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Rough parameter dependence in climate models and
the role of Ruelle-Pollicott resonances
Mickaël David Chekroun, J. David Neelin, Dmitri Kondrashov, James C. McWilliams1, and Michael Ghil

Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095

Contributed by James C. McWilliams, November 22, 2013 (sent for review August 9, 2013)

Despite the importance of uncertainties encountered in climate
model simulations, the fundamental mechanisms at the origin
of sensitive behavior of long-term model statistics remain unclear.
Variability of turbulent flows in the atmosphere and oceans ex-
hibits recurrent large-scale patterns. These patterns, while evolv-
ing irregularly in time, manifest characteristic frequencies across a
large range of time scales, from intraseasonal through interdeca-
dal. Based on modern spectral theory of chaotic and dissipative
dynamical systems, the associated low-frequency variability may
be formulated in terms of Ruelle-Pollicott (RP) resonances. RP res-
onances encode information on the nonlinear dynamics of the
system, and an approach for estimating them—as filtered through
an observable of the system—is proposed. This approach relies on
an appropriate Markov representation of the dynamics associated
with a given observable. It is shown that, within this representa-
tion, the spectral gap—defined as the distance between the sub-
dominant RP resonance and the unit circle—plays a major role in
the roughness of parameter dependences. The model statistics are
the most sensitive for the smallest spectral gaps; such small gaps
turn out to correspond to regimes where the low-frequency vari-
ability is more pronounced, whereas autocorrelations decay more
slowly. The present approach is applied to analyze the rough pa-
rameter dependence encountered in key statistics of an El-Niño–
Southern Oscillation model of intermediate complexity. Theoretical
arguments, however, strongly suggest that such links between
model sensitivity and the decay of correlation properties are not
limited to this particular model and could hold much more generally.

climate dynamics | Markov operators | parametric dependence |
sensitivity bounds | uncertainty quantification

Sensitive behavior of long-term general circulation model
(GCM) statistics is attracting increased attention (1–3), but

its origin and fundamental mechanisms remain unclear. These
sensitive-behavior issues are of practical, as well as theoretical,
importance in climate dynamics and elsewhere (4). For some
GCMs, involving millions of variables, circumstances have been
found where certain climate observables vary smoothly through
a plausible parameter range (5) or where linear response theory
applies over some range (6). On the other hand, this may not
hold for every observable or parameter, and concerns arise re-
garding the role of some type of “structural instability” in sen-
sitive parameter dependence (1, 2, 4).
The low-order Lorenz (L63) model (7) illustrates some of

the relevant issues. Various statistics exhibit linear dependence
over a broad range of parameters for which the dynamics is
chaotic (e.g., figure 2 of ref. 8). The statistics’ linear dependence
coexists here with structural instability of this model’s global
attractor, as small variations in the parameters cause a plethora
of topological changes (9). In particular, the unstable periodic
orbits that appear or disappear as a parameter changes may only
have a negligible effect on the model’s physical invariant measure
(see below), if their period is longer than the decorrelation time
of the dynamics.
In general, the role played by a system’s mixing and harmonic

properties on the nature of its response has been only partially
addressed. Only very specific results exist, in the deterministic
setting, to support the idea that linear response of the long-term

statistics (and of local variations of physical measures) may still
hold in the absence of (topological) structural stability (10). For
stochastic systems, more general results have been obtained
(11), but it is still a challenge to relate the size of the parameter
interval over which linear response may hold to the system’s
mixing properties. Conditions for smooth but nonlinear response
(e.g., quadratic) or else for rough parameter dependence—with
many highly local variations in response over a given parameter
interval—to occur are also poorly known.
To help us understand the circumstances in which one may

expect one type of behavior rather than the other, we cast here
this problem in a theoretical framework based on the modern
spectral theory of dynamical systems (10, 12–19). The approach
is illustrated on an El Niño–Southern Oscillation (ENSO) model
of intermediate complexity. The model is governed by a system
of coupled partial differential equations (PDEs), and it exhibits
different degrees of roughness in its parameter dependence in
different regimes. The relationship of statistics such as the
power spectrum to dynamical features known as Ruelle-Pol-
licott (RP) resonances (20–22) is outlined below and suggests
the usefulness of estimating these resonances—despite the
challenge of doing so in high-dimensional systems. To do so, we
introduce here a unique approach that estimates these reso-
nances as filtered through an observable chosen from the
simulated scalar time series. This approach allows us to shed
light on subtle relationships between the nonlinear mixing rate in
the system’s phase flow and the nature of the parameter de-
pendence of its long-term statistics.

Intermediate ENSO Model and Its Key Properties
The intermediate-complexity ENSO model examined in this
study is the Jin-Neelin (JN) model (23) forced by the seasonal
cycle. The way we include the latter differs from the one used
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in ref. 24, but the main dynamical features are preserved (SI
Text). The dynamics and thermodynamics of the resulting forced
JN (fJN) model are based on those of the coupled ocean-
atmosphere model of Cane and Zebiak (CZ) (25).
The fJN model’s main ingredients are the following. Its oceanic

component is made up of two parts. The vertical-mean motions
above the thermocline are governed by linearized shallow-
water equations—forced by the wind stress—on an equatorial
β-plane. The resulting currents drive an advection equation
that describes the sea-surface temperature (SST) field at the
Earth’s equator. The atmospheric component is a Gill-type
model for the wind-stress anomaly field, which establishes a
diagnostic relation (i.e., one with no time derivative present)
between the latter and the SST anomalies. The magnitude of
the wind stress anomalies controls the coupling between the
oceanic and atmospheric components (SI Text).
We consider here, following ref. 23, a standard truncated ver-

sion of this model, summarized in SI Text. The resulting numerical
version has slightly more than 400 degrees of freedom: a modest
number compared with a GCM but still a challenge for the
study of statistical properties within the framework of transfer
operator theory as presented elsewhere (12, 15, 17, 18, 26, 27).
The nonlinear interaction of the seasonal cycle in the fJN

model with internal variability leads to a rich variety of dynam-
ical behavior, from frequency-locked regimes to chaotic ones
via a quasi-periodic route (24); the latter recalls the overlapping
of Arnol’d tongues occurring in the CZ model (28). The internal
variability arises through Hopf bifurcation when the basic state
is steady (23), whereas in the fJN model, it arises via desta-
bilization of a basic cycle of a 1-y period.
For a fixed coupling between the oceanic and atmospheric

components, we analyze the response of various statistics to
changes of a key model parameter δ. This parameter affects
the travel time of the equatorially trapped waves (23, 24) that
play an essential role in ENSO dynamics; it can yield significant
changes in the Floquet spectrum of the linearized model (23).
Here we examine regimes at strong nonlinearity over a modest
range of δ (roughly 7% change) that nonetheless exhibit strong
changes in various statistics of the simulated temperatures TδðtÞ

averaged over a Central Pacific region along the equator referred
to as Niño-3.

Parameter Dependence in the fJN Model
We begin by reporting two distinct types of parameter depen-
dence (Figs. 1 and 2) with respect to small changes of the same
primary parameter δ. For two different regimes, long model runs
are produced to obtain these results over a fine δ grid: for each
δ= 0:905+ ð j− 1ÞΔδ with Δδ= 3× 10−4 and j∈ f1; . . . ; 201g, an
8,800-y-long run is generated and sampled every 2 wk. The
distinction between the two types of regimes is monitored by δs;
this parameter varies from zero to unity, and it controls the
intensity of the anomalous surface-layer currents as a function
of the wind stress anomalies (SI Text). When δs is close to unity,
i.e., in the case of strong surface-layer feedback, stronger vertical
and advection anomalies add to the rate of SST change (24).
Fig. 2 illustrates the δ dependence of the power spectrum of

the Niño-3 SSTs. In the lower panel, for δs = 0:1, a clear broad
peak corresponds to a quasi-quadriennial (QQ) oscillation around
0.25 cycles/y (29) that occurs for most δ values. The upper
panel, for δs = 0:95, does not exhibit such a pronounced, broad
interannual peak over the δ interval of study. For reasons that
will become obvious later, we call the regime that corresponds to
δs = 0:95 rapidly mixing and the one that corresponds to δs = 0:1
slowly mixing. For the moment, we can roughly say that these
attributes are chosen in agreement with the decay rate of the
autocorrelation function (ACF) of TδðtÞ, which is typically faster
for δs = 0:95 than for δs = 0:1.
In both regimes and for 0:905≤ δ≤ 0:965, Figs. 1 and 2 illus-

trate the presence of δ intervals where chaos occurs, interleaved
with intervals of periodicity, in agreement with the Arnol’d-
tongue scenario noted above (24). Fig. 1 B and D demonstrates
that in the slowly mixing case and on chaotic subintervals, sudden
changes are manifested in the statistical moments of TδðtÞ; these
changes may be relatively large within chaotic regimes (cyan dots
in Fig. 1). At the same time, Fig. 1 A and C shows that nearly
linear or, at least, smooth δ dependence takes place in the
presence of chaos for the rapidly mixing case, except from jumps
at transitions to periodic regimes. An exception occurs in a small
range near the relative δ change value of 1 in the SD (Fig. 1A);
this will be clarified in the penultimate section.
A more detailed inspection of the δ dependence of the statistics

shown in Fig. 1 reveals interesting similarities with the δ de-
pendence of the power spectrum plotted in Fig. 2. In the rapidly
mixing case, the δ dependence of the power spectrum shown in
Fig. 2A is rather smooth for the chaotic regions, as observed in
Fig. 1 A and C, where the (narrow band) peaks are slightly
modulated in magnitude across the δ interval of study. In the
slowly mixing case—where the broad-band QQ peak is strongly
modulated in magnitude and characterized by a rough δ de-
pendence—striking correspondences are found between the
changes of the SD shown in Fig. 1B and those of the QQ peak
magnitude shown in Fig. 2B. This correspondence is natural given
that the QQ peak captures much of the variance in this case.
Given this illustration of rough and not-so-rough parameter

dependence within chaotic regimes, one is led to ask whether
dynamical systems theory may help us clarify the relationship to
broad-band energetic peaks and the rate of decay of correlations
associated with these. Obviously this question is not limited to
the fJN model and concerns chaotic dynamical systems in gen-
eral. We recall first the relevant elements of the theory of RP
resonances before presenting the main new ingredients, i.e., the
Markov representations that will be used to provide concrete
steps toward answering this question.

RP Resonances and Decay of Correlations
In this section, we give a brief introduction to the spectral theory
of dissipative dynamical systems (DDSs) (10, 12–19) while fo-
cusing on chaotic behavior. The next sections will show that this
theory—when combined with appropriate Markov representa-
tions—provides a powerful set of concepts and tools that help us

A B

C D

Fig. 1. Relative changes in percentage for the SD and skewness of Niño-3
SSTs with respect to variations in δ; the reference value is taken as
δ0 = 0:905. A and C correspond to the rapidly mixing regime, δs = 0:95; B
and D correspond to the slowly mixing regime, δs = 0:1. In each of these
panels, the chaotic (periodic or quasi-periodic, respectively) behavior is
represented by red (or black) dots. In D, two consecutive cyan dots represent
local changes in the skewness from about 9.5% to 13.5%, for corresponding
variations in δ of less than 0.06%.
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understand and quantify the occurrence of rough parameter de-
pendence in complex systems, as illustrated in the previous section.
To simplify the presentation, let X =Rd be a Euclidean vector

space of dimension d, subject to a one-parameter group of smooth
transformations fStgt∈R, associated with the flow of a smooth but
nonlinear system of ordinary differential equations, given by _x=
FðxÞ. The main objective of the spectral theory of chaotic DDSs is
to study the evolution of probability laws induced by St instead of
studying individual trajectories that exhibit chaotic behavior.
This objective is achieved by examining the family of Perron–

Frobenius operators. Such a family fLtg, also known as transfer
operators (12, 15, 17, 18, 26, 27), acts on probability measures ν
and it is given by

LtνðEÞd ν
�
S−1t ðEÞ

�
; [1]

for any measurable set E⊂X . It gives the measure with respect
to ν of the ensemble of points in X that occupy E at time t. Note
that sometimes Ltν is denoted by ðStÞ*ν, i.e., the pushforward of
the measure ν by St.
Under mild assumptions on F and ν, it can be shown that Ltν

is in fact a weak solution η emanating from ν at t = 0, in the
Schwartz sense of distributions, of the transport equation

∂tη+ divðηFÞ = 0; [2]

on ½0;∞Þ×X , where the operator div is the divergence operator on
X. In parallel, the study of the evolution of densities associated with
ν with due attention to the proper functional spaces in which these
densities live (10, 12–19), is of prime importance for the theory.
It can be proven for hyperbolic dynamical systems and it is

observed experimentally for many others (15, 30, 31) that a
common feature of DDSs is the transformation of the initial
Lebesgue measure m0 into a measure Ltm0 that has still a finite
density with respect to m0 but that exhibits finer and finer
structure, as time t evolves. Asymptotically, an invariant mea-
sure μ of Sinai-Ruelle-Bowen (SRB) type is generally reached
(15, 30) as t→ +∞. This measure is physical in the sense that
h f iμd

R
X fdμ = lim

L→∞
1
L

R L
0 f ðStxÞdt for m0, almost all x ∈ X , and

any sufficiently smooth observable f : X →R. This property is
often referred to as the chaotic hypothesis that, roughly
speaking, expresses an extension of the ergodic hypothesis to non-
Hamiltonian systems (31).
Such a measure μ is typically singular with respect to m0 while

exhibiting smooth density in the expanding directions, or un-
stable manifolds, whose Haussdorf dimension is strictly less than
d. In other words, the initial measure m0 flows into microscopic
scales of vanishing volume, whereas on the macroscopic scale, μ,
supported by the unstable manifolds, is the only information
from m0 that remains visible after the dynamics acted over an
infinite amount of time.
For Anosov flows (14), one considers functional spaces B that

capture such stretching and contracting effects of the dynamics
and can then prove that the SRB measure μ may be equivalently
characterized as the stationary solution of Eq. 2. In ref. 14, it is
then shown that the related statistical properties of the flow are
accurately described by the spectral properties of the transfer
operators acting on B. Moreover, fLtgt≥0 is a strongly continuous
semigroup in B, uniformly bounded in t, and its generator is
given by A · = − divð·FÞ, where F is the vector field generating
the Anosov flow. As a consequence, the spectrum of A is con-
tained in the left-half complex plane, fz∈C :ReðzÞ≤ 0g, and its
resolvent RðzÞ= ðzId−AÞ−1—which determines the spectral prop-
erties of A—is a well-defined bounded operator on B that
admits, for all f ∈B and z∈C with ReðzÞ> 0, the following in-
tegral representation:

RðzÞf =
Z∞
0

e−ztLt f   dt: [3]

It can then be proven that the spectrum of the generator A on
B consists only of isolated eigenvalues of finite multiplicity
within a strip −γ <ReðzÞ≤ 0, for some γ > 0 that depends on the
stretching and contracting rate of the dynamics (14); the rest of
the spectrum is continuous and located in fz∈C :ReðzÞ≤ − γg.
In addition, the eigenspace associated with the null eigenvalue is
spanned by the set of SRB measures; this set is reduced to only
one such measure provided the zero is simple. We assume hence-
forth that the latter is the case, and μ will always refer to this
unique SRB measure.
The extension of such rigorous results to other classes of

chaotic DDSs is still a major challenge. However, a widespread
conjecture is that the global picture is relevant to most chaotic
DDSs. In other words, the spectrum σðAÞ of A· = − divð·FÞ on
some appropriate functional spaces B for such a system consists
always of the disjoint union of a continuous part and a discrete
part. These two are called, respectively, the essential spectrum
σessðAÞ, and the point spectrum σpðAÞ (13). When the existence
of a (unique) SRB measure μ is assumed, classical function
spaces, such as L1

μðXÞ or L2
μðXÞ, are suitable (17, 18).

In the interesting cases, i.e., when the point spectrum is not
trivially reduced to f0g, it is typically located in a vertical strip of
the complex plane whose points are known as the RP resonances
(20–22). These resonances give precise information on correla-
tion decay and on the power spectrum. We describe this in-
formation via formal mathematical arguments, referring to the
specialized literature for their rigorous treatment.
Note first that, by making the change of variables y= StðxÞZ

Lt f · g  dμ=
Z
f · g ∘ St   dμ; [4]

where f · g denotes the product map xXf ðxÞgðxÞ. This equation
results from the general change-of-variables formula

R
gdððStÞpνÞ=R

g ∘ Stdν, with dν= fdμ (32). Here the actionLtf ofLt on the density
f with respect to μ is defined by LtfddððStÞ*νÞ=dμ, the Radon-
Nykodim derivative of Ltν with respect to μ (17, 18) (see also SI Text).

Fig. 2. δ-Parameter dependence of the power spectrum of the Niño-3 SSTs
for the rapidly mixing regime (Upper; δs = 0:95) and the slowly mixing one
(Lower; δs = 0:1). For presentation purposes, the interval 0:957≤ δ≤ 0:965,
where the dynamics is periodic, is removed from the lower panel, whereas
it is included for the rapidly mixing regime, where it corresponds to cha-
otic dynamics.
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If we assume, without loss of generality, that f and g have a
vanishing μ-ensemble mean, i.e., h f iμ = hgiμ = 0, then the right side
of Eq. 4 denotes the correlation function ρf ; gðtÞ=

R
f · g ∘ St   dμ.

From the physical property of the SRB measure μ, this function
equals for almost all x∈X , the more familiar cross-correlation
coefficient at lag t, given by Cf ; gðtÞ= lim

L→∞
1
L

R L
0 f ðSsðxÞÞgðSt+sðxÞÞds.

Using Eq. 3, one can rewrite the Fourier transform of ρf ; gðtÞ,
given by ρ̂f ; gðωÞd

R∞
0 ρf ; gðtÞe−iωtdt, as

ρ̂f ; gðωÞ=
Z∞
0

e−iωt
�Z

Ltf · gdμ
�
dt =

Z �Z∞
0

e−iωtLtfdt

�
gdμ

=
Z
gRðiωÞfdμ:

[5]

The meromorphic extension into the complex plane of ρ̂f ; gðωÞ,
via Eq. 5, tells us that the poles of the resolvent RðiωÞ—which
correspond to the RP resonances—introduce singularities into
the complex Fourier transform, where ω∈C is a complex fre-
quency. These poles will manifest themselves in the power spec-
trum as peaks that stand out over a continuous background at
frequency ξ, if the corresponding RP resonances with imaginary
part ξ are close enough to the imaginary axis. The continuous
background has its origin in the continuous part of σðAÞ.
Note that the position of the poles depends only on the system

considered, whereas their residues depend on the observable
monitored (21). As a result, some peaks in the power spectrum
may disappear from observable to observable, depending on
how large or small their residues may be. Ruelle (21, 22) and
Pollicott (20) introduced this description of RP resonances as
poles in the meromorphic extension of ρ̂f ; gðωÞ that are responsible
for bumps in the power spectrum; they also connected these
resonances to the decay rate of correlations.
The latter connections, between RP resonances and correla-

tion decay, are subtler and closely related to the model flow’s
relaxation toward the SRB measure μ as t→ +∞. If 0 is the only
eigenvalue of A on the imaginary axis, the system is mixing, and
the existence of a gap between 0 and the rest of the spectrum
σðAÞ governs the rate of convergence of Ltm toward μ. The size τ
of this gap is given by τ=minfjReðλÞj; λ∈ σðAÞ=f0gg> 0.
More precisely, in such a case, one can prove that, for any

probability measure ν that has density ψ with respect to the
Lebesgue measure and for all suitably chosen test functions φZ

φ  dðLtνÞ=
Z

φ  dμ+Oðe−τtÞ: [6]

The main step in establishing Eq. 6 is to prove the existence of
the spectral gap τ > 0; remaining steps rely on the inversion of
Eq. 3 and the properties of the resolvent RðzÞ 20. Furthermore,
because

R
φ  dðLtνÞ=

R
ψ ·φ ∘ St   dm0 and hψim0

= 1, one obtains
from Eq. 6 that

��R ψ ·φ ∘ St   dm0 − hψim0
hφiμ

��→ 0 at the exponen-
tial rate τ. Thus, the spectral gap τ controls the decay of correla-
tions, when the system is initiated out of the SRB equilibrium μ.
These arguments can be made rigorous in the context of

Anosov flows (19), but, in general, the decay of correlations
can be subexponential. This situation arises when the RP reso-
nances are arbitrarily close to the imaginary axis. If τ > 0, and the
discrete spectrum is nontrivial, RP resonances lead to modu-
lations in the decay of correlations, which correspond to peaks
in the power spectrum.
Thus, RP resonances provide powerful theoretical tools to

describe the variability in time of the system’s flow, in terms of
spectral properties of the operator A· = − divð·FÞ, where F is
the nonlinear vector field that generates the flow. Key features of
this variability include peaks in the power spectrum and the
decay rate of correlations.

The original treatment of RP resonances (20, 22) was based,
in fact, on a different approach, which used Markov partitions
of the dynamics (15). The spectrum σðLtÞ of Lt—which lives
within the unit disk—was analyzed, rather than that of A, in
the left-half plane. However, similar results relating the RP
resonances to the decay of correlations and to the power spec-
trum were established. We preferred to follow here the frame-
work of ref. 14 because of its connections with the fundamental
Eq. 2, whose analysis may benefit from PDE techniques (33) and
the spectral theory of semigroups and their generators.
The latter theory offers conceptual advantages for describing

the relations between the RP resonances and the decay of cor-
relations on one hand and the power spectrum on the other.
Nevertheless, for practical purposes, the approximation by a
discrete time Markov process from a sequence of observations
of the dynamics may be used to provide estimates of the (fil-
tered) RP resonances when for instance the direct computation
of σðAÞ is out of reach for large systems such as considered in
this article. Such an approach is described below.

Estimating RP Resonances from Observables
In a low-dimensional phase space, Markov partitions provide
natural tools to study the spectral properties of A or Lt, the latter
being approximated by a stochastic matrix P in the case of maps
(26, 27). In essence, Ulam-type methods approximate the dy-
namics in phase space by a Markov chain whose transition
probabilities are estimated from many simultaneous iterations of
the map of interest over a large ensemble of initial data (26, 27).
This approach can be rigorously justified for a large class of
expanding or Anosov maps (27), and it can be used in the nu-
merical estimation of RP resonances for low-dimensional models
(34), although some drawbacks may arise in applications (35).
In a large-dimensional phase space, such as the one where the

fJN model’s dynamics takes place, with d ’ 400, the Ulam ap-
proach becomes computationally intractable. A cheaper and
less ambitious approach consists of taking a single observable
h and, instead of trying to approximate the full transfer operator
Lt, seek a decomposition of the autocorrelation function asso-
ciated with h from a long simulation into a sum of complex
exponentials. In principle, this gives the positions of the RP
resonances corresponding to nonvanishing residues associated
with h. Padé approximation or Prony’s method are typically used
(36). The main drawback of these techniques lies in the number
of exponentials to be fitted to the signal, which may lead to an
inaccurate estimation of RP resonance (35).
We propose here an intermediate approach based on suffi-

ciently long model runs that exploit Ulam’s ideas but apply them
to a Markov operator T (17) that acts on a space of functions
that depends only on the observed variables. As we will show,
this operator T is rigorously associated with the full transfer
operator L of the dynamics, given an observable h and the
physical measure μ of the underlying map. The operator T can
then be approximated by a stochastic matrix P, which is esti-
mated by computing a classical maximum likelihood estimator
(MLE) (37), P̂, from the sequence of observations fxngdfhðxnÞ :
n= 1; . . . ;Ng.
When this sequence is long enough, the eigenvalues of P̂

provide crucial information about, and actual estimates of, the
dominant RP resonances, as filtered by h, i.e., the resonances
that correspond to nonvanishing residues and yield the largest
contributions to the power spectrum of h (SI Text). Clearly, the
more delicate point is the existence of such an operator T, which
we show hereafter for a broad class of chaotic systems. Details of
a more practical nature about the approximation of T then
follow and are applied to the fJN model. Finally, note that our
approach is complementary to the one in ref. 38 for Hamiltonian
systems; the latter focuses on the related but distinct question of
identifying metastable features of the dynamics.

Markov Operators from Observables of Chaotic Systems. In this section,
we consider discrete dynamical systems given by xn+1 = Fðxn; unÞ,
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where xn ∈X =Rd, and un is assumed to be a periodic forcing of
period m. We assume furthermore that Sn; p—the solution op-
erator that evolves the system from its state at time p to its state
at time n—is well defined for any p ≤ n and that the semigroup
property Sn; q = Sn; p ∘ Sp;q holds for all q ≤ p ≤ n.
Chaotic behavior is synonymous here to the existence of a

unique time-dependent, necessarily m-periodic SRB measure μn,
which attracts the Lebesgue measure in a pullback sense, i.e.,
ðSn; pÞpρ→ μn as p→ −∞, where ρ is the Lebegue measure (39).
The latter property is assumed to hold in the absence of chaos
as well, e.g., for a global limit cycle or for a quasi-periodic
behavior. Note that in the presence of a positive Lyapunov
exponent, due to a theorem of Ledrappier and Young, one
can ensure the existence of such SRB measures by perturbing
the governing evolution equations with an appropriate noise
of very small intensity (39).
For simplicity, we denote now by S the map Sm;0 whose iter-

ations give the states of the system at any integer multiple of the
period m of the forcing. This map is a called the time-m map. By
using an analog of Eq. 1 for discrete time, a transfer operator L
can be associated to S. By m-periodicity and from our assump-
tions on Sn; p, the dynamical system generated now by S possesses
μd μm as an SRB measure. We consider the system in this sta-
tistical equilibrium and define L acting on densities f with respect
to μ by Lf d dLν=dμ for any f ∈L1

μðXÞ such that dν= fdμ.
Let A be the (compact) support of μ and define the transition

probability pðC;DÞ for the map S of reaching the Borel set D of
A from the Borel set C of A by

pðC;DÞd
μ
�
C
T  S−1D

�
μðCÞ =

hLχC; χDi1;∞
μðCÞ ; [7]

where χA is the characteristic function of set A, and the
latter equality results from Eq. 4, where h f ; gi1;∞d

R
f · gdμ

for f ∈L1
μðXÞ and g∈L∞

μ ðXÞ. We now state the main result
on which we will rely to explain the puzzling parameter de-
pendence of the fJN model pointed out in Fig. 1 (SI Text).

Theorem A. Let h : X →Rp be a continuous observable of the dy-
namical system generated by S, with p < d. Assume that S possesses
a unique physical measure μ with support A. Let V be the set hðAÞ
and mdhpμ be the pushforward of μ by h. Then there exists a
Markov operator T acting on L1

mðVÞ such that TχV = χV and such
that, for any Borel sets E and F of V

hTχE; χFi1;∞ =mðEÞp
�
h−1ðEÞ; h−1ðFÞ

�
: [8]

The proof of this result is a consequence of the general dis-
integration theorem of measures, from which T can be con-
structed explicitly (SI Text). From Eq. 7, we see that L determines
the transition probabilities for any pair (C, D) of Borel sets, and
conversely, Eq. 8 shows that, when restricting the transition
probabilities pðC;DÞ to pairs of the form ðh−1ðEÞ; h−1ðFÞÞ, the
Markov operator T determines these exactly.
In general, the latter pairs run across a coarser family of

subsets than the former, being a sub-σ-algebra of the Borel
sets. We may thus say that T characterizes a coarse-graining—
induced by the observable h—of the actual dynamics, along
with its transitions. At the same time, the operator T given by
theorem A offers a natural way to represent rigorously the
sequence of observations fhðxnÞ : n= 1; . . . ;Ng as a finite-size
sample of the discrete-time Markov process associated with T
(SI Text, corollary B). In brief, theorem A provides a rigorous
basis for the assertion that the simple fact of observing a deter-
ministic system allows us to represent the unobserved variables
as noise (SI Text). The theory of Markov process can thus shed
considerable light on the spectral properties of L filtered by h, as
we illustrate in the next sections.

Stochastic Matrices from Observations and RP Resonances. We as-
sume hereafter that an SRB measure μ exists for the time m map
S associated with the truncated version of the fJN model in X =
Rd with d= 408. The goal here is to analyze the spectrum σðTÞ of
T in L2

mðVÞ and, more specifically, its dominant contributions.
To approximate the dominant part of σðTÞ, we use a Galerkin
procedure on a uniform grid of the one-dimensional set V =
hðAÞd

SM
k=1 Jk.

The eigenvalue problem Tψ = λψ is projected onto the problem
TMv= λv in the subspace spanned by fχ1; . . . ; χMg. The entries of
the M ×M matrix TM are given by Tkl;M = hTχk; χliðmðJkÞÞ−1 =
pðh−1ðJkÞ; h−1ðJlÞÞ, where the second equality relies on theorem A.
Thus, TM contains information about the actual transfer oper-
ator L associated with S, as induced by h, and the supplementary
coarse-graining induced by the partitioning of V.
Note that, because T is a Markov operator, its Galerkin ap-

proximation TM is a row stochastic matrix whose eigenvalues λ
satisfy jλj≤ 1. In the Hamiltonian case of ref. 38, T is self-adjoint
and therefore—as M increases, i.e., the discretization becomes
finer—one obtains immediately that the eigenvalues of TM ap-
proximate those of T. For dissipative dynamics, however, T is
typically not self-adjoint, and only the dominant eigenvalues of T
can be robustly approximated (13, 16). Fortunately, it is the latter
we are interested in here, and one can argue that the robustness
of the dominant part of the spectrum does apply to the Markov
operator T associated with the fJN model (and h) (SI Text).
For a givenM, a classical MLE, P̂N , can be used to approximate

TM from a given sequence of observations fhðxnÞ: n= 1; . . . ;Ng,
with hðxnÞ=TδðnΔtÞ being the Niño-3 SSTs. The entries of P̂N

are then simply given by the relative frequencies P̂kl = ♯fðhðxnÞ∈
JkÞ∧ðhðxn+1Þ∈ JlÞgð♯fhðxnÞ∈ JkgÞ−1, which converge to Tkl;M as
N→∞ with an error of order OðN−1=2Þ (37).
The dynamical interpretation of the Markov operator T given

by Eq. 8 and the numerical procedure described above provide
a general framework for the estimation from a time series of the
spectral gap in the RP resonances, as filtered by a particular
observable h. This spectral RP gap can be estimated from the
approximations of the dominant eigenvalues of TM , whenever
the resolution M of the range of the observations xn and the
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Fig. 3. Size τ of the spectral RP gap associated with the observable h, the
Niño-3 index from the fJN model, across the parameter range of interest:
(Upper) slowly mixing regime and (Lower) rapidly mixing regime. The fil-
tered RP resonances λ appear in the Insets: the eight leading λs are in red,
except the eigenvalue 1, which is in green. The latter corresponds here to
the invariant measure m associated with the time 6-mo map. In the slowly
mixing regime, the eight leading λs fall close to the eighth roots of unity
(26); they are associated with a near cycle of period 4 for the time 1 map,
corresponding to the QQ mode found in the fJN model for this regime
(Fig. 2).
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number N of observations are large enough; the statistical errors
in these approximations can be estimated by bootstrapping
arguments (SI Text). We describe next how the spectral RP
gap turns out to be an important factor in the sensitivity of the
empirical probability measure that approximates m= hpμ.

Spectral RP Gap and Sensitivity of Statistical Equilibria
An important result in the stability theory of Markov chains was
the discovery of sensitivity bounds relating the stability of a chain
and its speed of convergence to equilibrium. Going back to the
Markov representation T of the dynamics of the fJN model given
by theorem A, we take advantage of the sensitivity bounds for
Markov chains to deduce sensitivity properties of the one-di-
mensional measure m= hpμ that the observable h extracts from
the multidimensional SRB measure μ. Out of the many sensi-
tivity bounds in the literature, it is the ones in ref. 40 that are
most relevant here.
Recall first that the dual Tp of T defines a transition kernel

(41), κðx;BÞ=TpχBðxÞ, which in turn defines a Markov operator
T on measures ν on V given by T νðBÞ=

R
κðx;BÞdνðxÞ, for any

set B in the σ-algebra BðVÞ of the observed range of interest V.
The operators T and T are also linked by Tf = ðdT mf Þ=dm,
with dmf = fdm for f ∈L1

mðVÞ (SI Text). Uniform ergodicity will
be the key concept here; it means that the iterates T n of the
Dirac measures δx converge—uniformly in x—to m in total
variation (TV), i.e., there exists ρ< 1 and C<∞ such that, for
all x∈V and all n∈Z+, jjT nδx−mjjtv ≤Cρn.
We now consider perturbations P of the Markov operator T

assumed to obey uniform ergodicity. The main result of ref. 40
stipulates that, if uniform ergodicity holds, then the invariant
measure ~m, associated with the Markov operator ~T dT +P,
satisfies the sensitivity bound

���� ~m−m
����
tv ≤

 
θCðρÞ+C

ρθCðρÞ

1− ρ

!
jjPjjdγðρ;CÞjjPjj; [9]

where k ·k is the operator norm associated with the total variation
norm k ·ktv on measuresm in V (40). In Eq. 9, θCðρÞ is the smallest
integer greater than or equal to −logðCÞ=logðρÞ, and C≥ 1 (40).
The smallest ρ for which geometric ergodicity holds is called the

rate of mixing ρm of the Markov chain. For any fixed C≥ 1, γðρ;CÞ
grows superlinearly to infinity as ρ→ 1, allowing in principle
a large difference between m and ~m, even for perturbations P
that are relatively small, as measured by jjPjj: The dependence on
C is much weaker, with γðρ;CÞ increasing with C, but at a sub-
linear rate. The size of γðρ;CÞ is thus strongly controlled by ρm.
These results from ref. 40, together with theorem A, allow us

to state—for the map S with SRB measure μ, as considered in
the previous section—that if the associated Markov operator T
is uniformly ergodic, then the slower the mixing rate of T , i.e.,
the closer ρm is to 1, the larger we may expect the sensitivity of
m= hpμ to be to perturbations of the system. From the dynamic
interpretation of RP resonances, we conclude that regimes cor-
responding to slow decay with pronounced modulations—when
observed through a given observable h—favor rough param-
eter dependence for the statistics built on h. These theoretical
predictions are confirmed for the fJN model by the numerical
calculations that follow.

Spectral RP Gap for the fJN Model and Sensitivity
Recall that when the state space is finite and 1 is the unique,
simple eigenvalue of a stochastic matrix P on the unit circle, then
the mixing rate appearing in Eq. 9 is equal to λ2, the sub-
dominant eigenvalue of P (42). When μ is mixing, it can be shown
that TM is irreducible and aperiodic, which in turn makes TM
uniformly ergodic (27) such that Eq. 9 can be applied to TM . We
adopt the strategy described above to estimate the gap τ= 1− jλ2j
between the unit circle and the subdominant eigenvalue λ2 of TM
and to provide a confidence interval associated with this estimate
for each value of δ.
Fig. 3 illustrates the use of the spectral gap to quantify the weak

and strong mixing regimes discussed earlier. When the gaps ob-
served in the chaotic regimes are compared between the case
δs = 0:95 (Lower) and δs = 0:1 (Upper), we find— for each δ of
interest—that the gap is typically smaller in the latter case than in
the former. As a result, a higher sensitivity of the statistics is
expected to occur in the case δs = 0:1 according to theorem A and
Eq. 9. Recalling the results of Fig. 1, we see that the numerical
results in Fig. 3 along with their theoretical interpretations are in
very good agreement with the experiments where the highest
roughness in the δ dependence was observed for the case δs = 0:1.
Even the small regime of sudden changes in SD noted near relative
δ-values of about 1 in Fig. 1A is consistent with the local decrease
in the gap observed in Fig. 3 (Bottom panel), allowing higher
sensitivity to occur locally in δ. Confidence intervals for these
results are provided in the SI Text, supporting their robustness.
From the combination of the theory and numerical results, we

infer that the occurrence of rough parameter dependence in the
slow mixing case, where the QQ mode is the most energetic, is
not a coincidence. This case corresponds to RP resonances that
are closer to the imaginary axis than in the rapid mixing case.
According to the sensitivity bound of Eq. 9 applied to the
Markov representation of the dynamics provided by theorem A,
this offers a favorable ground for sensitive behavior to occur.

Concluding Remarks
This study is a first step in understanding the relationship between
the time variability of a dissipative chaotic system and the pa-
rameter dependence of its long-term statistics. The relationship
between these two aspects via the theory of RP resonances—
and the data-based Markov representation developed in this
article—opens up a wide range of possible investigations.
In this respect, other interesting Markov representations that

have been used in climate dynamics (43–49) might benefit from
the framework of RP resonances, given their natural connection
with the underlying nonlinear dynamics. In particular, applying
RP resonances to the interpretation of metastability and flow
regimes in connection to the LFV observed in geophysical flows
(1, 44, 45, 50) and their possible role in parameter sensitivity, as
well as in linear response theory in the presence of noise (11),
are fascinating areas for further exploration.
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