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Abstract 
Previous studies have demonstrated a potential reduction in cooling load and improvement in comfort 

from the implementation of night ventilation.  This paper describes the performance, in terms of indoor 
environmental conditions, of three buildings from both the U.S. and India that use night ventilation as 
their primary cooling method.  The research methods used the following approach: 1) Assess the cooling 
strategy in relation to the adaptive comfort model;  2) Develop a hybrid model, using both first principle 
equations and the collected data, to predict the instantaneous air and mass temperatures within each 
building and use the model to assess performance of the cooling strategy; 3) Determine an optimized 
ventilation control strategy for each building to minimize energy and maintain comfortable temperatures.  
4) Develop a statistical model using collected data to predict the window opening pattern for occupants of 
a building using natural night ventilation.  The study yielded the following results: 1) The buildings in the 
mild climate are successfully keeping the indoor temperature low, but also tend to be overcooling;  2) The 
night ventilation strategy has very little impact on indoor conditions of the buildings in the mild climate; 
3) The impact of night ventilation is less significant when there is low internal loads and heavy mass; 4) 
The building in the hot and humid climate is keeping the indoor temperature within the comfort bounds 
for 88% of the year; 5) The night ventilation strategy has advantageous impact on indoor conditons of the 
building in the hot and humid climate, but not enough to cool the space on its own; 6) Model predictive 
control has the potential to further improve the performance of night ventilation.  7) Window opening 
behavior for the building using natural night ventilation is most heavily dependent on indoor air 
temperature and mass temperature. 
 
Keywords: Night ventilation; Passive cooling; Model predictive control; User behavior 
 
1. Introduction 
 
1.1 Background 

Many developing countries currently undergoing economic growth and urbanization are also 
experiencing increased energy consumption due to the following of western design practices, such as 
mechanical cooling. The prevalence of air conditioning in both the developed and developing world has 
also had the consequence of increased comfort expectations.  As the developing world continues to 
urbanize and their energy regulations continue to get more stringent, it will become even more necessary 
to find low-energy solutions to cooling before the use of energy-intensive mechanical cooling becomes 
the norm all over the world.  One passive design strategy that has been of interest to researchers for the 
last 30 years or so is night ventilation.  Night ventilation is a passive or semi-passive cooling technique 
that utilizes the outdoor diurnal temperature swing and the building’s thermal mass to pre-cool a building 
through increased outdoor airflow at night.  At night, when the outdoor air temperature is lower than 
during the daytime, the increased airflow cools down the mass, allowing it to release the heat that was 
stored during the previous day.  During the following day, the cooler mass serves as a heat sink to absorb 
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the heat present in the space from solar and internal loads (Givoni 1992a; M. Santamouris et al. 1996; 
Artmann, Manz, and Heiselberg 2007). 

There are three categories of night ventilation.  The first is natural, or passive, night ventilation, 
which simply ventilates the spaces by naturally induced airflow through openings in the building’s 
envelope, typically windows or air vents (Geros et al. 1999).  The second category is mechanical night 
ventilation, which utilizes air ducts along with supply and exhaust fans to provide airflow in the space 
(Geros et al. 1999).  During the day, air is supplied into the space at a code-required minimum airflow 
rate. Although this requires a small amount of energy for fan use, it is also a much more controlled and 
predictable system, and is usually completely automated so there is no manual daily control required from 
the occupants.  The final category is hybrid ventilation, which can include the combined use of natural 
and mechanical ventilation at different times of the day or year in the same space, at the same time in 
different rooms, or at the same time in the same space.  A hybrid night ventilation system allows for more 
flexibility in the control of the system and associated energy usage.   

This work was guided by methods used by previous researchers, and a more complete literature 
review can be found in Landsman (2016).  A brief summary follows. 

 
Field study methods.  Givoni (1998) looked at the performance of night ventilation by monitoring 

three buildings, each having an identical floor plan, but with different levels of thermal mass.  Blondeau 
et al. (1997) studied the performance of night ventilation in a three-level office and classroom building, 
monitoring four rooms over a one-month period, three of which under night ventilation and one of which 
was not night ventilated, to be used as a reference room. Geros et al. (1999) looked at the performance of 
night ventilation in two air conditioned buildings and one free floating building, monitoring each for a 
period of one to three weeks under four different conditions of varying night ventilation usage and 
mechanical systems usage (free floating vs. thermostatically controlled). Pfafferott et al. (2003, 2004) did 
two studies, one looking at the relationship between night ventilation efficiency and air change rate, solar 
gains, and internal gains, and the other studies the efficiency of night ventilation in an office building in 
Germany. Finn et al. (2007) studied a night-ventilated library, looking at the impact of different design 
and operational parameters on the strategy’s success over a period of four weeks. For two summer 
months, Kubota et al. (2009) looked at the performance of night ventilation in two unoccupied homes of 
identical size, design and construction.  
 

Modelling methods.  Occupant behavior is one of the most difficult components of a building to 
model because occupants do not always follow a specific pattern.  However, numerous studies have been 
conducted to model occupant behavior, specifically with regard to window opening patterns.  Yun and 
Steemers (2008, 2010) conducted two studies that examined the occupant window-usage for a naturally 
night ventilated building.  These studies used a logistic regression model and a probit regression model, 
with variables including indoor air temperature, outdoor air temperature, time of day, and previous 
window state. Model predictive control (MPC) is an emerging topic in the field of building automation 
due to its enabling of effective control systems that can operate without expert intervention (García, Prett, 
and Morari, 1989).  To successfully execute model predictive control, one must obtain data, develop a 
model to predict interior conditions, train the model and then implement that model in a control sequence.  
The key to model generation, but one that is difficult to achieve, is finding a model that is simple enough 
to minimize computation time but complex enough to minimize error. There are two approaches to 
developing a model for MPC.  The first is black-box, meaning the model is based solely on historical data 
from building monitoring and does not reflect the physical properties of the building construction or 
systems (Vidrih, Arkar, and Medved 2016).  The second method is white-box, meaning the model relies 
only on physical properties of the building and not on historical data.  There are also hybrid models that 
combine features of both, such as the work of Zhang et al. (2014), which used simplified 
resistance/capacitance equations to represent the heat transfer between the thermal mass, indoor air, and 
exterior.  After the model is validated, it can then be paired with weather forecasts to predict future 
conditions inside the building.  Medved et al. (2014) used a TRNSYS simulation, along with weather 
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forecasts for the following 24-h period, to predict the time-dependent night cooling potential and cooling 
load for the following day. The model can also be used to optimize the night ventilation strategy, helping 
determine when the building should enter and exit night ventilation mode.  Zhang et al. (2014) optimized 
their model by minimizing the energy consumed by cooling coils and fans, while setting constraints of 
minimum airflow rate equal to the ASHRAE 62.1 acceptable indoor air quality limit, and supply 
temperature greater than 16 °C, to reduce local discomfort. 

 
Parameter influence on night ventilation.  Comfort improvement is strongly dependent on good 

control over heat gains from solar loads, equipment, occupants, and conduction through building fabric 
(Blondeau et al., 1997).  Most studies suggest that lower internal loads allow for improved night 
ventilation performance.  Kolokotroni et al. (1999a) conducted an experiment that showed increasing heat 
gains diminished the effectiveness of night ventilation.  Geros et al. (1999) showed that night ventilation 
efficiency increased during an experimental period with lower convective and radiative internal gains.  
Artmann et al. (2008) ran a study in which overheating degree hours increased by a factor of 2-2.5 when 
heat gains from office equipment increased from 50 to 150 W per person.  On the whole, it is believed 
that night ventilation improves as exposed thermal mass increases (Kolokotroni and Aronis, 1999).  This 
has been seen during experiments in which night ventilation lowered the indoor maximum temperature 
more so in a high-mass building than in a low-mass building (Finn et al., 2007; Givoni, 1998; Shaviv et 
al., 2001).  Interestingly, when thermal mass is present in the walls, the magnitude of its effect on night 
ventilation changes depending on the size of the room.  As the room volume decreases and the ratio of 
wall to floor area decreases, the size of the thermal mas becomes less significant (Artmann et al., 2008).  
It is universally agreed upon that increased airflow corresponds to increased night ventilation 
performance. Experiments have shown that higher airflow rates lead to increased energy savings for all 
forms of natural ventilation and that an increase in air change rate increases the cooling effect of night 
ventilation (Kolokotroni and Aronis, 1999; Pfafferott et al., 2003).  That being said, there is some 
disagreement on the returns of an incremental escalation in airflow rate.  Some studies did not note any 
comfort improvement beyond 10 air changes per hour (Blondeau et al., 1997; Finn et al., 2007), while one 
study saw significant improvements in comfort up to 20 air changes per hour (Artmann et al., 2008).  
Some studies found that an increase from 10 to 30 air changes per hour led to an average decrease of peak 
indoor temperature from 1.8 °C to 2.2 °C (Geros et al. 1999).  On the other hand, one study perceived a 
plateau of maximum indoor air temperature by the airflow rate of 20 air changes per hour (Shaviv, 
Yezioro, and Capeluto 2001). 

The most significant control parameters of all mechanical night ventilation systems are setpoint 
temperature and hours of night ventilation operation. One study found that an increase of setpoint 
temperature from 24 °C to 27 °C led to an increase of energy savings due to night ventilation from 5% to 
8%, and that five extra hours of night ventilation operation increased energy savings from 5% to 7% 
(Kolokotroni and Aronis, 1999).  Another study saw a reduction in overheating hours due to night 
ventilation of 39-51% at a setpoint temperature of 25 °C, 69-79% at a setpoint temperature of 27 °C, and 
92-96% at a setpoint temperature of 29 °C (Geros et al., 1999).  Interestingly, one experiment has shown 
increased energy usage from no night ventilation to mechanical night ventilation in a medium weight 
office building, due to the increased operation of fans (Kolokotroni and Aronis 1999a). 

The most crucial parameters are those related to climate.  Experiments have shown that a reduction of 
outdoor night-time temperature corresponds with an increase in night ventilation system capacity and 
lower internal morning temperatures (Artmann et al., 2008; Kolokotroni et al., 1998; Pfafferott et al., 
2003; Santamouris and Asimakopoulos, 1996).  Research has shown that this relationship between 
internal temperature and outdoor temperature in warm climates is stronger when the outdoor temperature 
is high and weaker when outdoor temperature is low, suggesting that user behavior and internal loads 
have a stronger effect on internal temperature at lower outdoor temperatures (Pfafferott et al., 2004).  It 
has also been seen that lower outdoor temperature amplitude, or diurnal swing, leads to a lower cooling 
potential for night ventilation (Geros et al., 1999). 
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1.2 Research objective 
The first objective of this study is to understand the control strategy and performance expectations of 

three real buildings using different night ventilation control strategies (automated mechanical, automated 
natural, and manual natural) coupled with thermal mass.  The second objective is to make generalizable 
statements about the performance of night ventilation that can help engineers and architects effectively 
design for the strategy, specifically with regard to climate, program, level of mass, and type of ventilation 
system.  This is done by assessing the measured performance of each building with respect to the adaptive 
comfort model, and then by assessing the effect of the strategy on indoor conditions using both measured 
data and a temperature prediction model.  The third objective is to optimize the ventilation control 
strategy for each building to minimize the amount of time outside of the comfort bounds. 
 
2. Building and climate descriptions 

Following the building selection approach taken by Geros et al. (1999), our methodology looked into 
three different buildings each with different levels of thermal mass and night ventilation strategies, both 
free floating and thermostatically controlled facilities.  The first case study, La Escuelita Elementary 
School (LEES), is an elementary school that is part of the Oakland Unified School District (see details in 
Table 1 for many of the parameters described below).  The school is located in Oakland, CA, which has a 
fairly mild climate and low humidity.  The temperature ranges from about -1-32 °C (30-90 °F) throughout 
the year, with only 20 days going above 27 °C (80 °F).  The average diurnal swing is 8 °C (15 °F), 
sometimes going as high as 20 °C (36 °F).   

Each classroom contains thermal mass in the form of a 4-inch concrete slab (145 pcf) and 2-inch 
cement plaster walls (95 pcf).  The floor and walls both have embedded temperature sensors and varying 
depths.  Of the classrooms studied here, two are located on the ground floor and six are located on the 
second floor, each with varying area and position. The facility uses fan-assisted mechanical ventilation for 
cooling, and the controls were designed by Taylor Engineering. During occupied hours (8am – 4pm), the 
variable air volume (VAV) box for each classroom will supply the room with the minimum amount of 
airflow to meet the code requirements, Vmin, through displacement ventilation.  The displacement 
diffusers provide 100% outdoor air from central air handling units.  When windows are opened in a space, 
a switch disables the HVAC system.  If the outdoor air temperature is low, the room is ventilated by 
displacement ventilation, which creates a temperature stratification in the space.  If the indoor air 
temperature exceeds the cooling setpoint (23.3 °C (74 °F) in perimeter rooms, 22.8 °C (73 °F) in interior 
rooms), the system relies on increased airflow to cool its occupants.  When the space overheats, the 
airflow rate will ramp up to the occupied cooling airflow setpoint, Vcool,occ (see Table 1 for values) and 
ceiling fans are activated. The mechanical system is designed to enter night ventilation mode, which 
consists of ramping up the airflow to the unoccupied cooling airflow setpoint, Vcool,unocc, when the 
following conditions are met: 

1. The classroom is unoccupied 
2. The classroom is within 8 hours of the expected start of occupancy the following day 
3. The floor surface temperature is at least 0.56 °C (1 °F) higher than the mass temperature setpoint 
4. The outdoor air temperature is at least 5.6 °C (10 °F) below the floor temperature 
As per design, the mass temperature setpoint is set equal to the heating setpoint of 21.1 °C (70 °F) in 

order to avoid unnecessary warmup after night ventilation. Mass temperature was chosen as a setpoint 
because it was assumed that the indoor air temperature would not reflect the necessity of night ventilation 
due to the fact that the air temperature was so dependent on occupancy loads.  The system will leave night 
ventilation mode when the floor temperature falls below the mass temperature setpoint.  Mechanical night 
ventilation was chosen over natural night ventilation to ensure better security of the building and control 
over the indoor conditions.  The system will sometimes enter a “warm-up mode” the morning after night 
ventilation if the indoor air temperature is below the heating setpoint. 
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Classroom Story Position Area (ft2) Vmin (CFM) Vcool,occ (CFM) Vcool,unocc (CFM) 
110 1st N 1240 215 1800 1800 
120 1st NE 1185 230 1900 1900 
233 2nd NW 930 175 1500 1500 
234 2nd NW 930 140 1100 1100 
235 2nd W 960 145 1200 1200 
240 2nd S 1050 140 1100 1100 
241 2nd SE 1020 140 1100 1100 
242 2nd SE 1020 185 1500 1500 

Table 1. LEES classroom physical and system parameters 
 

The second case study is 435 Indio Way (IND), an open-plan office located in Sunnyvale, CA, which 
also has a mild climate and low humidity.  The temperature ranges from about -1-37.8 °C (30-100 °F) 
throughout the year, with only 44 days going above 27 °C (80 °F).  The average diurnal swing is 9.4 °C 
(17 °F), sometimes going as high as 17.8 °C (32 °F). 

The facility, which was recently renovated to become net zero energy, is approximately 3,000 m2 
(32,000 ft2).  The structure of the building is comprised of 12-inch thick concrete walls and exposed 
concrete slab, both of which are left over from the existing building structure.  IND also makes use of 
electrochromic windows to block solar radiation, in addition to solar PV panels as a renewable source of 
energy. IND uses automated natural night ventilation to pre-cool the building.  During occupied hours 
(6am-8pm), the space is almost never cooled mechanically.  The system enters night ventilation mode by 
opening up the windows and skylights under the following conditions: 

1. The space is unoccupied 
2. The indoor air temperature is greater than 21.1 °C (70 °F) 
3. The outdoor air temperature is less than 20 °C (68 °F) 
Unlike LEES, mass temperature is not one of the criteria for the operating algorithm.  The systems 

leaves night ventilation mode when the indoor air temperature falls below 20.6 °C (69 °F).  Air 
temperature was chosen as a threshold rather than mass temperature because there were no embedded 
mass temperature sensors in the original design.  The setpoints were chosen as the lowest temperatures 
needed to keep the next day’s indoor temperature below the upper comfort limit in the design team’s 
model.  The setpoints were then optimized by the building operator through trial and error. 

 
The third case study is called the Blessing House (BH), a two-story residential building located in 

Auroville, India, which has a hot and humid climate, with an average relative humidity of 60%.  The 
temperature ranges from about 16-40 °C (60.8-104 °F) throughout the year, almost all of which go above 
28 °C (82.4 °F).  Auroville sees an average diurnal swing of about 9 °C (16.2 °F), sometimes going as 
high as 15 °C (27 °F).  The Pre-Monsoon and Monsoon seasons tend to have higher temperatures 
(averaging 30 °C (86 °F)) and higher diurnal swing (averaging 10 °C (18 °F)) than Post-Monsoon and 
Winter seasons.  Humidity levels in the house are high, ranging from 70 to 95%, due to the local humid 
climate but even increased by the surrounding (forest environment). 

 
BH has thermal mass in its floor, roof, and walls.  The building’s walls consist of a composite wall 

assembly - compressed earth blocks (290x140x90 mm) on the internal side, Aerocon blocks (600x200x75 
mm) on the external side and a layer of cement plaster (20 mm thick) on both sides.  The building’s 
ceiling/roof construction is an insulated assembly and consists of white reflective ceramic tiles, Aerocon 
blocks (300x300x50 mm), a layer of 5 cm cement concrete, followed by Hurdi terra cotta hollow blocks 
with reinforcement, and a layer of cement plaster (20 mm thick). The building is fully solar powered with 
invertor and battery back up. The rainwater is collected into a pool which is used thoughout the year for 
swimming by the occupants and used for watering the garden around. A solar water heater provides for 
hot water. Most windows ( except in a small bedroom area) are single glazed float glass with aluminium 
frame. Full house is grilled with metal sections with wriemesh to make it mosquito proof. The space of 



Energy and Buildings, May 2018, Vol. 166, pp. 60-72 6       https://doi:10.1016/j.enbuild.2018.01.026 
  www.escholarship.org/uc/item/9jk1d795 

interest to this case study is a room on the second floor, 24 m2 in area, with a ceiling slanting from 3 m to 
4.6 m. It has a overhang of 1.2 mt ( 4 ft) on the northern side.  

 
This facility uses occupant controlled natural night ventilation to pre-cool the house.  This means the 

occupants manually open their windows at night and close them in the morning at their own discretion.  
The windows are closed in the morning at a yearly average time of approximate 9:00AM. For the three 
seasons ( summer, winter, monsoon), there was a clear pattern of closing the window between 7:30-
830am, which could be due to a working schedule starting between 8:30 – 9:00 AM. The windows are 
opened the night at a yearly average time of 19:10pm. The opening times are more spread out than for the 
closing, and typically occues more than one hour later in the winter compared to both the other seasons.  
This span in the opening hour could be explained by a more adaptable schedule of the occupant in the 
evening, since after-work and night activities can change the time of return of the occupants. 
 
3. Methodology 
A thorough description of the methods is beyond the space limitations of this paper, and details such as 
sensor accuracy, data intervals, comfort standard acceptability limit calculations, and optimization 
equations can be found in Landsman (2016).   
 
3.1 Data collection 

The parameters measured at each location is summarized in Table 2. Indoor conditions from LEES 
were collected through the building management system (BMS), which retrieved temperature data from 
PreCon Encapsulated Thermistor Sensors.  Data was available for all eight classrooms being studied for 
the dates of July 2nd, 2015 to Oct 6th 2015.  Indoor conditions from IND were also collected through the 
BMS, using Veris CW sensors.  Data was available for the open-plan office for the dates of Sept 1st, 2015 
to Oct 31st, 2015 (see table 2).  In addition, daily energy loads were obtained for one year, broken down 
by submeter, and hourly loads were estimated based on this data.  For both LEES and IND, hourly 
outdoor air temperature was obtained from the National Oceanic and Atmospheric Association’s Climatic 
data center, for the closest weather station to the buildings. 

Data collection for BH was carried out following the methodology laid out by Finn et al. (2007), 
collecting indoor air temperature and internal wall surface temperature through HOBO U12 data loggers.  
As done by Pfafferott et al. (2004), short-term data collection was done using an Extech HT 30 globe 
temperature meter to cross-check the long term measurements.  The data was collected for the dates of 
Oct 22nd, 2013 to Oct 14th, 2014 in hourly time intervals.  Using the procedure taken by Gagliano et al. 
(2014), hourly outdoor air temperature and solar radiation were pulled from the Auroville weather station.  
While air movement is certainly important for thermal comfort in hot and humid climates, this data was 
not collected in BH due to limitations in available sensors (the kinds of sensors required for continuous 
and accurate measurements of the typically low velocities found indoors are quite expensive).  Such data 
would be important to gather, however, for field studies of daytime comfort, but this was the beyond the 
scope of this study. 
 

Parameter LEES IND BH 
Outdoor air temperature X X X 
Indoor air temperature X X X 
Mass wall temperature X X X 
Mass floor temperature X   
Supply temperature X   
Airflow rate X   
Window state  X X 
Relative humidity   X 
Internal load  X  
Solar radiation   X 

Table 2. Collected data from each case study 
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3.2 Temperature model generation 
In order to implement model predictive control, models needed to be generated for each 

building/room to capture the physical and thermal characteristics of the building construction and HVAC 
system.  Following the approach taken by Zhang et al. (2014), hybrid (part black-box and part white-box) 
models were generated in Matlab by using collected data along with simplified resistance/capacitance 
dynamical equations.  Once the first principles equations were established, model parameters were 
identified using the non-linear least squares method.  Different model variations were tested using the k-
fold cross validation technique.  Finally, each model was validated against real building data.  The 
nomenclature used in the model equations that follow is summarized in Table 3. 
 

t 
T 

Time step [hr] 
Temperature [°F or °C] 

R Thermal resistance [°F-hr/BTU or °C-hr/J] 
C Thermal capacitance [BTU/°F or J/°C] 
V Ventilation rate [ft3/hr or m3/sec] 
s 
r 
int 

Window or ventilation state [0/1] 
Solar radiation [BTU or J] 
Internal load [BTU or J] 

ρ Density [lb/ft3 or kg/m3] 
c Specific heat [BTU/lb-°F or J/kg-°C] 
P 
N 

Power [BTU J] 
# of data points 

  
Subscript 
I Indoor air 
O Outdoor air 
W Wall  
F Floor 
V Supply 

Table 3. Model nomenclature 
 

Numerous variations of dynamical equations were formulated to model the heat transfer for each case 
study.  The dynamical equations for each building use some combination of the following: 

1. Uncontrollable inputs of outdoor air temperature, solar radiation, and internal loads 
2. Controllable inputs of supply temperature and airflow rate or window state 
3. Outputs (or state variables) of indoor air temperature and mass temperature 
The basic form of the dynamical equations takes the material capacitance multiplied by the time 

derivative of that material’s temperature, and sets it equal to the sum of the temperature difference of each 
material divided by their respective resistance (see equation 2).  Material capacitance and resistance 
encapsulates the physical properties in a simplified manner via single parameter values. 

As done by Pfafferott et al. (2004), model parameters, such as thermal properties of walls and 
windows, were identified using a portion of collected data and a sensitivity analysis.  The first step of 
parameter identification is choosing a portion of the data set as the training data for the model (see 
Landsman (2016) for the dates of the portions used from each dataset for this purpose). The next step is to 
calculate the persistence of excitation (PE).  If all PE values are above zero, this indicates that the 
parameters are identifiable.  The strategy used for identifying parameters is the nonlinear least squares 
method, as used  by Moura et al. (2014), which minimizes the square error between the simulation results 
and the training data using equations 2 and 3, in which P is defined by equation 1, and J is a cost criteria 
to be minimized.  Initial conditions for 𝜃𝜃� were chosen based on approximated real thermal and physical 
properties of each building.  The function then does 100 iterations for each parameter.  Once a full set of 
iterations is complete, the initial conditions for 𝜃𝜃� are replaced with the final values from the previous 
iteration of the nonlinear least squares function.  This process is done anywhere from one to ten times, 
depending on how many iterations are needed until the simulation produces no further improvements in 
reducing the error.  The nonlinear least squares method is performed in Matlab. 
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𝑃𝑃(𝑡𝑡) = �∫ 𝜙𝜙(𝑡𝑡)𝜙𝜙𝑇𝑇(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑁𝑁
𝑡𝑡1

�
−1

                  (1) 

𝐽𝐽�𝜃𝜃�� = 1
2 ∫ [𝑧𝑧(𝑡𝑡) − 𝑧̂𝑧(𝑡𝑡)]2𝑑𝑑𝑑𝑑𝑡𝑡𝑁𝑁

𝑡𝑡1
                  (2) 

𝑑𝑑𝜃𝜃�(𝑡𝑡)
𝑑𝑑𝑑𝑑

= P𝜖𝜖𝜖𝜖, 𝜃𝜃�(0) = 𝜃𝜃�0, 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −P(t)𝜙𝜙(𝑡𝑡)𝜙𝜙𝑇𝑇(𝑡𝑡)𝑃𝑃(𝑡𝑡), 𝑃𝑃(0) = 𝑃𝑃0             (3) 
 

Once parameters were identified, the model had to be simulated in order to calculate the model error.  
The dynamical equations were rearranged into a system of linear state-space equations (Eqn. 4), where A 
is a matrix of state variable parameters, B is a matrix of input variable parameters, x is a vector of state 
variables, and u is a vector of input variables.  The state-space equations were then solved using initiation 
conditions chosen from the actual data set.  This process was completed in Matlab. 
 
𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵, 𝑥𝑥(0) = 𝑥𝑥0                  (4) 
 

Once the model was simulated, different types of error parameters were calculated to determine the 
accuracy and precision of the models.  Error metrics for this study were selected based on the literature 
review.  The error metrics chosen for this analysis, including mean absolute error (MAE), standard 
deviation of absolute error (SDAE), mean absolute percent error (MAPE), standard deviation of absolute 
percent error (SDAPE), root mean square error (RMSE), and the coefficient of variation of the root mean 
square error (CVRMSE), were calculated using equations 5 through 8.  In previous studies modeling 
night ventilation, the following have been considered acceptable errors for temperature data: 0.3 °C MAE, 
0.46 °C mean bias deviation with 0.88 °C RMSE, and 1.14 °C mean bias deviation with 1.35 °C RMSE 
(Blondeau et al., 1997; Finn et al., 2007; Geros et al., 1999). 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ |𝑧𝑧𝑖𝑖 − 𝑧̂𝑧𝑖𝑖|𝑁𝑁
𝑖𝑖=1 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �1

𝑁𝑁
∑ (|𝑧𝑧𝑖𝑖 − 𝑧̂𝑧𝑖𝑖| −𝑀𝑀𝑀𝑀𝑀𝑀)2𝑁𝑁
𝑖𝑖=1               (5) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ |𝑧𝑧𝑖𝑖−𝑧̂𝑧𝑖𝑖|

𝑧𝑧𝑖𝑖
𝑁𝑁
𝑖𝑖=1 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �1

𝑁𝑁
∑ �|𝑧𝑧𝑖𝑖−𝑧̂𝑧𝑖𝑖|

𝑧𝑧𝑖𝑖
− 𝑀𝑀𝑀𝑀𝑀𝑀�

2
𝑁𝑁
𝑖𝑖=1               (6) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ |𝑧𝑧𝑖𝑖 − 𝑧̂𝑧𝑖𝑖|2𝑁𝑁
𝑖𝑖=1                   (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
1
𝑁𝑁∑ 𝑧𝑧𝑖𝑖𝑁𝑁

𝑖𝑖=1
                   (8) 

 
Although the validation data set is not to be used during model generation in order to avoid 

overfitting, a method known as K-fold cross validation can be executed using only the training data set, as 
done by Tsanas, Athanasios, and Angeliki Xifara (2012).  This method first divides the training data set 
into K equal portions (this study used ten). Next, parameters are identified using nonlinear least squares 
method, but only using one tenth of the original training data.  Finally, the model is simulated with the 
other nine tenths of the training data, which are now being used as validation data, and the model errors 
are calculated.  This process is iterated with each tenth of the data set being used as training data and the 
other nine tenths being used as validation data.  K-fold cross validation can give information about how a 
model will run with data that was not used for parameter identification prior to the actual model 
validation. When the final model variations were selected, each model was validated using real measured 
data (again, see Landsman (2016) for the dates that were used from each dataset for this purpose).   
 
3.3 Occupant behaviour model generation 

To understand occupant behavior regarding the opening and closing of windows in Blessing House, a 
prediction model was generated based on environmental , indoor, and temporal parameters.  This 
prediction model was established using the methodology of Yun and Steemers (2008, 2010).  The 
objective of this model was to determine, based on specific parameters, whether the occupants will have 
the windows open or closed.  To generate the model, specific variables were first selected as potential 
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inputs, including outdoor variables (air temperature, relative humidity and wind velocity), indoor 
variables (air temperature, humidity, and mass temperature), and temporal inputs (season and hour).  A 
subset of measured data for training the model was then chosen to match the training data for the 
temperature prediction model (see Landsman (2016) for specific dates).  This data was subsequently used 
to form a regression, in which probit analysis was selected as the primary regression method.  The 
probability of a window being open, P, is depicted in equation 9, in which each x-value is a different 
parameter and each 𝛼𝛼 is a regression constant. 
 
𝑃𝑃 = 𝑒𝑒𝛼𝛼0+𝛼𝛼1𝑥𝑥1+𝛼𝛼2𝑥𝑥2+...

1+𝑒𝑒𝛼𝛼0+𝛼𝛼1𝑥𝑥1+𝛼𝛼2𝑥𝑥2+...                   (9) 
 

Once the probability is calculated for each timestep, it is then rounded up to 100% (indicating the 
window is open) or down to 0% (window is closed), and these predicted values can then be compared to 
measured window state.  The error metric used to assess the accuracy of the model is simply the 
percentage of data for which the predicted window state matches the actual window state.  Model 
variations with different input parameters were tested using the k-fold cross validation technique, and the 
final selected model variation was validated using a data set with dates that matched that for the 
temperature prediction model. 
 
3.4 Baseline data analysis 

Using the measured data from each building, analysis assessed the performance of night ventilation 
with regard to comfort and energy.  First, trends of indoor air temperature, mass temperature, and 
instantaneous damping (Eqn. 10), the instantaneous difference between indoor and outdoor air 
temperature, were ascertained to determine if any daily or seasonal trends exist.  Landsman (2016) 
provides details about how the “seasons” were defined for each location.  Next, eight different comfort 
and energy metrics were calculated for individual days, described below and in the equations that follow:   
1. Daily indoor maximum air temperature (𝑇𝑇𝐼𝐼,𝑚𝑚𝑚𝑚𝑚𝑚), the highest indoor air temperature occurring in a 

single day, as used by Givoni (1998).   
2. Daily maximum damping (Eqn. 11), the difference between the peak indoor and peak outdoor daily 

air temperature.   
3. Daily indoor temperature range (Eqn. 12), the difference between the highest and lowest indoor air 

temperature in a specific day.   
4. Decrement factor (Eqn. 13), the daily indoor air temperature range over the daily outdoor air 

temperature range.   
5. Daily time lag (Eqn. 14), the amount of time between peak outdoor air temperature and peak indoor 

air temperature, as used by Gagliano et al., 2014.   
6. Daily energy removed (Eqn. 15a), the amount of heat removed from the space by airflow, also used 

by Blondeau et al. (1997), Medved et al. (2014), and Pfafferott et al. (2003).   
7. Area normalized daily energy removed (Eqn. 15b), the daily energy removed normalized by the room 

area.   
8. Potential energy efficiency (Eqn. 16), the daily energy removed normalized by the energy consumed 

by the fan.   
Fan energy was estimated based on the fan motor power curve provided in the product specifications, 

while the COP was estimated as 4, based on the average COP for “best practice” heat pumps.  Each of 
these metrics was then assessed across time. 
 
𝐷𝐷𝐷𝐷𝐷𝐷𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑂𝑂 − 𝑇𝑇𝐼𝐼                             (10) 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝐼𝐼,𝑚𝑚𝑚𝑚𝑚𝑚                             (11) 
𝑇𝑇𝐼𝐼,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝐼𝐼,𝑚𝑚𝑚𝑚𝑚𝑚                             (12) 
𝑓𝑓 = 𝑇𝑇𝐼𝐼,𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝐼𝐼,𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚
                              (13) 
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𝜑𝜑 = 𝑡𝑡�𝑇𝑇𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚� − 𝑡𝑡�𝑇𝑇𝐼𝐼,𝑚𝑚𝑚𝑚𝑚𝑚�                             (14) 

𝑄𝑄 = ∫ 𝑉𝑉𝑡𝑡𝑁𝑁
𝑡𝑡1

𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎�𝑇𝑇𝐼𝐼(𝑡𝑡) − 𝑇𝑇𝑂𝑂(𝑡𝑡)�𝑑𝑑𝑑𝑑, 𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
∫ 𝑉𝑉𝑡𝑡𝑁𝑁
𝑡𝑡1

𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎�𝑇𝑇𝐼𝐼(𝑡𝑡)−𝑇𝑇𝑂𝑂(𝑡𝑡)�𝑑𝑑𝑑𝑑

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
                       (15) 

𝑃𝑃𝑃𝑃𝑃𝑃 = ( 𝑄𝑄
𝐶𝐶𝐶𝐶𝐶𝐶

)/𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓                              (16) 
 
3.5 Comparison to comfort standards 

Each data set was then compared to the Adaptive Comfort Standard (ACS) for naturally ventilated 
buildings in ASHRAE Std 55 (2013).  This standard is based on experiments conducted all over the 
world, including tropical regions, and is a function of running mean outdoor air temperature (de Dear and 
Brager 1998).  For the purposes of this analysis, a homogenous mean radiant temperature was estimated 
based on the area weighted surface temperature (Eqn. 17).  BH data was additionally compared to the 
newly created India Model for Adaptive Comfort (IMAC) (Manu et al. 2016).  For these comparisons, 
discomfort degree hours (DDH), as used by Pfafferott et al. (2003, 2004) and Artmann  et al. (2008) were 
calculated for each case (Eqns. 18A, 18B).  DDH is the sum of the difference between the indoor 
temperature and a specified temperature threshold across all time steps, multiplied by a given number of 
time steps.  This is most commonly done across one day or one year.  For the critical temperature for the 
DDH calculation, the ACS or IMAC upper and lower 80% acceptability limit were used for occupied 
hours.  
 
𝑇𝑇𝑚𝑚𝑚𝑚 = ∑𝑇𝑇𝑆𝑆,𝑖𝑖𝐴𝐴𝑖𝑖

∑𝐴𝐴𝑖𝑖
                              (17) 

𝐷𝐷𝐷𝐷𝐷𝐷+ = ∑ ℎ𝑡𝑡(𝑇𝑇𝑜𝑜𝑜𝑜,𝑡𝑡 − 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡
𝑁𝑁
𝑡𝑡=1 ) �

ℎ𝑡𝑡 = 1 ℎ if 𝑇𝑇𝑜𝑜𝑜𝑜,𝑡𝑡 ≥ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡
ℎ𝑡𝑡 = 0    if 𝑇𝑇𝑜𝑜𝑜𝑜,𝑡𝑡 < 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡

                     (18A) 

𝐷𝐷𝐷𝐷𝐷𝐷− = ∑ ℎ𝑡𝑡(𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡 − 𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜,𝑡𝑡
𝑁𝑁
𝑡𝑡=1 ) �

ℎ𝑡𝑡 = 1 ℎ if 𝑇𝑇𝑜𝑜𝑜𝑜,𝑡𝑡 ≤ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡
ℎ𝑡𝑡 = 0    if 𝑇𝑇𝑜𝑜𝑜𝑜,𝑡𝑡 > 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡

                     (18B) 

 
3.6 Comparison of ventilation modes 

Looking at ventilation modes that were assessed in previous studies conducted by Geros et al. (1999), 
Givoni, (1998), and Kubota et al. (2009), it was decided that it was necessary to determine how the 
building would have performed had night ventilation not been utilized. To understand how each building 
would have performed without night ventilation, a simulation was run for each building with and without 
the presence of night ventilation, using the previously described temperature prediction model.  For the 
purpose of this analysis, mechanical night ventilation in LEES occurs whenever the airflow rate goes 
above 700 CFM during unoccupied hours, and natural night ventilation occurs in IND and BH whenever 
the window is opened for any duration during unoccupied hours.  For IND and BH, the non-night 
ventilation case is defined as days in which the window is closed for the entire day and night.  For LEES, 
there are two forms of the non-night ventilation case.  The first is termed regular airflow mode, in which 
the airflow is at its minimum code-required value and there is no daytime or nighttime cooling.  The 
second is termed daytime cooling mode, in which the airflow is ramped up during occupied daytime 
hours.  To assess performance in each ventilation mode, the performance metrics discussed in section 3.3 
were calculated for the simulations with real inputs, and for simulations with no night ventilation, and 
later compared.  A p-value < .05 was considered satisfactory for all t-tests conducted. 
 
3.7 Optimization 

Using the model generated for each building, an optimization was run to determine a control strategy 
that would minimize energy usage, limit changing window state, and maintain comfort.  This 
optimization technique is a combination of those taken by Medved et al. (2014) and Zhang et al. (2014).  
LEES controls were optimized by minimizing airflow rate and temperature deviation from the ACS 
acceptability limits, rather than constraining the temperature, which allows for flexibility in the system.  
Because BH and IND do not consume energy with their night ventilation scheme, the BH and IND 
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optimizations were conducted by minimizing only the temperature deviation from the ACS acceptability 
limits.  This process was completed in Matlab.  After the model was optimized, DDH was calculated with 
a temperature threshold of ACS upper 80% acceptability limit, and compared to the DDH of measured 
data. 
 
4. Results 
4.1 Baseline data analysis results 
 
Figures 1-3 show selected conditions in the three buildings, examining one day in which night ventilation 
was successfully executed during the hottest week in each location.  Table 4 summarizes the dates of the 
selected periods, how day vs. night airflow rates (or window status) changed, and comparisons of indoor 
and outdoor temperature metrics calculated from the raw data for that week (and visually represented in 
Figures 1-3).  The delay in peak indoor temperature is equal to the amount of time between the 
occurrence of the peak outdoor and peak indoor air temperatures.  The decrease in air and mass 
temperature during the night ventilation period is equal to the difference in each temperature occurring at 
the start time and end time of night ventilation.  Table 5 summarizes the sample sizes and median values 
of performance metrics (defined at the beginning of Section 3.4, and in Eqns 10-16) that were calculated 
over the entire data set for each building. 
 

Parameter LEES IND BH 
Start time of night ventilation (hr) 2 22 17 
End time of night ventilation (hr) 8 7.5 7 
Night ventilation condition 1100-1500 CFM Windows open Windows open 
Diurnal swing (°F) 26 27 23.5 
Peak outdoor temperature (°F) 86 82 102 
Time of peak outdor temperature (hr) 13 14 14 
Peak indoor temperature (°F) 76.5 74 88 
Time of peak indoor temperature (°F) 15 20 19 
Delay in peak indoor temperature (hr) 2 8 5 
Decrease in air temperature during night ventilation period (°F) 6.5 5 3.5 
Decrease in mass temperature during night ventilation period (°F) 3.5 0 3.5 

Table 4. Data summary from hottest weeks 
 

Parameter LEES IND BH 
Sample size (d) 842 60 357 
Median TI,max (°F) 71 73.5 86 
Median Dampmax (°F) 2 7 9 
Median TL (hr) 0 0 6 
Median TI,range (°F) 3 2 3 
Median f (%) 20 10 20 

Table 5. Data summary from entire data set 
 
As can be seen in Figures 1-3, for all the buildings the night ventilation strategy was successful in 
reducing the indoor air and mass temperatures, keeping the range of both fairly narrow, and consistently 
delaying the peak daily indoor temperatures.  In LEES and BH, the mass floor temperature was similar to 
indoor air temperature during the day, and the air temperature dropped lower during the nighttime 
ventilation, as would be expected.  In contrast, in IND, the air temperature was slightly higher than the 
mass during both the day and night, probably because the heaviness of the mass delayed its temperature 
rise by longer than a 24 hour period, thus allowing it to remain lower than air temperature for the entire 
duration of the day.  For both LEES and BH, the patterns in the figures were typical of the rest of the 
hottest week, where indoor air temperature and mass temperature tracked each other very closely.  There 
were exceptions during two nights in LEES when night ventilation airflow rates were extended for longer 
periods, resulting in indoor air dropping even lower than mass temperature. For IND, while instantaneous 
damping has such a large range of values, the strategy did not seem to impact the mass temperature or 



Energy and Buildings, May 2018, Vol. 166, pp. 60-72 12       https://doi:10.1016/j.enbuild.2018.01.026 
  www.escholarship.org/uc/item/9jk1d795 

delay the peak indoor air temperatures.  It is possible that the indoor air temperature and mass temperature 
have little fluctuation due to the fact that the mass is so heavy that it is effectively maintaining constant 
indoor temperatures without the need for additional passive cooling. 
 

From Table 5, the low temperature peaks seen in the entire dataset for LEES would indicate that the 
strategy is successfully lowering the indoor temperature throughout the hot periods of the year. The 
median maximum damping values are fairly low, but this could be explained by the mild climate and 
fairly low outdoor temperatures.  When comparing these parameters across classrooms, the maximum 
temperature seemed to be higher and maximum damping seemed to be lower in rooms on the southern 
side of the building.  This is probably the case because these rooms have solar exposure for a greater 
amount of time and stronger intensity.  Comparing across classrooms, the daily temperature range and 
daily decrement factor were noticeably larger for rooms on the second floor, especially those with south 
facing walls.  This is probably due to the fact that they are not ground-coupled and the first story rooms 
have higher night ventilation airflow setpoints.  Looking at the energy removed, as well as the potential 
energy efficiencies that are all above 1 (indicating that the strategy is removing more energy than is being 
consumed), confirms that the strategy is effective with respect to energy as well as comfort. Comparing 
across classrooms, the three rooms that were running with increased airflow rates for a larger portion of 
time removed significantly more energy, as would be expected.  

 
Looking at the IND data in Table 5, the large range in maximum damping values and very narrow 

range of indoor temperature peaks suggests that damping is fairly independent of the indoor temperature 
and depends almost entirely on the outdoor temperature. This suggest that the time of indoor air 
temperature peak is independent of the outdoor temperature, and probably dominated by the internal load.  
It should be noted that the median range of indoor air temperature is very small, further suggesting that 
the indoor air temperature is not reliant on the outdoor air temperature in this building. 

 
Moving now to BH in the unique seasons of India, the box-and-whisker plots in Figure 4 complement 

the data summarized in Table 5.  Daily peak temperature is highest during the Pre-Monsoon and Monsoon 
seasons, probably because these have the highest outdoor temperatures. In contrast, daily maximum 
damping was lowest during the Pre-Monsoon and Monsoon seasons, indicating that even though the 
outdoor temperatures are higher, the indoor temperatures are maintaining consistent values. Time lag 
stayed fairly consistent across seasons.  The daily energy removed is significantly higher for the Monsoon 
season than any other season, probably because this season has the strongest winds. 
 
 

 
Figure 1. LEES room 233 temperature and airflow profile during and after night ventilation 
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Figure 2. IND temperature and window state profile during and after night ventilation 

 
Figure 3. BH temperature and window state profile during and after night ventilation 

 

   
Figure 4. A) BH daily maximum indoor air temperature by season; B) BH daily maximum damping by season 
 
4.2 Comparison to comfort standards results 
 

The data was analyzed with respect to the existing comfort standards.  As seen in Figure 5, during the 
2-3 months of monitoring in each LEES classroom, the operative temperature never exceeded the upper 
ACS comfort limit, but tended to hover around the lower ACS comfort limit and in some instances even 
go below the limit, indicating that the space is being overcooled.  With respect to the lower comfort limit, 
each classroom has at least a few days in which the daily DDH exceeds 0 (approximately 19% of data).  
The average daily DDH across all 8 classrooms is 0.46 °C-h (0.82 °F-h), and in some instances, the daily 
DDH reached as high as 13.3 °C-h (24 °F-h). 
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Figure 5. LEES room 233 operative temperature with ACS limits 
 

As seen in Figure 6, during the two months of monitoring in IND, the operative temperature never 
exceeded the upper ACS comfort limit or dropped below the lower limit, and therefore the daily DDH 
never exceeds 0.  That being said, the operative temperature seemed to stay very close to the lower ACS 
comfort limit, indicating that there is little need for additional cooling. 
 

 
Figure 6. IND operative temperature with ACS limits 
 

In analyzing the full year of data from BH with respect to IMAC, as shown in figure 7, the operative 
temperature never exceeded the upper IMAC comfort limit or fell below the lower IMAC limit.  
However, when comparing the data to the ACS comfort limits, it was found that the operative temperature 
exceeded the upper ACS comfort limit for approximately 12% of the year, during the Pre-Monsoon and 
Monsoon seasons.  There is a wide spread of operative temperature across the year, but the operative 
temperature remains closer to the upper comfort limits for a higher proportion of the year.  The average 
daily DDH across the year is approximately 0.38 °C-h.  The daily DDH (with respect to the upper ACS 
comfort limit) exceeds 0 for 42% of the Pre-Monsoon season and 37% of the Monsoon season.  During 
the Pre-Monsoon season, the average daily DDH is 0.58 °C-h and goes as high as 6 °C-h.  During the 
Monsoon season, the average daily DDH is 0.68 °C-h and goes as high as 9.5 °C-h.  The total DDH for 
the entire year is 131.7 °C-h. 
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Figure 7. BH operative temperature with ACS & IMAC comfort limits 
 
4.3 Temperature model selection 
 

Temperature prediction models were generated for each of the case studies in order to simulate the 
buildings with and without night ventilation.  The inputs and outputs of each model can be seen in table 6.  
Because each of the models was nonlinear in the inputs and states, they were linearized.  The dynamical 
equations for the LEES, IND, and BH models, along with the model error parameters for each set of 
training data, can be found in Landsman (2016).  The mean absolute error ranged from 0.2 °C (0.4 °F) to 
0.7 °C (1.2 °F) error parameters for each set of training data are found in table 5.  Figure 8 visualizes the 
real and simulated training data for LEES indoor air temperature. 
 

Model parameters LEES IND BH 
Controllable inputs Ventilation rate X   

Supply temp X   
Window state  X X 

Uncontrollable 
inputs 

Outdoor air temp X X X 
Solar radiation X  X 
Internal loads  X  

Outputs Indoor air temp X X X 
Mass wall temp X X X 
Mass floor temp X X X 

Table 6. Temperature model inputs and outputs 
 

 
Figure 8. Real and simulated indoor air temperature in LEES room 110 
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4.4 Comparison of ventilation mode results 
 

For LEES, no statistically significant differences were seen between model simulations with different 
ventilation inputs with regard to daily maximum indoor temperature, daily maximum damping, daily 
temperature range, decrement factor, or daily discomfort degree hours.  This indicates that, in the context 
of these buildings and climates, the airflow rate has a very small influence on the indoor conditions, 
which are much more closely correlated to the supply temperature. In contrast, there was a statistically 
significant difference between models with regard to energy removed and potential energy efficiency, 
with different ventilation inputs.  All of the models with simulated ventilation inputs removed less energy 
than those with real inputs.  The simulated ventilation models are probably removing less heat because 
the real building is going into night ventilation or daytime cooling more often than the design control 
sequence calls for, which calls into question how the control sequence has changed since operation began.  
In addition, the simulated ventilation models may have lower potential energy efficiency because the real 
building is often not ventilating the building during occupied hours, whereas the simulated ventilation 
models are forced to have a code required minimum airflow rate during occupied hours, causing them to 
consume more fan energy.  

For IND, no statistically significant differences were seen between model simulations with and 
without night ventilation with regard to daily maximum indoor temperature, daily maximum damping, or 
daily discomfort degree hours.  This indicates that the strategy was not having a large impact on the 
internal conditions.  The only metrics that showed statistically significant differences with and without 
night ventilation were daily temperature range and decrement factor, both of which were higher for the 
case with night ventilation.  This is probably the case because the night ventilation allowed for a slight 
temperature reduction at night, thus increasing the daily temperature range. 

For BH, performance metrics were compared using model simulations with night ventilation (NV) 
and without night ventilation (no NV), with a total sample size of 712 d (356 with NV and 356 without 
NV).  Statistically significant differences were seen between model runs with and without night 
ventilation with regard to daily maximum indoor air temperature and daily maximum damping.  However, 
on average, maximum indoor temperature and maximum damping were less than 1 °C different for model 
runs with and without night ventilation, even during the warmest seasons of the year (figures 9A and 9B).  
Although the indoor temperature peaks are only lower by 0.6-0.7 °C and the maximum damping is only 
higher by 0.6-0.7 °C for the night ventilation simulation, this is still improving the indoor conditions and 
can help improve comfort when paired with other strategies.  No statistically significant differences were 
seen between model runs with and without night ventilation with regard to time lag, which matches the 
results from section 5.3.3. 
 
 

  
Figure 9. A) BH simulation daily maximum indoor air temperature; B) BH simulation daily maximum damping 
 

Finally, statistically significant differences were seen between model runs with and without night 
ventilation with regard to daily discomfort degree hours above the maximum comfort limit.  On average, 
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the model run with night ventilation had 3.5 °C-h less than the model run without night ventilation in the 
Pre-Monsoon and Monsoon seasons (figure 10).  This difference could have a large impact on the comfort 
of the occupants inside the space. 
 

 
Figure 10. BH simulation daily discomfort degree hours above maximum ACS limit with & without night ventilation 
 
4.5 Optimization 
 

The controls for each building were optimized to minimize energy and maximize comfort (by 
minimizing the time outside the comfort limits).  After running the optimization for LEES, the system 
operated with only minimum allowable airflow.  This suggests that these classrooms need no night 
ventilation to satisfy comfort requirements. 

The window state of IND was optimized for one week in September in which the outdoor temperature 
went above 100 °F.  This resulted in keeping the windows open for a longer duration than the actual 
building controls suggested.  A comparison was done between the models with optimized window state 
and real window state with a total sample size of 14 d (7 d with real inputs and 7 d with optimized inputs).  
The optimized model consistently kept the operative temperature at an equivalent or lower level (by 
approximately 1 °F) than the model with real inputs. 

The window state of the BH was optimized for one week in April in which the operative temperature 
went above the upper ACS comfort limit (see figure 11).  Surprisingly, the optimization resulted in 
keeping the windows closed for more nights than the occupants did themselves.  A comparison was done 
between the models with optimized window state and real window state with a total sample size of 14 d 
(7 d with real inputs and 7 d with optimized inputs).  The optimized model consistently kept the operative 
temperature at an equivalent or lower level (by approximately 5 °F) than the model with real inputs.  The 
optimized model was also able to bring the operative temperature below the upper comfort limit on 
certain days that originally fell above the limit. 
 

 
Figure 11. BH measured, optimized, & no NV operative temperature 
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An occupant behavior prediction model was generated for the Blessing House to understand how the 

occupants were controlling the night ventilation scheme.  The selected model uses inputs of season, hour, 
outdoor air temperature, indoor air temperature, and mass temperature.  The regression constants, seen in 
Table 7, indicate that the most influential variables on window opening behavior are indoor air 
temperature and mass temperature.  The model achieved 81.2% accuracy for the training data and 86.6% 
accuracy for the validation data.  Figure 12 visualizes the window opening probably by each variable for 
the Pre-Monsoon season. 
 

Variable Regression Constant 
Intercept -4.78 
Season (Pre-Monsoon) 1.00 
Season (Monsoon) 0.089 
Season (Post-Monsoon) 0.14 
Season (Winter) -1.45 
Hour -0.057 
Outdoor air temperature -0.22 
Indoor air temperature -1.18 
Mass temperature 1.56 

Table 7. Occupant behavior model regression constants 
 

 
Figure 12. Window opening probability for Pre-Monsoon season 
 
5. Discussion 
 

The results of this study clearly suggest that the night ventilation strategy, in combination with the 
physical construction of the building, is successfully keeping LEES below the maximum comfort limit 
during hot periods.  This said, results of the predictive modeling suggests that the airflow rate has very 
little impact on the indoor conditions.  This goes against the findings of Kolokotroni and Aronis, (1999), 
who saw that higher airflow rates lead to increased energy savings.  One possible explanation for this 
disagreement between model results and measured results is the fact that the airflow rate might have more 
impact on the indoor conditions during warmer days, and the data used for parameter identification might 
not have included the hottest days of the data set.  Regardless of the impact of airflow rate, the indoor 
temperature is still significantly dampened compared to the outdoor air temperature. 

Although the space is being successfully cooled, the strategy is sometimes overcooling the 
classrooms, which suggests that there may be a mismatch between the design intent and patterns of 
operation in the building, and the system may actually be using more energy in the morning to warm up 
the space before occupancy.  There are a few explanations for this overcooling, one being that the mass 
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temperature setpoint for entering night ventilation is simply too low.  This corresponds with the findings 
of Kolokotroni and Aronis (1999), which saw increased energy consumption at lower temperature 
setpoints.  Another is that the specification of a difference of 5.6 °C (10 °F) between mass temperature 
and outdoor air temperature for entering night ventilation is too high, especially because this occurs so 
often in the mild climate.  It is very telling that when the controls were optimized to minimize time 
outside of the comfort bounds, the system never entered night ventilation mode.  It is recommended that 
the building operator increase the mass temperature setpoint or reduce the necessary difference between 
outdoor and mass temperature for entering night ventilation. 

Although the system consistently had very high energy efficiency, the fact that the space was being 
overcooled suggests that there is still energy being wasted by running the fans too often.  As seen in the 
measured data, some of the classrooms achieved similar indoor temperatures both with and without night 
ventilation, probably due to the very mild climate.  This matches the findings of Kolokotroni and Aronis 
(1999a), who observed increased energy usage during mechanical night ventilation in a medium weight 
office building, due to the increased operation of fans.  If the increased airflow is not necessary to achieve 
the same condition, this fan energy could be saved and a similar amount of heat could still be dissipated 
through the mass.  In addition, the energy consumed to reheat the space in the morning was not taken into 
consideration in this calculation, as the energy efficiency was only examined for heat removed. 

While the study suggests that the strategy is overcooling, the applicability of the adaptive comfort 
model to schools is still in question. The LEES ventilation system is not controlled by its occupants, so its 
not clear how much the adaptive effect might exist;  additionally, the adaptive comfort model has not 
been thoroughly tested in schools with young children.  One study that took place in a naturally ventilated 
elementary school found that the observed lower 80% acceptability limit was 1.7 °C below the value 
listed in the ASHRAE standard (Hwang et al. 2009).  Another study that took place in a naturally 
ventilated elementary school saw that the predicted thermal acceptability according to the adaptive 
comfort model did not match the surveyed acceptability values (Kwok and Chun 2003). 

Turning now to IND, the results of this study suggest that its night ventilation strategy, in 
combination with the physical construction of the building, has no discernable impact on the internal 
conditions of the space.  The most likely reason for the low impact of night ventilation is the extremely 
high level of thermal mass and low internal loads.  This matches the findings of Kolokotroni et al. 
(1999a), Geros et al. (1999), and Pfafferott et al. (2004), who saw that night ventilation efficiency 
increased during periods with lower internal gains and that user behavior and internal loads have a 
stronger effect on internal temperature in milder climates.  However, this goes against the findings of Finn 
et al. (2007), Givoni (1998), Shaviv et al. (2001), and Kolokotroni and Aronis (1999), whose studies all 
indicated that higher levels of thermal mass improve the performance of night ventilation. The very thick 
concrete walls and floor are likely able to take care of the load all on their own, providing sufficient 
thermal mass to reduce the range of indoor temperature, which in turn prevents a noticeable additional 
effect from night ventilation.  Another explanation is that because the ratio of wall to floor area is fairly 
small, the size of the thermal mass has a less significant impact on the performance, which would match 
the results of Artmann et al. (2008). It is entirely possible that the night ventilation strategy would have a 
larger impact if the mass was less heavy or if the internal loads were higher.  Like LEES, the applicability 
of the adaptive comfort model to IND is also in question because of the lack of occupant control. 

The results of this study suggest that the night ventilation strategy in BH, in combination with the 
physical construction of the building, successfully lowers the indoor temperature, removes heat from the 
space, and reduces discomfort degree hours, especially during the hottest seasons of the year.  This is very 
significant because the strategy implemented in BH is very simple and the night ventilation is not always 
believed to work successfully in hot and humid climates, as shown by Da Graça et al. (2002) and Liping 
and Hien (2007), who found that night ventilation did not help improve the indoor conditions in Shanghai 
and Singapore compared to daytime ventilation.  However, the results from BH seem to correspond with 
the findings of Kubota et al. (2009), who saw saw a reduction of maximum indoor air temperature when 
nighttime ventilation was implemented in a study in the hot and humid climare of Malaysia. 
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Although the strategy is successful, the effect size of damping the indoor temperature due to night 
ventilation is fairly small.  Although small differences in temperature can make a larger difference in 
climates with high humidity, the strategy probably cannot achieve enough on its own to take care of the 
entire load.  Night ventilation, paired with other low energy strategies such as ceiling fans, has the 
potential to maintain comfort in this climate.  In analyzing comfort with measured data, the annual 
discomfort degree hours was approximately 131.7 °C-h.  If the air speed were increased to 0.6 m/s 
through the use of ceiling fans, the annual discomfort degree hours drops to 2.6 °C-h, and 0 °C-h at air 
speeds above 0.6 m/s.  This was calculated using the adjusted adapative comfort model limits for 
increased air speeds. 

The results of the window opening behavior model suggest that occupants’ decision to open or close 
windows is most closely correlated to the indoor air temperature and mass temperature.  This matches the 
result of the behavior model developed by Yun and Steemers (2008), which also had a close relationship 
with indoor temperature and poor correlation to outdoor temperature.  It is somewhat of a surprise that the 
outdoor air temperature was not very influential on the behavior model for BH, as the occupants indicated 
that they thought outdoor air temperature was a trigger for window control.  The impact of mass 
temperature is also significant because this is not a parameter that the occupants consciously took into 
consideration, which indicates that the inclination to open or close the windows could be subconscious 
and more related to the occupants’ thermal sensation.  It should also be noted that although the model was 
developed specifically for occupants in this building, the methodology can be applied to other buildings.  

Although no generalizable conclusions can be drawn about the effect of each night ventilation 
parameter based on just three case studies, each in such different climates with such different controls, a 
number of extrapolations can be made.  First looking at daily maximum indoor air temperature, BH had a 
much higher average than the other two buildings, but this can simply be attributed to the fact that BH is 
in a much hotter climate.  On the other hand, there was only a 0.56 °C (1 °F) difference between LEES 
and IND average values, which suggests that different levels of mass and types of night ventilation were 
resulting in approximately the same daily temperature peaks.  With regard to daily maximum damping, 
BH and IND had a much higher effect size than LEES.  The only obvious similarity between BH and IND 
is the use of natural night ventilation.  It is possible that natural night ventilations lends itself to higher 
values of maximum damping due to the fact that the open windows allow the space to more closely 
follow nighttime temperatures, whereas air must travel through ducts for mechanical night ventilation, 
possibly gaining some heat along the way. 

With regard to daily time lag and temperature range, BH had a much higher effect size than LEES 
and IND.  These two metrics are probably closely related.  Due to the fact that the mild climates in LEES 
and IND kept their temperature range so low, the indoor air temperature did not require much time to 
peak.  In BH, the temperature range was wider and thus required more time to hit that peak. 

In conclusion, the fact that both LEES and IND had indoor conditions near the bottom or below the 
ACS lower comfort limit indicates that night ventilation could have the tendency to overcool when used 
in mild climates, and that cooling by night ventilation may not even be needed once you have sufficient 
mass. In addition, the similar performance in IND and LEES shows that the type of ventilation system 
and control sequence are probably less significant to the performance of the strategy than the climate it is 
used in.  Finally, the overall performance of night ventilation seemed to be better in BH than LEES or 
IND, possibly suggesting that the strategy might be better suited to hotter climate. 
 
6. Limitations 
 

There are numerous limitations to this study, most of which are attributed to the limited availability of 
data.  Firstly, many parameters critical to the model calculations conducted in this study were not 
available and therefore had to be estimated.  Another major limitation to the study is the simplicity of the 
model generated for comparison.  Although this model achieved very small errors compared to measured 
data, the model still utilizes very simplified dynamical equations, and therefore cannot truly capture the 
dynamics of the heat in the space.  The final limitation to this study is the lack of a control case.  In terms 
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of the performance within each individual buildings, there was no control period in which night 
ventilation was not used. 
 
7. Conclusions 
 

Measured data of indoor environmental conditions were obtained from three different buildings, each 
using night ventilation for cooling, with varying control strategies (both mechanical and natural), climates 
(mild and hot/humid), and levels of thermal mass (medium and heavy).  The design and configuration of 
each building’s control strategy was then investigated and laid out in detail. 

Subsequently, the performance of night ventilation in each building with regard to indoor thermal 
conditions was assessed using measured data and comparing it to an adaptive comfort model.  The results 
indicated that the buildings using the night ventilation strategy in a mild climate are successfully keeping 
the indoor operative temperature below the upper 80% acceptability comfort limit.  However, the case 
studies in the mild climate are also cooling more than necessary at times, sometimes bringing the 
operative temperature at or below the lower 80% comfort limit.  The building in the hot and humid 
climate is going above the upper 80% comfort limit on the hottest days of the year, but still keeping the 
operative temperature within the comfort bounds for 88% of the year. 

Next, a hybrid model was developed for each case study, based on simplified resistance/capacitance 
equations, to predict the indoor conditions of the building with inputs including outdoor air temperature,  
solar radiation, internal loads, ventilation rate, and window state.  These models were then fit to a training 
data set and validated against measured data, each providing temperature predicitions with acceptable 
error. 

For the building with medium mass and using mechanical night ventilation in a mild climate, there 
were no significant differences in internal conditions between the different ventilation modes.  For the 
buiding with heavy mass and using automated natural night ventilation in a mild climate, the indoor 
temperature had very little fluctuation and there were no significant differences between cases with and 
without night ventilation, most likely due to the impact of the heavy mass and mild climate.  For the 
building with medium mass and using manual natural night ventilation in a hot and humid climate, the 
night ventilation strategy successfully lowered indoor temperatures and helped remove heat, but could not 
remove enough on its own to satisfy comfort requirements.  

Using the predictive model, the control strategy for each building was optimized to minimize the 
amount of time outside of the comfort bounds.  In the two buildings in the mild climate, because the night 
ventilation strategy had such a small impact on the internal conditions of the buildings, the optimized 
controls did not demand any night ventilation.  On the other hand, the building in the hot and humid 
climate saw an even further reduction in discomfort degree hours after the controls were optimized. 

Finally, a statistical model was successfully developed to predict the window opening pattern for 
occupants of the Blessing House.  It was discovered that the parameters that have the strongest impact on 
opening or closing the windows are indoor air temperature and mass temperature. 
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