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Using Optogenetics to Study

Dynamic Signal Encoding and

Decoding in S. cerevisiae

Susan Y Chen

Abstract

Transcription factors are key mediators of environmental signals. In S. cerevisiae, cells may

change the concentration, phosphorylation state, binding partner, or temporal dynamics of

transcription factors to mediate a response to upstream signals. Dynamic localization of

transcription factors to and from the nucleus have been observed for a number of

stress-responsive transcription factors in yeast. Two key questions arise from this

observation. First, what are the upstream determinants of these nuclear localization

events? And second, what are the downstream target gene interpretations?

To probe the upstream determinants of nuclear localization, the activity of PKA, an

upstream regulator of the transcription factor Msn2, was perturbed using a combination of

genetic mutations and optogenetics. Optogenetic activation with bacterial Photoactivatible

Adenylyl Cyclase (bPAC) established a causal connection of PKA activity on Msn2

dynamic nuclear localization. Genetic deletions of PKA network components illustrated
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that changes to the upstream signaling network can alter Msn2 localization dynamics. The

computational analyses revealed that a negative feedback on PKA could explain the

observed transient dynamics of Msn2 nuclear localization, and that different PKA network

components could tune those Msn2 localization dynamics.

To probe the second question of the downstream target gene interpretations of nuclear

localization, another optogenetic tool was optimized and used to directly control

transcription factor nuclear localization. CLASP (Controllable Light Activated Shuttling

and Plasma membrane sequestration), was engineered to enable precise, modular, and

reversible control of TF localization using a combination of two optimized LOV2

optogenetic constructs that sequestered the TF to the plasma membrane in the dark and

delivered the TF to the nucleus in the light. CLASP achieved minute-level resolution,

reversible localization of many TF cargos, large dynamic range, and tunable target gene

expression. Dynamic control of the nuclear localization of Crz1, a naturally pulsatile TF,

using CLASP revealed that some Crz1 target genes respond more efficiently to pulsatile TF

inputs than to continuous inputs, while others exhibited the opposite behavior.

Computational modeling showed that efficient gene expression in response to short pulsing

required fast promoter activation and slow inactivation, and that the opposite phenotype

can ensued from a multi-stage promoter activation, where a transition in the first stage was

thresholded. These data directly demonstrate differential interpretation of TF pulsing

dynamics by different genes, and provide plausible models that could achieve these

phenotypes.

In summary, this work explored dynamic signal encoding and decoding of transcription

factor nuclear localization using optogenetics in S. cerevisiae. Control of PKA activity and

deletion of PKA network components showed encoding of dynamic transcription factor

nuclear localization by the PKA network. Arbitrary control of transcription factor nuclear

localization identified differential decoding of transcription factor dynamics by target genes.
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Chapter 1

Introduction

Cells are exquisite autonomous machines that can execute complicated processes seamlessly

in response to their environments. Take for example, the single-celled organism S.

cerevisiae. When there is abundant glucose, S. cerevisiae responds by utilizing the glucose

in a process known as fermentation to produce energy and alcohol as a byproduct. This

cellular response to glucose, fermentation, is the crucial process behind two staples of

modern society, bread and beer. Yeast responds to a plethora of other conditions in their

environment such as high salt1, heat shock2, or the presence of a mate3, and produce the

appropriate response to survive and grow.

A central question in cell signaling is how a cell (yeast, for instance) is able to faithfully

relay an external signal and mount an appropriate response. The molecular players in

many of these signaling pathways have been identified, but the mechanisms by which

information flows through these molecular nodes is not as well understood. A common

motif in yeast signaling pathways is a signaling cascade in which an environmental signal

activates a kinase (e.g. PKA4) or phosphatase (e.g. calcineurin5) that then acts on their

corresponding transcription factors (e.g. PKA phosphorylation of Msn26 and calcineurin

1



de-phosphorylation of Crz17) to elicit a transcriptional response. An interesting

observation is that many kinase- or phosphatase-mediated transcription factors

dynamically localize to the nucleus in response to environmental signals8,9 (also see Figures

4.10, 4.11, 4.12). These nuclear localization events raise the hypothesis that changes in the

dynamics of TF nuclear localization may be a mechanism to encode information from

upstream signals that can then be decoded by downstream genes. This work used precise

molecular tools to address this two-fold question of the origins and consequences of

dynamic transcription factor nuclear localization.

The PKA/Msn2 signaling pathway was used to explore how changes in upstream PKA

signaling could dictate Msn2 nuclear localization dynamics. In order to study the effects of

PKA and its network components on Msn2 localization, a method of direct input to PKA

is desired to establish a causal link. PKA signaling can be modulated by natural

inputs1,2,10 or small molecules11. Both of these methods, however, fall short to directly and

reversibly control PKA since natural inputs are pleiotropic and small molecules are difficult

to washout. Optogenetics, on the other hand, has the potential to provide direct and

reversible control. Using a previously published bacterial Photoactivatible Adenylyl

Cyclase12 (bPAC), optogenetic activation of PKA showed that Msn2 localization exhibits

mirrored dynamics to PKA activity, with a characteristic transient pulse of Msn2

localization following shut-off of light input. Deletions of three negative regulators of PKA

further showed distinct alterations to the dynamics of the observed transient pulse of Msn2

localization for each deletion of PKA network components. Computational modeling of

these phenotypes found that a negative feedback on PKA caused the transient Msn2 pulse,

and, moreover, that negative regulators of PKA that act on different parts of the negative

feedback serve to tune the observed Msn2 dynamics. These insights provide an example of

how an upstream signaling network modulates the dynamics of transcription factor

localization.
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To draw a causal link between dynamic transcription factor localization and downstream

transcriptional response, a direct method of control is required. Again, optogenetics

provide the most direct and reversible means of control. Two previously published tools,

LANS13 and LOVTrap14, were combined and optimized to create a new and robust tool,

CLASP, (Controlled Light-Activated Shuttling and Plasma membrane sequestration) which

sequesters transcription factors to the plasma membrane in the dark, and localizes

transcription factors to the nucleus in a fast, reversible, and general manner with light.

Dynamic control of a naturally pulsatile transcription factor, Crz1, showed that some

target genes express more efficiently in response to short pulses, while others express less

efficiently. Moreover, computational modeling illustrated that fast promoter turn ON and

slow turn OFF could be responsible for the efficient response to pulsed inputs, while a

thresholded and slow transition between non-transcribing promoter states could produce

an inefficient response. This study provides an example of how transcription factor

dynamics could differentially regulate downstream genes.

Taken together, these studies make an earnest attempt to address the central question in

cell signaling – how do cells relay environmental signals and mount an appropriate

response? To the forest of existing knowledge, this work adds a healthy seedling. It focuses

the spotlight on transcription factor dynamics. This work explored the encoding of

transcription factor dynamics by an upstream kinase signaling network. It also dissected

the differential decoding of transcription factor dynamics by target genes. Moreover, the

precise optogenetic approaches engineered and used in these studies highlight one arch in a

key cycle in biological discovery. In this cycle, new tools lead to new discoveries, and new

discoveries lead to new tools. It will be very exciting to take the biological insights gained

from these studies to forward engineer new synthetic tools such as frequency responsive

promoters that can be used to discover new biology or be applied to synthetic biology and

metabolic engineering applications.
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Chapter 2

Model-guided optogenetic study of

PKA signaling in budding yeast

2.1 Summary

This study addresses the first question of the upstream determinants that control

transcription factor nuclear localization dynamics by using optogenetics to study how

changes in the Protein Kinase A (PKA) signaling network alters the protein dynamics of

PKA and nuclear localization of Msn2.

2.2 Introduction

The second messenger cyclic-AMP (cAMP) is a ubiquitous signaling molecule whose

synthesis by adenylate cyclase and degradation by phosphodiesterases (PDEs) occur in all

branches of life. In eukaryotes, protein kinase A (PKA) is the most conserved

cAMP-responsive protein. Binding of cAMP to the regulatory subunit of PKA frees its

4



catalytic units to phosphorylate hundreds of targets regulating a vast swath of metabolism

and cellular physiology. cAMP often exhibits pulsatile or oscillatory dynamics. In

Dictyostelium, for example, waves of cAMP coordinate colony growth and differentiation15,

and in humans, oscillating cAMP levels regulate insulin secretion in pancreatic beta cells16.

In budding yeast, cAMP levels are regulated by extracellular glucose and a range of

growth- and stress-related signals. Changes in these environmental variables alter cAMP

levels, modulating activity of the PKA complex, which in turn fans out to regulate a wide

range of cellular processes, estimated to involve at least one-third of the genome10. PKA

has been shown to directly phosphorylate more than two dozen proteins, including the

mitochondrial protein import machinery, P-body components, autophagy proteins,

glycolysis machinery, and a large number of transcription factors17. In conditions of

plentiful resources, cAMP levels are high, and PKA promotes rapid fermentative growth by

enhancing glycolysis and ribosomal production. In stressful conditions, a decrease in cAMP

levels causes a drop in PKA activity, resulting in the inhibition of ribosomal and

growth-related programs and the activation of stress-responsive factors such as the

transcription factor Msn2. This low-PKA-activity state is in many cases transient, as

negative feedback loops embedded in the PKA network and involving the small G-protein

Ras cause PKA activity to rebound even as stressful conditions continue18.

PKA exerts much of its influence through regulation of the nuclear localization and activity

of several transcription regulators, most notably the stress-responsive Msn2 and its

homologue, Msn4. Decreased phosphorylation by PKA of these stress-responsive

transcription factors leads to their nuclear localization19. Observation of the

PKA-regulated subcellular localization of Msn2 in yeast cells suggests that PKA activity is

highly dynamic, with rapid pulses of activity occurring in “bursts” of Msn2 localization on

the minute time scale20.

Although substantial progress has been made in probing the downstream consequences of
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dynamic Msn2 pulsing9,21,22, our understanding of how PKA generates these dynamics is

incomplete, partly because upstream tools to perturb the PKA system in vivo are typically

slow (e.g., mutations) or nonspecific (e.g., stress). A tool that provides a rapid, specific,

and reversible perturbation of PKA signaling is therefore needed. In this work, we develop

the recently discovered bacterial photoactivatable adenylate cyclase (bPAC)12,23 as a

quantitative perturbation tool to investigate PKA dynamics in Saccharomyces cerevisiae.

We demonstrate that by expressing this bacterial protein in yeast cells, we can achieve

high-resolution temporal control of PKA activity. Using precise optogenetic stimuli, we

develop and test a model of PKA signaling and uncover important aspects of its dynamics.

2.3 Results

2.3.1 Rapid in vivo regulation of PKA activity by a bPAC

Previous reports demonstrated that PKA exhibits complex dynamics that occurs on fast

time scales, on the order of minutes20,24,25. Therefore, quantitative studies of this system

require perturbations with a time resolution of seconds. To achieve such rapid

perturbation, we expressed in budding yeast cells a recently characterized bPAC, originally

from the soil bacterium Beggiatoa 12,26, that contains a light-sensitive BLUF (blue light

receptor using FAD) domain linked to an adenylate cyclase domain. This construct allows

for regulation of cAMP levels in living cells by illumination with blue light (<500 nm),

which transiently alters the conformation of the light-sensitive BLUF domain, rendering

the associated cyclase domain competent to catalyze the conversion of ATP to cAMP

(Figure 2.1A). To take advantage of this genetically encoded tool, we assembled a

custom-built system that allows us to coordinate the imaging of budding yeast in a

fluorescence microscope with illumination by a blue-light LED. This system is capable of
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providing graded illumination for 1–40 µW/mm22. Although substantially brighter than

ambient light (∼4 µW/mm22), these blue-light intensities do not trigger a stress response

in budding yeast (Supplementary Figure 2.5). Furthermore, bPAC has a fast spontaneous

reversion to the inactive state12 (<30 s; Supplementary Figure 2.6), enabling of bPAC

activity at high time resolution regulation through control of light intensity. Using this

infrastructure, we were able to apply controlled amounts of blue light to cells expressing

the bPAC construct and quantify the resulting PKA activity in real time using a

localization-based fluorescent Msn2 reporter (Supplementary Figure 2.6). Msn2 nuclear

localization is modulated by PKA via phosphorylation of PKA motifs (RRxS) in the Msn2

nuclear import (nuclear localization sequence [NLS]) and export sequences24, making the

nuclear enrichment of Msn2 an accurate measure of PKA activity9.

To test the ability of bPAC to regulate PKA in vivo, we built a yeast strain harboring both

a hormone-inducible dominant-negative allele of Ras2S24N10,27 and a constitutively

expressed bPAC. We used the translocation of mCherry-tagged Msn2 in and out of the

nucleus as a measure of PKA activity9 (quantification of nuclear localization is discussed in

Materials and Methods). Expression of Ras2S24N inhibits cAMP production by

sequestering the Ras guanine exchange factor CDC25, preventing the formation of

Ras-GTP and hence activation of the endogenous adenylate cyclase. As a result, when this

allele is induced, we expect cAMP levels to drop, PKA to become inactive, and

Msn2-mCherry to be localized to the nucleus. Consistent with this expectation, we

observed complete localization of Msn2 to the nuclei of cells within 10 min of the induction

of Ras2S24N expression (Figure 2.1B and Supplementary Movie S1). Activation of bPAC

should provide an orthogonal non–Ras-dependent source of cAMP, which would activate

PKA and cause Msn2-mCherry to be exported from the nucleus. Indeed, upon illumination

with blue light, there was a rapid and synchronous exit of Msn2 from the nucleus. These

data are consistent with a sharp increase in PKA activity upon illumination induced by

cAMP production from the activated bPAC and show that bPAC can produce sufficient
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cAMP to compensate for the loss of Ras-dependent endogenous adenylate cyclase activity.

2.3.2 The dynamics of PKA signaling induced by optogenetic

stimulation is explained by a computational model

Using the precise perturbation afforded by the bPAC construct, we next explored how

PKA dynamics is shaped by its signaling network. To do so, we exposed wild-type cells

expressing bPAC to a 3-min pulse of light (Figure 2.2A). As discussed earlier, in resting

cells, Msn2 localization is predominantly cytoplasmic due to the PKA phosphorylation of

the NLS, with occasional stochastic nuclear localization in individual cells. Consequently,

blue light–mediated activation of bPAC and the subsequent increase in cAMP had only the

slight and expected effect of inducing uniform Msn2 cytoplasmic localization. Of interest,

however, soon after the blue light was turned off, we observed a sharp transient (lasting ∼5

min) increase in Msn2 nuclear localization above the initial localization state (Figure 2.2B

and Supplementary Movie S2). This pulse of Msn2 nuclear localization after bPAC shutoff

is surprising since we expected Msn2 to return monotonically to its prestimulus steady

state. The observed behavior is a hallmark of an underdamped system, whose signature is

a transient overshoot (transient PKA inactivation) before return to steady state (fully

active PKA) upon change in input, as compared with an overdamped system, which

exhibits monotonic return to this steady state. Such unexpected behavior can be generated

by a negative feedback loop with a delay, a hypothesis that we wanted to further pursue.

Feedback loops are believed to decorate the architecture of the PKA signaling network. To

investigate the possibility that feedback is responsible for the underdamped behavior of the

PKA system after bPAC-mediated rapid alteration of cAMP levels, we built two

mathematical models of the PKA network. The first is a negative feedback model

consisting of PKA, its core regulatory and activation components (Cdc25, Ras, and

8



cAMP), the exogenous optogenetic stimulation, and Msn2 nuclear shuttling kinetics. The

negative feedback in this system has been identified genetically and is generally considered

to be implemented through regulation of the Ras1/2 GTPase proteins28,29. The second

model is an identical open loop variant that lacks the negative feedback component, as the

dependence of Cdc25 levels on PKA activity is removed (Supplementary Note S1). With

this open-loop model, we wanted to test whether the Msn2 pulse of activity could be

simply generated by the interaction of Msn2 with PKA without the need to invoke

feedback or whether it is necessarily generated by negative feedback in PKA signaling.

In contrast to prior work25,30, we did not seek to build a model that reflects all known

biochemical interactions surrounding PKA signaling. Instead, by capturing only the known

essential interactions in the PKA system, we aimed to build a simple model that could

recapitulate the pulse of Msn2 translocation after a bPAC pulse. Because the parameters

for the interactions that are captured in the model have not been measured independently,

we simulated both open- and closed-loop models for >107 log-uniformly sampled

parameter sets. We then selected the 5.5 × 104 parameter sets that minimized the mean

square error between the model output and the wild-type experimental data of Figure 2.2B

and optimized these sets by the Nelder–Mead algorithm to improve the fit31. We found 1.4

× 104 parameter sets for the negative feedback model that generated a good fit to the data

(Figure 2.2B). At the same time, we could not identify any parameters for the open-loop

model that could recapitulate qualitatively or quantitatively the transient pulse of Msn2

(Supplementary Figure 2.7). Instead, for all parameters sampled, the open-loop model

produced an overdamped Msn2 nuclear residence and depletion profile that decreased upon

bPAC activation and monotonically increased to prestimulus steady state upon bPAC

shutoff.

Examining the parameter sets for the feedback model that could recapitulate the Msn2

pulse data revealed a common feature they all shared: a feedback-induced delay for the
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activation of the endogenous adenylate cyclase after bPAC shutoff.

In simple terms, bPAC activation injects a large concentration of cAMP into the system

with two consequences. First, the endogenous cAMP production is repressed by the PKA

feedback on Ras1/2 activity. In addition, as cAMP concentration increases, the

PDE-mediated degradation of cAMP also increases due to mass action effects. When bPAC

is shut off, this cAMP degradation initially continues at a high rate. This degradation is

not immediately counteracted by the endogenous production of cAMP, as Ras1/2 activity is

delayed by the engaged PKA feedback. As a result of such imbalance between degradation

and production dynamics, cAMP levels transiently drop below bPAC preinduction levels

(Figure 2.2B). The corresponding drop in PKA activity consequently generates a pulse of

Msn2 nuclear translocation. Msn2 localization reaches its cytoplasmic steady state when

the degradation and production of cAMP equilibrate. Supporting the idea that the pulse of

Msn2 nuclear localization is a result of feedback-induced delay, we observed in the model

that the pulse occurs precisely when one of the components in the feedback loop traversing

Ras1/2 to PKA is rate limiting (Supplementary Figure 2.8). Moreover, the lack of a cAMP

undershoot after bPAC shutoff for the open-loop model is in agreement with the idea that

the feedback-induced delay of cAMP production produces the cAMP undershoot and

subsequent Msn2 pulse. Taken together, our data suggest that the observed pulse after

bPAC shutoff is likely to be a structural feature of the negative feedback surrounding PKA.

2.3.3 Quantitative features of Msn2 nuclear pulse after bPAC

shutoff depend on the components of the PKA signaling

network

An implication of feedback in generating the transient Msn2 pulse after bPAC shutoff is

that the attributes of this pulse, such as its peak height and time to peak, can be
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predictably modified by perturbations of different components that impinge on this

feedback. To explore this idea, we built bPAC strains in which one of the following three

negative regulators of PKA was deleted: Ira2, a GTPase-activating protein (GAP) that

inhibits Ras1/2 and hence decreases PKA activity; and low- and high-affinity PDEs Pde1

and Pde2, respectively, which also decrease PKA activity by degrading cAMP. We then

delivered a pulse of blue light input to these strains and measured the time dynamics of

Msn2 nuclear localization. Deletion of Ira2, Pde1, and Pde2 generated qualitative and

quantitative differences in the system’s response to the bPAC input. Compared to WT,

∆ira2 showed no transient Msn2 pulse upon bPAC shutoff, whereas both ∆pde1 and ∆pde2

displayed a delayed and attenuated Msn2 pulse (Figure 2.3 and Supplementary Figure 2.9).

To capitalize on the model as a guide for our intuition in understanding these differences,

we used the parameter sets of the feedback model that fit the wild-type (WT) data as

seeds to perform a second stage of fitting to experimental data from all four strains (WT

and three mutants; Supplementary Note S1). Of the original data set, only ∼300

parameter sets from the original ensemble produced a good fit to all experimental data,

suggesting that the mutant data effectively constrained the model parameters. For any one

mutant, simulated trajectories of nonfitted variables (e.g., active Ras) were quantitatively

different based on the particular parameter set used. However, these trajectories had

common qualitative features that provided plausible explanations for the particular Msn2

phenotype observed in the various mutants.

For ∆ira2, two nonexclusive parameter categories were at the root of the suppression of the

Msn2 translocation pulse (Figure 2.3A and Supplementary Figure 2.10). In the first

category, accumulation of Ras in the model due to the absence of the negative regulator

IRA2 caused a large increase in cAMP concentration both at steady state and during

bPAC application (Figure 2.3A, left). After bPAC shutoff, the degradation of cAMP still

proceeds at a fast rate and may cause cAMP levels to transiently drop below their
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(elevated) steady-state value. However, for the particular parameter sets corresponding to

this mutant, even the lowest cAMP level achieved is still sufficient to keep PKA activity

above the threshold that needs to be traversed in order for Msn2 to translocate to the

nucleus (Supplementary Figure 2.11). In the second category of parameters also

reproducing the ∆ira2 data, the lack of an Msn2 pulse resulted from altered feedback. Here

the pulse of Msn2 nuclear translocation was abrogated by the fact that, due to higher Ras

activity in this mutant, cAMP degradation was more quickly balanced by endogenous

cAMP production after bPAC shutoff (Figure 2.3A, right).

The model also clarified the phenotypes of ∆pde1 and ∆pde2, which both show a delayed

and attenuated Msn2 nuclear translocation pulse. In both mutants, degradation of cAMP

is reduced, resulting in rapid accumulation of cAMP to levels exceeding those of the wild

type upon bPAC stimulation. After bPAC shutoff, impaired degradation of this excess

cAMP keeps PKA activity high for an extended period of time, therefore maintaining

Msn2 cytoplasmic localization during that time and explaining the delay. Levels of cAMP

eventually decline below a level capable of keeping PKA active, and a pulse of Msn2

nuclear translocation ensues. The presence of the pulse is still a result of the

feedback-induced delay in endogenous cAMP production, but its attenuated magnitude is a

manifestation of the combined effect of a slower cAMP degradation (slower rise time for

the pulse) and a greater ability of cAMP production to balance this degradation (Figure

2.3B). The different quantitative phenotypes of ∆pde1 versus ∆pde2 are ascribed by the

model to different affinity of these enzymes to cAMP, resulting in a differential effect of

their deletion on cAMP degradation rate. This differential binding of Pde1 and Pde2 to

cAMP is well documented experimentally18,32. In addition, the model indicates that at

steady state, cAMP levels for these mutants is similar to that of the wild type, a

nonintuitive result of the feedback ensuring that decreased cAMP degradation is

homeostatically counteracted by decreased Ras.
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The observation that the dynamics of the Msn2 nuclear pulse is profoundly affected by

perturbations of the PKA network, supported by our modeling results, lends further

support to the notion that this pulse is predominantly generated by the PKA signaling

network itself.

2.3.4 bPAC enables frequency- and amplitude-modulated control

of the PKA signaling network

To further explore the feedback model with the constrained parameters, we subjected it to

light pulses of increasing amplitudes and durations, inputs for which the model was not fit

(Figure 2.4A). With increasing light duration at a fixed intensity, the model predicted a

corresponding graded increase in peak nuclear localization of Msn2 (Figure 2.4B). A

similar conclusion holds for increasing light intensity for a constant duration (Figures 4B

and Supplementary Figure 2.12). This is because in this model, the cAMP response is

dependent on the integral of the total light pulse within this intensity/duration regime

(Figure 2.4B, bottom). Hence both light stimulus amplitude and duration can achieve a

continuous range of values for the peak of the Msn2 pulse. Experiments performed with

bPAC pulses of different intensities and durations agree with this result (Figure 2.4A),

supporting the basic model structure.

Finally, we asked whether the model can recapitulate the filtering properties of the PKA

system, which can be determined by assessing the system’s output to different bPAC input

pulse trains of different frequencies (Toettcher et al., 2013 blue right-pointing triangle).

Such a frequency response analysis provides a quantitative picture of the dominant time

scales of PKA signaling. We therefore used the optogenetic bPAC input to apply light

pulses at six distinct frequencies spanning 0.83 to 0.11 min-1, with five repeats of each

frequency (except for 0.11 min-1, which only had two repeats). Experimental data revealed
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a low-pass filter with a cutoff frequency of 0.33 min-1 and quality factor of 0.88 (Figure

2.4C and Supplementary Movie S3), suggesting that the response time scale of the PKA

system is < 1/0.33 ≈3 min and that inputs with substantially higher frequency content are

significantly attenuated.

We then stimulated the computational model with a bPAC input consisting of a train of

pulses with decreasing frequencies and compared these simulations to the experimental

results (Figure 2.4D, top). We repeated this exercise for all of the parameter sets that

recapitulated the data in previous sections. The maximum magnitude of Msn2 nuclear

localization varied among parameter sets. However, all parameter sets consistently

predicted that the system has the characteristics of a second-order low-pass filter with a

median cutoff frequency of 0.14 min-1 with interquartile range of 0.12–0.15 min-1 and a

quality factor of 0.86 with interquartile range of 0.77–0.93 (see Supplementary Note S1 for

the conventions used in the transfer function and Supplementary Figure 2.13 for the phase

response). The cutoff frequency arises because at high pulsing frequencies, shutoff of bPAC

is now closely followed by another bPAC activation pulse, such that cAMP concentration

now cannot fall below the preinduction level before the next light pulse is applied (Figure

2.4D, bottom).

The quantitative difference between the computational and experimental cutoff frequency is

not surprising. Ultimately, our model was built to be the most parsimonious representation

that captures the phenomenology and overall characteristics of the system and trained on a

limited set of data. Specifically, since the model was trained on 3-min light pulses, it cannot

predict accurately the rates of cAMP production/degradation necessary to fit shorter light

pulses and hence cannot quantitatively fit data obtained at high input frequencies.

Therefore, while this model reveals the main dynamic characteristics of the PKA signaling

network, featuring delayed feedback, more detailed representations and experimentation

are needed to accurately capture the true quantitative complexity of the PKA system.
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2.4 Discussion

Growth-regulatory signaling pathways such as the PKA pathway link perception of the

environment with cell proliferation. To reliably relay the environmental state, these

pathways often show rapid dynamics. Rapid dynamics of PKA was previously documented

in response to environmental perturbations9,25. Fast and minimally pleiotropic

perturbation tools are therefore required to explore these dynamics and evaluate their

functional roles. Optogenetic perturbations are increasingly identified as powerful tools to

carry out these studies. Although optogenetic technology has seen widespread use in

neuroscience, these tools were only recently introduced in the study of a wider breadth of

molecular biology. In this work, we capitalize on a naturally occurring bPAC to study

PKA signaling in budding yeast. We show that when coupled with real-time reporters and

computer-controlled illumination, bPAC constitutes a powerful general tool for

administering precise and specific perturbations to this system to probe its quantitative

properties. Using this tool, we were able to study the system-level characteristics of the

PKA signaling pathway.

Specifically, our studies using bPAC indicated that strong negative feedback channeled

through Ras1/2 in the PKA signaling network in budding yeast causes a delay in

Ras1/2-mediated endogenous production of cAMP, and we pinpointed its relevant

timescale. Using these data, we were able to build a quantitative computational model that

generated a rigorous predictive understanding of the role of feedback in generating PKA

activity dynamics, which may be important in regulating downstream signaling and gene

expression.

Using a combination of precise optogenetic perturbation and quantitative modeling, this

study enabled identification of dynamic properties of the PKA signaling network that

would otherwise be difficult to dissect using slower and more pleiotropic methods such as
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knockouts and overexpression. More generally, our analyses revealed two salient principles.

First, the presence of feedback in a system generates nonintuitive dynamic effects upon

perturbation of components both within (such as Ira2) and outside the feedback loop (such

as Pde1/2). Second, different regulatory components with the same overall qualitative

description (e.g., both Pde1/2 and Ira2 negatively affect PKA activity) can generate vastly

different qualitative and quantitative phenotypes.

Overall it is tempting to hypothesize that these regulators could be used as gateways for

different environmental inputs into this system. In this scheme, different inputs can affect

and perturb different regulators. Because perturbation of such regulators induces distinct

dynamical phenotypes, this scheme could be the basis for encoding the identity of inputs

into different dynamical patterns of the pathway. Dynamic encoding of inputs has been

proposed as a strategy for implementing response specificity in a signaling pathway that

propagates multiple environmental inputs9. Although current research has focused on

identifying specific molecular implementations of such a strategy, in the future, it will be

interesting to investigate the dynamically malleable platform of feedback as a possible basis

for generating dynamic encoding in signaling pathways.
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2.5 Figures

Figure 2.1: Expression of a bPAC in budding yeast allows for real-time light-gated
control of PKA signaling Expression of a bPAC in budding yeast allows for real-time
light-gated control of PKA signaling. A) The bPAC protein switches from an inactive to an
active conformation in response to light. B) Nuclear localization of Msn2 after inhibition
of the PKA pathway by expression of a dominant-negative Ras2 allele (S24N; red inset)
and subsequent blue light activation of bPAC expressed in the same strain (blue inset).
Activation of the dominant-negative allele results in rapid nuclear localization of Msn2 into
the nucleus, and this is synchronously reversed by bPAC activation. Nuclear localization is
defined as the ratio of nuclear to cytoplasmic Msn2 (see also Materials and Methods). Time
trace (thick black line) shows average of 65 cells with SDs (thin black lines).
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Figure 2.2: A computational model of the cAMP-PKA circuit explains the re-
sponse to bPAC stimulation A) Diagram of the components involved in the model and
their interactions. Included are production of cAMP through bPAC stimulation and en-
dogenous cyclase activity, Msn2 nuclear localization, autoregulatory negative feedback on
PKA through Cdc25 and Ras2, and the effect of Pde1 and Pde2 on cAMP degradation. B)
Top, nuclear localization of Msn2 as a function of time (black dots are the mean from a
population of 379 cells; shaded gray error bars indicate SD) after a single pulse of blue light
(40 µW/mm22). The orange trace is the output of the computational model containing a
negative feedback loop for a single representative parameter set. The purple trace is a rep-
resentative output of a model not containing the feedback. Middle, concentration of cAMP
as a function of time for the model with (orange) or without negative feedback (purple).
The negative feedback model predicts a cAMP undershoot (minimum value denoted by a
star), whereas the open loop model (purple) monotonically approaches the steady-state value
(black dotted). The model undershoot is more pronounced than the experimentally observed
undershoot because of the detection limit of the experiment. Bottom, cAMP production and
degradation rates as a function of time. The undershoot in cAMP concentration is generated
by a delayed production of cAMP. The cAMP minimum (star) is reached when the rate of
cAMP production is balanced by the rate of degradation.
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Figure 2.3: Computational modeling is used to dissect the behavior of the ∆ira2,
∆pde1, and ∆pde2 mutants A) Model predicted nuclear localization of Msn2 (top),
concentration of cAMP (middle), and cAMP production/degradation rates (bottom) as a
function of time for ∆ira2. The plots are shown for two representative parameter sets, one
of each of the class 1 and class 2 parameter regimes that could explain this mutant. Top,
experimental nuclear localization in response to 40-µW/mm22 blue light input; symbols with
error bars in gray. Arrows indicate the change in minimum cAMP concentration (star) due
to the deletion. B) Same plots as in A, for the ∆pde1 and ∆pde2 mutants.
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Figure 2.4: High-precision control of cAMP using bPAC allows for system-
atic characterization of the PKA system using pulse width–, amplitude-, or
frequency-modulated input signals A) Peak nuclear localization of Msn2-mCherry in-
creases with blue light duration (left) and amplitude (right) in cells expressing bPAC. Ex-
perimental WT data collected at 30-s intervals for light durations of 0.5, 1, 1.5, 2, and 3
min with amplitude fixed at 40 µW/mm2 (left) and light amplitudes of 8, 10, 16, 20, and 40
µW/mm22 with duration fixed at 3 min (right). (See also Supplementary Figure 2.12.) Plots
show median values over ∼900 cells normalized to the maximum observed median value for
comparison of responses across different light doses. B) Top, the model predicts that nuclear
localization shows a trend similar to the experimental data of A when light amplitude or
duration increases (see Supplementary Figure 2.11). Data normalized by maximum value.
Bottom row, maximum simulated cAMP concentration increases with both light duration
and amplitude. C) Left, mean Msn2-mCherry nuclear localization after blue light illumi-
nation at different pulse frequencies. Right, peak mean Msn2 nuclear localization at each
frequency (black dots) with fit to second-order transfer function (gray lines). D) Left, model
prediction of the frequency sweep experiment in C for a representative set of parameters
(parameter set 17 in Supplementary Data Set S3). Right, peak Msn2 nuclear localization
at each frequency for representative parameter sets (black dots), with fits to second-order
transfer function (gray lines).
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2.6 Materials and Methods

2.6.1 Yeast strains and constructs

All yeast strains used for these experiments are derived from W303A-1 in which the ade2

marker was reverted to ADE2+ to reduce the autofluorescence. Msn2-mCherry was

integrated at the trp1 locus, and the bPAC construct was integrated into the leu2 locus.

Overexpression construct for RAS2(S24N) was integrated into the TRP1 locus of a LEU2+

MATalpha strain that contained an estradiol-inducible construct. All strains were

constructed using standard yeast protocols and LioAc/PEG transformation.

The RAS2(S24N) expression vector was constructed by amplification of the RAS2 gene

from yeast genomic DNA and cloned downstream of a prGAL1 promoter in a

TRP1-marked single integration plasmid. Site-directed mutagenesis was performed to

create the dominant-negative allele of RAS2(S24N) using a standard QuikChange protocol

and the pfuTurbo enzyme mix (Stratagene, La Jolla, CA). The bPAC gene was synthesized

with yeast-optimized codons by Integrated DNA Technologies (Coralville, IA) and cloned

downstream of a prNOP7 promoter in the LEU2-marked single integration vector.

2.6.2 Microscopy, image acquisition, and analysis

Cells expressing Msn2-mCherry or related constructs were plated in SD complete medium

onto concanavalin A–coated 96-well glass-bottom plates, allowed to settle, and then washed

twice with fresh medium and 100 µl of fresh medium added.

Samples were imaged on a Nikon Ti inverted scope with arc-lamp illumination using red

fluorescent protein (560/40 nm excitation, 630/75 nm emission; Chroma, Bellows Falls,

VT) and yellow fluorescent protein (510/10 nm excitation, 542/27 nm emission; Semrock,
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Rochester, NY) filters. Blue light illumination was provided by a 465-nm LED driven by a

USB-controlled power source (MIGHTex, Pleasanton, CA) mounted on the bright-field

condenser. Imaging and illumination were controlled and coordinated by custom Matlab

(MathWorks, Natick, MA) software interfaced with the µmanager software suite (Edelstein

et al., 2010 blue right-pointing triangle).

Images were processed and analyzed with ImageJ and custom-built Matlab scripts.

Nuclear localization was computed by dividing the average intensity of the brightest 10% of

pixels in the cell by the median intensity of the cell.

2.6.3 Deterministic model

An ordinary differential equation (ODE) model of the PKA regulatory network, consisting

of mostly Michaelis–Menten interactions, was constructed with five state variables and 24

parameters. Latin hypercube sampling and Nelder–Mead optimization of parameters31

were done to obtain model fits. Additional details of the computational methods are

described in Supplementary Note S1.
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2.7 Supplementary Material

2.7.1 Note 1

This note provides an overview of our computational methods.

Negative feedback model The main interactions in the PKA regulatory pathways are

depicted in Figure 2.3A. We model these interactions by

tPKAa = p9 cAMP(PKAt−PKAa) − p10 PKAa (2.1a)

t cAMP = p23u(t) + p11 RASa +p10 PKAa− p12 cAMP

cAMP +p13
− p14 cAMP

cAMP +p15p13

− p9 cAMP(PKAt−PKAa) (2.1b)

tRASa = p16
(RASt−RASa) CDC25

RASt−RASa +p17
− p18

RASa

RASa + p19
(2.1c)

tCDC25 = p22 − p20
PKAa CDC25

CDC25 + p21
(2.1d)

tMSNn = p2
MSNt−MSNn

MSNt−MSNn +p3
− p4

PKAa MSNn

MSNn + p5
(2.1e)

output = p1
MSNn +p0

MSNt−MSNn +p0
. (2.1f)

In these equations, PKAa and RASa represent protein activities, cAMP and CDC25

represent the concentration of the small molecule and protein respectively, MSNn is the

concentration of nuclear Msn2, and u(t) represents blue light intensity. The model is

characterized by 24 parameters, including the 21 shown above as well as three parameters

representing total protein concentrations: p6 = MSNt, p7 = RASt, p8 = PKAt.

Most of activation/inactivation and production/degradation terms are modeled by

Michaelis-Menten kinetics, including the kinetics of Msn2 shuttling in/out of the nucleus.

The interaction of PKA with cAMP, however, is modeled as a binding reaction. Inactive
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PKA is known to be a heterotetramer composed of a dimer of catalytic subunits and a

dimer of regulatory subunits. cAMP is thought to activate the catalytic subunits by

binding to and releasing the regulatory subunits. Here we assume that 2 cAMP molecules

bind simultaneously and non-cooperatively to 2 regulatory subunits to release 2 catalytic

subunits. Hence there is a 1:1 relationship between active catalytic subunits and cAMP

molecules. Further, cAMP production is explicitly modeled as having two components

dependent on Ras and blue light u.

Finally the output represents nuclear localization of Msn2, defined as the ratio of nuclear

Msn2 to cytoplasmic Msn2, and is modeled as a rational function of Msn2n as in equation

(0.1f). Here p1 allows the output to be scaled version of Msn2 while p0 accounts for

background intensity.

The equations were numerically solved by the LSODE solver for stiff differential equations

via the python package odespy.

Open loop model The open loop model replaces equation (0.1d) with

tCDC25 = p22 − p20
CDC25

CDC25 + p21
(0.1d*)

Fitting Fits of experimental data to the feedback model (Figures 2 and 3;

Supplementary Figure 2.11) and the open loop model (Figure 2.2; Supplementary Figure

2.3) were obtained by the three step procedure:

1. Sample parameters log uniformly with the requirements:

(a) Rates/concentrations are sampled between 10−4 and 104.

(b) p6 through p8 are sampled between 100 and 104.
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(c) The input and output parameters: p1 is sampled between 10−3 to 101; p1 and p23

are sampled between 100 to 102.

(d) 10.5 < p15 < 104. This is to ensure that the Pde1 and Pde2 terms can be

distinguished and have the correct relative affinities.

For both models, >107 sets were sampled.

2. Use the result of step 1 as seed values for Nelder-Mead optimization to fit to the

experimental wild type data. The objective function is the mean square error

weighted by the standard deviations at each time point.

3. Use the result of step 2 as seed values for Nelder-Mead optimization to fit to all 4

experimental strains. The mutants are modeled by

(a) ∆Ira2: p18 ← p18/4

(b) ∆Pde2: p12 ← 0

(c) ∆Pde1: p14 ← 0

The objective function is the mean square error weighted by standard deviations,

averaged over the 4 data sets, plus a penalty to encourage desired behavior. The

penalty is a heuristic that takes a weighted average of three terms,

(a) a term dependent on cAMP, to prevent the minimum cAMP concentration from

reaching zero,

(b) a term dependent on cAMPt|t=3− , to encourage the system to equilibrate by 3

minutes, and

(c) a function of the average standard deviation of all species concentration between

30 and 35 minutes, to penalize models that do not reach steady state 30 min

after bPAC induction.
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The equations were numerically solved by the LSODE solver for stiff differential

equations via the python package odespy.

Any fits outside the parameter ranges established in step 1 were discarded.

From this procedure, we found approximately 300 parameter sets for the feedback model

that fit all the experimental data.

Frequency sweep The response of the wildtype system to an input with varying period

was simulated with the 300 best parameters sets obtained from our three-step fitting

procedure described above. The input to the system was identical to that used in

experiments, as shown in Figure 2.4. The transfer function was found by identifying the

peak Msn2 nuclear localization (measured with respect to steady state Msn2 nuclear

localization) and then plotting the peaks as a function of frequency. This computationally

derived transfer function was then fit to the standard transfer function for first and second

order linear systems,

H1(f) =
C√

1 + (f/fc1)2
(2.2a)

H2(f) =
C√

(1− (f/fc2)2)2 + (f/fc2Q)2
, (2.2b)

where f is frequency and C, fc, and Q are fitted parameters. The second order transfer

function provided a better fit and produced the values for median cutoff frequency with

IQR reported in the main text. Fitting was performed by the curvefit function of the scipy

package.

The simulated phase response was determined by computing the lag of the output peak

with respect to the input peak, as a proportion of the input period. This was then scaled

appropriately and plotted against the input frequency.
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2.8 SI Figures

Figure 2.5: Extended blue light and fluorescent imaging exposure do not induce
nuclear localization of Msn2 Time traces of Msn2-mCherry nuclear localization are plot-
ted in green for cells with bPAC (left 3 panels) and cells without bPAC (right 3 panels).
The light blue shading indicates the time over which light is applied in the experiment. Blue
light exposure span three different durations – 3 minutes, 20 minutes, and 50 minutes – at
40uW/mm22 constant amplitude.
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Figure 2.6: Real-time control of PKA activity with bPAC allows for quantification
of Msn2 nuclear import and export rates A) Experimental blue light illumination
protocol and expected Msn2 translocation pulse. The green shading represents the range
considered as Msn2 nuclear import B, C) and the light blue shading represents the range
considered as Msn2 nuclear export (D). B,C) Single cell traces of Msn2-mCherry nuclear
import following shutoff of light pulse. When computationally synchronized as in C), these
traces can be used to estimate an average nuclear import rate of T1/2 =30s. Error bars
represent the standard deviation of three independent experiments. D) Nuclear localization
of Msn2-mCherry following reactivation of blue light. Nuclear export is estimated to have
T1/2 of 20s. Nuclear export was more synchronous than nuclear import, and traces can
therefore be immediately used for these export rate calculations.
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Figure 2.7: An open loop model does not recapitulate the transient pulse of Msn2
nuclear localization in response to a 3 minute transient blue light input starting
at time t = 2 minutes The open loop model was constructed by removing the Cdc25-PKA
interaction and fitting to WT data. State variables (arbitrary units) for a representative
fit are shown (solid lines). The different solid line represent different strain background.
Experimental data of Msn2 nuclear localization (output) is shown in circles. Other fitted
parameter sets are available in Supplementary Dataset 2.
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Figure 2.8: The negative feedback model exhibits a separation of time scales,
with PKA, cAMP, and nuclear Msn2 responding faster on average than Cdc25
and Ras Cumulative distribution functions for the time scale of each variable in the model
for each of the parameter sets of Supplementary Dataset 3 obtained by fitting to WT and
mutant Msn2 nuclear localization. For each fitted parameter set, each protein’s time scale
was computed by the formula shown (Segel, 1984).
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Figure 2.9: Distributions of time trace features (maximum peak and the time to peak of
Msn2 nuclear localization) show that WT and mutant populations are distinct. A) Single cell
distributions of the time trace features, maximum peak and time to peak, are plotted for WT,
∆ira1, ∆ira2, ∆pde1 and ∆pde2 samples with median and the interquartile range shown
(red). B) The medians of single cell distributions for the max peak heights and time to peak
are shown. The variability in the single cell data is attributed to a combination of natural
biological variability to input signal and also technical noise. The two-sample Kolmogorov-
Smirnov test was used to determine the significance of the difference in distributions of the
WT and the deletions mutants. Asterisk signifies statistically significant (p<0.05) differences
as compared to WT.
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Figure 2.10: Fitted parameter sets from Supplementary Dataset 3 exhibit two non-
exclusive features that explain the observed ∆ira2 phenotype. Class 1 is characterized
by an increase in cAMP concentration at steady state and during bPAC application whereas
class 2 is characterized by a fast attainment of the cAMP minimum. Both classes show a
reduced Msn2 pulse for ∆ira2.
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Figure 2.11: Simulated concentrations (arbitrary units) over time from the neg-
ative feedback model in response to a transient 3 minute pulse of blue light
starting at time t = 2 minutes Two parameter sets from Supplementary Dataset 3, ob-
tained by fitting the negative feedback model to WT and mutant Msn2 nuclear localization
measured during and after blue light illumination. The two chosen parameter sets are the
same as those that generated the data for model plots of Figures 2.3 and 2.4.
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Figure 2.12: Msn2 peak nuclear localization simulated for the parameter sets of
Supplementary Dataset 3 increases with light duration (top) and light amplitude
(bottom) Data normalized so that the median of peak Msn2 in response to a blue light pulse
of 3 minutes and 40uW/mm22 is 1. The distributions are across the different parameter sets
of Supplementary Dataset 3; boxes indicate quartiles with median in red.
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Figure 2.13: Using bPAC for frequency sweep of Msn2 nuclear localization A)
Simulated Msn2 nuclear enrichment and cAMP concentration in response to a light input
with varying frequencies, when light amplitude is increased by a factor of 1.5 (red) relative to
baseline (black). If bPAC input saturates, then the model underestimates cAMP production
at high frequencies. The effect of this underestimation can be assessed by increasing the
light input and observing the change at high frequencies. B) The distribution of the change
in peak height, as a function of input frequency, when the light input amplitude increases
by a factor of 1.5. For the three highest frequencies, where the underestimation of cAMP
production is most likely, the median change is close to one. C) Phase response for simulated
and experimental data shows general agreement.
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Chapter 3

Optogenetic control reveals

differential promoter interpretation of

transcription factor nuclear

translocation dynamics

3.1 Summary

The idea of using optogenetics to robustly control nuclear localization of transcription

factors had been explored using LANS and other natural and small molecule perturbations.

The natural and small molecule perturbations were not modular and difficult to handle.

And the first generation of optogenetic localization using LANS did not yield appreciable

gene expression. The next course of action was to either consider a different type of

molecular tool or to improve upon the current optogenetic tool. This chapter details the

engineering efforts to produce an optogenetic tool that can not only move proteins to and
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from the nucleus but also induce gene expression to allow study of promoter responses to

dynamic transcription factor localization.

3.2 Introduction

Transcription factors (TFs) are key mediators in the transmission of information from the

internal and external environment of the cell to its genome. Understanding how TFs

encode information about the environment in order to coordinate transcriptional programs

remains one of the most pressing problems in molecular and systems biology. Many studies

have explored how modulation of TF concentration, TF post-translational modification,

and combinatorial TF control can yield differential gene regulation33–35, therefore

explaining many important aspects of TF function and their information encoding

capacity. These mechanisms, however, may not fully account for the complexity of signal

multiplexing that is carried out by TFs. As a result, it has been proposed that TFs might

also encode information in their spatio-temporal dynamics, using for example different

patterns of nuclear shuttling for different inputs.

A number of studies have attempted to elucidate this TF dynamic encoding hypothesis by

eliciting different TF dynamic patterns using various environmental inputs and assessing

the consequences36–45,45,46. For example, it was shown that p53 exhibits fixed concentration

pulses in response to gamma radiation, but implements only one amplitude- and

duration-dependent continuous pulse in response to UV36. These two pulsing regimes have

different physiological outcomes, with the former leading to cell cycle arrest and the latter

leading to cell death43. Other studies programmed different TF nuclear translocation

patterns by gaining control of a signaling node upstream of the TF. A prominent example

of this approach is the modulation of Msn2 dynamics by regulating protein kinase A

(PKA). Inhibition of an analog-sensitive PKA by a small-molecule resulted in Msn2

38



translocation to the nucleus9,11,21,22,47. With this method, it was shown that genes in the

Msn2 regulon can be differentially modulated by the amplitude, duration, and frequency of

Msn2 nuclear translocation pulses.

In the budding yeast Saccharomyces cerevisiae, there are approximately 200 known TFs,

two-thirds of which are constitutively localized to the nucleus; the remaining one-third are

located in the cytoplasm during exponential growth in complete media48. At least nine of

these basally cytoplasmic TFs transiently localize into the nucleus in response to various

stress conditions8. Furthermore, different environmental conditions elicit a range of pulsing

characteristics for these TFs that differ in their duration, amplitude, and frequency8

(Supplementary Figure 3.6), suggesting that reversible TF nuclear localization may encode

regulatory information. This information is then decoded by downstream target genes in

order to produce an appropriate response49.

Control of TF localization through modulation of upstream regulators with small molecules

or chemicals has been an essential method to put forward such a hypothesis of TF dynamic

encoding9,20–22,43,47,50,51. However, this method produces pleiotropic effects that can be

hard to untangle. For example, PKA controls many transcriptional regulators in addition

to Msn2. As a result, modulating its activity with a small molecule may yield gene

expression changes that are not solely caused by Msn2 translocation dynamics but are

instead the result of combinatorial gene regulation by other PKA-responsive TFs such as

Msn425,50 and Dot652.

Therefore, to causally and quantitatively probe the relationship between TF nuclear

localization dynamics and transcriptional activity, a method by which TFs can be

specifically, quickly, and reversibly localized to the nucleus is needed. Specificity is

necessary to allow direct regulation of TF nuclear localization without pleiotropic effects,

while speed and reversibility are necessary to recapitulate the minutes-level resolution with

which TFs translocate into and out of the nucleus in response to environmental inputs.
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Ideally, this method would also work modularly with many TF cargos, including TFs that

are basally nuclear.

Here, we present CLASP, an optimized optogenetic tool that can exert precise, modular,

and reversible control of transcription factor localization. CLASP uses two LOV2

light-responsive domains derived from Avena sativa to sequester a cargo at the plasma

membrane in the dark and target it to the nucleus in response to blue light. We

demonstrate how CLASP can be used as a general strategy to control many TF cargos

without any further optimization. We exploit the characteristics of CLASP to control the

localization of Crz1, a pulsatile TF, and show unambiguously that its target promoters

have different abilities to differentially interpret pulsatile dynamics. Using data-backed

computational modeling, we explore the principles by which they can do so. Our studies

reveal that a more efficient response to short pulsed inputs can be achieved by a simple

two-state promoter model with fast activation and slow shut-off. By contrast, to achieve

more efficient gene expression from continuous inputs than from pulsed inputs, a more

complicated model with at least two activation steps or thresholding needs to be invoked.

Furthermore, to achieve this property in combination with a graded dose response, a

promoter model needs to minimally combine two activation steps and thresholding, with a

dependence of both activation steps on the TF. These results, made possible through the

productive use of CLASP in iteration with computational modeling, paves the way for

more thorough understanding of the general principles by which gene promoters can

interpret TF dynamics.
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3.3 Results

3.3.1 Construction and optimization of CLASP, a dual-LOV2

optogenetic strategy for control of nuclear shuttling

Some optogenetic tools that rapidly translocate protein cargos to the nucleus have been

developed13,53,54. A number of these tools utilized LOV2, a light-responsive protein often

isolated from A. sativa, to uncage a nuclear localization sequence (NLS) in response to blue

light. Uncaging of this NLS caused the translocation of the optogenetic molecule to the

nucleus along with any appended protein cargo. Light Activated Nuclear Shuttle (LANS)

is an example of this strategy13 (Figure 3.1A). While effective for some applications, the

architecture of this class of optogenetic tools may cause leaky nuclear localization for some

basally cytoplasmic TFs. An example of this phenotype is Msn2, which, in many cells,

exhibited constitutive nuclear localization when fused to LANS even in the absence of light

stimulation (Supplementary Figure 3.7A). Moreover, tools such as LANS cannot be used to

regulate localization of basally nuclear TFs, as there is no mechanism for preventing the

endogenous nuclear localization of these TF cargos.

A different optogenetic tool, LOVTRAP, a LOV2-based tool for protein sequestration,

could be used for rapid translocation of cargo with less leaky basal localization. LOVTRAP

is composed of a LOV2 fused to the mitochondria and Zdk1, a small peptide that is fused

to the protein cargo. The interaction of LOV2 and Zdk1 in the dark sequesters the cargo

to the surface of the mitochondria14 (Figure 3.1A). However, LOVTRAP alone does not

contain targeting information, and hence cannot direct the cargo to the nucleus on demand.

Therefore, to enable both robust and targeted optogenetic control of many different cargos,

we sought to use LOVTRAP in concert with LANS. The idea of combining optogenetic

sequestration and nuclear localization was previously investigated54,55. However, the
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resulting tools either required complex dual color stimulation54, thereby limiting the

number of fluorescent proteins that could be used in a cell, or did not demonstrate

modularity for different cargos55. These tools also lacked optimization for use in yeast.

To construct a modular and specific tool for yeast protein nuclear localization, we first

tackled optimization of the published LANS and LOVTRAP constructs.

Fluorescently-tagged (mCherry) LANS13 displayed only a moderate increase (3.4%) in

nuclear/cytoplasmic enrichment in response to blue light (Figure 3.1B, upper left panel).

This increase was much weaker than that seen for transcription factors in response to stress

inputs (Supplementary Figure 3.6, 20-50% increase). Additionally, the published

LOVTRAP tool used a TOM20 mitochondrial targeting tag that caused a strong growth

defect in yeast at high expression levels (Figure 3.1B, lower panel). LOVTRAP

sequestration had previously been shown to perform best when the mitochondria-bound

LOV2 trap was expressed in excess of the Zdk1; as a result, these high expression levels

were necessary for trapping many protein cargos, causing the growth defect to be an issue.

To improve LANS localization properties, we replaced the published LANS NLS with a

small library of yeast NLS peptides56 (Supplementary Table 3.1). We then screened blue

light induced nuclear localization of mCherry-LANS constructs that had any one of these

different NLS sequences. We identified a number of NLS sequences that showed an

improvement in nuclear/cytoplasmic enrichment in response to blue light (Supplementary

Figure 3.7B), including an NLS that increased the fold change by eight-fold. We chose this

NLS sequence to move forward as a yeast enhanced LANS (yeLANS) (Figure 3.1B). Next,

to rectify the growth defect associated with LOVTRAP sequestration to the mitochondria,

we swapped the mitochondrial TOM20 tag with a plasma membrane Hs-RGS2 tag57 to

create pm-LOVTRAP. This modification rescued the growth defect of LOVTRAP even at

high expression levels (Supplementary Figure 3.7C).

Finally, we combined yeLANS and pm-LOVTRAP to form CLASP (Controllable Light
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Activated Shuttling and Plasma membrane sequestration), a construct comprised of two

AsLOV2 domains. The first AsLOV2 domain is fused to the plasma membrane and

sequesters a Zdk1 fused to the N-terminus of the cargo (for example, a TF). The second

AsLOV2 domain is fused to the C-terminus of the cargo. This AsLOV2 domain is preceded

by a nuclear export sequence (NES) and has a nuclear localization sequence (NLS)

embedded in the J helix. Blue light causes a conformational change in both AsLOV2

domains, yielding the simultaneous unlocking of cargo and its targeting to the nucleus

(Figure 3.1A). Strains harboring CLASP did not experience any growth defect

(Supplementary Figure 3.7D).

We first tested CLASP with a red fluorescent protein (mScarlet) as a cargo. Confocal

microscopy showed that mScarlet-CLASP was successfully sequestered at the membrane in

the dark and translocates to the nucleus in response to blue light. Furthermore, widefield

microscopy showed that nuclear localization could be maintained stably for at least 80

minutes (Figure 3.1C). Varying the duration of the light input demonstrated that CLASP

could also track shorter light inputs (Supplementary Figure 3.7E-G). On average,

mScarlet-CLASP nuclear localization extended four minutes longer than the duration of

the input light pulse, illustrating its rapid shut-off time (Figure 3.1D, Supplementary

Figure 3.7E). The maximum nuclear/cytoplasmic enrichment achieved by mScarlet-CLASP

was also graded as a function of light amplitude; when subjected to one minute pulses of

increasing amplitude (64-1024 a.u.), enrichment increased commensurately for a wide range

and saturated after 256 a.u. of light (Figure 3.1D, Supplementary Table 3.2).

Finally, to test the ability of CLASP to respond to repeated light pulses and probe its

dependence on their period, we subjected the cells to one minute pulses of blue light

repeated every 2-9 minutes (Figure 3.1E, left 3 panels show one minute pulses every 2, 5,

or 9 minutes). These experiments revealed that mScarlet-CLASP followed these pulses

faithfully until the pulses became too rapid, that is, when the next light pulse occurred
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during the time required for nuclear exit (4 minutes). This effect occurred when pulses

were repeated every 2 minutes, at which point nuclear localization became almost

continuous at a high level. Quantification of the mean peak-to-trough difference in nuclear

localization of single cell traces for different periodic light inputs showed a clear

dependence on the period of the light pulse (Figure 3.1E).

Overall, our data indicate that mScarlet-CLASP could be rapidly, reversibly, and

repeatedly localized to the nucleus as frequently as every five minutes and that the

duration and the magnitude of this translocation could be robustly controlled.

3.3.2 CLASP achieves precise, modular control of TF nuclear

translocation and activation of target genes

The usefulness of CLASP depends on its ability to successfully control translocation of TF

cargos while maintaining their function. Our next step was therefore to test the ability of

CLASP to quickly and reversibly control the translocation of three basally cytoplasmic

transcription factors to the nucleus. We chose a synthetic transcription factor, SynTF,

constructed from Cys2-His2 zinc finger domains and a VP16 activation domain58, as well

as Msn2, the principal transcription factor in the environmental stress response59, and

Pho4, the principal transcription factor in the phosphate starvation response60. Both Msn2

and Pho4 have been known to translocate to the nucleus in response to stress8,60. The

three TF cargos were also tagged with a C-terminal RFP (mScarlet) for visualization.

For all three TFs, TF-CLASP achieved its maximal nuclear localization in response to light

within one minute of blue light exposure. Like the mScarlet cargo, the TF cargos reversibly

translocated to the nucleus as frequently as every five minutes when induced with a one

minute pulse of light. Furthermore, a sustained light input produced continuous nuclear

localization of the TFs, indicating that CLASP was capable of maintaining robust nuclear
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localization of associated TF cargos for an extended period of time (Figure 3.2A). The

maximum nuclear/cytoplasmic enrichment fold change achieved with CLASP for Msn2 as a

cargo was similar to that of Msn2 with a strong osmotic shock using 0.95M Sorbitol61

(Supplementary Figure 3.6).

To test whether nuclear localization of the TFs led to concomitant gene expression, we

constructed promoter fusions expressing YFP with promoters that were responsive to

SynTF (pSYNTF-YFP), Msn2 (pHSP12-YFP), and Pho4 (pPHO84-YFP). We then

exposed these strains to fixed-amplitude light inputs (Supplementary Figure 3.8A) of

increasing duration (0.5-2 hours) and measured YFP fluorescence via flow cytometry. For

all three TFs, increasing the duration of the light input led to increased downstream

reporter gene expression, illustrating that the TF was still functional despite its fusion to

CLASP. Notably, SynTF-CLASP yielded more than 20-fold activation of pSYNTF-YFP

with only 2 hours of light activation (Figure 3.2B). Gene expression in the dark

downstream of the three TF-CLASP constructs was similar to basal expression, and was

also commensurate after light induction to gene expression generated by a constitutively

nuclear TF (Supplementary Figure 3.8B-D, Supplementary Text).

Next, we explored whether CLASP could control localization of transcription factors such

as Gal4, which was basally nuclear. Gal4-CLASP was successfully sequestered to the

plasma membrane in the dark and reversibly translocated to the nucleus in response to

light. Nuclear translocation of Gal4-CLASP also activated expression from pGAL1, a

Gal4-responsive promoter (Supplementary Figure 3.8E-G), indicating that CLASP was

able to control TFs irrespective of their endogenous nuclear localization.

Finally, we sought to demonstrate that different TF dynamic translocation patterns

generated with CLASP could yield different gene expression outputs. Several transcription

factors, such as Pho4 following phosphate starvation, translocate into the nucleus in

response to a stress input and reside there continuously until the response was
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completed60. Others, including Msn2 following a 0.4% glucose input, have been known to

translocate into the nucleus with episodic and repeated pulses in response to an activating

input8. Moreover, Msn2 has also been known to translocate with sustained pulses in

response to osmotic shock (Supplementary Figure 3.6B). As a result, we sought to explore

the gene expression consequences of pulsing relative to continuous localization of the three

CLASP-fused TFs (SynTF, Msn2 and Pho4). We delivered two light inputs that had

different dynamic patterns but the same cumulative light duration of 40 minutes. In the

first case, light was switched ON for 40 minutes, and in the second, light was given in 20

episodic pulses (2 minutes ON/10 minutes OFF) (Figure 3.2C). Delivery of the same

cumulative light input and measurement at the end of the time course were necessary

controls to compare efficiency of response of pulsed input relative to continuous inputs.

YFP fluorescence was measured for both inputs after 5 hours using flow cytometry. These

data showed that continuous nuclear residence of SynTF-CLASP, Msn2-CLASP, and

Pho4-CLASP produced more gene expression than pulsed translocation, indicating that

these promoters respond more efficiently to continuous inputs than pulsed inputs. This

directly demonstrates that TF nuclear translocation dynamics could affect downstream

reporter gene expression, an idea that we wanted to explore in more depth.

3.3.3 CLASP control of the Crz1 TF reveals that its target

genes differ in their efficiency of response to short pulses

To further explore the modes of decoding of TF dynamics by promoters in a biologically

meaningful setting, we chose to focus on Crz1, the main TF in the calcineurin-Crz1

signaling pathway that responds to calcium stress. Crz1 has been shown to exhibit two

modes of pulsatile nuclear translocation in response to calcium chloride (CaCl2) stress – a

single long initial pulse (40-60 min) and subsequent episodic repeated pulsing (1-4 min)

(Supplementary Figure 3.9A). We reasoned that continuous nuclear localization and
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pulsing of Crz1 could be interpreted differently by different target genes, a behavior that

could be revealed and studied by controlling its localization using CLASP.

Crz1 has been shown to undergo phosphorylation on multiple residues to activate gene

expression in calcium stress7. Therefore, to survey the response of Crz1 target genes to

dynamic inputs using CLASP, we needed to adopt a variant of Crz1 that bypassed this

regulation, an endeavor that could be necessary for studying the effects of many TFs with

CLASP. We therefore built a strain in which Crz1*, an alanine mutant with 19 S/T to A

substitutions of Crz1, was used as a CLASP cargo. Crz1* was basally nuclear and

bypassed the post-translational modification required of Crz17 (Supplementary Figure

3.9B). To verify that Crz1* preserved the transcriptional profile of wild type Crz1, we

carried out mRNA sequencing of cell populations in which the wild type allele of Crz1 was

knocked out and Crz1* was expressed from a constitutive pADH1 promoter. We compared

the up-regulated genes of the Crz1* strain (where Crz1* is basally nuclear) with genes

upregulated by Crz1-yeLANS under CaCl2 stress. Hierarchical clustering of the resulting

gene expression profile shows similarly up- and down-regulated gene sets between these two

samples (Supplementary Figure 3.9C). By probing individual Crz1 target genes with

fluorescent reporters, we also found that light-induced Crz1*-CLASP, but not light-induced

Crz1-CLASP (Supplementary Figure 3.9D), was able to elicit appreciable gene expression.

For example, Crz1*-CLASP driving pPUN1-YFP, a canonical Crz1 responsive promoter,

achieved similar gene expression fold change (1.8) as pPUN1-YFP in calcium stress (1.7)

(Supplementary Figure 3.9E). Importantly, Crz1*-CLASP did not cause increased gene

expression in the absence of light, indicating that CLASP was able to successfully sequester

the nuclearly localized Crz1* outside of the nucleus in the dark (Supplementary Figure

3.9F).

We next identified six Crz1 gene targets (Yps1, Ena1, Mep1, Put1, Cmk2, Gyp7) for follow

up studies. We used the promoters of these genes, which have also been canonically used in
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the literature5,62, to build YFP-expressing promoter fusions, each in a strain with

Crz1*-CLASP tagged with mCherry for visualization (Figure 3.3A). We subjected these

cells to two distinct types of inputs that mimic natural Crz1 translocation: 2 minute short

repeated pulses with different periods or one continuous pulse of varying duration (Figure

3.3A). We checked that extended light exposure did not cause a growth defect in the Crz1

overexpression strain (Supplementary Figure 3.9G). We then measured the nuclear

enrichment of mCherry-tagged Crz1*-CLASP continuously at 30 second intervals. We also

measured gene expression from all six YFP promoter fusions at 5 hours for all inputs given

(Figure 3.3A). Every input (pulsatile or continuous) generated a given nuclear occupancy,

which we calculated as the integral of the measured Crz1*-CLASP nuclear enrichment time

traces. A given nuclear occupancy was associated with a commensurate gene expression

value (measured at five hours), and these values were plotted against each other for the two

input regimes for each of the six promoters. The resulting plot for all nuclear occupancy

values are referred to as the Gene Output - Nuclear Occupancy plot (Output-Occupancy

plot for short). Exploration of gene expression as a function of nuclear occupancy allowed a

comparison on equal footing of the overall integrated responses to pulsed and continuous

inputs. The Crz1-responsive promoters showed a spectrum of qualitative and quantitative

behaviors in the Output-Occupancy plots (Figure 3.3A-C, Supplementary Figure 3.9H-J).

For pGYP7-YFP, like the promoters shown in Figure 3.2, a pulsed input generated lower

gene expression output than a continuous input of the same nuclear occupancy for all

values tested, a phenotype that we termed efficient response to continuous inputs (Figure

3.3B). For pCMK2-YFP, pulsed and continuous inputs generated almost identical gene

expression output. However, for pYPS1-YFP, pulsed inputs produced higher gene

expression output at all Crz1*-CLASP nuclear occupancy values tested, a phenotype that

we termed efficient response to pulsed inputs. These phenotypes were qualitatively

reproducible despite slight quantitative day to day variability in gene expression between

experiments (Supplementary Figure 3.9H-J). The difference in output between pulsed and
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continuous input as a function of nuclear occupancy was quantified as the ratio of slope of

the two lines in the Output-Occupancy plot, termed the slope ratio (Figure 3.3A). This

metric showed that the six Crz1 responsive promoters spanned a range that is bracketed by

pYPS1-YFP (slope ratio > 1) and pGYP7-YFP (slope ratio < 1), going from a more

efficient response to pulsed than continuous inputs to the opposite phenotype (Figure

3.3C). These phenotypes must reflect different promoter properties since all promoter

fusions generated the same YFP as the protein output. We next turned to data-backed

computational modeling to systematically explore and interpret these behaviors.

3.3.4 Efficient response to short pulses by promoters can be

explained by a simple model with fast promoter activation

and slow shut-off

To understand the general determinants of the behavior of the Crz1-responsive promoters,

we first built a simple and parsimonious model of gene expression. The model consisted of

a promoter that occupied two states, OFF (poff ) and ON (pon), with the rate constants kon

and koff describing the transition between the two states. The rate of promoter activation

depended on the concentration of nuclear TF. The activated promoter then produced YFP

mRNA at rate β1 and β0, which represented the basal activity of the promoter, and the

YFP mRNA produced the YFP protein at rate β2. mRNA and protein degraded with rates

γ1 and γ2, respectively (Figure 3.4A). Since the data represented a YFP promoter fusion,

the protein degradation rate (γ2), protein production rate (β2) and mRNA degradation

rate (γ1) were assumed to be the same for all promoters. Hence, all remaining parameters

that differed among the different promoters were only related to promoter properties.

Moreover, γ1 and γ2 were set to plausible values corresponding to YFP characteristics from

the literature63,64. The model was simulated with the same pulsatile or continuous nuclear
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localization input regimes used in the experiments and the output was the YFP protein

value at 5 hours, mimicking the experimental setup and data collection procedures.

To explore a wide range of parameter regimes, we randomly sampled 10000 parameters

(kon, koff , β1, β2, β0) and generated Output-Occupancy plots and the slope ratio metric for

every combination. A plot of slope ratio as a function of each sampled parameter set

showed that there was no relationship between β1, β2, or β0 and slope ratio

(Supplementary Figure 3.10A). Instead, β1, β2, and β0 scaled the range of the output

curves. We therefore focused on the influence of kon and koff on slope ratio, plotting the

values of that metric as a heatmap in the kon -koff plane (Figure 3.4B). Broadly, there were

two clear patterns. First, all parameter combinations tested produced higher gene

expression output from pulsed inputs than continuous inputs for all nuclear occupancy

values (slope ratio was always ≥ 1) (Figure 3.4A-E). Second, the separation between the

continuous and pulsed input curves in the Output-Occupancy plots was dictated by the

values of kon and koff , with the separation increasing with increasing kon/koff . At very

large kon/koff , the pulsed output became multi-sloped (gray region in Figure 3.4B).

Since the translation and degradation rates in this model were fixed, the observed

differences at the protein level were determined by the differences in the promoter activity,

pon, which in turn was dictated by kon and koff . Hence, to gain intuition about the model

results, we focused on the promoter activity, pon, in three regimes marked 1, 2, and 3 in

Figure 3.4B, which provided snapshots of promoter activity as kon increased and koff

decreased. In the first regime (1), kon was much smaller than koff so that a pulsed input

did not induce full ON switching of the promoter within the duration of a short pulse,

while pon could reach its maximum possible value during a continuous longer input. This

caused an amplitude difference in pon between pulsed and continuous inputs (Figure 3.4C).

However, a relatively slower koff implied that the promoter stayed ON for a period of time

beyond the duration of the input, and when repeated for every pulse, this residual activity
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could counteract the amplitude deficiency (Figure 3.4C, hatched region under pon curves).

Hence, in this kon/koff regime, the protein output of the short pulsed input was slightly

higher than that of the continuous input. In the second regime (2 in Figure 3.4B), a larger

kon caused the promoter to turn fully ON within one short pulse, and a small koff again

caused the promoter to switch OFF slowly, maximizing the gain from every pulse (Figure

3.4D). As a result, the cumulative promoter activity generated by a short pulsed input was

large, and the difference in protein output generated by a pulsed compared to a continuous

input of matched nuclear occupancy was also large (Figure 3.4D). In the third regime (3 in

Figure 3.4B), at an extreme where kon >> koff , the promoter was ON for the whole

duration of the short pulsed input (4 hours of repeated pulses of 2 minutes each, for

example), with little OFF switching of the promoter during repeated pulses. On the other

hand, a continuous input, with the same cumulative nuclear residence as the short pulsed

input, would generate a promoter that was ON approximately only for the duration of the

pulse plus the switching off time of the promoter (Figure 3.4E, region b lower panel). The

change in the slope of Output-Occupancy plot occurred when the promoter did not shut

completely OFF between two consecutive pulses (compare plots for point (a) and (b) in

Figure 3.4E upper and lower panel). While the model identified this regime, which could

be applicable to some promoters, none of the promoters we explored showed strong

multi-slope Output-Occupancy curves. Specifically, pYPS1-YFP showed a clear

Output-Occupancy relationship with one slope, making it likely that this promoter

operated in the kon/koff regime in regime 2.

To test whether the model could provide a quantitative fit to the pYPS1-YFP and

pCMK2-YFP data, we further fit the parameters to the Output-Occupancy data,

specifying fits to be model predictions that maximized the fit through the data points

within the error bars for pYPS1-YFP (15 parameter sets) and for pCMK2-YFP (489

parameter sets) (Figure 3.4F-G). We then subjected these fits to cross-validation, asking

whether the parameters with the accompanying model could reproduce the dose response

51



of pYPS1-YFP and pCMK2-YFP. We measured these dose responses in an independent

experiment using strains in which Crz1*-CLASP was expressed at different levels using a

suite of constitutive promoters of different strengths65 (pRPL18B, pADH1, and pTEF1).

These strains, which also harbored either pYPS1-YFP or pCMK2-YFP, were subjected to

continuous light input over four hours, leading to maximum nuclear localization in all

strains. Different strains had different amounts of nuclear Crz1*-CLASP when localized

with light, therefore measurement of YFP in each strain provided a different point on the

dose response (Figure 3.4F, G). We subjected the model to the same treatment in silico,

and produced computational predictions of the dose response curves for all parameter sets

that fit the Output-Occupancy data for pYPS1-YFP or pCMK2-YFP (Figure 3.4F, G, H).

Computational and experimental predictions were in strong qualitative agreement.

Taken together, our data show that a simple promoter model can provide a straightforward

scenario in which a promoter can respond more efficiently to repeated short nuclear pulses

of a TF than a continuous input. A tight iteration of modeling and experiment further

revealed that this behavior is dependent on the dynamics of promoter activity produced by

fast promoter activation coupled with its slow inactivation. Fast promoter activation leads

to complete activation during a short pulse, and slow promoter turnoff leads to

accumulation of expression over the course of repeated pulses, providing insight into how

even simple promoters can readily decode dynamic inputs.

3.3.5 Efficient response to continuous inputs by promoters can

be explained by a model with a thresholded transition

between non-transcribing promoter states

The simple model from the previous analysis could not produce the pGYP7-YFP

phenotype (Supplementary Figure 3.11A-B). When the output difference between the

52



pulsed and continuous inputs was small (kon << koff ) in this model, the output of the

pulsed input was always higher than the continuous input. This was because while

decreasing kon reduced the output of the pulsed input, it also reduced the dynamic range of

the output in response to a continuous input to a point where kon was so small that the

promoter was barely activated and the much faster koff quickly shut off promoter activity,

resulting in a promoter that was essentially unresponsive to either inputs (Supplementary

Figure 3.10B).

In order to identify a minimal model that explained the pGYP7-YFP phenotype, we

explored eight elaborations of the simple promoter switching model from Figure 3.4 using a

sequence of fitting and cross-validation. In this process, each model was first fit to the

Output-Occupancy data in Figure 3.3; one of the eight models failed to fit. Models that fit

the Output-Occupancy data were further fit to the dose response of pGYP7-YFP, which

was collected in the same way as for pCMK2 and pYPS1. The pGYP7-YFP dose response

was remarkably linear, and four models failed to fit it (Figure 3.5A-D). For the 3 remaining

models, the dose response data served to further constrain parameter sets. For those refined

parameters, we cross-validated the models on the data from an additional experiment in

which we expressed Crz1*-CLASP from a stronger promoter (pTEF1 versus pADH1), and

measured gene expression following a cumulative light induction of 40 minutes

administered either as pulsed or continuous input. Following these rounds of fitting and

cross-validation (Supplementary Figure 3.11C-R), only two of the models surveyed were

able to explain all the data we collected (Figure 3.5A-D, Supplementary Figure 3.11O-P).

The two models were structurally similar – they both extended the simple two-state model

to contain another promoter state, thereby necessitating transition through an

unproductive promoter state (poff ) before the promoter can be fully activated. Therefore,

in these models, the first transition occurred reversibly between promoter state p0 and a

non-transcribing state poff with rate constants ron and roff , while a second transition stage
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occurred between poff and pon with rate constants kon and koff . Both models also

necessitated a linear dependence on TF in the second transition stage, whose effect was to

prevent the dose response from exhibiting a thresholded behavior. Finally, the two models

necessitated a thresholded interaction in the first promoter transition stage, but differed in

where it was applied – in one model, ron was a thresholded function of TF, while in the

other model, it was roff that was thresholded by TF (Figure 3.5A, Supplementary Figure

3.11O). The threshold on either ron or roff prevented short pulsed inputs from fully

transitioning the promoter from the p0 state, essentially creating a filter for short inputs.

Detailed descriptions of all models and their exploration can be found in the

Supplementary Text and Supplementary Figure 3.11.

To gain more insight into the pGYP7-YFP phenotype, we further explored the 3-state, roff

threshold model for many parameter values (Figure 3.5A). We sampled the model

parameters by fixing ron and kon to values that fit the data from Figure 3.5B-D and varied

roff and koff within a range of four logs. We then generated Output-Occupancy plots for

every parameter set and computed its corresponding slope ratio metric, which we plotted

in the log10(kon/koff ) - log10(ron/roff) plane (Figure 3.5E). Overall, we found that this

model can generate both higher expression with a continuous input (slope ratio < 1, black

region in Figure 3.5E, top panel) and higher expression with short pulses (slope ratio > 1,

colored region on Figure 3.5E, top and bottom panel).

Quantitatively, there seemed to be three parameter constraints for this promoter model to

respond more efficiently to a continuous input than a pulsed one. First, the rate of

transition from p0 to poff should be slow; second, roff should be fast relative to ron; third,

koff should be fast relative to kon. An analysis of the 3-state ron threshold model

demonstrated similar requirements (Supplementary Figure 3.12A-B). When ron and roff

were increased tenfold, there were no parameter combinations that generated higher

expression for continuous inputs than short pulses (Figure 3.5E, bottom panel, Figure
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3.5F-G, top panel). The difference in the protein outputs between the pulsed and

continuous inputs was determined by the amplitude differences of promoter activity pon

(Figure 3.5F-G, middle panel), which was in turn dictated by the amplitudes of depletion

from p0 for the short pulsed and continuous inputs (Figure 3.5F-G, middle panel). A slow

transition from p0 prevented the quick, full depletion of this state before a short pulse

ended, while p0 was fully depleted for the continuous input (Figure 3.5F, middle panel). In

contrast, when ron and roff were fast, this difference disappeared as the transition from p0

was now able to reach the same maximal amplitude in the duration of the short input

(Figure 3.5G, middle panel). Hence, the incomplete depletion of the p0 state in the

duration of the short pulsed input accounted for the difference in protein outputs between

the short pulsed and continuous inputs.

The requirement that the value of roff be large relative to ron was motivated by the fact

that roff dictated how quickly the promoter state transitioned back to the initial OFF

state p0 after the end of a short pulse. When the value of roff decreased relative to ron

(Supplementary Figure 3.12C), the depletion of p0 could proceed to completion during a

short pulse (Supplementary Figure 3.12C, middle panel), and the resulting maximum

amplitudes of the active promoter state pon were more comparable for a pulsed or

continuous input (Supplementary Figure 3.12C, bottom panel). Lastly, as koff was

decreased while keeping all other parameters constant, the pon to poff switching also

slowed, and promoter activity continued unabated between two pulses, hence maximizing

the gain of promoter activity from every input pulse and causing stronger gene expression

from pulses than from a continuous input (Supplementary Figure 3.12D). This was in

essence the same mechanism as described in Figure 3.4. In summary, slow transition from

the initial OFF state to the secondary OFF state prevented the short pulsed input from

achieving a quick depletion of the initial OFF state, essentially creating a filter for short

inputs. This analysis reveals that differences in dynamic changes in promoter activity can

result in more efficient response to a continuous TF input than a pulsed input.
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Finally, in addition to the constraints above, we found that a threshold of log10(kon/koff )

∼< -1.5 seemed to demarcate the transition between a linear and nonlinear promoter dose

response in the parameter regime probed (light gray points, Figure 3.5E, left panel),

therefore imposing quantitative bounds on this promoter model to exhibit a graded dose

response as seen in the data.

3.4 Discussion

In this work, we presented a general optogenetic tool that circumvents some functional

caveats of previous methodologies, and used it productively to investigate in a systematic

way how promoters are able to differentially respond to pulsed versus continuous

transcription factor localization. Our tool, CLASP, was inspired by previous optimization

efforts that attempted to make optogenetic control more precise and malleable66–70.

However, we pushed our optimization and characterization efforts further, producing a tool

that was functional for all cargos tested, had a large dynamic range and no detectable

deleterious impact on the cell. We capitalized on this tool to ask a simple and profound

biological question – can genes differentiate between transcription factor inputs that differ

only in their dynamic patterns? CLASP allowed us to directly test and provide a definitive

demonstration of this phenomenon for a number of TF-promoter pairs. We then explored

mechanistic underpinnings of this behavior using the transcription factor Crz1, whose

response to calcium stress is naturally pulsatile.

The precise and robust operation of CLASP allowed us to approach this investigation

methodically, establishing through rounds of computational modeling and experimentation

two classes of models that could explain how Crz1 promoters may respond differentially to

different Crz1 pulsing inputs. For promoters that responded more efficiently to short

pulsed inputs, we demonstrated that their behaviors could be simply explained by a
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two-state model of the promoter (ON or OFF), transitioning between them with first order

kinetics. If the ON rate, which is dependent on the nuclear TF concentration, is fast and

the OFF rate is slow, then the output from short pulses is larger than for a continuous TF

input of the same nuclear occupancy. By contrast, for promoters that responded more

efficiently to continuous than pulsed TF inputs, a more involved model needed to be

invoked. Interestingly, for pGYP7, this behavior coincided with an additional property – a

linear dose response. To explain the efficient response to continuous inputs in isolation,

either a thresholded step in a two-state model or a model with additional promoter states

was sufficient. To satisfy a linear dose response in isolation, koff/kon of a simple two-state

model must be relatively large. Yet, in order to satisfy both properties simultaneously, an

involved model that fulfilled the requirements for each individual property and that

included a dependence on the TF at each promoter stage was needed.

What possible benefits of this differential interpretation, and of the dose response linearity,

might exist for the cell? Under stress, Crz1 undergoes an initial long 40-60 minute nuclear

localization, followed by pulsing in the “maintenance” phase of the calcium response. It is

possible that differential interpretation of these dynamic inputs by different sets of genes is

used as a mechanism to temporally program the response, with cohorts of genes activating

strongly in the first long pulse and then to a lesser degree with the subsequent pulsatile

episode, while others do the opposite. Moreover, it has been observed that Crz1 pulses

with different amplitudes in the “maintenance” phase. In this work, we established that

pGYP7 was inherently linear as a function of Crz1 input for a broad range of Crz1 levels

(Figure 3.5). Hence a linear dose response extend the efficient response to a continuous

input over a range of Crz1 pulse amplitudes in the maintenance phase.

Our studies presented concise phenomenological promoter models which were filtered

through rounds of cross validation and explained all the data collected. These models

correspond to well-understood mechanisms of promoter regulation. The 2-state kinetic
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model that describes the pYPS1-YFP behavior may represent a simple promoter activated

by a TF. The two promoter models that describe pGYP7-YFP, in which a thresholding

step in promoter transition occurs either in the ON (ron) or the OFF (roff) rates, can

represent more complex biological mechanisms. The 3-state promoter, on the other hand,

can correspond to closed (p0), open but non-transcribing (poff ), and open and transcribing

(pon) states of the promoter. Additionally, the TF-thresholded transitions of ron can

represent transcription factor activation of chromatin remodelers71,72, while thresholding in

the roff rate constant can represent transcription factor inhibition of heterochromatin

formation either by physical occlusion of nucleosomes73,74 or inhibition of deacetylation of

nucleosomes75–77. Available nucleosome occupancy data for Crz1 target genes support the

models that describe pYPS1-YFP and pGYP7-YFP by showing a negative correlation

between nucleosome occupancy and responsiveness to short pulses in our data, with genes

that respond efficiently to short pulses exhibiting lower nucleosome occupancy

(Supplementary Figure 3.12E-F). This correlative data aligns with the idea that a more

efficient response to continuous inputs requires additional promoter regulation, such as a

TF-gated promoter transition between non-transcribing promoter states, compared to

promoters that respond efficiently to short inputs. Still, more mechanistic studies, such as

RNA FISH for observation of promoter dynamics, are needed to pinpoint the biochemical

mechanisms that underlie these models.

While we used CLASP to explore fundamental aspects of promoter dynamics, many

investigations that extend this work in broader directions are readily possible. For example,

we showed that CLASP can sequester and translocate basally nuclear TFs (Supplementary

Figure 3.8E-G), and therefore can be used with a variety of cargos to mimic dynamic TF

knockouts in the presence of their activating environmental inputs, or combinatorial TF

regulation using a leave-one-out strategy. More generally, CLASP is likely transplantable

to other cells and organisms. In mammalian cells, NFAT, the Crz1 homolog, is known to

respond to immunological stimuli with nuclear pulsing78. We envision using CLASP in this
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context to explore whether NFAT target genes also use differential decoding to modulate

different expression programs and determine general conserved principles.

Our exploration into the possible mechanisms of differential decoding could also guide

engineering of frequency-responsive promoters. A more in-depth computational and

experimental analysis of Crz1 target gene promoters may reveal concrete sequence motifs

for building promoters that differentially decode TF dynamics. Frequency-responsive

promoters can provide a useful alternative for distinct signal encoding in experimental

setups where a single input is desired or necessary. These promoters can diversify available

inputs for synthetic biology and metabolic engineering applications.

Finally, while our studies focused on transcriptional regulation at the promoter level, many

opportunities for further decoding of TF information can be implemented through

modulation and control of translation and degradation of mRNA and protein

(Supplementary Figure 3.10C). It will be fascinating to study the bounds of complexity

explored by endogenous genes through combinatorial tuning of all steps of gene expression

to implement sophisticated dynamic decoding capabilities.
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3.5 Figures
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Figure 3.1: Design, Optimization, and Characterization of CLASP A) Schematic
illustrating CLASP mechanism. B) Optimization of LANS NLS (top panels) and LOVTRAP
localization (bottom panel). Top panels show mean value of nuclear/cytoplasmic enrichment
fold change for original NLS and optimized NLS (yeLANS) as a function of time when given
a pulse of blue light. Nuclear/Cytoplasmic enrichment fold change is calculated relative
to the nuclear/cytoplasmic enrichment at t=0. Bottom panel shows mean of OD600 in
3 growth experiments for original LOVTRAP targeted to mitochondria in addition to the
optimized plasma membrane targeted LOVTRAP. C) (top panel) Confocal microscopy image
showing mScarlet-CLASP localization at the plasma membrane in the dark (left) and in the
nucleus (right) after 3 minutes of light exposure. (bottom panel) Quantification of mean
nuclear/cytoplasmic enrichment fold change of mScarlet-CLASP as a function of time in
response to a prolonged light input (80 minutes, 1024 a.u. light input amplitude). Black
line represents the mean of 74 cells. D) Quantification of the response of mScarlet-CLASP
to light inputs with different dynamic characteristics. Left plot shows median time to return
to within 25% of basal nuclear/cytoplasmic enrichment for light pulses of different durations
and constant 1024 a.u. amplitude. Median is used to minimize the effect of outliers. The
dotted line is Y=X line. Right plot shows the mean response to one minute light pulses of
different amplitudes. E) Nuclear/cytoplasmic enrichment fold change of mScarlet-CLASP in
response to light pulsing with different periods. Left three graphs show mean enrichment fold
change as a function of time in response to pulsed light inputs (1 minute light given in a 9,
5, or 2 minute period, respectively) with 1024 a.u. amplitude. Right plot quantifies median
peak-to-trough difference (normalized to the median peak-to-trough difference generated by
the shortest period). Median is used to minimize the effect of outliers. Error bars and shaded
area, except where noted, represent standard deviation to show the spread of the data. For
all panels, n represents the number of cells tracked and light input regimes are depicted on
top of panels. Cartoon (left of D) represents mScarlet-CLASP. yeLANS – yeast enhanced
LANS, PM-LOVTRAP – Plasma Membrane LOVTRAP, Mito-LOVTRAP – Mitochondrial
LOVTRAP.
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Figure 3.2: CLASP can be used to control localization of many transcription
factor cargos A) Nuclear/cytoplasmic enrichment fold change in response to pulsed (left
panels) and continuous light (right panels) for several TF-CLASP cargos. Graph shows
mean of single-cell traces for transcription factors tagged with CLASP. Light is delivered
for one minute at the start of each five-minute period or continuously. Shaded gray area
represents 95% confidence interval and light inputs are represented in blue above graphs. B)
Fluorescent reporter expression due to TF-CLASP localization. Left panel shows a schematic
of the experiment – the TF is localized to the nucleus for 0.5, 1, 1.5 or 2hrs. A fluorescent
reporter is measured via flow cytometry one hour after light shut-off. Center panel shows the
population response of pSYNTF-YFP (promoter downstream of SynTF-CLASP) for inputs
shown on the left. Darker blue shades correspond to longer light duration. Black histogram
corresponds to no light. Right panel shows quantification of the YFP fold change as a
function of light duration for promoters responsive to other TF-CLASP constructs following
the same experimental protocol. Fluorescence readings are normalized by side scatter and
then normalized to the 0m dose for each strain to show fold change. Error bars represent
standard error of the mean for 9 biologically independent replicates. C) Fluorescent reporter
response to pulsatile versus continuous localization of different TF-CLASP constructs. TF-
CLASP constructs are given either 20 two-minute pulses of light or 1 forty-minute pulse
of light, as depicted in the schematic on the left. Reporter expression is measured via flow
cytometry one hour after light shut-off. Right panels show quantification of YFP fold change
in response to pulsed light input, continuous light input, or no input. Error bars represent
standard error of the mean for 9 biologically independent replicates. In all panels, strains
are induced with a given amplitude of light (SynTF-CLASP – 1024 a.u.; Msn2-CLASP –
2048 a.u., Pho4-CLASP – 4095 a.u.).
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Figure 3.3: Crz1 target genes show differing interpretation to Crz1*-CLASP short
nucleoplasmic pulses A) Schematic of experimental setup used. Two types of light in-
puts are given to cells expressing Crz1*-CLASP: 2 minute pulses with increasing period (20,
15, 12, and 6 minute periods) and single pulses with increasing duration (20, 40, 80, 120
minutes). Light-induced Crz1*-CLASP nuclear localization is measured with fluorescence
microscopy. The mean of single cell fluorescences are plotted (solid red for pulsed input or
blue line for continuous inputs), with the shaded area representing 95% confidence interval
(red or blue shading). Crz1*-CLASP nuclear occupancy (x-axis in rightmost panel) is quan-
tified as the area under the nuclear localization traces (gray shading in middle panel). Gene
expression (mean FITC/SSC) is measured for 6 promoter fusions of target gene driving a
fluorescent protein (YFP) at 5 hours after light input. A schematic shows gene expression
values for different light input regimes are plotted as a function of nuclear occupancy, gen-
erating the Output-Occupancy plot referred to in the text. Each point in the plot is an
endpoint measurement of gene expression, as highlighted by the YFP time course schematic
above. Red circles represent output-occupancy for short 2 minute pulses with increasing
period, and blue circles represent that for continuous single pulse with increasing durations.
A best fit line (red for pulsed inputs and blue for continuous inputs) is fit through the data
points for the pulsed and continuous inputs. For each Output-Occupancy plot we define the
slope ratio as the ratio of the slope of the pulsed to continuous best fit lines. B) Output-
Occupancy plot for three representative Crz1 target promoters pYPS1-YFP, pCMK2-YFP,
and pGYP7-YFP. The error bars are standard deviation of at least 3 biological replicates.
C) Slope ratios for 6 Crz1 target genes plotted in order of highest to lowest slope ratio. In
all panels, Crz1*-CLASP is induced with a 512 a.u. light input.
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Figure 3.4: Efficient response to short pulses by promoters can be explained by
a simple model with fast promoter activation and slow shut-off A) Schematic of a
two-state promoter model, where the input is Crz1*-CLASP nuclear localization (TF) and
the output is fluorescent protein level (Protein). The promoter turns ON with rate constant
kon and OFF with rate constant koff . B) Heatmap of slope ratio (defined in Figure 3.3 and
main text) resulting from the model in (A) as a function of kon and koff , which both vary
from 0.0001-1. The ratio kon/koff increases in a clockwise direction on the heatmap. Points
1 and 2 highlight the increasing slope ratio in the linear region. Point 3 resides in the multi-
slope region (gray) of the Output-Occupancy plot, and hence is not quantified by slope ratio.
In this heatmap, β1 varies from 0.0001-10, β0 from 0.000001-0.01 and β2 from 0.0001-10. The
parameter γ1 is set to 0.05 and γ2 to 0.0083. C-E) (upper panels) Output-Occupancy plots
generated by the model for different parameter sets that correspond to points 1, 2 and 3 in
the heatmap of panel B. The slope ratio for point 1 is 1.1 with a kon/koff equal to 0.0018
(C). The slope ratio for point 2 is 1.73 with a kon/koff equal to 1.17 (D). The kon/koff
for point 3 is 2.39 (E). (Lower panels) Examples of time courses of promoter activity (pon)
for a light input that produces the equivalent of 40 minutes (dotted line in upper panel) in
nuclear localization either continuously or in short pulses. Solid lines are the pon pulses while
shading denotes nuclear localization. The red and blue hashes represent residual promoter
activity beyond the nuclear localization input. The red residual promoter activity is repeated
15 times while the blue residual activity is repeated one time. The black triangle denotes
the difference between the amplitudes generated by the 2 minute pulsed and 40 minute
continuous inputs. For panel (E), pon is plotted for two nuclear localization values (denoted
a and b in upper panel) to illustrate a regime in which pon does not completely shut off
between repeated pulses. F) (upper panel) Output-Occupancy plots for pYPS1-YFP. Circles
are experimentally measured values. Solid lines are the mean of the 15 parameter sets that fit
the data and shaded areas are the standard deviation of the mean. (lower panel) Parameters
that fit the Output-Occupancy are used to predict the dose response of pYPS1-YFP (solid
black line and gray shading are the mean and standard deviation, respectively, generated by
the model). The gray circles are the experimentally measured dose response. G) Same as in
(F) but repeated for pCMK2-YFP with results from 489 parameter sets that maximize fit
to the experimental data. Dose response model predictions are for these parameter sets. H)
kon/koff ratio of the parameter sets that fit both the Output-Occupancy and dose response
data for pYPS1-YFP and pCMK2-YFP. The black line denotes mean and the gray cloud
denotes the distribution of the kon/koff parameter values.
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Figure 3.5: Efficient response to continuous inputs by promoters can be explained
by a model with a thresholded transition between non-transcribing promoter
states A) Schematic of the three-state model where roff , the inactivation rate constant
from p0 to poff , is thresholded by TF concentration and where the activation from poff to
pon is linearly dependent on TF. B) (left panel) Schematic of experimental setup. (right
panel) Output-Occupancy plot for pGYP7-YFP. Circles are experimentally measured values
while lines denote the mean model output for 96 parameter sets that fit the data points
within the error bars, the same metric as used in Figure 3.4. The solid line denotes the mean
and shaded areas denote the standard deviation of the model outputs for these parameter
sets. Parameters were sampled (ron from 0.1-100, roff from 0.1-100, kon from 0.0001-1, koff
from 0.0001-1, β1 from 0.0001-10, β0 from 0.000001-0.01, threshold from 0-0.5) or set (β2 =
0.06, γ1 = 0.05, γ2 = 0.0083). C) (left panel) Schematic of experimental setup. (right panel)
Dose response plot for pGYP7-YFP. The parameters that fit the Output-Occupancy data
were used to further fit the dose response of pGYP7-YFP using a least squared error criterion
(25 parameter sets). Solid black line is the mean generated by the model. The gray circles
are the experimentally measured dose response. D) (left panel) Schematic of experimental
setup. (right panel) The parameters that fit the Output-Occupancy are subjected to cross-
validation using an experiment where Crz1*-CLASP expression is increased (expressed from
a pTEF1 promoter), and cells are exposed to either short (2 minutes ON/10 minutes OFF)
or continuous input (40 minutes of light). The model generated outputs (solid gray, red, and
blue bars) are plotted with the experimental data (dashed gray, red, and blue bars). The gray
bars correspond to no light input. E) (top panel) Heatmap shown in the log10(kon/koff )-
log10(ron/roff) plane of slope ratio of Output-Occupancy relationship resulting from the
model in (A). Parameters are sampled (roff from 0.0025-25, koff from 0.0025-25) or set
(ron =0.25, kon = 0.25, β1 = 0.0001, β2 =0.06, γ1 =0.05, γ2 =0.0083, threshold= 0.5, β0
=0.000001). Point 1 highlights a parameter set that fits the output-occupancy, dose response,
and cross-validation datasets. Black region is where slope ratio < 1. Gray dotted line
indicates when log10(kon/koff ) ∼= -1.5, at which point the dose response changes from
linear to nonlinear with increase in the log10(kon/koff ) value. All parameters that show a
qualitative fit to Output-Occupancy data are displayed as light and dark gray dots. The
light gray dots represent parameter sets where all pGYP7-YFP data are quantitatively fit.
(bottom panel) Heatmap of slope ratio as in (B) with a ron = 2.5, 10 times larger than
than in (B). kon is also set to 0.25. Parameters are sampled (roff from 0.025-250, koff from
0.0025-25) or set (β2 = 0.0001, β2 = 0.06, γ1 = 0.05, γ2 = 0.0083, threshold = 0.5, β0 =
0.000001). Point 2 highlights the effect of increasing both ron and roff while maintaining the
ratio log10(ron/roff). F-G) (upper panels) Output-Occupancy plots generated by the model
for different parameter sets that correspond to points 1 and 2 in the heatmaps of panel E.
The slope ratio for point 1 is 0.51 with log10(kon/koff ) = -1.58 and log10(ron/roff) = -0.89.
The slope ratio for point 2 is 1.04 with log10(kon/koff ) = -1.58 and log10(ron/roff) = -0.89.
Point 2 is chosen to highlight the effect of increasing both ron and roff while maintaining
the ratio log10(ron/roff). (middle panels) Example of a time course of promoter state p0
for a light input that produces the equivalent of 40 minutes (dotted line in upper panel) in
nuclear localization either continuously or in short pulses. Solid lines are the p0 pulses
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Figure 3.5: while shading denotes nuclear localization. The black double arrows denote the
maximum depletion of the p0 state for the pulsed input. (lower panels) Example of a time
course of promoter activity pon for a light input that produces the equivalent of 40 minutes
(dotted line in upper panel) in nuclear localization either continuously or in short pulses,
similar to middle panels. The red and blue hashes represent residual promoter activity
beyond the nuclear localization input. The red residual promoter activity is repeated 15
times while the blue residual activity is repeated one time. The black triangle denotes
the difference between the amplitudes generated by the 2 minute pulsed and 40 minute
continuous input.
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3.6 Materials and Methods

3.6.1 Plasmid and strain construction

Hierarchical golden gate assembly was used to assemble plasmids for yeast strain

construction using the method in Lee et al. BsaI, BsmBI, and NotI cut sites were removed

from individual parts to facilitate downstream assembly and linearization. Parts were

either generated via PCR or purchased as gBlocks from IDT. These parts were then

assembled into transcriptional units (promoter-gene-terminator) on cassette plasmids.

These cassettes were assembled together to form multi-gene plasmids for insertion into the

yeast genome at the TRP, URA, or LEU locus. Cassettes were digested with NotI and

then transformed into yeast as described in Lee S et al., 2013 or Lee ME et al., 2015.

3.6.2 Yeast strains, media, and growth conditions

The base S. cerevisiae strain used for experimentation was W303 or BY4741. Base strain

for each engineered strain is noted in the strain list. From these base strains, knockout of

endogenous transcription factors was done with a one-step replacement using a plasmid

that contains 40 base pair overlaps in the 5’ and 3’ UTR of the transcription factor79. The

40 base pair overhangs flank the Candida Albicans HIS selectable marker.

Single colonies were picked from auxotrophic SD (6.7 g/L Bacto-yeast nitrogen base

without amino acids, 2 g/L complete supplement amino acid mix, 20 g/L dextrose) agar

plates. For microscopy and growth measurement studies, colonies were picked into 1 ml

SDC media. For flow cytometry studies, colonies were picked into 1 ml YPD (yeast

extract, peptone, 2% glucose) or SDC (6.7 g/L Bacto-yeast nitrogen base without amino

acids, 2 g/L complete supplement amino acid mix, 20 g/L dextrose) media. Colonies were
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grown overnight from 30°C to saturation. Prior to the start of an experiment, cells were

diluted into 1-3 ml of SDC and grown for 4 hours to an OD of 0.05-0.1 prior to the start of

an experiment. A TECAN Spark 10M plate reader (TECAN, Mannedorf, Switzerland) was

used for growth measurements.

3.6.3 Microscopy and blue light delivery

Cells were imaged in 96-well Matriplates (MGB096-1-2-LG-L; Brooks Life Science Systems,

Spokane, WA). For widefield microscopy, blue light optogenetic stimulation of samples was

done using a custom built “optoPlate” as described in Bugaj et al (Bugaj et al., 2018).

Individually addressable LEDs (in 96-well format) were controlled by an Arduino Micro

microcontroller and programmed with different dynamic light patterns using custom

Arduino scripts. Custom adapters for fitting optoPlate on to 96-well matrix plates were

designed in AutoCad and 3D printed. For confocal microscopy, blue light stimulation was

done using GFP laser illumination. A Nikon Ti inverted scope, with mercury arc-lamp

illumination using RFP (560/40 nm excitation, 630/75 nm emission; 572/35 nm excitation,

632/60 nm emission; both manufactured by Chroma, Bellows Falls, VT) and near-infrared

FP (640/30 nm excitation, 700/35 nm emission; Chroma, Bellows Falls, VT) filters, was

used for widefield microscopy imaging of samples. Images were taken with an Andor

EMCCD camera. Automated imaging was controlled and coordinated by custom Matlab

(MathWorks, Natick, MA) software interfaced with the µmanager software suite (Edelstein

et al., 2010). Confocal microscopy of samples took place on a Nikon Ti inverted scope with

a Yokogawa CSU-22 spinning disk confocal scanner unit; cells were excited with laser

illumination for Cy3 (561 nm, 100 mW Coherent OBIS; ET610/60nm emission filter) and

Cy5 (640 nm,100 mW Coherent OBIS; ET700/75nm emission filter). Imaging was

controlled with Nikon Elements 5.02 build 1266 (Nikon Instruments, Melville, NY).
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3.6.4 Quantification of nuclear localization

The software tool “ilastik” was used for image segmentation to determine nuclear

occupancy80. Time lapse images of the IRFP nuclear marker were used to identify nuclei

objects. Nuclear occupancy of each nucleus was defined as the mean pixel intensity of this

nucleus. Cell tracking of nuclear/cytoplasmic enrichment was done using automated yeast

cell tracking software implemented in Matlab81. Photobleaching was corrected for cells

that underwent constant illumination and frequent imaging. This correction was done by

fitting an exponential decay function to each nuclear and cytoplasmic trace and then

dividing each trace by its decay function. For all microscopy analysis, “nuclear/cytoplasmic

enrichment” represented the mean pixel intensity of the nucleus divided by the mean pixel

intensity of the cytoplasm, and “fold change” represented division by the value of the

signal at t=0. Nuclear localization duration was defined as the time from light ON to the

time when the nuclear/cytoplasmic enrichment has returned to 75% of the starting (t=0)

value. Normalized peak-trough difference was quantified across all pulses for single cell

traces, and represented the difference between the local maximum (the peak) and the local

minimum (the trough) values divided by the maximum peak-trough difference in the

population-averaged traces.

3.6.5 Flow cytometry

Analysis of fluorescent protein reporter expression was performed with a BD LSRII flow

cytometer (BD Biosciences) equipped with a high-throughput sampler. For steady-state

measurements, cultures were diluted in TE before running through the instrument.

Cultures were run on the instrument 1 hour (+/- 20 min) after optical stimulation using

the optoPlate, to allow for YFP maturation. YFP (Venus) fluorescence was measured

using the FITC channel and RFP (mCherry/mScarlet) was measured using the PE-Texas

71



Red channel. For steady-state measurements, a maximum of 10,000 events were collected

per sample. Fluorescence values were calculated using the height (H) measurement for the

appropriate channel and normalized to cell size by dividing by side scatter (SSC-H). All

analysis of flow cytometry data was performed in Python 2.7 using the package

FlowCytometryTools and custom scripts.

3.6.6 Growth assays

Growth was measured using a TECAN Spark 10M plate reader (TECAN, Mannedorf,

Switzerland) using 600nm excitation. Cultures were plated into Corning 3904 96-well assay

plates (Corning, Corning, NY) and grown at 30°C while shaking until saturation. Data was

analyzed in Python 2.7 or Matlab using custom scripts. To quantify log phase growth rate,

only the OD600 measurements which were between .1 and 1 for each strain were used. A

linear regression was then fit to the natural logarithm of the log phase OD600 values (as y)

and time (as x). The slope from this regression was plotted as the log phase growth rate.

3.6.7 Computational modeling

Ordinary differential equation (ODE) models of gene expression focusing on promoter

kinetics were constructed. For the simple kinetic model that described an efficient response

to short pulses, a model was constructed with three state variables and seven parameters.

Nine models were constructed and tested for efficient response to continuous pulses . These

models either contained three or five state variables with up to ten parameters. Latin

hypercube sampling was done to randomly sample parameters. ODE solvers 45 and 113 in

Matlab were used. Least squared error and fit within the error bars of the data were

metrics used to obtain model fits. Additional details of the computational methods are

described in the Supplementary Text.
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3.6.8 Treatment with CaCl2 stress

Cells were grown at 30◦C in YPD medium to saturation overnight. Cells were then diluted

prior to the start of an experiment and grown for 4 hours to an OD of 0.05-0.1. For

microscopy experiments, cells were plated in SDC with concanavalin A (conA) for 15

minutes to adhere them to the bottom of the glass imaging plate. Prior to imaging, the

SDC was removed and replaced with a solution of SDC with 0.2M CaCl2. For flow

cytometry experiments, cells in SDC were diluted to OD 0.1 in a media of SDC with 0.2M

CaCl2 and grown in the media for the duration of the experiment. Prior to measurement,

the 0.2M CaCl2 media was removed by centrifugation with 3 washes in 1X TE.
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3.7 Supplementary Text

3.7.1 Experimental Controls - Measuring the basal and

constitutively nuclear gene expression of TFs

To further assess how TF-CLASP-induced expression compares to endogenous gene

expression, we measured the level of reporter gene expression when the TFs were

constitutively localized to the nucleus by C-terminally tagging them with the same NLS

used in yeLANS (TF-NLS), or in their basal localization by C-terminally tagging them

with only mScarlet. All TF-NLS, TF-mScarlet, and TF-CLASP constructs were expressed

from pRPL18b. We compared this value to expression achieved when TF-CLASP was

induced with 2 hours of blue light. SynTF-CLASP achieved 52% of pSYNTF-YFP

expression produced through constitutive nuclear localization of SynTF (Supplementary

Figure 3.8B). Furthermore, the mean SynTF-CLASP-induced gene expression in the dark

(.09) was similar to the the mean basal gene expression in a strain in which the SynTF was

only tagged with mScarlet (.07) (Supplementary Figure 3.8B). Pho4-CLASP activated

pPHO84-YFP to 14% of the gene expression achieved with constitutive nuclear localization

(Supplementary Figure 3.8C) while Msn2-CLASP was more efficient at inducing

pHSP12-YFP gene expression than constitutive Msn2 nuclear localization (23% greater

expression, Supplementary Figure 3.8D). Since Msn2 is subject to faster degradation in the

nucleus (Chi et al., 2001; Durchschlag et al., 2004), transient localization with CLASP may

be more efficient at inducing gene expression. For both pHSP12-YFP and pPHO84-YFP,

reporter expression in the dark was lower in a strain that had either Msn2-CLASP or

Pho4-CLASP than in their respective controls with either Msn2 or Pho4 when only tagged

with mScarlet (28% and 88% lower, respectively). In fact, pPHO84-YFP showed basal

bimodal expression in the constitutively expressed Pho4 strain, but not in the

Pho4-CLASP strain (Supplementary Figure 3.8C). These data suggest that CLASP can
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potently sequester TFs in the dark.

3.7.2 Modeling

Model equations and sampling details of the pYPS1-YFP and pCMK2-YFP

phenotypes

Simple Two-State Promoter Model This model described the efficient response of

pYPS1-YFP to short pulses. The model described a two-state promoter that activates

mRNA production which then activates protein production and is depicted in Figure 3.4A.

We modeled these interactions by:

dpon
dt

= kon · TF · (1− pon)− koff · pon (3.1)

dmRNA

dt
= β0 + β1 · pon − γ1 ·mRNA (3.2)

dProtein

dt
= β2 ·mRNA− γ2 · Protein (3.3)

In these equations, pon represented promoter activity while mRNA and Protein represented

concentration of mRNA and protein, respectively. Here we assumed that promoter activity

was conserved such that 1 = pon + poff . TF represented the concentration of nuclear

transcription factor.

The model was characterized by 7 parameters. Most of the activation/inactivation and

production/degradation terms were modeled by first-order mass action kinetics. The

parameter, β0, was zeroth-order, to reflect basal promoter activity. We chose this simple
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model form because we were interested in a parsimonious model that could explain the

experimental phenotype of pYPS1-YFP. Note that the rate of promoter activation was

dependent on TF concentration because Crz1 has been shown to activate genes through

binding of a known promoter element, the calcineurin-dependent response element

(CDRE), through its zinc finger domain7.

The input to the model was the concentration of nuclear transcription factor (TF), while

the output represented protein concentration (Protein). The equations were numerically

solved by the ODE solver ode113 for nonstiff differential equations via MATLAB.

Parameters kon, koff , β0,and β1 were sampled over 4-5 orders of magnitude systematically

and randomly using Latin Hypercube Sampling (LHS). kon and koff varied from 1e-4 to 1.

β0 was varied from 1e-6 to 1e-2. β1 was varied from 1e-4 to 10. Parameters β2 = 0.06,1 =

0.05, and γ2 = 0.0083 were fixed to values according to literature21,64.

Parameter Search and Model Fitting From the parameter sets sampled, the slope

ratio (defined in Figure 3.3), a summary metric for the degree of efficiency in response to

short pulses, was calculated for each parameter set. These slope ratio values were plotted

as heatmaps as a function of the parameters kon and koff to demonstrate the effect of

parameters on efficient response to short pulses (slope ratio > 1) or efficient response to

continuous pulses (slope ratio < 1).

The model was used to fit the experimental data. Fits of the experimental data to the

simple two-promoter state model (Figure 3.4) were obtained by the following procedure:

1. Sample 104 parameters randomly using LHS with the aforementioned parameter

ranges

2. The model outputs are used to construct the Output-Occupancy plots and compared

to the experimental Output-Occupancy plots. Fits are determined to be model
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outputs that are within error of the data for >= 9 of the 10 data points. If no

quantitative fit can be obtained (as in the pCMK2 case), the best 100 model outputs

with the lowest mean squared error to the best fit line of the experimental data are

determined to be fits.

3. Cross-validation of parameter fits to the Output-Occupancy data are then performed

using the dose response. The mean squared error is used as the metric to assess fit.

From this procedure, we identified parameter sets that fit all of the experimental data for

both pYPS1-YFP and pCMK2-YFP.

Model exploration and sampling details for the pGYP7-YFP phenotype: List

of models

Two-state models with roff and ron thresholding These models involved a TF

concentration gated activation, ron, or inactivation, roff , rate constant. The kinetic model

with roff thresholding consisted of equations (1)-(3), but utilized the following equation

instead of (1):

dpon
dt

= ron · TF · (1− pon)− r∗off · pon (1a)

where r∗off = 0 when TF threshold. Otherwise r∗off = roff . threshold is a parameter

value which denoted the threshold TF concentration at which r∗off switches from 0 to roff .

The kinetic model with ron thresholding consisted of equations (1)-(3), and utilized the

following equation in place of (1):
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dpon
dt

= r∗on · TF · (1− pon)− roff · pon (1b)

where r∗on = ron when TF ≥ thr. Otherwise r∗on = 0.

These two models could represent a binary interaction of the transcription factor (TF) with

promoter elements, where below a TF concentration, the TF had no effect on promoter

activity and above a TF concentration, the promoter turned on at its maximal rate.

The same parameter ranges were sampled in this model as in the simple kinetic model.

The additional parameter threshold was sampled randomly from TF = 0 to 2.7, the

maximum value of the TF input to the model.

Cooperative Model. Similar to the two-state thresholded models, the cooperative model

described a nonlinear relationship between TF concentration and protein output. The

model was represented by the equations:

dmRNA

dt
= β0 + β1 ·

TF n

TF n + knd
− γ1 ·mRNA (3.4)

dProtein

dt
= β2 ·mRNA− γ2 · Protein (3.5)

where n is the hill coefficient, and kd =
koff
kon

.

The same parameter ranges were sampled in this model as in the simple kinetic model.

The additional parameter n was sampled randomly from n = 0.5 to 4, a biologically

78



relevant range21.

3-State Models. We considered five 3-state models with different relationships of TF and

the rate constants for the transition between promoter states. The first such model was a

3-state model. An additional promoter state, p0, is added. The rate equations describing

this model are:

dp0
dt

= roff · poff − ron · p0 (3.6)

dpoff
dt

= koff · pon + ron · p0 − (roff + kon · TF ) · poff (3.7)

dpon
dt

= kon · TF · poff − koff · pon (3.8)

dmRNA

dt
= β0 + β1 · pon − γ1 ·mRNA (3.9)

dProtein

dt
= β2 ·mRNA− γ2 · Protein (3.10)

In this model, the p0 and poff could be thought of as non-transcribing promoter states that

represented nucleosome occluded and open, respectively. pon represented an active

transcribing promoter state. The rate constants roff and ron described the transitions

between the occluded and open promoter states. The promoter underwent a transition

between p0 and poff (with rate constants, ron and roff respectively), but poff was still not

a promoter state conducive for transcription. A second transition from poff to pon (with

rate constants, kon and koff , respectively) was needed to start transcription.

3-state model with roff threshold but no linear TF dependence on kon. This

model was the same as the 3-state model with roff threshold, except no linear dependence

of the TF in the transition from poff and pon.The model was described by equations

(6)-(10); the following equations replaced equations (6) and (7):
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dp0
dt

= roff · poff − ron · TF · p0 (6d)

dpoff
dt

= koff · pon + ron · TF · p0 − (roff + kon · TF ) · poff (7d)

3-state model with ron threshold. This model contained a TF concentration threshold

dependence of ron between the occluded p0 and open poff promoter states, and was

described by equations (6) - (10); where model equations (6) and (7) were replaced by:

dp0
dt

= roff · poff − r∗on · p0 (6b)

dpoff
dt

= koff · pon + r∗on · p0 − (r∗off + kon · TF ) · poff (7b)

where r∗on = ron when TF ≥ threshold. Otherwise r∗on = 0.

For this model, the transcription factor modulated the rate of transition from p0 to poff

such that when TF concentration reached the threshold concentration, threshold, the

transition rate switches from zero to a value. Biologically, this model could represent TF

interaction with chromatin acetylators and other modifiers that could promote an open

chromatin conformation on the promoter.

3-state model with roff threshold. Similarly, the model with a threshold dependence

on the inactivating transition from the open poff to occluded p0 states is described by the

model equations (6)-(10); where equations (6) and (7) are replaced by:
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dp0
dt

= r∗off · poff − ron · p0 (6c)

dpoff
dt

= koff · pon + ron · p0 − (r∗off + kon · TF ) · poff (7c)

where r∗off = 0 when TF ≥ threshold. Otherwise r∗off = roff .

For this model, the transcription factor modulated the rate of transition from poff to p0

such that when TF concentration reached the threshold concentration, threshold, the

transition rate switched from a value to zero. Biologically, this model could represent either

physical hindrance of heterochromatin formation or TF-modulated repression of a

chromatin de-acetylase. The parameters ron and roff were randomly sampled in the range

from 10e-4 to 1.

3-state model with linear TF dependence of ron and kon. This model contained a

linear dependence on TF for the transitions between both p0 to poff and poff to pon. This

model was described by the model equations (6)-(10); where equations (6) and (7) were

replaced by:

dp0
dt

= r∗off · poff − ron · p0 (6a)

dpoff
dt

= koff · pon + ron · p0 − (r∗off + kon) · poff (7a)

Parameter Search and Model Fitting. Parameter search and model fitting were done

in the same way as for modeling of pYPS1-YFP and pCMK2-YFP in the section above,

except two rounds of fitting were done with the Output-Occupancy and dose response data
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of pGYP7-YFP. Fits to the dose response were determined to be parameter sets whose

least squared error was 0.8 standard deviations below the mean of the least squared error

distribution. An experiment with a strain expressing pTEF1 driven Crz1*-CLASP exposed

to short pulsed and continuous inputs, as described in the main text, was used to

cross-validate the model fits.

Detailed exploration of model fits to the pGYP7-YFP data

The simple kinetic model that described the pYPS1-YFP and pCMK2-YFP phenotypes

produced no parameter sets for which a pulsed input generated lower gene expression

output than a continuous input (Supplementary Figure 3.11A-B). Hence, we explored

model elaborations, introduced in the previous section, of the simple promoter switching

model.

We first tested whether the two-state models with either roff or ron thresholding

(Supplementary Figure 3.11E-F, G-H), or the cooperative model (Supplementary Figure

3.11C-D), could generate a promoter that responded efficiently to continuous pulses. The

rationale here was that if the promoter spent some time below its threshold of activation

for any input, then the effect of this TF concentration thresholding would be smaller for a

continuous pulse that does this once, than for a sequence of short pulses where this would

be done repeatedly. In agreement with this intuition, this suite of models was able to

generate Output-Occupancy plots that mirrored the pGYP7-YFP experimental data for

many parameters (Supplementary Figure 3.11C-D, E-G, G-H, left panel). Supplementary

Figure 3.11G shows an illustrative example of this class of models, where many parameters

sets (380) were shown to maximize fits through the data points within the error bars

(Supplementary Figure 3.11G, left panel). Upon further fitting with

independently-obtained dose response data for pGYP7-YFP (obtained in the same way as

explained above for pYPS1-YFP and pCMK2-YFP), this model however failed to fit the
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data, as did all models with only two promoter states (Supplementary Figure 3.11C-D,

E-F, G-H, middle panel). The failure of these models to fit the pGYP7-YFP dose response

showed a characteristic pattern – while the pGYP7-YFP dose response was linear in the TF

regime we measured, the computationally predicted dose response was thresholded given

the model structure we imposed (Supplementary Figure 3.11C-D, E-F, G-H, middle panel).

Next, we increased the complexity of the model by adding a second layer of promoter

transitions to generate the 3-state model (Supplementary Figure 3.11K). This model had

the same linear structure as the two-state promoter model of Figure 3.4, and hence could

not produce a more efficient response to continuous input over the pulsed one

(Supplementary Figure 3.11L).

We also tested whether a 3-state model with roff threshold but no linear TF

dependence on kon could produce better fits (Supplementary Figure 3.11I). This model

was indeed able to generate Output-Occupancy plots that match the pGYP7-YFP

experimental data (423 parameter sets within error) (Supplementary Figure 3.11J, left

panel), but with these parameters, it again produced a thresholded dose response that

failed to fit that of pGYP7-YFP (Supplementary Figure 3.11J, middle panel).

Following these results, we reasoned that the introduction of a linear dependence on TF

concentration in the immediate step before promoter activation could mitigate the effects

of a threshold on an earlier promoter transition step, therefore producing a linear dose

response. Hence, the 3-state model with roff threshold was tested (Figure 3.5A). With

this addition, the model was able to generate Output-Occupancy plots that maximize fit to

the experimental data for many parameters (96 parameter sets) and for a subset of those

(25 parameter sets), was also able to recapitulate the pGYP7-YFP dose response (Figure

3.5B-C). The 3-state model with ron threshold was similarly able to recapitulate the

data (Supplementary Figure 3.11O-P), albeit with a poorer fit for the Output-Occupancy

plot. Finally, we tested the 3-state model with linear TF dependence of ron and kon
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(Supplementary Figure 3.11M). This model was also able to produce qualitative fits to the

Output-Occupancy plot (Supplementary Figure 3.11N, left panel) and dose response data

(Supplementary Figure 3.11N, middle panel).

To further test these three successful models and also further invalidate the discarded

models, we subjected them to cross-validation using an independent experiment in a strain

where Crz1*-CLASP expression was increased (now expressed from pTEF1 instead of

pADH1). We subjected these cells to either short pulses (2 minutes ON/10 minutes OFF)

or a continuous input (40 minutes of light) in a timespan of 4 hours, and measured

pGYP7-YFP levels at 5 hours. These data revealed that the efficient response to

continuous input was still preserved at the higher pTEF1 expression level. All discarded

models (Supplementary Figure 3.11, right panels) were inconsistent with these data,

predicting instead a reversal of the phenotype with an increase in the TF concentration.

Notably, the 3-state model with linear TF dependence of ron and kon

(Supplementary Figure 3.11N, right panel) also failed this cross-validation because the

dependence on TF caused the rate of transition from p0 to poff to increase with increased

TF, and thus the efficient response to continuous inputs could only be produced for

relatively low TF concentrations. Hence, only two minimal models were able to explain all

the data we collected (Supplementary Figure 3.11O-P, Figure 3.5A-D).

3.7.3 Supplementary Methods

Delivery of stress inputs for microscopy

For each environmental perturbation, cells were grown overnight to saturation in YPD,

diluted in prior to the experiment, and grown to an OD of 0.1. 200ul cells were plated with

conA. Just before imaging, the SDC media was removed from the microscopy well and the

appropriate environmental stress media was applied to the cells.The media for glucose
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depletion consisted of 0.67% YNB w/o AA w/ ammonium sulfate, 0.79% CSM, 0.05%

glucose. The media for Osmotic shock was composed of 0.67% YNB w/o AA w/

ammonium sulfate, 0.79% CSM, 2% glucose, and 0.95M sorbitol (Gasch et al., 2000). The

phosphate depletion media contained 0.17% Pi-depleted YNB (without amino acids and

ammonium sulfate), 0.1% ammonium sulfate, 2% glucose, 25mM sodium citrate (pH 4.7),

0.79% CSM.

RNAseq of Crz1 19A and 5A mutant

Single colonies were picked and grown to saturation in YPD at 30◦C overnight. Cells were

then diluted and grown for 4 hours to an OD of 0.3. Cells were harvested by centrifugation

and frozen with liquid nitrogen. RNA was extracted using phenol chloroform (Sambrook

and Russell, 2006). RNA quality was assessed using the Agilent RNA Pico kit. The

Lexogen Quantseq 3’ mRNA-Seq Library Prep Kit was used for RNA preparation. mRNA

libraries were quantified using Qubit dsDNA HS Assay Kit and subject to single-end

sequencing on an Illumina HiSeq 4000. Fastq files from illumina were aligned using STAR

(Dobin et al., 2013). Downstream processing of read counts and differential gene expression

was conducted using custom Matlab scripts.

Automated Flow cytometry

Cells were cultured as described above. Cells were inoculated and grown to an OD of 0.1

then diluted 1:10 for a total of 30mls for each reaction chamber. Cells were subjected to

light input perturbations in the reaction chambers. Control of fluidics was achieved using

LABView. The first 750 events of sample were discarded, and 2,000-10,000 events were

collected per sample. Gene expression was measured using the FITC channel. Cytometer

outputs were analyzed using custom matlab scripts. For more information on the

automated flow cytometry hardware and LabView control of dynamic sample acquisition,

see Harrigan et al., 2018.
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3.8 SI Figures

Figure 3.6: Approximately one-third of TFs are basally cytoplasmic in log phase
and a subset are shown to exhibit transient nuclear localization A) LOC scores of
available transcription factors from the CYCLoPs database are plotted48. The LOC score,
as defined in Chong et al., 2015, is the number of cells assigned to a specific location (nucleus
in this instance) over the total number of cells in any subcellular location. Increasing LOC
score denotes increasing nuclear enrichment. B) Fold change of nuclear enrichment for a
panel of stress-responsive transcription factors (Msn2, Msn4, Stb3, Dot6, and Crz1) are
plotted as a function of time in response to environmental inputs (Glucose depletion and
osmotic shock). For glucose depletion, SDC media (2% glucose) is replaced with SD media
with 0.05% glucose. For osmotic shock, SDC media is replaced with SDC media with 0.95M
sorbitol. Imaging begins at t = 0 after addition of environmental perturbation and samples
are imaged every 30 seconds. The solid black lines represent the mean of single cell traces
and the shading represents the standard error of the mean.
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Figure 3.7: Optimization of LANS and LOVTRAP and CLASP characterization
A) Confocal microscopy images of yeast expressing SynTF-yeLANS and Msn2-yeLANS
in the absence of blue light. Red arrows (inset) denote examples of cells that exhibit
nuclear/cytoplasmic localization of Msn2-yeLANS. B) Mean nuclear/cytoplasmic enrich-
ment (nuclear intensity divided by cytoplasm intensity) is plotted as a function of time.
Shaded error represents standard deviation and light input regimes are illustrated above
graphs. n refers to number of cells tracked and subplot headings (e.g., NLS 3) corre-
spond to NLS peptides listed in Table S2. C) Comparison of Mito-LOVTRAP and PM-
LOVTRAP strains. Mito-LOVTRAP and PM-LOVTRAP are expressed from pTDH3 (high-
est), pRPL18B (medium), and pREV1 (lowest) promoters. Strains marked with an asterisk
denote those for which growth curves are plotted in Figure 3.1B of main text. Error bars
represent standard error of the linear regression. D) Comparison of Zdk1-mScarlet-yeLANS
+ Mito-LOVTrap and CLASP. Both component (e.g. Mito-LOVTRAP and Zdk1-mScarlet-
yeLANS) are expressed at the same level, using either pTDH3, pRPL18B, or pREV1 pro-
moters. Background (control strain) denotes the WT strain with pSYNTF-YFP integrated
in the LEU locus. Zdk1-mScarlet-yeLANS + Mito-LOVTRAP and mScarlet-CLASP strains
also have this integration. Error bars represent standard error of the linear regression. E) A
zoom in of Figure 3.1D in the main text that shows median duration of nuclear localization
as a function of light input duration; the line X = Y is denoted by the dashed line. The
zoomed graph illustrates that for short pulse durations, the OFF time – time that nuclear
localization extends past the pulse – is not linearly related to light input duration. F) A
scatterplot that shows duration of nuclear localization as a function of light input duration.
Each point represents a single cell. G) Mean nuclear/cytoplasmic enrichment fold change
as a function of time for mScarlet-CLASP induced with blue light. Light input regimes are
illustrated above graphs (indicating 0, 2, 4, 8, 10, 20, 40, or 80 minute light input). In all
plots, except where noted, error (bars or shading) represents standard deviation.
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Figure 3.8: Characterization of TF-CLASP strains A) Mean FITC/SSC is plotted as
a function of light intensity (a.u.) for strains that are exposed to different amplitudes of
light for two hours (continuous input). Marked in red is the lowest light dose which yielded
near-maximal expression for each strain (>90%); this dose is used in all microscopy and
flow cytometry experiments for each strain. Error bars represent standard error of the mean
for 9 biological replicates. B-D) Each subplot shows the probability density functions of
log10(FITC/SSC) of gene expression of corresponding fluorescent promoter fusion for TF-
CLASP, TF-NLS (constitutive nuclear localization), and TF-mScarlet (basal localization)
strains. Histograms display expression from 9 biological replicates (data from replicates are
pooled). TF-mScarlet strains are not exposed to light, for facile comparison to TF-CLASP
(No Light) expression. TF-NLS strains are exposed to two hours of blue light (continuous
input) to control for the effect of blue light on YFP fluorescence when comparing to TF-
CLASP (Light) expression. For all panels, TF cargos are expressed from pRPL18B. E) RFP
(top panels) and brightfield (bottom panels) images of mScarlet-tagged Gal4 (left panels)
and mScarlet-tagged Gal4-CLASP (right panels). F) Gal4 nuclear enrichment is plotted as a
function of time. Light input regime is illustrated above graph. Shaded gray area represents
95% confidence interval. n refers to the number of cells tracked. G) Gene expression of
pGal1-YFP resulting from Gal4-CLASP nuclear localization following two hours of blue
light input. Shown is the probability density function of log10(FITC/SSC) of pGAL1-YFP
in the dark (gray) or after light exposure (blue).
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Figure 3.9: Characterization of Crz1, Crz1-CLASP, and Crz1*-CLASP nuclear
translocation and gene expression with CaCl2 or blue light input A) Single cell
traces of Crz1 nuclear enrichment over time for 3 representative cells following 0.2M CaCl2.
The red lines indicate nuclear localization events. B) Schematic of the CRZ1 Open Reading
Frame (ORF). Labeled are the Nuclear Localization Sequences (NLS1 and NLS2) and the
Nuclear Exit Sequence (NES), as well as the Serine-Rich Region (SRR), which is calcium
responsive. The light pink triangles denote reported S/T phosphosites, while the dark pink
triangles denote reported and characterized S/T phosphosites. The 19 dark and light pink
phosphosites are mutated from S/T -¿ A to construct Crz1*. C) Heatmap of gene expression
for 5657 genes. Samples in each column of the heatmap are pADH1-Crz1 with no input,
pADH1-Crz1-yeLANS with 60 minutes of light, pADH1-Crz1* with no input, and pADH1-
Crz1-yeLANS with 0.2M CaCl2 delivered at the start of the experiment. All samples are
in log phase and all measurements are taken 60 minutes after delivery of input. D) Gene
expression (Mean FITC/SSC) of the Crz1 reporter gene pPUN1-YFP driven by either Crz1-
CLASP (blue) or Crz1*-CLASP (pink) when given 30 minutes of blue light. E) Probability
density functions of gene expression of pPUN1-YFP, measured by FITC/SSC, in response
to 0.2M CaCl2 (which causes an initial Crz1 nuclear localization pulse of 40-60 minutes), 60
minutes of blue light exposure, and no input. Measurements are taken at 5 hours after deliv-
ery of input. F) Basal gene expression of pPUN1-YFP for different Crz1 strains: endogenous
Crz1, pAdh1-Crz1 in a Crz1 KO background, pAdh1-Crz1* in a Crz1 KO background, and
pAdh1-Crz1*-CLASP (without light input) in a Crz1 KO background. G) OD600, a mea-
surement for growth, plotted as a function of time, for pAdh1-Crz1 with (blue) and without
(red) light input (intensity 512 a.u.) over a period of 24 hours, indicating that light exposure
does not affect population growth. Measurements are taken every hour. H) Characteri-
zation of additional Crz1*-CLASP gene expression in response to blue light, as in Figure
3.3. Output-Occupancy plot for pYPS1-YFP. I) Output-Occupancy plot for pCMK2-YFP.
J) Output-Occupancy plot for pGYP7-YFP. These data are biological replicates taken from
different days for the data shown in Figure 3.3.
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Figure 3.10: Characterization of two-state promoter model of Figure 3.4 in main
text A) Slope ratio as a function of parameter values for each sampled parameter. Each blue
circle represents a parameter set in the set of 10000 parameter sets searched. kon varies from
0.0001-1, koff from 0.0001-1, β1 from 0.0001-10, β2 from 0.0001-10 and β0 from 0.000001-
0.01. γ1 is set to 0.05 and γ2 to 0.0083. B) Output-Occupancy plot for a parameter set with
efficient response to short pulses. Parameter values are: kon = 1, koff = 0.8, β1 = 0.0001, β2
= 0.1, γ1 = 0.05, γ2 = 0.0083, and β0 = 0.000001. kon is reduced 2x, 4x, 8x, 16x, and 32x.
The red line represents the gene expression values from increasing pulsed inputs and the
blue line represents gene expression values from increasing constant inputs. C) (left panel)
Heatmap of slope ratios in the γ1-kon plane. Parameters are sampled (1 from 0.0001-10,
kon from 0.0001-10) or set (koff = 1, β1 = 0.0001, β2 =0.1, γ2 = 0.0083, β0 =0.000001).
(right panel) Heatmap of slope ratios resulting from the kinetic model in the γ2-kon plane.
Parameters are sampled (2 from 0.0001-10, kon from 0.0001-10) or set (kon = 0.001, β1 =
0.0001, β2 =0.1, γ1 = 0.05, β0 =0.000001).
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Figure 3.11: Exploration of various models for pGYP7-YFP data A) Schematic of
the kinetic model, where the input is Crz1*-CLASP nuclear localization (TF) and the output
is fluorescent protein level (Protein). B) (left panel) Output-Occupancy plot for pGYP7-
YFP. Circles are experimentally measured values while lines denote the output of the model
for 200 parameter sets out of 10000 that maximize fits through data points. The solid line
denotes the mean and shaded areas the standard deviation of the model outputs. Parameters
are sampled (kon from 0.0001-1, koff from 0.0001-1, β1 from 0.0001-10, β0 from 0.000001-
0.01) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083). (middle panel) Dose response plot for
pGYP7. The parameters that fit the Output-Occupancy data are used to further fit the
dose response of pGYP7-YFP using a best fit to least squared error criterion. Parameter
sets below the mean of the least squared error distribution are plotted (solid black line is
the mean generated by the model). The gray dots are the experimentally measured dose
response. (right panel) The parameters that fit the Output-Occupancy are then subject to
cross-validation using an experiment where Crz1*-CLASP expression is increased (expressed
from a pTEF1 promoter), and cells are exposed to either short (2 minutes ON/10 minutes
OFF) or continuous input (40 minutes of light). The model generated outputs (solid red and
blue bar) are plotted with the experimental data (hashed red and blue bar). The gray bars
are samples not exposed to light. C) Schematic of a model with cooperativity D) (left panel)
Same plots as in (B), with 2481 parameter sets for this model. Parameters are sampled
(kd from 0.01-100, n from 0.5-4, β1 from 0.0001-10, β0 from 0.000001-0.01) or set (β2 =
0.06, γ1 = 0.05, γ2 = 0.0083). (middle panel, right panel) Plotted in the same manner as
in (B, middle panel, right panel) with 35 parameter sets. E) Schematic of a 2-state model
with thresholding on the activation constant, ron. F) (left panel). Same plots as in (B),
with 148 parameter sets for this model. Parameters are sampled (ron from 0.1-100,roff from
0.1-100, β1 from 0.0001-10, β0 from 0.000001-0.01) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083,
threshold = 0.5). (middle panel, right panel) Plotted in the same manner as in (B, middle
panel, right panel) with 16 parameter sets. G) Schematic of a two-state promoter model with
a thresholded promoter inactivation constant, roff , where the input is Crz1*-CLASP nuclear
localization (TF) and the output is fluorescent protein level (Protein). H) (left panel) Same
plots as in (B), with 380 parameter sets for this model. Parameters are sampled (ron from
0.0001-1, roff from 0.0001-1, β1 from 0.0001-10, β0 from 0.000001-0.01, threshold from 0-2.7)
or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083). (middle panel, right panel) Plotted in the same
manner as in (B, middle panel, right panel) with 52 parameter sets. I) Schematic of a 3-state
model with thresholding in the inactivation constant, roff , between the promoter off-states,
p0 and poff , and no TF dependence in the step before promoter activation. J) (left panel)
Same plots as in (B), with 423 parameter sets for this model. Parameters are sampled (ron
from 0.1-100, roff from 0.1-100, kon from 0.0001-1, koff from 0.0001-1, β1 from 0.0001-10, β0
from 0.000001-0.01, threshold from 0-2.7) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083). (middle
panel, right panel) Plotted in the same manner as in (B, middle panel, right panel) with 84
parameter sets. K) Schematic of a 3-state model with linear dependence of transition from
the p0 to poff . L) (left panel). Same plots as in (B), with 1288 parameter sets for this model.
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Figure 3.11: Parameters are sampled (ron from 0.1-100,roff from 0.1-100, kon from 0.0001-1,
koff from 0.0001-1, β1 from 0.0001-10, β0 from 0.000001-0.01) or set (β2 = 0.06, γ1 = 0.05,
γ2 = 0.0083). (middle panel, right panel) Plotted in the same manner as in (B, middle panel,
right panel) with 16 parameter sets. M) Schematic of 3-state model with linear dependence
on TF in both transitions from p0 to poff and poff to pon. N) (left panel) Same plots as in
(B), with 1638 parameter sets for this model. Parameters are sampled (ron from 0.1-100, roff
from 0.1-100, kon from 0.0001-1, koff from 0.0001-1, β1 from 0.0001-10, β0 from 0.000001-
0.01) or set (β2 = 0.06, γ1 = 0.05, γ2 = 0.0083). (middle panel, right panel) Plotted, in the
same manner as in (B, middle panel, right panel) with 228 parameter. O) Schematic of the
3-state model with thresholding in the activation constant, ron, between promoter off-states,
p0 and poff . P) (left panel) Same plots as in (B), with 1649 parameter sets for this model.
Parameters are sampled (ron from 0.1-100, roff from 0.1-100, kon from 0.0001-1, koff from
0.0001-1, β1 from 0.0001-10, β0 from 0.000001-0.01, threshold from 0-0.5) or set (β2 = 0.06,
γ1 = 0.05, γ2 = 0.0083). (middle panel, right panel) Plotted in the same manner as in (B,
middle panel, right panel) with 455 parameter sets. Q) Schematic of the 3-state model with
thresholding in the inactivation constant, roff , between promoter off-states, p0 and poff . R)
(left panel) Same plots as in (B), with 96 parameter sets for this model. Parameters are
sampled (ron from 0.1-100, roff from 0.1-100, kon from 0.0001-1, koff from 0.0001-1, β1 from
0.0001-10, β0 from 0.000001-0.01, threshold from 0-0.5) or set (β2 = 0.06, γ1 = 0.05, γ2 =
0.0083). (middle panel, right panel) Plotted in the same manner as in (B, middle panel,
right panel) with 25 parameter sets.
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Figure 3.12: Exploration of the models that fit pGYP7-YFP A) Comparison of the
3-state models with either ron or roff thresholding in the transition from p0 to poff (upper
panel) Schematic of the 3-state model with thresholding in the activation constant, ron,
between promoter off-states, p0 and poff . (middle panel) Heatmap of slope ratio in the
log10(kon/koff )-log10(ron/roff) plane. ron is set to 0.02 and kon = 0.6. Parameters are
sampled (roff from 0.0002-0.02, koff from 0.002-0.2) or set (β1 = 0.0001, β2 =0.06, γ1 =0.05,
γ2 =0.0083, threshold= 0.5, β0 =0.000001). (lower panel) Same heatmap as in (A, middle
panel) except with ron set to 2, and roff ranges from 0.02-2. B) (upper panel) Schematic
of the 3-state model with thresholding in the inactivation constant, roff , between promoter
OFF-states, p0 and poff . (middle panel) Same heatmap as in (A, middle panel) with ron
is set to 0.25 and kon = 0.25, that is previously described in Figure 3.5E. Parameters are
sampled (roff from 0.0025-2.5, koff from 0.0025-0.25) or set (β1 = 0.0001, β2 =0.06, γ1
=0.05, γ2 =0.0083, threshold= 0.5, β0 =0.000001). (lower panel) Same heatmap as in (B,
middle panel) except with ron set to 2.5, and roff ranges from 0.025-25. C-D) Additional
parameter requirements of the 3-state ron threshold model for fitting pGYP7-YFP. (upper
panels) Output-Occupancy plots are generated by the model for different parameter sets
that correspond to points 3 and 4 in the heatmap in B. The slope ratio for point 3 is
1.05 with log10(kon/koff ) = -1.58 and log10(ron/roff) = 0.6. The slope ratio for point
4 is 1.25 with log10(kon/koff ) = 0.1 and log10(ron/roff) = -0.89. Point 3 is chosen to
highlight the effect of decreasing roff , while Point 4 is chosen to highlight the effect of
decreasing koff . (middle panels) Example of a time course of promoter state p0 for a light
input that produces the equivalent of 40 minutes (dotted line in upper panel) in nuclear
localization either continuously or in short pulses. Solid lines are the p0 pulses while shading
denotes nuclear localization. The black double arrows denote the maximum depletion of
the p0 state for the pulsed input. (lower panels) Example of a time course of promoter
activity pon for a light input that produces the equivalent of 40 minutes (dotted line in upper
panel) in nuclear localization either continuously or in short pulses, similar to the (middle
panels). The red and blue dashes represent residual promoter activity beyond the nuclear
localization input. The red residual promoter activity is repeated 15 times while the blue
residual activity is repeated one time. The black triangle denotes the difference between the
amplitudes generated by the 2 minute pulse and 40 minute continuous input. E) Correlation
of nucleosome occupancy and sensitivity to pulsing. Heatmap of H3 occupancy for the Crz1
target genes as specified by Yoshimoto 2002. H3 occupancy is defined as counts of H3
enrichment over the IgG antibody, which signals no pull down of histones. The dataset and
determination of start sites are obtained from Sen et al., 2015 and Malabat et al., 2015,
respectively. The software deepTools 2.0 is used to compute the H3 occupancy values. -1
and +1 kb from the transcription start site (TSS) is used. The positions of YPS1, CMK2,
and GYP7 in the heatmap are denoted with black triangles. F) Slope ratios of Crz1 target
genes as a function of their mean H3 nucleosome occupancy scores averaged from -1kb to
the Transcription Start Site (TSS). The correlation coefficient is r2 = 0.26.
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Table 3.1: NLS Optimization This table contains the amino acid and peptide sequences
used in the screen for NLSs in the optimization of CLASP for maximal nuclear localization
dynamic range.

Number NLS Score (Kosugi 2009) AA Length Class

0 paaKRvKld na 9 original LANS, class2
3 raaKRpRtt 10 9 class2
5 paaKRpRtt 9 9 class2
8 apaKRaRtt 8 9 class2
9 paaKRlCtt 9 9 class2
11 aaaKRswsmaf 10 11 class3
14 aaaKRswvmaf 9 11 class3
15 aaaKRswsaaf 10 11 class3
20 KRpatlandspaaKRR 9 16 bipartite
24 KRKRwendip na 10 class1
27 psRKRKRdhyav na 12 class1
29 tspsRKRKwdqv na 12 class1
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Table 3.2: OptoPlate Transfer Function The transfer function of the OptoPlate. Con-
version from arbitrary units (a.u.) to intensity (milliWatts).

Light Dose milliWattage Std Dev

0 -0.0001499 0.0002004
0 -0.0002513 0.000252
0 -0.001819 0.000978
64 0.1011 0.008522
64 0.07921 0.007053
64 0.1279 0.01123
128 0.1944 0.02126
128 0.1962 0.01824
128 0.2633 0.02653
256 0.3961 0.0393
256 0.4012 0.0362
256 0.5107 0.04832
512 0.7849 0.07396
512 0.7776 0.09084
512 1.041 0.09508
1024 1.53 0.1346
1024 1.477 0.1491
1024 1.986 0.2349
2048 3.088 0.3326
2048 3.026 0.2563
2048 3.45 0.9
3072 4.302 0.4414
3072 4.235 0.4559
4095 5.407 0.5494
4095 5.486 0.4617
4095 6.56 0.587
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Chapter 4

Vignettes: the origin stories of the

bPAC and CLASP papers

4.1 Summary

The following chapter is a compilation of the unpublished data in exploring and studying

the upstream determinants and downstream interpretation of dynamic transcription factor

nuclear localization. These studies center on using different natural stress, genetic,

chemical, and optogenetic perturbations to either naturally alter or synthetically control

transcription factor nuclear localization, and quantifying the outputs of nuclear localization

and gene expression. These studies also chronicle the sustained efforts of a PhD student in

pursuing and answering a biological question. The work presented in this chapter (and

other data not included here) formed the basis of the published bPAC and CLASP work

detailed in Chapters 2 and 3.
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4.2 Deletions of PKA components result in alteration

of transcription factor nuclear localization in

response to natural stress inputs that impinge on

the PKA network

Protein kinase A (PKA) is a key mediator of nutrient and stress signaling in S. cerevisiae.

As such PKA integrates signals from many different inputs such as glucose depletion24,

nitrogen starvation82, heat shock83, and hyperosmotic stress1. PKA is embedded in a

complex of feedback loops that can precisely tune its activity84. It is thought that

environmental stresses may impinge on different components of the PKA feedback network

to activate or inactivate PKA. In addition to these natural inputs to PKA, recent work has

shown that PKA can also be activated optogenetically by a bacterial photoactivatible

adenylyl cyclase (bPAC)12. The perturbations on PKA are directly reflected in one of its

target transcription factors Msn225 (Figure 4.1).

In order to test whether different environmental inputs do impinge on PKA to alter both

PKA and Msn2 activity, Msn2 nuclear localization in response to different doses of glucose

depletion and osmotic shock (KCl) are measured (Figure 4.2). There are two main

conclusions. First, Msn2 nuclear localization is proportional to the duration and amplitude

of stress for both inputs. Second, in response to osmotic shock at a high dose (0.5M KCl),

Msn2 nuclear localization is more sustained than that for a high level of glucose

deprivation (0.1% glucose). This data establishes that these two environmental inputs do

alter PKA and Msn2 dynamics.

Next, components of the PKA network were knocked out to identify the mediators of

glucose depletion or osmotic shock signaling in the PKA network (Figure 4.3). For glucose

depletion, ∆ras1 and ∆ras2 increased Msn2 localization, while for ∆pde1, ∆pde2, ∆ira1,
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and ∆ira2, the decreased Msn2 nuclear localization. ∆ira2 abolished the Msn2 localization

response. This suggests that ∆ira2 plays a key role in mediating the glucose depletion

signal. For osmotic shock, ∆ras1 and ∆ras2 behaved similarly, with little effect on Msn2

localization. Interestingly, ∆ira2 and ∆pde2 exhibit slower localization than the WT or

other mutants. This suggests that ∆ira2 and ∆pde2, with ∆pde2 having a more dominant

effect, both play an important role in mediating the osmotic stress signaling through PKA.

Lastly, optogenetic production of cAMP with bPAC was used to causally relate genetic

perturbations to the PKA network to changes in PKA signaling and Msn2 nuclear

localization dynamics. Bcy1 is an inhibitor of PKA, and Bcy1 mutants were used to alter

the PKA network. Single mutations (S-> G, E, D, R, and T) were made at the 145

position of the Bcy1 gene (Figure 4.4). The serine 145 in Bcy1 is thought to either be

phosphorylated by PKA or other kinases in response to environmental inputs85. The

different nuclear localization dynamics in response to different Bcy1 mutants demonstrate

that interactions that alter the activity of a PKA inhibitor, such as Bcy1, can greatly affect

Msn2 nuclear localization dynamics.
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Figure 4.1: Many natural stress inputs impinge on PKA Schematic of the PKA
signaling network and inputs that impinge on the network.
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Figure 4.2: Glucose and osmotic shock result in distinct patterns of Msn2 nuclear
localization (top panel) Time course of Msn2 nuclear localization in response to decreasing
glucose availability in SDC. (bottom panel) Time course of Msn2 nuclear localization in
response to increasing potassium chloride (KCl).
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Figure 4.3: (top panel) Deletion of different components of the PKA network result
in distinct nuclear Msn2 nuclear localization in response to stresses Time course
of Msn2 nuclear localization in 0.1% glucose in a background with a single component of the
PKA network knocked out. (bottom panel) Same as in the top expanel except in 0.5M KCl.
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Figure 4.4: Using optogenetics instead of natural inputs to perturb PKA in dele-
tion backgrounds (left panel) Time course of Msn2 nuclear localization in different mu-
tational backgrounds of a PKA inhibitor Bcy1. The PKA network is activated using blue
light with the optogenetic system bacterial photoactivated adenylyl cyclase (bPAC). (bottom
panel) Schematic of the PKA network, identifying the blue light perturbation with the blue
arrow and the induction of a Bcy1 mutatnt with the red arrow.

4.3 PKA phosphorylation sites on Msn2 differentially

modulate Msn2 localization dynamics

To more controllably map changes in nuclear localization dynamics to Msn2 sequence

changes, various Msn2 NLS and NES mutants were made and the Msn2 nuclear

localization measured. Msn2 has a number of serine residues that are known to be

phosphorylated by PKA (Figure 4.5) and PKA de-phosphorylation has been documented

to change the localization Msn286 (Figure 4.6A). Disrupting the NLS and NES will provide

some mechanistic insights to the variable dynamics of nuclear localization due to the

intrinsic sequence. In order to observe the dynamic changes in Msn2, bPAC is used to

deliver a transient input (Figure 4.6B). The single S to A mutations typically responded
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with similar dynamics as the wildtype (Figure 4.7A), while the R to G mutants tended to

have attenuated localization responses (Figure 4.7B). The S to A mutations in the NES

have a more dramatic effect than the R to G mutants in the NES and compared to all the

NLS mutations (Figure 4.8). Nuclear localization is sustained for the S to A NES mutants.

Taken together, the phosphorylation state of Msn2 dictates its dynamic nuclear localization

patterns.

Figure 4.5: Msn2 known phoshporylation sites The mutants of PKA include point
mutations to the sites of phosphorylation in the nuclear localization sequence (NLS) and
nuclear exit sequence (NES). Other mutants have arginine point mutations also in the NLS
or NES near the PKA binding sites.

Figure 4.6: Msn2 localization controlled by PKA A) PKA regulation of Msn2 local-
ization. PKA has been experimentally shown to inhibit nuclear localization and facilitate
nuclear export. B) In the endogenous PKA network, PKA is activated by cAMP as a result
of upstream environmental perturbations. By using bPAC, light induction artificially and
controllably activates PKA, which then inhibits nuclear localization of Msn2.
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Figure 4.7: Msn2 nuclear localization with NLS mutants A) Nuclear enrichment of
single phosphorylation knockout NLS mutants. A pulse of light at 450nm is delivered as the
input for a duration of five minutes. Time traces of nuclear localization are shown. Initial
light induction increases PKA activity, but subsequent nuclear localization occurs due to
the negative feedback in the native PKA network. B) Nuclear enrichment of arginine NLS
mutants.
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Figure 4.8: Msn2 nuclear localization with NES mutants Nuclear enrichment of three
different NES mutants. Mutant S288A is a PKA phosphomutant. S304/S306A is another
phosphomutant. And R285G/R285S is a possible PKA binding mutant.

4.4 A screen of transcription factor nuclear

localization dynamics in response to

environmental stress inputs

From the study of PKA regulated Msn2 nuclear localization, a question arose of whether

PKA could regulate the nuclear localization events of many other transcription factors, and

moreover whether different environmental inputs could regulate localization events perhaps

through PKA. A search into existing databases showed that many transcription factors

have either validated for putative PKA phosphorylation sites (Figure 4.9, left)9,87. A

further search into the stress inputs that upregulate transcription factors with known PKA

phosphorylation sites (obtained from PhosphoGRID) show that the transcription factors

are activated by a variety of different inputs (Figure 4.9, right).

Hence, it would be interesting to observe the localization of transcription factors against

these different stress input, to identify which transcription factors respond to which stress

inputs. A screen of 15 transcription factors against 6 stress inputs measured the nuclear

localization over time (Figure 4.10, 4.11, and 4.12). A number of transcription factors did

not localize in response to any stress inputs. These are Cad1, Com2, Crf1, Gat1, Yap1, and

Nrg2. Stb3 is the only transcription factor that was only responsive to one stress input.

For the other transcription factors Crz1, Dot6, Maf1, Msn2, Msn4, Sko1, Rtg3, and Pho4,

nuclear localization occurred in response to multiple stress inputs. A search in the
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literature shows that some of these nuclear localization events had been previously

observed, but this study is the first to systematically characterize the effects of stress inputs

on transcription factor localization. Several localization events have not been previously

observed in the literature, and this includes Msn2 response to cell wall integrity stress,

Msn2 response to alkaline PH (PH8), and Msn4 response to nitrogen limitation (Table 4.1).

It can be concluded from this study that a given stress input activates multiple

transcription factors. This finding is consistent with the understanding that nutrient and

stress signaling involve activation of different expression regulons or the same expression

regulon under combinatorial control. Perhaps more interestingly, this study revealed that a

given transcription factor can mediate multiple different stress inputs. These different

dynamics of localization may hence play a role in discrimination of these upstream signals.

This is the study that motivated the development of CLASP.
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Figure 4.9: Many stress related transcription factors have PKA phosphorylation
sites (left) A table of transcription factors with their known kinase phosphorylator and
phosphosites. (right) A table of known PKA regulated transcription factors and the stresses
they are upregulated by. A graphic showing the number of total transcription factors in
yeast (203) and the number of PKA regulated transcription factors (24).

Figure 4.10: A screen of transcription factor localization in response to stress
inputs 1 The transcription factors: Cad1, Com2, Crf1, Crz1, and Dot6 are screen against
0.05% glucose depletion, nitrogen starvation, osmostic stress (sorbitol), calcofluor white, heat
shock, and phoshpate depletion. The mean nuclear localization is plotted with error bars
representing standard deviation. Imaging was done every 2 minutes in the RFP channel.
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Figure 4.11: A screen of transcription factor localization in response to stress
inputs 2 The transcription factors: Gat1, Maf1, Msn2, Yap1, and Stb3 are screen against
0.05% glucose depletion, nitrogen starvation, osmostic stress (sorbitol), calcofluor white, heat
shock, and phoshpate depletion. The mean nuclear localization is plotted with error bars
representing standard deviation. Imaging was done every 2 minutes in the RFP channel.

113



Figure 4.12: A screen of transcription factor localization in response to stress
inputs 3 The transcription factors: Sko1, Rtg3, Pho4, Nrg2, and Msn4 are screen against
0.05% glucose depletion, nitrogen starvation, osmostic stress (sorbitol), calcofluor white, heat
shock, and phoshpate depletion. The mean nuclear localization is plotted with error bars
representing standard deviation. Imaging was done every 2 minutes in the RFP channel.

Table 4.1: Summary table of transcription factor nuclear localization in response
to stress inputs For several of the transcription factors that responded to all of the stress
inputs, whether nuclear localization has been reported is written in red with literature ref-
erences noted.

Glucose Limitation Osmotic Stress Cell Wall Stress Alkaline Nitrogen Limitation

Pho4 Swinnern 2006 (YES) Yale 2001 (YES) Huang 2002 (YES) Serrano 2002 (YES) Swinnern 2006 (YES)
Maf1 Hallet 2014 (YES) Boisnard 2009 (YES) (YES) (YES) Hallet 2014 (YES)
Dot6 Hippman 2009 (YES) Enjalbert 2008 (YES) (YES) (YES) Stracka 2014 (YES)
Msn2 Gorner 2002 (YES) Hao 2011 (YES) Garcia 2009 (NO) (YES) Pan 1999 (NO)
Msn4 Martinez-Pastor 1996 (YES) Martinez-Pastor 1996 (YES) Garcia 2009 (NO) (YES) (NO)

4.5 Optogenetics could be used to test correlation

between upstream dynamics and downstream

gene expression

The previous study showed that many transcription factors localize to the nucleus in

response to stress inputs. It was also known that many of these transcription factors are

regulated by PKA and that PKA is a key mediator of environmental stress inputs. It’s

been thought that the negative feedback network in which PKA is embedded allows PKA

to propagate upstream signals in dynamically distinct ways to its target transcription

factors (Figure 4.13). PKA is known to de-phosphorylate Msn2, which results in Msn2

nuclear localization86. Localized Msn2 then binds to STRE promoter motifs to activate

Msn2 target genes6. Msn2 exhibits transient nuclear localization in response to

hyperosmotic shock and sustained nuclear localization in response to oxidative stress

(Figure 4.14). In order to examine whether dynamically distinct Msn2 nuclear localization
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might differentially express genes, gene expression datasets59 in response to environmental

stresses were re-analyzed by identifying Msn2 target genes, defined as genes bearing STRE

promoter motifs, and comparing gene expression output between the two stress inputs

(Figure 4.14). Genes common to hyperosmotic and oxidative stress that were up- or

down-regulated could be clustered into two groups. One group had similar expression levels

between the two stress, while in the other group, genes were up-regulated in oxidative

stress but down-regulated in hyperosmotic stress (Figure 4.14). This data identifies a gene

set of Msn2 target genes that are differentially expressed based on the stress input, and

this differential expression is correlated with Msn2 nuclear localization dynamics.

In order to establish a causal relationship between nuclear localization dynamics and

differential gene expression, synthetic control of nuclear localization was required. From

previous work on bPAC, it is known that glucose addition results in a transient increase in

cAMP concentration and PKA activity88 (Figure 4.15). This transient increase in

cAMP/PKA activity would translate into a mirrored transient decrease in Msn2 nuclear

localization, and could be mimicked with light input using bPAC activation (Figure 4.15).

Hence, RNA sequencing was performed on cells experienced similar PKA/Msn2 dynamic

changes; a transient 40 minutes pulse of light and glucose addition were used as inputs.

The log2 fold change of gene expression showed that expression profiles clustered similarly

for both light stimulation and glucose addition, suggesting a causal relationship between

PKA dynamics and the downstream gene expression in response to glucose addition

(Figure 4.16).

This study showed the ability of using optogenetics to successfully mimic upstream protein

activity dynamics and draw causal conclusions about the role of dynamics in controlling

gene expression. However, this method was ultimately relegated because control of Msn2

nuclear localization with bPAC was limited in that activation of bPAC caused a decrease in

Msn2 nuclear localization that was not measurable with our experimental system. Hence,
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it was difficult to measure the dynamics of Msn2 to causally correlate with Msn2 target

gene expression. Hence, a different method to control Msn2 was pursued. This effort is

detailed in the next section. Ultimately, the goal of controlling transcription factor

localization was broader than just the control of Msn2, and a more general tool was

necessary that de-coupled localization from any upstream kinase or natural input. Never

the less, the idea of using optogenetics to control transcription factor nuclear localization

was incepted from these sets of experiments.

Figure 4.13: PKA is a signaling hub The PKA network is a signaling hub that integrates
many environmental responses and elicits downstream transcriptional responses. The PKA
network consists of two main negative feedback loops.
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Figure 4.14: PKA-mediated Msn2 nuclear localization dynamics correlate with
distinct gene expression patterns (left top) Msn2 nuclear localization in response to
hyperosmotic stress and oxidative stress as published in Hao 2011. (left bottom) Clustered
gene expression of known Msn2 target genes in response to hyperosmotic and oxidative stress.
The gene expression datasets were taken from Gausch 2000 and Guldal 2007. (right) PKA
is known to de-phoshporylate Msn2 and cause Msn2 nuclear localization to the nucleus. In
the nucleus, Msn2 is known to bind STRE promoter elements, as published by Moskvina
1998. Diagram of PKA/Msn2 potentially integrating different stress inputs and producing
different transcriptional responses.
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Figure 4.15: cAMP/PKA time course in response to glucose addition Plot of cAMP
over time in response to glucose addition from Ma 1999. Schematic of glucose and light
addition impinging on PKA to result in a transcriptional response.
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Figure 4.16: RNAseq in response to light stimulation and glucose addition Clustered
heatmap of light and glucose addition. The different columns are biological replicates.
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4.6 Controlling transcription factor nuclear

localization with 1-NMPP1 was unreliable

It was shown that PKA is an upstream regulator of many transcription factors. Hence, it is

plausible that a small molecule inhibitor of PKA, 1-NMPP1 would be able to control the

nuclear localization of PKA regulated transcription factors21 (Figure 4.17, left). To test

this, 500uM of 1-NMPP1 was added to cells with RFP tagged transcription factors. Time

courses of nuclear localization for these four different PKA regulated transcription factors,

Msn2, Tod6, Gln3, and Stb3, were obtained. The data shows that indeed, in response to a

step input of 1-NMPP1, all four transcription factors localized to the nucleus (Figure 4.17,

right).

Next, to control the dynamics of nuclear localization, the 1-NMPP1 was delivered in a

microfluidic chamber, making the washout and re-delivery of 1-NMPP1 possible. To

initially test 1-NMPP1 control with this method, a single transient pulse of 1-NMPP1 is

deliver through microfluidics and the nuclear localization of Tod6 was observed over time

(Figure 4.18). Interestingly neither the lab stock or the Shokat lab stock of 1-NMPP1 was

able to maintain nuclear localization for the duration of the 1-NMPP1 pulse. Glucose

depletion, however, followed the dynamics of the media input. This suggests that it was

not due to a technical error of the microfluidic plate. The localization of Tod6 in response

to 1uM of rapamycin, moreover, followed a similar trend to 500uM 1-NMPP1. This

suggested that the properties of the small molecules 1-NMMP1 and rapamycin were

interfering with the delivery of input through the microfluidic plate. A search of the

literature found that another lab that used 1-NMPP1 had built their own custom

microfluidic setup because the PDMS material of the microfluidic plate absorbed the small

molecule89. This revelation was consistent with the dampened nuclear localization

experimentally observed in the presence of a 30 minute pulse.
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It became clear that a commercial microfluidic device was not suitable for dynamic delivery

of 1-NMPP1 to cells. In collaboration with another labmate, Patrick Harrigan, a

mesofluidic device was built that might be able to dynamically deliver 1-NMPP1. The

device consisted of two fluidic pumps (that was re-purposed from an HTS on a flow

cytometer), one of which was used to pump media into the sample and the other to pump

media out of the sample (Figure 4.19). Media was pumped out in one line and split into

four lines. Similarly, media was removed from four different wells and combined to one line

that fed into a waste bottle. Hence, there were two sets of tubing in every well.

An initial test of the media exchange capabilities of the device was carried out. YPD was

exchanged with SDC, and fluorescence in the RFP channel was imaged (Figure 4.20). The

dynamics of media exchange was very rapid, with an upper bound of 10 seconds, as the

images were taken every 10 seconds. Next, the mesofluidic device was use to exchange

glucose rich and glucose depleted media. SDC and SDC with 0.05% glucose were

alternatively delivered to four separate samples with RFP tagged Msn2 with a period of 10

minutes (Figure 4.21, left). The nuclear localization of Msn2 rose in the presence of glucose

depletion media and fell in the presence of SDC. Finally, a 1-NMPP1 washout experiment

was performed to determined the speed at which the small molecule could be removed from

the media (Figure 4.21, right). The washout of the 1-NMPP1 in SDC media occurred

within 90 seconds as denoted by the blue line. The red and green lines are the controls for

no 1-NMMP1 and constant 1-NMPP1. This experiment demonstrated the ability of the

device to remove 1-NMPP1.

There were two main factors that rendered the device non-functional for dynamically

delivering 1-NMPP1. First, the flow rates from the four tubes that delivered media and the

four tubes that removed media were not uniform. And it was not clear based on the

existing capabilities in the lab how to devise uniform flow rates. Second, it was apparent

after the device was built that the tubes used to deliver and remove media could also be a
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sticky surface for the 1-NMPP1 molecule, similar to the PDMS. Hence, the device

ineffective for the dynamic study of transcription factors even though the media exchange

properties of the device were functional.

Figure 4.17: 1-NMPP1 can control transcription factor nuclear localization (left) It
is known that PKA regulates different downstream transcription factors, and that 1-NMPP1
is a synthetic inhibitor of PKA. (right) Time course microscopy of nuclear localization in
response to a step input of 1-NMPP1 (blue arrow) is plotted. The red dots represent the
mean and the envelop represents the standard deviation.
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Figure 4.18: 1-NMPP1 delivery was not well controlled by CellAsics microfluidics
For a transcription factor Tod6, a transient pulse of input was delivered for 30 minutes. These
inputs included 500uM 1-NMPP1, 500uM 1-NMPP1 from a Shokat stock, 1uM rapamycin,
and 0.05% glucose SDC. The time course of nuclear localization was assayed every 1 minute.
The error bars represent standard deviation.
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Figure 4.19: Meso-fluidic contraption physical set-up A meso-fluidic device controlled
by LabView. The High-Throughput Sampler was responsible for delivering and removing
media or input from a 96-well imaging plate. Each well contained an input and output tube.
The sequence of input delivery was setup in LabView and not synched to the imaging of the
microscope.
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Figure 4.20: Mesofluidic device able to rapidly exchange media Time course imaging
of RFP every 10 seconds. A sample well with YPD was removed and replaced with SDC
periodically. The blue and magenta dots represent when the YPD is removed and SDC is
added, respectively. The blue and red traces represent two technical replicates. The shading
represents standard deviation.
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Figure 4.21: Mesofluidic device able to deliver glucose dropout and 1-NMPP1
washout (left) Time course of nuclear enrichment of Msn2-RFP is plotted. The different
colored dots represent technical replicates and the shaded envelops represent standard de-
viation. The light blue line represents the delivery of SDC to glucose starved cells. (right)
The time course of a 1-NMPP1 washout is plotted. The red lines represent a sample with
no 1-NMPP1. The green lines represent sampled induced with 1-NMPP1. The blue lines
represent a sample with 1-NMPP1 that is then washed out with SDC at time, t=0. The
clustered lines are technical replicates. The error bars represent standard deviation.

4.7 yeLANS can precisely control nuclear localization

of TFs but show weak activation of gene

expression

Prior to CLASP, there was a lot of work on a previous iteration of an optogenetic tool to

control transcription factor. This tool, yeast optimized LANS (yeLANS), utilized the same

LOV2 uncaging of an NLS to localize a tagged cargo to the nucleus13 (Figure 4.22A). A

small library of NLSs of different classes56 were screened for optimized dynamic range of

nuclear localization, with a class III NLS being used in the final yeLANS construct (Figure

4.22B). The nuclear localization of an mCherry-yeLANS was assayed. Specifically, different
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periods of light were delivered to test the speed and time resolution of nuclear localization

(Figure 4.22C). The mCherry-yeLANS has a time resolution of about 2min.

yeLANS was then tagged to several stress transcription factors such as Rtg1, Rtg3, and

Dot6. These yeLANS tagged transcription factors were able to localize to the nucleus for

the duration of the light input, which was 60 minutes (Figure 4.23).

Similarly, Crz1-yeLANS was also able localize to the nucleus for the duration of the light

input, which was 40 minutes (Figure 4.24). Crz1-yeLANS was of particular interest

because Crz1 localization differs based on the environmental input. In natural Crz1

signaling, Crz1 de-phorylates and enters the nucleus in response to both CaCl2 and PH8

(Figure 4.25, left top). It is possible that these two input produce different gene expression

programs, as suggested by the published data sets of gene expression in response to

CaCl2
62 and PH890 (Figure 4.25, left bottom). The nuclear localization of Crz1 in

response to CaCl2 and PH8 were measured and quantified. It was found that CaCl2

translocated more transiently to the nucleus compared to PH8, which exhibited more

sustained nuclear localization (Figure 4.25, right). One hypothesis that arose from this

observation was that the differences in gene expression could be due to the dynamic

differences of Crz1 nuclear localization in response to the two inputs.

To test this hypothesis, qPCR of seven known Crz1 target genes was performed for

Crz1-yeLANS strains that were exposed to light, to 0.2M CaCl2, PH8, or no input (Figure

4.26). The most striking observation was that both CaCl2 and PH8 exhibited large fold

changes to target gene expression. Gene expression in response to 40 minutes of light was

weak at best, with the highest fold change being 3.34 and many other under 2 fold. This

suggested that Crz1-yeLANS was not able to activate downstream genes to nearly the same

extent as natural inputs. To further confirm this hypothesis, time course RNA sequencing

was performed in the conditions of 0.2M CaCl2 and light for 100 minutes. The gene

expression profiles partially confirmed the hypothesis that Crz1-yeLANS could not activate

127



downstream genes to the same extent as CaCl2. At 60 minutes, expression of Crz1 target

genes was low compared to 60 minutes with 0.2M CaCl2. However, at 100 minutes, the

gene expression profiles of light and 0.2M CaCl2 inputs were more comparable, suggesting

that Crz1-yeLANS activates Crz1 target genes more slowly than 0.2M CaCl2 (Figure 4.27,

top panel). This phenotype is plotted more explicitly with gene expression as a function of

time for the mean of and individual Crz1 target genes for the two inputs of CaCl2 and

light (Figure 4.27, bottom panel).

One reason for this muted and delayed expression in response to Crz1-yeLANS is that the

Crz1 in this construct is not de-phosphorylated and that de-phosphorylation could be play

a role in activation of gene expression in the natural system. A Crz1 S19A mutant was

constructed that confirmed this hypothesis (see Supplementary Figure 3.9 in Chapter 3).

This finding was the main rationale for using a Crz1 S19A mutant. The necessity of adding

a second sequestration domain to Crz1*-yeLANS to form Crz1*-CLASP was due to the

constitutive nuclearly localized phenotype of the Crz1 S19A mutant.
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Figure 4.22: Characterize optogenetically induced nuclear localization with a flu-
orescent protein (FP) A) Schematic of light-gated Nuclear Localization Sequence (NLS)
sequestration mechanism B) Using an mCherry reporter, a panel of NLSs were tested in
response to light. C) Decreasing periods of blue light (ranging from 6 to 1 min) were ap-
plied. The mean nuclear enrichment (solid line) and standard deviations (shaded area) was
measured via microscopy.
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Figure 4.23: Optogenetically induced nuclear localization of naturally pulsing TFs
A 60 minute pulse of blue light at 450nm at approx. 40uW/mm2 was applied to cells with
TF tagged with mCherry and the optogenetic tag. The light input holds TFs in the nucleus
over a long period of light durations.

Figure 4.24: yeLANs can precisely control Crz1 nuclear localization Crz1 localization
in response to 40min light is measured.
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Figure 4.25: Crz1 nuclear localization in response to natural inputs Crz1 is a key
signaling mediator for transcriptional activity in response to Ca2+ changes (CaCl2 and
alkaline pH). Upon these natural inputs, Crz1 translocates to the nucleus with distinct
localization profiles. These Crz1 profiles may contain regulatory information for activating
distinct gene sets.
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Figure 4.26: Crz1-yeLANs either weakly or does not activate Crz1 target genes
qPCR mRNA expression is assayed from 7 Crz1 target genes after 40minutes of light induc-
tion or 40minutes of CaCl2 or PH8 natural input. The inset shows a table of expression fold
changes in response to different inputs.
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Figure 4.27: Expression profiling shows delayed gene expression of Crz1-yeLANS
compared to 0.2M CaCl2 (top left) Schematic of light experiment in which 100min of
blue light is delivered to cells. (top right) Gene expression profiling of time courses for 0.2M
CaCl2 at 30, 60, and 100 minutes, and for 100 minutes of light exposure (2.3mW/cm2) at 60
and 100 minutes.The intensities are fold-change over no input. The profiles are hierarchically
clustered. (bottom left) Log2 fold-change of the average of all Crz1 target genes are plotted
over time. The solid line denotes light induction while dotted line denotes CaCl2 induction.
The errorbars represent standard deviation. (bottom middle) Pie chart showing the percent-
age of Crz1 target genes that are delayed and not delayed in the strains exposed to light.
(bottom right) Example Crz1 target gene log2 fold-change time traces with turquoise line
denoting light induced samples while salmon line denotes CaCl2 induced samples.
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4.8 Gene expression profiling of Crz1-yeLANS

identifies ”fast” and ”slow” genes

From the previous qPCR and transcriptome profiling studies of gene expression in response

to Crz1-yeLANS, it is clear that the Crz1-yeLANS is a significantly less efficient and

delayed version of the natural Crz1 transcription factor. While the study of Crz1 dynamics

proceeded with the Crz1 S19A mutant, Crz1-yeLANS could still serve to identify target

genes that are easily or not easily activated by dynamic Crz1-yeLANS inputs. The caveat

to this approach is that a ”blunted” Crz1 could alter more than just the timing of gene

expression response to Crz1. In fact, this study cannot be compared to natural Crz1 gene

expression. With this caveat in mind, use of the Crz1-yeLANS could still be used as a case

study for how target genes might respond to transient transcription factor nuclear

localization inputs. Crz1-yeLANS was exposed to either a transient 40 minute pulse of

light or continuous light for 120 minutes. The nuclear localization of Crz1-yeLANS showed

that nuclear localization remained for the duration of the light input (Figure 4.28A). Cells

were collected at time 0, 30, 60, and 100 minutes, and gene expression profiling using RNA

sequencing was performed. The resulting gene expression profiles are then analyzed for

differential gene expression. The fold change of gene expression were then clustered in a

heatmap (Figure 4.28B). A clear result was that most genes tended to follow the dynamics

of the light input, meaning that they increased in expression when the light was on and

returned to basal when the light was off. The inset shows examples of dynamic traces.

There was also a small subset of genes that did not turn on in the transient input but

turned on after 60 minutes or greater of light illumination. The gene expression profiling

showed that most genes were ”fast” in that they responded to the transient input.

The two groups of genes, ”fast” and ”slow”, could be analyzed for Gene Ontology

Enrichment. The ”fast” or ”linear” genes have two significantly enriched GO Term which
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are Cellular Differentiation and Reproductive Process. The ”slow” genes were enriched in

Trehalose Metabolism in response to stress (Figure 4.29A). Hence, there may be some

functional differentiation between the ”fast” and ”slow” genes.

The growth of Crz1-yeLANS cells were also assayed for transient and continuous (or

sustained) light inputs. A growth defect was observed for the continuous light input,

suggesting that continued expression of Crz1 target genes is deleterious for the cell (Figure

4.29B). In summary, this study used an optogenetic tool called yeLANS to mimic the

nuclear shuttling of Crz1 in response to either CaCl2 or PH8 stress inputs, which are

stereotyped as transient and continuous, respectively. Gene expression profiling was then

done for light-induced transient and continuous localization of Crz1. The experiment

identified two groups of genes that either followed the pulse, termed ”fast” (or ”linear”), or

”slow” genes that did not turn on in the transient pulse. It will be interesting explore

further the potential mechanism for the ”fast” and ”slow” behavior of the genes. One

hypothesis that was already put forth by the Crz1*-CLASP study is the presence of

nucleosomes in the ”slow” genes (Figure 4.30). By promoter swapping and further

promoter bashing, it will be exciting not only to identify the mechanistic components that

underlie these two behaviors but also to forward engineer promoters sensitive to dynamic

nuclear localization.
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Figure 4.28: Crz1 Nuclear shuttling and RNAseq of gene expression A) Experimental
setup with optogenetically shuttling Crz1. RNAseq samples are collected at 0, 30, 60, and 100
minutes. B) Heatmap of gene expression grouped by time trajectories. Genes are grouped
into “linear” and “slow” sets. The individual time traces for the “linear” genes are shown
(inset).
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Figure 4.29: [Functional interpretation of linear and slow genes A) Table of GO
terms and genes that are enriched in the two cluster of genes termed ”linear” and ”slow”.
B) Growth as measured by OD600 for cells grown with a transient 40 minute blue light
exposure compared to cells with continuous 24 hour light exposure.
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Figure 4.30: Summary of findings A schematic for the findings in this study, potential next
steps to further identify the mechanism of fast or slow genes, and possibility of engineering
new regulation.

4.9 Other Notes on Crz1*-CLASP

4.9.1 Crz1*-CLASP is inactive in the dark even when in the

nucleus

When characterizing CLASP, the measured dose response of Crz1 target genes

pCMK2-venus and pGYP7-venus at different promoter expressions of Crz1*-CLASP did

not match the gene expression measured in the presence of light (Figure 4.32, right panels).

Intriguingly, for a given nuclear amount of Crz1*-CLASP, gene expression was higher when

that amount was achieved through light induction than through an increase in the
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expression of Crz1*-CLASP from a stronger promoter in the absence of light.

One hypothesis was that adaption to constitutive amounts of nuclear Crz1 at different

promoter levels causes the lowered dose response in the absence of light induction. To test

this hypothesis, target gene expression was measured in the presence of constant light that

maintained Crz1*-CLASP or synTF-CLASP in the nucleus for 10 hours (Figure 4.31). If

there was adaptation, the expectation was that gene expression would reach a maximum

then decrease to a lower gene expression. This is not observed, and hence adaptation of

target genes was ruled out as a possible cause for the lowered target gene dose responses in

the absence of light.

Another hypothesis was that the CLASP construct prevented the transcription factor from

being active in the dark. This would be the case if the synTF target gene expression also

showed the same phenotype as the Crz1 target genes. Indeed, the synTF target gene dose

response was saturated for increasing synTF-CLASP expression levels from different

promoters in the dark, but was much more dose responsive when the nuclear amount was

delivered by light activation (Figure 4.32, left panel). Hence, increased gene expression due

to increased TF nuclear localization levels only occurs with light-activated of TF-CLASP.
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Figure 4.31: Time course gene expression in constant blue light Target gene expres-
sions of Crz1*-CLASP and synTF-CLASP are plotted as a function of time in constant blue
light.
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Figure 4.32: Dose response to target genes with and without light activation (left)
SynTF dose response at different promoter expression levels (pRpl18B, pADH1, and pTEF1)
of synTF-CLASP induced with 4 hours of light (orange dots) or no light (green dots) mea-
sured at 5 hours after light induction. Each cluster of dots represents biological replicates.
(right, top panel) Cmk2 dose response obtained in the same manner as synTF. (right, bottom
panel) Gyp7 dose response obtained in the same manner as synTF.

4.9.2 Crz1*-CLASP can override natural CaCl2 signal

In addition to using CLASP to mimic natural TF localization events, CLASP can also be

used to study nuclear localization and gene expression in the context of natural inputs. For

instance, Crz1*-CLASP can be prevented from entering the nucleus even in the presence of

different concentrations of CaCl2 (Figure 4.33). To test whether the sequestration of

Crz1*-CLASP can prevent gene expression of Crz1 target genes in the presence of CaCl2,

pRPL18B-Crz1*-CLASP was exposed to increasing concentrations of CaCl2 in the absence
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or presence of light, and the resulting gene expression was measured using RNA sequencing

(Figure 4.34). The log2 fold-change expression over no input, showed that sequestration is

not complete even in the 0.1M CaCl2, and sequestration is less effective as the

concentration of CaCl2 increases. Despite this, in the presence of light, which localizes

pRPL18B-Crz1*-CLASP to the nucleus, increased expression of CaCl2 genes were observed

(Figure 4.34). This indicates that sequestration is able to partially control gene expression

in the presence of a natural stress.

The potential of CLASP, with optimization of its sequestering capabilities, could enable its

use in dynamic TF knockouts and rescues in the context of stress inputs. It could precisely

test questions such as the contribution of Crz1 in CaCl2 signaling. It could also probe the

effects of changing the dynamic signaling and timing of Crz1 (and other TFs) in the

combinatorial control of genes that occur in the background of natural stress inputs. This

property of CLASP further demonstrates its versatility as a molecular tool.
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Figure 4.33: Crz1*-CLASP sequestration in the presence of CaCl2 Time course
of Crz1 or Crz1*-CLASP nuclear localization in response to increasing concentrations of
CaCl2. Mean localization is represented by the solid line and the shaded envelop represents
the standard error.
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Figure 4.34: pRPL18B-Crz1*-CLASP sequestration from CaCl2 and release with
light (left) Schematic of experimental setup in which pRPL18B - Crz1 S19A - CLASP is
exposed first varying concentrations of CaCl2 and then induced with light. (right) Log2
fold-change over no input of gene expression for cells exposed to increasing 0.1M, 0.2, and
0.4M CaCl2 in the absence and presence of light.

4.10 Target gene interpretation of natural Crz1 pulse

in response to 0.2M CaCl2

The motivation for using light to nuclear localize transcription factors was inspired by the

observation that many transcription factor localize dynamically to the nucleus in response

to natural inputs. A light based approached was used and documented extensively in this

work to study the transcriptional consequences of dynamic nuclear localization. It would

be interesting to study the transcriptional responses of known TF target genes to natural

inputs. Using Crz1 again as a test bed, 0.2M CaCl2 was added and the transcriptional
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outputs of Crz1 target genes were measured over time. It was found that a large portion of

target genes (65%) follow the dynamics of the initial concerted Crz1 nuclear localization

pulse, while 26% of the genes remained on even when the Crz1 localization had receded

and 9% of the genes initially increased but decreased below the initial levels before

returning to the pre-perturbation levels (Figure 4.35). These results suggest that target

genes are able to differentially interpret the initial concerted and transient pulse of Crz1

nuclear localization induced by natural CaCl2 input.

Figure 4.35: Time-course profiling of gene expression in response to 0.2M CaCl2
(left) Schematic of experimental setup (middle, top) Cartoon trace of Crz1 nuclear localiza-
tion pulse in response to CaCl2. A pie chart of Crz1 targets that belongs to 1 of 3 groups
of responses. (middle, bottom) Normalized log2(read counts) of CaCl2 induced Crz1 depen-
dent genes at 0, 30, 60, and 100 minutes. Dynamic behaviors are categorized into 3 groups
denoted by 3 colors. (right, top) Gene expression over time for individual genes separated
by groups. The black dotted line is the mean of the time courses while the salmon lines are
individual genes. (right, bottom) Gene expression over time of sample Crz1 target genes in
group 1 (green).
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Losi, Wolfgang Gärtner, Linda Petereit, Marina Efetova, Martin Schwarzel, Thomas G.

Oertner, Georg Nagel, and Peter Hegemann. Light modulation of cellular cAMP by a

147



small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium

beggiatoa. 286(2):1181–1188. ISSN 1083-351X. doi: 10.1074/jbc.M110.185496.

[13] Hayretin Yumerefendi, Daniel J. Dickinson, Hui Wang, Seth P. Zimmerman, James E.

Bear, Bob Goldstein, Klaus Hahn, and Brian Kuhlman. Control of protein activity

and cell fate specification via light-mediated nuclear translocation. 10(6):e0128443, .

ISSN 1932-6203. doi: 10.1371/journal.pone.0128443.

[14] Hui Wang, Marco Vilela, Andreas Winkler, Miroslaw Tarnawski, Ilme Schlichting,

Hayretin Yumerefendi, Brian Kuhlman, Rihe Liu, Gaudenz Danuser, and Klaus M

Hahn. LOVTRAP, an optogenetic system for photo-induced protein dissociation. 13

(9):755–758, . ISSN 1548-7091. doi: 10.1038/nmeth.3926. URL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137947/.

[15] J. J. Tyson and J. D. Murray. Cyclic AMP waves during aggregation of dictyostelium

amoebae. 106(3):421–426. ISSN 0950-1991.

[16] George G. Holz, Emma Heart, and Colin A. Leech. Synchronizing ca2+ and cAMP

oscillations in pancreatic beta-cells: a role for glucose metabolism and GLP-1

receptors? focus on ”regulation of cAMP dynamics by ca2+ and g protein-coupled

receptors in the pancreatic beta-cell: a computational approach”. 294(1):C4–6. ISSN

0363-6143. doi: 10.1152/ajpcell.00522.2007.

[17] Jason Ptacek, Geeta Devgan, Gregory Michaud, Heng Zhu, Xiaowei Zhu, Joseph

Fasolo, Hong Guo, Ghil Jona, Ashton Breitkreutz, Richelle Sopko, Rhonda R.

McCartney, Martin C. Schmidt, Najma Rachidi, Soo-Jung Lee, Angie S. Mah, Lihao

Meng, Michael J. R. Stark, David F. Stern, Claudio De Virgilio, Mike Tyers, Brenda

Andrews, Mark Gerstein, Barry Schweitzer, Paul F. Predki, and Michael Snyder.

Global analysis of protein phosphorylation in yeast. 438(7068):679–684. ISSN

1476-4687. doi: 10.1038/nature04187.

148



[18] J. Nikawa, S. Cameron, T. Toda, K. M. Ferguson, and M. Wigler. Rigorous feedback

control of cAMP levels in saccharomyces cerevisiae. 1(9):931–937. ISSN 0890-9369.

[19] A. Smith, M. P. Ward, and S. Garrett. Yeast PKA represses msn2p/msn4p-dependent

gene expression to regulate growth, stress response and glycogen accumulation. 17

(13):3556–3564. ISSN 0261-4189. doi: 10.1093/emboj/17.13.3556.

[20] Long Cai, Chiraj K. Dalal, and Michael B. Elowitz. Frequency-modulated nuclear

localization bursts coordinate gene regulation. 455(7212):485–490. ISSN 0028-0836.

doi: 10.1038/nature07292. URL

http://www.nature.com/nature/journal/v455/n7212/full/nature07292.html.

[21] Anders S Hansen and Erin K O’Shea. Promoter decoding of transcription factor

dynamics involves a trade-off between noise and control of gene expression. 9:704, .

ISSN 1744-4292. doi: 10.1038/msb.2013.56. URL

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039373/.

[22] Anders S. Hansen and Erin K. O’Shea. cis determinants of promoter threshold and

activation timescale. 12(8):1226–1233. ISSN 2211-1247. doi:

10.1016/j.celrep.2015.07.035. URL

https://www.cell.com/cell-reports/abstract/S2211-1247(15)00795-0.

[23] Mineo Iseki, Shigeru Matsunaga, Akio Murakami, Kaoru Ohno, Kiyoshi Shiga,

Kazuichi Yoshida, Michizo Sugai, Tetsuo Takahashi, Terumitsu Hori, and Masakatsu

Watanabe. A blue-light-activated adenylyl cyclase mediates photoavoidance in euglena

gracilis. 415(6875):1047–1051. ISSN 0028-0836. doi: 10.1038/4151047a.

[24] W. Görner, E. Durchschlag, M. T. Martinez-Pastor, F. Estruch, G. Ammerer,

B. Hamilton, H. Ruis, and C. Schüller. Nuclear localization of the c2h2 zinc finger

protein msn2p is regulated by stress and protein kinase a activity. 12(4):586–597.

ISSN 0890-9369.

149



[25] Cecilia Garmendia-Torres, Albert Goldbeter, and Michel Jacquet. Nucleocytoplasmic

oscillations of the yeast transcription factor msn2: Evidence for periodic PKA

activation. 17(12):1044–1049. ISSN 0960-9822. doi: 10.1016/j.cub.2007.05.032. URL

https://www.cell.com/current-biology/abstract/S0960-9822(07)01411-X.

[26] Min-Hyung Ryu, Oleg V. Moskvin, Jessica Siltberg-Liberles, and Mark Gomelsky.

Natural and engineered photoactivated nucleotidyl cyclases for optogenetic

applications. 285(53):41501–41508. ISSN 1083-351X. doi: 10.1074/jbc.M110.177600.

[27] Jacob Stewart-Ornstein, Christopher Nelson, Joe DeRisi, Jonathan S. Weissman, and

Hana El-Samad. Msn2 coordinates a stoichiometric gene expression program. 23(23):

2336–2345. ISSN 1879-0445. doi: 10.1016/j.cub.2013.09.043.

[28] Sonia Colombo, Daniela Ronchetti, Johan M. Thevelein, Joris Winderickx, and Enzo

Martegani. Activation state of the ras2 protein and glucose-induced signaling in

saccharomyces cerevisiae. 279(45):46715–46722. ISSN 0021-9258. doi:

10.1074/jbc.M405136200.

[29] Dong Jian, Zhang Aili, Bai Xiaojia, Zhao Huansheng, and Hu Yun. Feedback

regulation of ras2 guanine nucleotide exchange factor (ras2-GEF) activity of cdc25p by

cdc25p phosphorylation in the yeast saccharomyces cerevisiae. 584(23):4745–4750.

ISSN 1873-3468. doi: 10.1016/j.febslet.2010.11.006.

[30] Paolo Cazzaniga, Dario Pescini, Daniela Besozzi, Giancarlo Mauri, Sonia Colombo,

and Enzo Martegani. Modeling and stochastic simulation of the ras/cAMP/PKA

pathway in the yeast saccharomyces cerevisiae evidences a key regulatory function for

intracellular guanine nucleotides pools. 133(3):377–385. ISSN 0168-1656. doi:

10.1016/j.jbiotec.2007.09.019.

[31] J. A. Nelder and R. Mead. A simplex method for function minimization. 7(4):

150



308–313. ISSN 0010-4620. doi: 10.1093/comjnl/7.4.308. URL

https://academic.oup.com/comjnl/article/7/4/308/354237.

[32] P. Sass, J. Field, J. Nikawa, T. Toda, and M. Wigler. Cloning and characterization of

the high-affinity cAMP phosphodiesterase of saccharomyces cerevisiae. 83(24):

9303–9307. ISSN 0027-8424.

[33] M Czyz, M M Nagiec, and R C Dickson. Autoregulation of GAL4 transcription is

essential for rapid growth of kluyveromyces lactis on lactose and galactose. 21(18):

4378–4382. ISSN 0305-1048. URL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC310076/.

[34] Amit Sadeh, Natalia Movshovich, Misha Volokh, Larisa Gheber, and Amir Aharoni.

Fine-tuning of the msn2/4–mediated yeast stress responses as revealed by systematic

deletion of msn2/4 partners. 22(17):3127–3138. ISSN 1059-1524. doi:

10.1091/mbc.E10-12-1007. URL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164460/.

[35] Michael Springer, Dennis D. Wykoff, Nicole Miller, and Erin K. O’Shea. Partially

phosphorylated pho4 activates transcription of a subset of phosphate-responsive genes.

1(2):e28. ISSN 1545-7885. doi: 10.1371/journal.pbio.0000028. URL

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.0000028.

[36] Eric Batchelor, Alexander Loewer, Caroline Mock, and Galit Lahav.

Stimulus-dependent dynamics of p53 in single cells. 7:488. ISSN 1744-4292. doi:

10.1038/msb.2011.20. URL

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130553/.

[37] Markus W. Covert, Thomas H. Leung, Jahlionais E. Gaston, and David Baltimore.

Achieving stability of lipopolysaccharide-induced NF-kappaB activation. 309(5742):

1854–1857. ISSN 1095-9203. doi: 10.1126/science.1112304.

151



[38] Y. Gotoh, E. Nishida, T. Yamashita, M. Hoshi, M. Kawakami, and H. Sakai.

Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and

epidermal growth factor in PC12 cells. identity with the mitogen-activated MAP

kinase of fibroblastic cells. 193(3):661–669. ISSN 0014-2956.

[39] Alexander Hoffmann, Andre Levchenko, Martin L. Scott, and David Baltimore. The

IkappaB-NF-kappaB signaling module: temporal control and selective gene activation.

298(5596):1241–1245, . ISSN 1095-9203. doi: 10.1126/science.1071914.

[40] D. E. Nelson, A. E. C. Ihekwaba, M. Elliott, J. R. Johnson, C. A. Gibney, B. E.

Foreman, G. Nelson, V. See, C. A. Horton, D. G. Spiller, S. W. Edwards, H. P.

McDowell, J. F. Unitt, E. Sullivan, R. Grimley, N. Benson, D. Broomhead, D. B. Kell,

and M. R. H. White. Oscillations in NF-kappaB signaling control the dynamics of

gene expression. 306(5696):704–708. ISSN 1095-9203. doi: 10.1126/science.1099962.

[41] T. T. Nguyen, J. C. Scimeca, C. Filloux, P. Peraldi, J. L. Carpentier, and

E. Van Obberghen. Co-regulation of the mitogen-activated protein kinase,

extracellular signal-regulated kinase 1, and the 90-kDa ribosomal s6 kinase in PC12

cells. distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic

factor, epidermal growth factor. 268(13):9803–9810. ISSN 0021-9258.

[42] Jeremy E. Purvis and Galit Lahav. Encoding and decoding cellular information

through signaling dynamics. 152(5):945–956. ISSN 0092-8674. doi:

10.1016/j.cell.2013.02.005. URL

http://www.sciencedirect.com/science/article/pii/S0092867413001530.

[43] Jeremy E. Purvis, Kyle W. Karhohs, Caroline Mock, Eric Batchelor, Alexander

Loewer, and Galit Lahav. p53 dynamics control cell fate. 336(6087):1440–1444. ISSN

0036-8075, 1095-9203. doi: 10.1126/science.1218351. URL

http://science.sciencemag.org/content/336/6087/1440.

152
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