is the Lorentz factor of the beam

particle (which is the normalized particle energy). Substituting the expression for

the acceleration and normalized emittance into the above equation, we can obtain

the envelope equation of the beam,

∂2Rx

∂s2
− qb < xFx >

mbγRx
− ǫ2Nx

γ2R3
x

= 0. (5.14)

According to the beam envelope equation, the changing of the beam spot size (the

first term in equation (5.14)) is determined by two terms. One term is the force

felt by the particle (the second term in equation (5.14)), the other term is the

intrinsic expansion from the beam emittance (the third term in equation (5.14)).

5.2.3 Transverse beam self-modulation in PWFA

To look at the beam evolution in PWFA, we should apply the force F⊥ from the

plasma wake field in the beam envelop equation. We assume the particle beam

has an axisymmetric (round) Gaussian density profile,

ρb =
qbΛb

R2
exp(−x

2 + y2

2R2
), (5.15)

where R =
√
< x2 > =

√

< y2 > is the transverse spot size of the beam and Λb is

the beam charge per unit length (which is a constant because the beam particles

do not move in the ξ direction). With the axisymmetric assumption, the envelope

equation (equation (5.14)) of the beam becomes [87]

∂2R

∂s2
− qb < xFx >

mbγR
− ǫ2N
γ2R3

= 0, (5.16)

where ǫN = ǫNx = ǫNy for an axisymmetric beam. Therefore, by adding equations

(5.15) and (5.16) into the set of equations (5.12), we obtain a complete set of
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equations, which describes the beam envelope evolution in a linear plasma wake,






































































































ρb =
qbΛb

R2
exp(−x

2 + y2

2R2
)

∂2ρ̃e
∂ξ2

+ ρ̃e = −ρb

∇2
⊥ψ − ψ = −ρ̃e

F⊥ = −∇⊥ψ

∂2R

∂s2
− qb < xFx >

mbγR
− ǫ2N
γ2R3

= 0

(5.17)

Note that the equation of the longitudinal wake field is omitted because the beam

particle motion in the ξ direction is trivial.

5.2.4 Transverse beam self-modulation for the wide beam limit

The set of equations (5.17) can be simplified if we make further assumptions. We

first assume the beam has a spot size much larger than the plasma skin depth

(the wide beam limit), i.e., R >> 1 (note that it is normalized by the plasma skin

depth k−1
p ). The wide beam limit is valid if we let the beam propagate in a dense

plasma, which has a small skin depth. With the wide beam limit, ∇2
⊥ << 1, we

can drop the first term in the equation for ψ in (5.17) and get

ψ = ρ̃e.

Plugging this into the equation for ρ̃e in (5.17), we can obtain

∂2ψ

∂ξ2
+ ψ = −ρb. (5.18)

Note that in general the equation for ψ is,

(
∂2

∂ξ2
+ 1)(∇2

⊥ − 1)ψ = ρb
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Assuming the pulse length of the beam is much larger than 1 (the long beam

limit), then ψ will evolve adiabatically along ξ and ∂2ξ << 1. We can then drop

that term in equation (5.18) and get a simple solution for ψ

ψ = −ρb.

Then we can calculate the term < xFx > by using ψ = −ρb and substituting a

Gaussian profile for ρb to find,

< xFx >=

∫ ∞

−∞

∫ ∞

−∞
ρbx

∂ρb
∂x

dxdy

∫ ∞

−∞

∫ ∞

−∞
ρbdxdy

= −qbΛb

4R2
. (5.19)

Substituting this into the envelope equation in (5.17), we have

∂2R

∂s2
+

q2bΛb

4mbγR3
− ǫ2N
γ2R3

= 0. (5.20)

We can now define an equilibrium state to perturb about, in which ∂2sR = 0,

∂2R

∂s2
= 0 = (

ǫ2N
γ2

− q2bΛb

4mbγ
)
1

R3
.

It implies that Λb =
4mbǫ

2
N

q2bγ
(note that ǫN is normalized by k−1

p ) is the equilibrium

condition for this wide and long particle beam propagating in the linear plasma

wake. When Λb >
4mbǫ

2
N

q2bγ
, the beam will feel a stronger focusing force from

the plasma wake, which will overcome the intrinsic expansion due to the beam

emittance, and the beam will be focused to a smaller spot size (i.e., there is self-

focusing). When Λb <
4mbǫ

2
N

q2bγ
, the beam cannot create a strong plasma response,

and a radial expansion due to the beam emittance will dominate, which will

result in the beam expanding in the plasma. Note that for the wide beam limit,

the equilibrium condition does not depend on the beam spot size, and only Λb

matters. This is analogous to the critical power of a laser pulse to self-focus in

a plasma, which is also a condition unrelated to the spot size (both Λ and laser

power are conserved as the beam or laser focuses in the absence of longitudinal

slippage [89]).
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To study the beam self-modulation, we perturb a beam about the equilibrium

state, in which Λb =
4mbǫ

2
N

q2bγ
. Then we express the beam spot size as R = R0+R1,

where R0 is the initial (equilibrium) beam spot size, R1 is the perturbation and

|R1/R0| ≪ 1. Therefore, the beam density can be written as ρb = ρb0+ρb1, where

to the lowest order

ρb0 =
qbΛb

R2
0

exp(−x
2 + y2

2R2
0

) and ρb1 = ρb0(
x2 + y2

R2
0

− 2)
R1

R0
. (5.21)

The pseudo potential can be written as ψ = ψ0 + ψ1 and the zeroth order and

perturbed parts satisfy

ψ0 = −ρb0 and
∂2ψ1

∂ξ2
+ ψ1 = −ρb1. (5.22)

Substituting these expressions into the envelope equation (5.17), we find the equa-

tion for R1,

∂2R1

∂s2
− qb < x∂xψ0 >

mbγR0

R1

R0
+
qb < x∂xψ1 >

mbγR0
+

3ǫ2N
γ2R3

0

R1

R0
= 0. (5.23)

When Λb =
4mbǫ

2
N

q2bγ
(the equilibrium condition), then

qb < x∂xψ0 >

mbγR0
=

ǫ2N
γ2R3

0

.

Therefore,
∂2R1

∂s2
+

2ǫ2N
γ2R3

0

R1

R0
= −qb < x∂xψ1 >

mbγR0
. (5.24)

We next need an equation for < x∂xψ1 >. We can apply the same operator

on this term as is in the equation for ψ1 in (5.22). This leads to the equation for

< x∂xψ1 >, which is

∂2 < x∂xψ1 >

∂ξ2
+ < x∂xψ1 >= − < x∂xρb1 > (5.25)

Substituting ρb1 (equation (5.21)) into the above equation and calculating the

right hand side gives

∂2 < x∂xψ1 >

∂ξ2
+ < x∂xψ1 >= −qbΛb

2R2
0

R1

R0
= −2mbǫ

2
N

qbγ

R1

R3
0

. (5.26)
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We define M1 =
qbγR

3
0 < x∂xψ1 >

2mbǫ
2
N

, so that equations (5.24) and (5.26) become

two coupled equations



























∂2M1

∂ξ2
+M1 = −R1

∂2R1

∂s2
+

2R1

β∗2 = −2M1

β∗2

,

where β∗ =
γR2

0

ǫN
. We define k2s = 2/β∗2, and the evolution of the beam spot size

can be described by the following two coupled equations























∂2M1

∂ξ2
+M1 = −R1

∂2R1

∂s2
+ k2sR1 = −k2sM1

(5.27)

The equations in (5.27) essentially describe streaming instabilities in plasmas.

They will lead to absolute instabilities in the ξ frame with R1 increasing in s

at each ξ (they are convective in the lab frame). Asymptotic solutions to these

equations can be obtained in various limits. In the long pulse limit where ξ ≫ kss,

we consider a solution to the equation (5.27) that has the formM1 = M̃1e
−iξ+c.c.

and R1 = R̃1e
−iξ + c.c., where the amplitude M̃1 and R̃1 vary slowly in ξ, i.e.,

∂ξ ≪ 1. We also assume ∂s ≫ ks to derive an equation for R̃1 (and M̃1)

∂ξ∂
2
s R̃1 =

i

2
k2sR̃1. (5.28)

We can obtain an asymptotic solution to equation (5.28) for large ξ and s, which

is [89]

R1 = R̃1e
−iξ = C exp

[

3
√
3

4
(kss)

2/3ξ1/3

]

· exp
[

−i(ξ − 3

4
(kss)

2/3ξ1/3)

]

, (5.29)

where C is the initial value of R1. We can verify our assumptions ∂ξ ≪ 1 and ∂s ≫
ks by taking the derivatives on R̃1. It is easy to find that both the assumptions
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require

(

kss

ξ

)2/3

≪ 1, which is satisfied when we use the long pulse limit where

ξ ≫ kss.

The solution (5.29) tells that R1 increases with an e-folding number of

Ne−folding =
3
√
3

4

(

2ǫ2N
γ2R4

0

s2ξ

)1/3

, which is also equal to
3
√
3

4

(

q2bΛb

2mbγR
4
0

s2ξ

)1/3

due to the equilibrium condition

Λb =
4mbǫ

2
N

q2bγ
. To have a large growth rate, we can increase Λb or decrease the

initial beam spot size. Note that this solution is based on the wide beam limit,

which means it is not valid when R0 < 1.

5.3 Simulation result of the long proton beam self-modulation

in a plasma

In this section, we present sample QuickPIC simulation results of the self-modulation

of a long proton beam in a plasma. The proton beam has a peak density nb/np =

0.008, where np = 1.0× 1016 is the initial plasma density. The beam has a trans-

verse Gaussian density profile with a normalized spot size of kpσr = 2.0. The

beam’s normalized emittance is ǫN = 1.78mm ·mrad. In the longitudinal direc-

tion, the beam has a flat-top profile with a length of kpLz = 300 (note that the

rapid rise provides a large seed for the instability growth). The initial energy of

the proton beam is 120GeV. These parameters are similar to proton beams at

CERN and FNAL.

Figure 5.2 shows snapshots of the proton beam density at different propagation

distances. Note that we only show the beam density in the range −100 < kpξ < 0

in order to make the details of the plots look clear. From Figure 5.2, we can see

that the beam self-modulation increases as ξ increases for each s and that the

self modulation increases in s for each ξ. At the beginning, the beam density has
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a small perturbation (as shown in Figure 5.2(a)). And the envelope of proton

beam density oscillates with a wavelength close to the plasma wavelength. After

further propagation in the plasma, the transverse density profile of the rear part of

the beam becomes more complicated, which means the beam density modulation

cannot be considered as a small perturbation on the initial density at this time.

When the instability evolves the wavelength of the perturbation also increases as

ξ increases (tail of the beam). This can be seen in equation (5.29). As the beam

continues to evolve, the part of the beam at large ξ (i.e. the tail of the beam)

breaks up completely into separate micro bunches. The beam particles between

each micro bunch have been dispersed laterally (completely defocused). When

this occurs the bunches evolve into inverse D shapes and then into C shapes.

Figure 5.3 shows the Ez field of the plasma wake in this case. We can clearly

see that the beam self-modulation leads to a growth in Ez. At the same slice

of ξ, the amplitude of Ez increases when the beam propagates further inside the

plasma. The amplitude of Ez also increases along the ξ direction for each value

of s. We have also simulated beams with Gaussian profiles along ξ. Such beams

also self-modulate but need to propagate longer distances. We are carrying out a

detailed simulation study and comparison to theory for future work.

5.4 Summary

In this chapter, we reviewed the proton-beam-driven PWFA concept. A short and

intense proton beam can drive a nonlinear plasma wake similar to that driven by

an intense electron beam in the blowout regime. It can also accelerate an electron

beam to a high energy when it is properly loaded in the plasma wake. When a

long proton beam propagates in a plasma, the beam self-modulation instability

may occur. A theory was developed for the wide beam limit, which is relevant

to possible experiments at CERN or FNAL. The beam spot size evolution can be
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(a) s = 26.6 cm

(b) s= 53.22 cm

(c) s = 77.16 cm

Figure 5.2: Snapshots of the proton beam self-modulation in a plasma at different

propagation distances. The plots are the cross-sections of the beam density in the

center of simulation box (where Y = 0.). The beam travels to the right of the

simulation box.
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(a) s = 26.6 cm

(b) s= 53.22 cm

(c) s = 77.16 cm

Figure 5.3: Snapshots of the longitudinal electric field Ez in the proton-beam–

driven plasma wake through beam self-modulation. The plots are the cross-sec-

tions of Ez in the center of simulation box (where Y = 0.)The red line in each

plot is the on-axis line-out of Ez.
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obtained by solving two coupled equations and the analysis is valid for Gaussian

beams. These equations are analogous to the streaming instabilities and the laser

self-modulations in a plasma. Asymptotic expressions for growth in ξ and s are

given for the long bunch limit. Preliminary QuickPIC simulation results of a long

proton beam self-modulation are also presented. Eventually a nonlinear state is

reached in which the beam completely breaks apart into micro bunches. This

results in a large amplitude plasma wake at the rear part of the beam. The

simulation work was preliminary. Areas for future work include checking the

validity of the linear theory when the beam is initialized with a non-equilibrium

state, comparing OSIRIS (full PIC) simulation result with the QuickPIC results

for the self-modulation of the long proton beam, and simulation studies using

different proton beam parameters and density profiles.
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CHAPTER 6

Conclusion

In this dissertation we have investigated issues related to plasma wakefield accel-

eration (PWFA) using quasi-static particle-in-cell simulations. We have studied

parameters of relevance to existing experiments at the new FACET facility at

SLAC. These include experiments on how to optimize the absolute value of the

accelerating field and on how to demonstrate that a second bunch can be loaded

into and accelerated in the wakefield from a first bunch. We also investigated

parameters of relevance to future experiments, including those of relevance to a

future linear collider based on PWFA and on using proton beams at LHC or FANL

to drive wakefields.

The simulations were carried out using the code QuickPIC which is the only

fully three-dimensional quasi-static PIC code in existence. However, improve-

ments were needed in QuickPIC to enable some of the simulations. In Chapter 2

we described a new algorithm for solving the electromagnetic fields in QuickPIC,

and we call the new code QuickPIC 2.0. The new algorithm uses equations for the

electromagnetic fields that are gauge invariant, instead of the equations for the

scalar and vector potentials for the Lorentz gauge (which are used in QuickPIC

1.0). We also introduced a new deposition scheme for calculating the time (ξ)

derivative of the plasma current density, which can reduce the communication in

the parallel computation. By comparing the simulation results for different beam

driven PWFA cases, we found that QuickPIC 2.0 was in excellent agreement with

the full PIC code OSIRIS after only 1 iteration for the most cases, while Quick-
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PIC 1.0 typically needs at least 4 iterations (and in some cases 8 iterations) to

reach the same accuracy. For a typical nonlinear PWFA simulation, QuickPIC

2.0 is 5 to 8.5 times faster than QuickPIC 1.0. The speedup depends on the num-

ber of particles per cell used in the simulation. New modules were implemented

in QuickPIC 2.0, including the multiple field ionization, an improved beam and

plasma initialization, and diagnostics.

In the future, we will continue to put effort in developing QuickPIC 2.0. One

area of the work is to compare different algorithms which use conservation laws

differently for the motion of plasma particles and see how well the constant of

the motion is well maintained for each case. We will also merge the laser solver

into QuickPIC 2.0. In addition, developing a plasma particle trapping module,

implementing adaptive 2D and 3D time steps, experimenting with load balancing

in the 2D part of the code, porting the code to a hybrid one (MPI + OpenMP)

together with GPU acceleration and experimenting a ~k⊥ dependent coefficient in

the iterative equation (2.20) will all be the areas for the future work.

For the electron beam driven PWFA in the blow-out regime, we studied the

decelerating field in the plasma wake through QuickPIC simulations. With Gaus-

sian density profiles, the electron drive beam will feel the maximum decelerating

field approximately equal to Λ/
√
ekpσz in a range of kpσz centered near 3. The

optimum plasma density for achieving the largest accelerating field was also ana-

lyzed. For the relativistic blowout regime (Λ ≥ 1), the optimum plasma density

is no = nb0, where nb0 is the peak beam density, as long as 1 ≥ σr/σz ≥ 1.

We performed QuickPIC simulations for two-bunch PWFA with possible pa-

rameters at FACET. With a pre-formed plasma, a trailing beam with 30 GeV

energy gain as well as a 3% energy spread was observed through a long plasma

cell that is over two meters long. However, when using the field-ionized plasma,

the ionization-induce beam head erosion was found to significantly affect the drive

beam’s ability to ionize the neutral gas and excite the plasma wake and there-
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fore limit the trailing beam’s energy gain. We found that the head erosion can be

mitigated by applying a combination of lower ionization threshold gas and a laser-

produced plasma filament in front of the drive beam, which provides important

guidance for the upcoming two-bunch PWFA experiments on the FACET facility.

In the PWFA-LC conceptual design, the two-bunch PWFA is well accepted for

accelerating an electron beam. However, the plasma ion motion must be included

because the peak beam density is so high that the self-field of the beam will pull

the massive plasma ions inward during beam’s transit time. QuickPIC 2.0 is

currently the only 3D PIC code that can perform the simulation for a PWFA-LC

stage with proper resolution. Preliminary simulation results were presented using

different trailing beam parameters but the same drive beam (which is assumed not

to evolve). From the simulation results, we found that the trailing beam profile

reached an equilibrium state after a short propagation distance in the plasma.

The same was true for the plasma ion density. Although the accelerating field

of the plasma wake does not change very much by the plasma ion motion, the

focusing force is significantly modulated by the plasma ions. The trailing beam’s

emittance always increases due to the nonlinear focusing force. However, with

different initial parameters, the trailing beam’s emittance grows at different rates.

The simulation results indicated that the emittance growth rate could be limited

to ∼ 10% when the trailing beam was initialized with the previously obtained

equilibrium beam parameters.

In the future, we will use a finer resolution (at least 8 cells across the σmatched)

and check the convergence of the results in the future. The emittance growth

with different trailing beam initial conditions, including non-round profiles (i.e.

asymmetric profiles) and non-Gaussian profiles (in both transverse and longitudi-

nal directions) will be investigated. We will also consider the radiation reaction

losses of the trailing beam in the future.

Besides the electron beam driven PWFA, we showed that a short and intense
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proton beam could also drive a bubble-like nonlinear plasma wake for accelerating

an electron beam. However, the existing high energy proton beams all have a

very long pulse length. Therefore, the long beam driven PWFA was studied.

We provided a theory to analyze the long beam self-modulation in the plasma

by assuming the beam spot size is much larger than the plasma skin depth. Two

coupled equations were obtained, which indicated that a small perturbation of the

beam envelope would grow as a convective instability. The asymptotic growth rate

was given under the strong coupling (or long pulse) assumption. We presented

QuickPIC simulation results for a long proton beam self-modulation in a plasma.

The proton beam breaks up into micro bunches and drives a large amplitude wake

in the plasma.

Checking the validity of the linear perturbation theory of the beam self-

modulation under non-equilibrium initial conditions will be an area for future

work. Other work will include the comparison between OSIRIS and QuickPIC

simulation results for the long beam case and simulation study using different

proton beam parameters. The coupling between self-modulation and hosing in-

stability will be investigated as well as an investigation on how the proton beam’s

energy will be modulated and on how self-injected and externally injected elec-

trons will be accelerated. We will also examine how to optimize the energy of a

trailing electron beam in the plasma wake driven by a ultra-short proton beam.
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