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Cascading and local-field effects in non-linear optics revisited:
A quantum-field picture based on exchange of photons

Kochise Bennetta) and Shaul Mukamelb)

Chemistry Department, University of California, Irvine, California 92697-2025, USA

(Received 5 November 2013; accepted 3 January 2014; published online 27 January 2014)

The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the
pulse time-ordering and cascading that leads to the generation of new signals. These are then intro-
duced macroscopically by solving Maxwell’s equations. This procedure is convenient and intuitive
but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes
of the radiation field that are initially in the vacuum state to second order. This approach is system-
atic and suggests a more general class of corrections that only arise in a QED framework. In the
semi-classical theory, which only includes classical field modes, the susceptibility of a collection of
N non-interacting molecules is additive and scales as N. Second-order coupling to a vacuum mode
generates an effective retarded interaction that leads to cascading and local field effects both of which
scale as N2. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4862236]

I. INTRODUCTION

Spectroscopy seeks to use the optical response of matter
to determine properties of the constituent molecules. Since
this typically involves probing a sample composed of many
molecules, it is necessary to relate the response of the entire
sample to that of a single molecule. When the sample is suffi-
ciently dilute, the signals from each molecule simply add and
the total response is proportional to the molecular response.1, 2

In denser samples, this picture must be corrected.
The semi-classical approach involves a patch-up of

macroscopic and microscopic levels of theory. The direct ex-
pansion of the polarization for a system of non-interacting
molecules is linear in N, as in a dilute sample; we call this
the microscopic semi-classical expansion. Higher-order ef-
fects are then included macroscopically in an ad hoc fash-
ion by solving Maxwell’s equations, resulting in cascading,
which scales as N2, and local-field corrections which scale
as N2 and higher (the Clausius-Mossotti relation);1, 3 we call
this corrected picture the macroscopic semi-classical expan-
sion. This phenomenological approach is very convenient and
intuitive but is not systematic and one cannot be sure what ef-
fects are left unaccounted for. Historically, the above effects
were first discovered experimentally and then added to the
formalism. Local-field effects were included in off-resonant
frequency domain susceptibilities to resolve discrepancies of
the calculated absolute magnitude with experiment.4–7 In the
time domain, they were required when unexpected signals
showed that the time ordering of short pulses is scrambled by
molecules with long-lived polarization (slow dephasing).8, 9

Various other experimental observables that are altered by
local-field effects, such as the transmission/reflection of a thin
film10 and the Rabi oscillations of a quantum dot11 have been
identified. Similarly, cascading was introduced to account for

a)kcbennet@uci.edu
b)smukamel@uci.edu

new signals not included by the microscopic semi-classical
approach.12–14 Cascading signals arise when a molecule in the
material interacts with the electromagnetic (EM) field and a
polarization is produced which propagates to interact with an-
other molecule from which the signal is ultimately detected.
The effective response function for cascading signals there-
fore comes as a product of two lower-order response func-
tions corresponding to the two molecules (i.e., χ (3) like be-
havior can arise from a product of two factors of χ (2), χ (5)

from a product of two factors of χ (3), etc.). Cascading sig-
nals have the same wavevector and dependence on the incom-
ing field amplitudes as the original signals, making them hard
to distinguish. Various methods for separating out cascading
signals from the higher-order process have been pursued.15–18

In the macroscopic semi-classical approach, this is calculated
by creating a polarization and propagating with Maxwell’s
equations.2, 19

In previous work, stimulated emission signals were ana-
lyzed from a microscopic perspective of a quantum radiation
field and a number of expressions that were formerly obtained
semi-classically were developed in a simpler manner20–22

(more general introductions to the quantum nature of the radi-
ation field can be found in Refs. 23–26). In this paper, we ex-
tend this formalism to vacuum-mediated interactions (VMI),
and show how cascading and local-field processes, are caused
by second-order in interactions with quantum modes. In the
emerging picture, one of a pair of molecules interacts with
one or more EM fields before emitting into a vacuum mode.
The second molecule subsequently interacts with this vacuum
mode and possibly other EM fields before producing a sig-
nal. Thus, while the sample is taken to be non-interacting, an
effective interaction is nonetheless mediated via the vacuum
field. This quantum-field approach introduces cascading and
local-field corrections in an elegant way. Everything is sys-
tematically related to the expansion order and no ambiguity
remains regarding what processes have and have not been ac-
counted for. We find that: (i) If all field modes are treated as

0021-9606/2014/140(4)/044313/11/$30.00 © 2014 AIP Publishing LLC140, 044313-1
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classical, we recover the microscopic semi-classical result and
the polarization is strictly linear in N. Additional effects are
obtained if we also add coupling to quantum modes and ac-
count for them order by order. (ii) Cascading and local-field
effects are generated by including the coupling to quantum
modes to second order (representing exchange of photons be-
tween two molecules). The two effects have the same mi-
croscopic origin, which is not clear from the semi-classical
derivations. (iii) Forster resonant energy transfer will be ob-
tained at fourth order in the quantum mode as will three-
molecule processes. Such higher-order effects depend on gen-
eralized response functions and are not obtainable from a
semi-classical perspective. We limit our discussion to (i) and
(ii). Including higher-order effects is straightforward.

We focus on a heterodyne detection signal in which the
impinging field modes are all in a coherent (classical) state
and take the field-matter coupling to be dipolar so that the
interaction Hamiltonian is given by

Ĥint = −
∫

drÊ(r, t) · V̂(r, t),

and the dipole operator is the sum of the dipole operators
for each molecule V̂(r, t) = ∑

a V̂a(t)δ(r − ra). The electric
field operator is partitioned into the sum of the classical and
vacuum modes:

Ê(r, t) =
∑

i

Ei(r, t) + Êv(r, t),

Ei(r, t) =
∑

ζi=±1

εi

∫
dωi

2π
Eζi

i (ωi)e
iζi (ki ·r−ωi t),

Êv(r, t) =
∑
kvλ

√
2π¯ωV

V ε(λ)(k̂v){ei(kv ·r−ωvt)âkv,λ

+ e−i(kv ·r−ωvt)â
†
kv,λ

}.

(1)

Here, Eζi

i (t) is the temporal envelope of the ith pulse (or the
conjugate for ζ i = −1) and εi is its polarization vector. V
is the quantization volume, λ indexes the polarization of the
vacuum mode, and â

(†)
kv,λ

are vacuum mode annihilation (cre-
ation) operators. We begin with the superoperator expression
for the heterodyne signal derived from the rate of change of
the photon number operator in the detected mode (〈 d

dt
Ns〉):27

S = 2

¯
�

{∫
dtdrT r[T V̂L (r, t)

· Ê†
sL (r, t) e

−i
¯

∫ t

−∞ Ĥint−(τ )dτ ρ (−∞)]
}

. (2)

The symbol � stands for the imaginary part and the subscript
L (R) on an operator indicates its action from the left (right).
For brevity, we also define the linear combinations:

Ô− = ÔL − ÔR, (3)

Ô+ = 1

2
(ÔL + ÔR). (4)

If all field modes are classical, we recover the standard for-
mulae for the heterodyne detected (stimulated emission) non-
linear signal in terms of the susceptibilities. As described in

Refs. 27 and 28, homodyne detected (spontaneously emitted)
nonlinear signals arise from a 2nd order interaction with a
vacuum mode which is then detected. Such processes are ad-
ditive (i.e., the total signal for an aggregate of many molecules
is simply the sum of the signals of the individual molecules).
These processes therefore scale linearly with N, the number
of molecules in the sample.

Like homodyne detected spontaneously emitted signals,
cascades arise from interaction with a vacuum mode. The
difference is that in cascading processes, the final signal is
still heterodyne detected and the quantum mode merely plays
an intermediate role, causing an effective interaction between
molecules that generates collective signals. These cascading
signals therefore scale as N2 in the molecule number.

II. VACUUM-MEDIATED INTERACTIONS

The first step in evaluating the signal from Eq. (2) is to
factorize the density matrix and separate the vacuum mode
from the matter degrees of freedom:

ρ (−∞) = ρV (−∞) ⊗ ρ ′ (−∞) , (5)

where ρV = |0〉〈0| is the initial vacuum mode density matrix
and ρ ′ is the density matrix of the material. To return ρV to
a population requires two interactions (one to excite a coher-
ence between |0〉 and |1〉 and another to de-excite it) and so
the lowest non-vanishing contribution is second order in the
vacuum interactions. Cascading is a two-molecule process in
which one of these interactions takes place on the molecule
from which the signal is heterodyne detected (molecule a)
and the other interaction takes place on a second molecule (b).
For a product of commuting operators (note that Ê and V̂ act
in separate spaces and therefore commute), (AB)− = A−B+
+ A+B−. Since the Ei are c-numbers, (Ei)− = 0 and all inter-
actions with classical fields are associated with a V̂−. Since
T r[Ô−ρ] = 0 for any ρ, the final interaction on molecule
b must be the vacuum interaction ((Êv)− does not vanish).
Moreover, the vacuum interaction on molecule b must come
prior to that on molecule a since otherwise the trace over
the vacuum mode would vanish for this same reason. An
important consequence of this reasoning is that the relevant
correlation function for each molecule will be of the form
〈V+V− . . . V−〉 (i.e., one “+” and several “−” indices) as in
standard response functions. In this sense, nothing unusual
happens to second-order in the vacuum modes. It is worth
noting, however, that the classical correlation function of the
vacuum mode 〈EV +EV +〉 turns out not to contribute, while
the cascading and local-field corrections are determined by
〈EV +EV −〉 which would vanish classically but is finite for the
quantum vacuum. This points to the fundamentally quantum
nature of these signals and suggests that a broader variety of
correlation functions may be accessible at higher order in the
coupling to the vacuum modes.

Below, we explore the corrections to the response, at var-
ious orders in the incoming fields, due to interactions be-
tween molecules mediated by second-order interaction with
the vacuum mode. We term these 2VMI corrections for short-
hand and identify two relevant subsets. As we will demon-
strate, 2VMI corrections come as a sum of products of pairs
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(a) (b)

FIG. 1. (a) A two-molecule process involving either one or two vacuum
modes. This can represent e.g., resonant energy transfer. (b) A three-molecule
process in which molecules b and c each interact with the same vacuum
mode which then interacts twice with molecule a. Both of these processes
involve generalized response functions. Time progresses as one moves up
the diagram and the vertical lines represent the density matrices of differ-
ent molecules (a, b, and c). Solid horizontal lines represent interactions with
photons in the externally applied (laser) modes, while the wavy lines repre-
sent interactions with vacuum-mode photons. Note that, since we work in the
± representation rather than the L/R, the diagrams do not distinguish between
action on the ket or the bra.

of molecular hyperpolarizabilities (one each for molecules a
and b). When one of these hyperpolarizabilities is first order
(i.e., it is merely the linear polarizability), the process can be
viewed as replacing the field that interacted with molecule b
by an effective field that then interacts with molecule a. We
term the corrections due to such processes “local-field.” In
the semi-classical treatments of local-field corrections, all in-
coming fields are replaced by effective fields while we only
carry out this process with one incoming field. The additional
corrections are obtained at higher-order in the vacuum mode.
When neither of the hyperpolarizabilities is first-order, we
term the process “cascading.”

As described above, the correlation functions that appear
in the 2VMI corrections are all classical response functions of
the +−. . . − form. Beyond the second-order in the interaction
with the vacuum, generalized material response functions of
forms other than the usual 〈V+V− . . . V−〉 begin to appear.29

As an example, two processes that are fourth order in the
vacuum modes (4VMI) are illustrated in Fig. 1 (though we
do not treat them in this manuscript). The most obvious pro-
cess at this order (shown schematically in Fig. 1(a)) involves
two vacuum interactions each at two different molecules and
can represent resonant energy transfer. A second process
(Fig. 1(b)) involves three molecules and a single vacuum
mode (the equivalent process with two vacuum modes will
involve only ordinary response functions). Since only the in-
teractions with vacuum modes may be associated with a V̂+,
such higher-order processes access a broader array of mate-
rial response functions. Specifically, the processes depicted
in Fig. (1) yield terms proportional to the non-classical cor-
relation functions γ +− + − and γ +− − +. Such processes are
missed by the semi-classical approximation and are of poten-
tial interest particularly for harmonic systems in which the
ordinary response function γ +− − − vanishes and variations
from this are easier to detect.

A. Local field corrections to the linear response

With the above general considerations in mind, we be-
gin by evaluating the 2VMI corrections to the heterodyne-

FIG. 2. Local field correction to the first-order signal. Time progresses as
one moves up the diagram and the left and right vertical lines represent the
density matrices of molecules a and b, respectively.

detected, first-order signal. At this order, there are two classi-
cal field interactions and two vacuum interactions. The only
possible process to this order is shown schematically in Fig. 2
which gives

S(1)(�s,�1)

= −4

(2π)2¯4
�
[∑

a,b

∑
νi ζi

∫
dωsdω1Eνs†

s (ωs)Eν1,ζ1
1 (ω1)ei(ζ1k1·rb−ks ·ra )

×Dνvν
′
v

ab (ζ1ω1)(a)α
νsνv+− (ζ1ω1)(b)α

ν ′
vν1

+− (ζ1ω1)δ(ζ1ω1 − ωs)

]
. (6)

The molecules are indexed by a, b while the ν i run over
cartesian coordinates and the ζ i tracks the hermiticity of
each interaction. Note that we have written the signal as a
function of �s and �1, the central frequencies of the detec-
tion pulse and the interacting pulse. More generally, the sig-
nal depends on all the parameters that define the pulse en-
velopes. The tensor Dνvν

′
v

ab (ω) is defined in Appendixes A and
B and accounts for the effects of the sample geometry. For
a two-molecule sample, the near-field contribution goes as
Dνvν

′
v

ab (ω) ∼ (δνvν ′
v
− 3r̂νv

r̂ν ′
v
)r−3

ab . In the case of an infinite ho-
mogeneous medium, we obtain instead the phase-matching
condition via δ(ks − kv)δ(kv − k1). This gives the 2VMI cor-
rections to the first-order heterodyne signal. This is the same
as the local-field corrections to first order in external fields,
since no cascading processes are possible at this order.

The underlying physical process for these corrections to
the linear signal is the same as for the radiation-induced inter-
molecular energy shift of two molecules (or optical binding
energy) with the signal mode the same as the applied exter-
nal (i.e., s = 1).26, 30 The difference is that, since we examine
〈 d

dt
Ns〉 instead of �E, the imaginary rather than the real part

of the geometric coupling tensor (Dνvν
′
v

ab (ω)) is relevant. Note
that, since we consider molecules with no permanent dipole,
we only recover the dynamic and not the static contribution.

B. Local field corrections to the second-order
response

Moving to second order, we acquire another interaction
with external, classical fields. The vacuum mode always has
freedom to interact anytime after the first interaction in the se-
ries of classical fields but the vacuum interaction on molecule
b must be the final interaction for that molecule (since all
other dipole operators on b are V−). Assuming time-ordered
pulses (pulse 1 comes before pulse 2, etc.), there are five pos-
sible orders of interactions as shown schematically by the di-
agrams in Fig. 3. To exhaust all diagrams, we then permute
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FIG. 3. Local field corrections to the second-order signal. Diagrams 2, 3, and 5 can be combined since they all have molecule b interacting with field E1.

{1, 2} to give the other 5 diagrams. The analysis of the lin-
ear response was carried out in the frequency representation.
For higher orders, the diagrams are more easily combined

in the time representation and we proceed in this manner in
Appendixes A and B. The result is most compactly expressed
by defining a total response function:

S(2)(Ts, T2, T1) = �
[

4π

¯5

∑
ab

∑
νiζi

∫
dτsdτ2dτ1dτvE

νs†
s (τs)E

ν2ζ2
2 (τ2)Eν1ζ1

1 (τ1)Rs21
ab (τs, τ2, τ1, τv)

]
, (7)

Rs21
ab (τs, τ2, τ1, τv) =

∑
νvν ′

v

Cνvν
′
v

ab

[
ei(ζ2k2−ks )·ra eiζ1k1·rb (a)β

νsν2νv+−− (τs, τ2, τv)(b)α
ν ′
vν1

+−
(
τv − rab

c
, τ1

)

+ ei(ζ1k1−ks )·ra eiζ2k2·rb (a)β
νsν1νv+−− (τs, τ1, τv)(b)α

ν ′
vν1

+−
(
τv − rab

c
, τ2

)

+ e−iks ·ra ei(ζ1k1+ζ1k1)·rb (a)α
νsνv+− (τs, τv)(b)β

ν ′
vν2ν1

+−−
(
τv − rab

c
, τ2, τ1

)
, (8)

where the superscripts s21 on Rab indicate the dependence on νs, ν2, ν1, ζ 2, ζ 1 while Cνvν
′
v

ab is defined in Appendixes A and
B. We see that the time-representation yields compact expressions for the signal and that this approach reproduces the semi-
classical result of a product of lower-order (hyper)polarizabilities. Note that the Ti stands for the central time of the temporal
pulse envelopes but that the signal generally depends on all parameters defining the pulse envelopes. When a series of temporally
non-overlapping pulses impinges on a sample, the pulses that interact with molecule b are delayed from reaching molecule a (on
average, by the sum of the coherence decay time of molecule b and the travel time between molecules). If the coherence decay
time of molecule b is long relative to the time between pulses, the order of interactions can switch. That is, 2VMI corrections
can scramble the time-ordering of applied pulses (this is observed at third-order in external fields in Refs. 8 and 9). To illustrate
how the signal may be recast so as to highlight this scrambling, we examine the first term in Eq. (8) and define an effective
field:

Ẽ
ν ′
v

1 (τv) =
∑
ν1ζ1

∫
dτ1E

ν1ζ1
1 (τ1)(b)α

ν ′
vν1

+−
(
τv − rab

c
, τ1

)
. (9)

This permits the first term of Eq. (8) to be written as

S
(2)
I = �

[
4π

¯5

∑
ab

∑
νiζi

∫
dτsdτ2dτ1dτvE

νs†
s (τs)E

ν2ζ2
2 (τ2)Ẽν ′

v

1 (τv)(a)β
νsν2νv+−− (τs, τ2, τv)Cνvν

′
v

ab ei(ζ2k2−ks )·ra eiζ1k1·rb

]
. (10)

From this form, it is clear that we may view molecule b as
generating an effective field the details of which are depen-

dent on the shape of the impinging pulse as well the response
of molecule b. This effective field may therefore interact with
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molecule a after the corresponding external field has already
passed.

Having performed the analysis in the time domain (see
Appendixes A and B for details), we may change to the fre-

quency domain and give the resulting expressions for com-
pleteness. This is accomplished by substituting the electric
field time-envelopes for their Fourier transforms and results
in

S(2)(�s,�2,�1) = �
[

1

π¯5

∑
ab

∑
νiζi

∫
dωsdω2dω1Eνs†

s (ωs)Eν2ζ2
2 (ω2)Eν1ζ1

1 (ω1)δ(ζ1ω1 + ζ2ω2 − ωs)Rs21
ab (ωs, ω2, ω1)

]
, (11)

Rs21
ab (ωs, ω2, ω1) =

∑
νvν ′

v

[
ei(ζ2k2−ks )·ra eiζ1k1·rbDνvν

′
v

ab (ζ1ω1)(a)β
νsν2νv+−− (ζ1ω1, ζ2ω2)(b)α

ν ′
vν1

+− (ζ1ω1)

+ ei(ζ1k1−ks )·ra eiζ2k2·rbDνvν
′
v

ab (ζ2ω2)(a)β
νsν1νv+−− (ζ1ω1, ζ2ω2)(b)α

ν ′
vν2

+− (ζ2ω2)

+ e−iks ·ra ei(ζ1k1+ζ1k1)·rbDνvν
′
v

ab (ζ1ω1 + ζ2ω2)(a)α
νsνv+− (ζ1ω1 + ζ2ω2)(b)β

ν ′
vν2ν1

+−− (ζ1ω1, ζ2ω2). (12)

C. Quantum field corrections to the third-
and fifth-order signals: Cascading

The total number of diagrams (before accounting for per-
mutations of the interaction order) that contribute to order n
in external fields is

ND =
n∑
m

(2m − 1)(n − m + 1), (13)

where ND is the number of diagrams. Third order thus con-
tains 16 possible diagrams and most of these are of the
local field type previously encountered thus far. From this
point forward we will focus on the cascading diagrams, de-
fined as those in which the result is expressed as a product
of lower-order correlation functions of the two molecules.

The total number of equal-order cascading diagrams (those
cascading diagrams in which each hyperpolarizability is of
the same order) that contribute at nth order in external
fields is

NEOD =
n∑
m

(
m

n+1
2

)
(n − m + 1), (14)

and there are thus only 5 equal-order cascading diagrams at
third order (shown in Fig. 4). Note that these will appear only
at odd orders and third is the first order for which they appear.
Permuting the order of field interactions generates 25 addi-
tional diagrams resulting in 30 total. These diagrams carry
various step functions and they may be combined along the
same lines as shown in Sec. II B. The cascading response
function for third order is thus:

Rs321
ab (τs, τ3, τ2, τ1, τv) =

∑
νvν ′

v

Cνvν
′
v

ab

[
ei(ζ3k3−ks )·ra ei(ζ1k1+ζ2k2)·rb (a)β

νsν3νv+−− (τs, τ3, τv)(b)β
ν ′
vν2ν1

+−−
(
τv − rab

c
, τ2, τ1

)

+ ei(ζ3k3−ks )·ra ei(ζ1k1+ζ2k2)·rb (a)β
νsνvν2+−− (τs, τv, τ2)(b)β

ν ′
vν3ν1

+−−
(
τv − rab

c
, τ3, τ1

)

+ ei(ζ1k1−ks )·ra ei(ζ2k2+ζ3k3)·rb (a)β
νsνvν1+−− (τs, τv, τ1)(b)β

ν ′
vν3ν2

+−−
(
τv − rab

c
, τ3, τ2

)
, (15)

or, in the frequency representation,

Rs321
ab (ωs, ω3, ω2, ω1, τv) =

∑
νvν ′

v

[
ei(ζ3k3−ks )·ra ei(ζ1k1+ζ2k2)·rbDνvν

′
v

ab (�12)(a)β
νsν3νv+−− (ζ3ω3,�12)(b)β

ν ′
vν2ν1

+−− (ζ2ω2, ζ1ω1)

+ ei(ζ3k3−ks )·ra ei(ζ1k1+ζ2k2)·rbDνvν
′
v

ab (�13)(a)β
νsνvν2+−− (ζ2ω2,�13)(b)β

ν ′
vν3ν1

+−− (ζ3ω3, ζ1ω1)

+ ei(ζ1k1−ks )·ra ei(ζ2k2+ζ3k3)·rbDνvν
′
v

ab (�23)(a)β
νsνvν1+−− (ζ1ω1,�23)(b)β

ν ′
vν3ν2

+−− (ζ3ω3, ζ2ω2)

]
, (16)

where we have used the shorthand �ij ≡ ζ iωi + ζ jωj.
As per Eq. (14), there are 21 diagrams (shown in Fig. 5)

at fifth order in the external fields. Expressions for these dia-

grams follow in the same manner as before. Considering only
equal-order cascading contributions, the signal will come as a
sum of products of (a)γ (b)γ . Because the even-order response

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.11.129 On: Fri, 14 Feb 2014 17:15:29



044313-6 K. Bennett and S. Mukamel J. Chem. Phys. 140, 044313 (2014)

FIG. 4. Cascading contributions to the third-order signal.

FIG. 5. Cascading diagrams for fifth order.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.200.11.129 On: Fri, 14 Feb 2014 17:15:29



044313-7 K. Bennett and S. Mukamel J. Chem. Phys. 140, 044313 (2014)

generally vanishes (for material samples possessing inversion
symmetry), this is the first cascading term that we might ex-
pect to significantly alter the signal. Indeed, it was found that
fifth-order Raman processes are generally dominated by cas-
cading χ (3) signals.16, 18

III. CONCLUSIONS

Expressions for cascading signals are traditionally de-
rived semi-classically by creating a polarization and propagat-
ing with Maxwell’s equations,19 while local-field effects are
included by considering a cavity within a homogenous dielec-
tric medium. Besides obscuring these effects’ common ori-
gin in vacuum-mediated interactions between particles, one
cannot know a priori whether or not all relevant effects have
been included since the macroscopic semi-classical approach
is fundamentally ad hoc. In this paper, we present a micro-
scopic quantum field derivation that unifies local-field and
cascading effects and is systematic, leading to a general class
of corrections due to vacuum interactions. We find that the
correction to the macroscopic response due to second-order
interaction with the vacuum can be expressed as a sum of
products of pairs of molecular response functions. This treat-
ment leads to local-field and cascading effects that can al-
ter the signal appreciably (e.g., by overwhelming a direct
process of greater interest,16, 18 scrambling the time-ordering
of externally applied pulses,8, 9 or altering the magnitude of

the response4, 7). Although this result agrees with that of the
macroscopic semi-classical approach and all correlation func-
tions are of the +−. . . − form (that of a standard response
function from semi-classical theory), the approach immedi-
ately suggests processes of higher order in vacuum interac-
tions. Two 4th order examples are Forster resonant energy
transfer (Fig. (1(a)) and the three-molecule process shown in
Fig. (1(b)) Both of these processes will yield terms propor-
tional to γ +− + − and γ +− − + which never arise in the semi-
classical approach.
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APPENDIX A: QUANTUM-FIELD CORRECTIONS
TO THE FIRST-ORDER RESPONSE

Using Fig. 2, we expand Eq. (2) to second order in in-
teractions with the vacuum mode and first order in external
modes. This gives

S(1) = �
[

2(−i)3

¯4

∑
a,b

∑
νiζi

∫
dτ ′

s

∫ τ ′
s

−∞
dτv

∫ τv

−∞
dτ ′

v

∫ τ ′
v

−∞
dτ ′

1

∫
dωsdω1

(2π )2
Eνs†

s (ωs)Eν1,ζ1
1 (ω1)

× 〈V νs+ (τ ′
s)V

νv− (τv)〉a〈V ν ′
v+ (τ ′

v)V ν1− (τ ′
1)〉b

∑
kv,λ

2πωv

V e−i(ks ·ra−ωsτ
′
s )eiζ1(k1·r−ω1τ

′
1)ε(λ)

νv
(k̂v)ε(λ)

ν ′
v

(k̂v)

× {〈a+a
†
−〉vei(kv ·(ra−rb)−ωv (τv−τ ′

v )) + 〈a†
+a−〉ve−i(kv ·(ra−rb)−ωv (τv−τ ′

v ))}
]
. (A1)

Here, we have used the definition of the dipole operator and
the expressions in Eq. (1) and factored the trace into a product
of traces over molecule a, molecule b, and the vacuum mode.
The factors of

(−i
¯

)3
come from the three interactions in the

expansion and the ν j are cartesian coordinates. Since we do
not work in the rotating wave, we must account for both her-
miticities of each operator. This is done explicitly for the vac-
uum mode above and is the source of the two different terms
in braces. For the classical modes, this will be handled with
the ζ i factors while it will be included only implicitly for the
material dipole operators. Although we could proceed with
the τ variables and will do so for higher-order corrections, we
will demonstrate how the analysis goes in the frequency do-
main with the correction to first-order. To this end, we change
variables to the time between interactions

τ ′
s − τv ≡ t3, τv − τ ′

v ≡ t2, τ
′
v − τ1 ≡ t1 (A2)

and perform several simplifications (given in Ref. 26):

∑
λ

ε(λ)
νv

(k̂v)ε(λ)
ν ′
v

(k̂v)

= δνvν ′
v
− k̂vνv

k̂vν′
v
,

× 1

V
∑

kv

→
∫

dωvd�vω
2
v

(2πc)3
,

×
∫

d�v(δνvν ′
v
− k̂vνv

k̂vν′
v
)e±ikv ·r

= (−∇2δνvν ′
v
+ ∇νv

∇ν ′
v
)
sin kvr

k3
vr

, (A3)
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resulting in the following form for the signal:

S(1) = �
[−4i

¯4

∑
a,b

∑
νiζi

∫ ∞

0
dt2

∫
dωsdω1δ(ζ1ω1 − ωs)Eνs†

s (ωs)Eν1,ζ1
1 (ω1)ei(ζ1k1·rb−ks ·ra )〈V νs+ G(ζ1ω1)V νv− 〉a

× 〈V ν ′
v+ G(ζ1ω1)V ν1− 〉b

∫
dωv

(2π )3
(−∇2δνvν ′

v
+ ∇νv

∇ν ′
v
)
sin kvr

r
{ei(ζ1ω1−ωv )t2 − ei(ζ1ω1+ωv )t2}

]
. (A4)

To arrive at the above, we have also changed from time-dependent operators to a Green’s function representation:

G(t) ≡ −iθ (t)e−iĤ0−(t),

(A5)

G(ω) =
∫

dtG(t)eiωt = 1

ω − Ĥ0− + iη
,

with η a positive infinitesimal. We may now carry out the t2 and ωv integrations via∫
dωv sin

(
ωv

rab

c

) ∫ ∞

0
dt2(−i){ei(ζ1ω1−ωv )t2 − ei(ζ1ω1+ωv )t2}

=
∫

dωv sin
(
ωv

rab

c

){
1

ζ1ω1 − ωv + iη
− 1

ζ1ω1 + ωv + iη

}
= −2πeiζ1ω1

rab
c . (A6)

In the above integration over dωv , the first term has poles
in the upper half plane (UHP) and the second has poles in
the lower half plane (LHP). Because sin x = eix−e−ix

2i
, the first

term picks up the positive exponential and the second picks
up the negative exponential. Since the sign of the pole also
changes between these two terms, the sign changes cancel and
the both terms contribute a positive exponential. To simplify
the resulting expression while maintaining generality, we in-
troduce

Dνvν
′
v

ab (ζ1ω1) = (−∇2δνvν ′
v
+ ∇νv

∇ν ′
v
)
eiζ1ω1

rab
c

rab

. (A7)

We will also define
(a,b)ᾱ

νiνj

+− (ω) ≡ 〈V νi+ G(ω)V
νj

− 〉(a,b). (A8)

Since there is only one external field, this is the same as the
usual first-order polarizability (a,b)α

νiνj

+− (ω).1 The definition is
therefore superfluous at first order but is prototypical of the
time-ordered hyperpolarizabilities that appear in higher order
diagrams. Combining the above results gives Eq. (6).

In the case that the sample consists merely of two isolated
molecules, we use the identity

(−∇2δνvν ′
v
+ ∇νv

∇ν ′
v
)
eiωr

r
= 1

r3
[(δνvν ′

v
− 3r̂νv

r̂ν ′
v
)(1 − iωr)

+ (δνvν ′
v
− r̂νv

r̂ν ′
v
)ω2r2]eiωr

(A9)

and we see that there are terms proportional to r−1, r−2, and
r−3 the last of which is dominant in the near-field regime. In
the case of an infinite homogeneous and isotropic medium (as
is used in the macroscopic derivation of cascading terms1, 2),
the analysis is easier if one performs the summations over
molecules before the integral over vacuum modes. Since the
molecules are identical, they have the same molecular re-
sponse functions and these can be taken out of the integration
over the molecules:∫

dradrbe
i(−ks+ζvkv )·ra ei(−ζvkv+ζ1k1)·ra

= 4π2δ(ks − kv)δ(kv − k1). (A10)

These delta functions enforce the same phase matching that
the direct (in this case first-order) process possesses.

APPENDIX B: QUANTUM-FIELD CORRECTIONS
TO THE SECOND-ORDER RESPONSE

The analysis of the linear response was carried out in the
frequency representation. For higher order signals, the dia-
grams are more easily combined in the time representation
and we will proceed in this manner.

We consider first the three diagrams in which field 1 in-
teracts with molecule b, namely, S

(2)
2 , S

(2)
3 , and S

(2)
5 . From

the diagram we have

S
(2)
2 = �

[
2(−i)4

¯5

∑
a,b

∑
νiζi

∫
dτsdτ2dτ1dτvdτ ′

vθ (τs − τ2)θ (τ2 − τv)θ (τv − τ ′
v)θ (τ ′

v − τ1)Eνs†
s (ra, τs)E

ν2ζ2
2 (ra, τ2)Eν1ζ1

1 (rb, τ1)

× (−∇2δνvν ′
v
+ ∇νv

∇ν ′
v
)〈V νs+ (τs)V

ν2− (τ2)V νv− (τv)〉a〈V ν ′
v+ (τ ′

v)V ν1− (τ1)〉b 2π

irab

{
δ

(
τ ′
v − τv − rab

c

)
− δ

(
τ ′
v − τv + rab

c

)}]
,

(B1)
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where we have used∫
dωv sin

(
ωv

rab

c

)
[e−iωv (τv−τ ′

v ) − eiωv (τv−τ ′
v )] = 2π

i

[
δ

(
τ ′
v − τv − rab

c

)
− δ

(
τ ′
v − τv + rab

c

)]
. (B2)

Since τv > τ ′
v (based on the general considerations given under Sec. II above and explicitly enforced by the factor θ (τv − τ ′

v))
and rab

c
is inherently positive, only the second δ-function contributes:

S
(2)
2 = �

[
4π (−i)3

¯5

∑
a,b

∑
νiζi

∫
dτsdτ2dτ1dτvθ (τs − τ2)θ (τ2 − τv)θ

(
τv − rab

c
− τ1

)
Eνs†

s (ra, τs)E
ν2ζ2
2 (ra, τ2)Eν1ζ1

1 (rb, τ1)

× (−∇2δνvν ′
v
+ ∇νv

∇ν ′
v
)

1

rab

〈V νs+ (τs)V
ν2− (τ2)V νv− (τv)〉a〈V ν ′

v+

(
τv − rab

c

)
V

ν1− (τ1)〉b
]
, (B3)

where we have dropped the factor θ ( rab

c
) since this is always satisfied. Substituting in the Green’s functions and defining an

effective field:

Ẽ
ν ′
v

1

(
rb, τv − rab

c

)
=

∑
ν1ζ1

∫
dτ1E

ν1ζ1
1 (rb, τ1)〈V ν ′

v+ G
(
τv − rab

c
− τ1

)
V

ν1− 〉b, (B4)

and the tensor

Cνvν
′
v

ab = (−∇2δνvν ′
v
+ ∇νv

∇ν ′
v
)

1

rab

(B5)

for shorthand gives the following signal:

S
(2)
2 = �

[
4π

¯5

∑
a,b

∑
νiζ2

∫
dτsdτ2dτvE

νs†
s (ra, τs)E

ν2ζ2
2 (ra, τ2)Cνvν

′
v

ab
(a)β̄

νsν2νv+−− (τs − τ2, τ2 − τv)Ẽν ′
v

1

(
rb, τv − rab

c

)]
, (B6)

where we have defined the material correlation function:

(a)β̄
νiνj νk

+−− (t, t ′) ≡ 〈V νi+ G(t)V
νj

− G(t ′)V νk− 〉a. (B7)

Following the same procedure with S
(2)
3 yields

S
(2)
3 = �

[
4π

¯5

∑
a,b

∑
νiζ2

∫
dτsdτ2dτvE

νs†
s (ra, τs)E

ν2ζ2
2 (ra, τ2)θ

(
τ2 −

(
τv − rab

c

))

× Cν ′
vνv

ab Ẽ
ν ′
v

1

(
rb, τv − rab

c

)
(a)β̄

νsν2νv+−− (τs − τv, τv − τ2)

]
. (B8)

This expression clearly has the same form as the above for S
(2)
2 except for the additional factor of θ

(
τ2 − τv + rab

c

)
which

enforces the fact that the second pulse only has a time rab

c
to interact with molecule a since it must do so before τv in this

diagram.
Finally, we consider S

(2)
5 . Analysis of this diagram is only somewhat more subtle and after following the previous steps in

analogy we arrive at

S
(2)
5 = �

[
4π (−i)3

¯5

∑
a,b

∑
νiζ2

∫
dτsdτ2dτvdτ1E

νs†
s (ra, τs)E

ν2ζ2
2 (ra, τ2)Eν1ζ1

1 (rb, τ1)θ (τs − τv)θ
(
τv − rab

c
− τ2

)

× θ (τ2 − τ1)Cνvν
′
v

ab 〈V νs+ (τs)V
νv− (τv)V ν2− (τ2)〉a〈V ν ′

v+
(
τv − rab

c

)
V

ν1− (τ1)〉b
]
. (B9)

The presence of the factors θ
(
τv − rab

c
− τ2

)
and θ (τ 2 − τ 1) means that a factor of θ

(
τv − rab

c
− τ1

)
is redundant and may be

freely added. We do so in order to express the correlation function of molecule b in terms of the Green’s function. Additionally,
the positivity of rab

c
allows us to add the redundant factor θ (τv − τ2) so as to do the same for the correlation function of molecule

a. These considerations result in

S
(2)
5 = �

[
4π

¯5

∑
a,b

∑
νiζ2

∫
dτsdτ2dτvE

νs†
s (ra, τs)E

ν2ζ2
2 (ra, τ2)θ

(
τv − rab

c
− τ2

)

× θ (τ2 − τ1)Cνvν
′
v

ab Ẽ
ν ′
v

1

(
rb, τv − rab

c

)
(a)β̄

νsνvν2+−− (τs − τv, τv − τ2)

]
. (B10)
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A careful look at the diagram for S
(2)
4 reveals that the corresponding diagram with 1 ↔ 2 can, by these same steps, be brought

to the form

S
(2)
4 (1 ↔ 2) = �

[
4π

¯5

∑
a,b

∑
νiζ2

∫
dτsdτ2dτvE

νs†
s (ra, τs)E

ν2ζ2
2 (ra, τ2)θ

(
τv − rab

c
− τ2

)

× θ (τ1 − τ2)Cνvν
′
v

ab Ẽ
ν ′
v

1

(
rb, τv − rab

c

)
(a)β̄

νsνvν2+−− (τs − τv, τv − τ2)

]
, (B11)

which is identical to the expression for S
(2)
5 except the factor of θ (τ 2 − τ 1) has been replaced by θ (τ 1 − τ 2). Since the positivity

of the Green’s function arguments has all been assured by their separate θ -functions (which are part of the Green’s function
by definition) and no operators acting in the same space differ in chronological order between the two terms, we may combine
these two results using the identity θ (x − x0) + θ (x0 − x) = 1 to obtain

S
(2)
4 (1 ↔ 2) + S

(2)
5 = �

[
4π

¯5

∑
a,b

∑
νiζ2

∫
dτsdτ2dτvE

νs†
s (ra, τs)E

ν2ζ2
2 (ra, τ2)θ

(
τv − rab

c
− τ2

)

× Cνvν
′
v

ab Ẽ
ν ′
v

1

(
rb, τv − rab

c

)
(a)β̄

νsνvν2+−− (τs − τv, τv − τ2)

]
. (B12)

This result differs from S
(2)
3 by θ (τv − rab

c
− τ2) → θ (τ2 − (τv − rab

c
)) and so we combine them as before. The result will differ

from S
(2)
2 only in the order of the interactions on the material correlation function for molecule a and so we may combine all of

these results to yield

S
(2)
2 + S

(2)
3 + S

(2)
4 (1 ↔ 2) + S

(2)
5

= �
[

4π

¯5

∑
a,b

∑
νiζ2

∫
dτsdτ2dτvE

νs†
s (ra, τs)E

ν2ζ2
2 (ra, τ2)Cνvν

′
v

ab Ẽ
ν ′
v

1

(
rb, τv − rab

c

)
(a)β

νsνvν2+−− (τs, τv, τ2)

]
, (B13)

where we have used the time-ordered correlation function
(a)β

νiνj νk

+−− (ti , tj , tk) = 〈T V
νi+ (ti)V

νj

− (tj )V νk− (tk)〉a. (B14)

It is now clear that, in an analogous fashion, we obtain

S
(2)
2 (1 ↔ 2) + S

(2)
3 (1 ↔ 2) + S

(2)
4 + S

(2)
5 (1 ↔ 2)

�
[

4π

¯5

∑
a,b

∑
νiζ2

∫
dτsdτ2dτvE

νs†
s (ra, τs)E

ν1ζ1
1 (ra, τ1)Cνvν

′
v

ab Ẽ
ν ′
v

2

(
rb, τv − rab

c

)
(a)β

νsνvν1+−− (τs, τv, τ1)

]
. (B15)

The only remaining diagrams to consider are

S
(2)
1 + S

(2)
1 (1 ↔ 2) = �

[
4π

¯5

∑
a,b

∑
νi

∫
dτsdτvE

νs†
s (ra, τs)Cνvν

′
v

ab Ẽ
ν ′
v

21

(
rb, τv − rab

c

)
(a)α

νsνv+− (τs, τv)

]
, (B16)

where we have defined

Ẽ
ν ′
v

21(rb, t) =
∑
ν1ζ1

∑
ν2ζ2

∫
dτ2dτ1E

ν2ζ2
2 (rb, τ2)Eν1ζ1

1 (rb, τ1)(b)β
ν ′
vν2ν1

+−− (t, τ2, τ1). (B17)

Note that we now use
(a)α

νiνj

+− (ti , tj ) = 〈T V
νi+ (ti)V

νj

− (tj )〉a, (B18)

which is technically a redundant definition since α = ᾱ because T r[V− . . . ] = 0. In these expressions, we have used the effective
E fields (denoted by Ẽ) to illustrate how the local-field effects may be thought of as due to the polarization from one molecule
serving as an effective field for the other molecule. This result may also be expressed by defining a total response function:

S(2)(Ts, T2, T1) = �
[

4π

¯5

∑
ab

∑
νiζi

∫
dτsdτ2dτ1dτvE

νs†
s (τs)E

ν2ζ2
2 (τ2)Eν1ζ1

1 (τ1)Rs21
ab (τs, τ2, τ1, τv)

]
. (B19)

We may then simply read off the response function resulting in Eq. (8).
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