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Abstract 
The AdS/eFT correspondence suggests that the Wilson loop of 

the large N gauge theory with N = 4 supersymmetry in 4 dimensions 
is described by a minimal surface in AdS5 X S5. We examine various 
aspects of this proposal, comparing gauge theory expectations with 
computations of minimal surfaces. There is a distinguished class of 
loops, which we call BPS loops, whose expectation values are free from 
ultra-violet divergence. We formulate the loop equation for such loops. 
To the extent that we have checked, the minimal surface in AdS5 X S5 
gives a solution of the equation; We also discuss the zig-zag symmetry 
of the loop operator.'- In the N = 4 gauge theory, we expect the zig-zag 
symmetry to hold when the loop does not couple the scalar fields in 
the supermultiplet. We will show how this is realized for the minimal 
surface. 
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1 Introduction 

The remarkable duality between 4-dimensional supersymmetric gauge the­
ories and type lIB string theory on AdS5 X S5 background [1] has been 
studied extensively over the past year and a half. This conjecture is difficult 
to test. As with many dualities, it relates a weakly coupled string theory 
to a strongly coupled gauge theory.. Weakly coupled string theory is well 
defined, even though there are technical problems in doing calculations with 
Ramond-Ramond backgrounds. But how can one compare the results to the 
gauge theory, which is strongly coupled? Even if there is no phase tran­
sition in going from weak to strong coupling in the gauge theory, there is 
little that can be said about the strongly coupled gauge theory. By virtue 
of non-renormalization theorems, it is possible to calculate some quantities 
in perturbation theory and extrapolate to strong coupling. Such techniques, 
however, raise the question of whether these comparisons can be regarded 
as strong evidence for the conjecture or whether the result is dictated by 
symmetry alone. 

Gauge theory without fermions has a non-perturbative formulation on the 
lattice. This allows one to define, if not compute, quantities at arbitrarily 
large bare couplings. The lattice formulation of gauge theory enables one to 
derive a rigorous form of the loop equation [~], for the large N limit of the 
theory. These equations are satisfied on the lattice and are solved by the 
master field of the theory. The only case where the loop equation has been 
explicitly solved is 2 dimensions, where the theory is soluble [3]. 

The loop equation can also be derived formally in the continuum field 
theory. It has been shown that the perturbative expansion of the theory 
yields a solution to the loop equation. This is also the case for supersym­
metric theories. Thus, although there is no formulation of supersymmetric 
theories on the lattice, we aSsume that those theories still satisfy a large N 
loop equation. Since this equation holds for all couplings we can use it for 
strong coupling as well. One of the goals of this paper is to check if the AdS5 
ansatz for the expectation value of the Wilson loop operator satisfies the loop 
equation. To the extent that we were able to reliably estimate properties of 
string in AdS5, the loop equation is satisfied. However we were unable to 
test them in all interesting cases. In the course of our investigation we will 
also learn new facts about Wilson loops and strings in Anti de-Sitter space. 

We discuss the best understood and most studied case of the AdS leFT 
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correspondence between type IIEl superstring on Ad85 'x 8 5 and .N == 4 
super Yang-Mills theory with gauge group 8U(N) in 4 dimensions. We will 
concentrate on the case with Euclidean signature metric. Let us review some 
basic facts about this dualityl ;~' 

The near horizon geometry of N D3-branes is given by the metric 

where 9s is the string coupling constant and the string tensi<;)fi is (27ra')-1. 
The background contains N units of Ramond-Ramond flux. The X and U 
are coordinates on Ad85 , and dn~ is the metric on 8 5 with unit radius. The 
curvature radii of both Ad85 and 8 5 are given by (47r9sN)tls where a' = l;. 
We will find it more convenient to rescale the coordinates XII- by 1/-J47r9sN 
and introduce new coordinates yi = ()i IU (i = 1"",6), where ()i are the 
coordinates on 8 5 and ()2 = i. The metric in this coordinate system is 

(1.2) 

It is interesting to note that Ad85 x 8 5 is conf@rmal to flat ]RIO if the radii of 
Ad85 and 8 5 are the same. In this coordinate system, the boundary of Ad85 

is mapped to the origin yi = 0 of ]R6. 

The gauge theory coupling gyM and the string coupling 9s are related 
by 9~M = 47r9s. We are interested in the limit of N -+ 00 while keeping 
the 't Hooft coupling). = 9~MN finite [6]. After taking the large N limit, 
we will consider the region). » 1, where the curvature is small compared 
to the string scale and stringy excitations are negligible. In this case, the 
supergravity approximation is reliable. According to the AdS ICFT corre­
spondence, every supergravity field has a corresponding local operator in the 
gauge theory. Correlators of local operators are given by the supergravity 
action for fields with point sources on the boundary of Ad85 [7, 8]. In the 
classical limit one just solves the equations of motion with such sources. 

An interesting set of non-local operators in a gauge theory are Wilson 
loops. It was proposed in [9, 10] that the Wilson loop is defined by an open 

1 For more complete reviews see [4, 5]. 
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string ending on the loop at the bounda;r,y of AdS5 •• In the, classicaLlimit, 
the string is described by a miniIllal surface. " Due to the curvature. of A4Ss, 
the minimal surface does not stay ·near the boundary, but goes deep into the 
interior of space, where the area element can be made smaller. Because of 
this the behavior of the Wilson loop, for large area, is that of a conformal 
theory, and the area law does not produce confinement. 

The gauge theory under discussion does not contain quarks or.· other fields 
in the fundamental representation of the gauge group. To construct the Wil­
son loop describing the phase' associated with moving a particle in the fun­
damental representation around a closed curve, we place one of the D-branes 
very far away from the others. The ground states of the string stretched 
from the distant D-brane to the others consist of the W-bosons and their 
superpartners in the fundamental representation of the gauge group of the 
remaining branes. Thus, for large A, the expectation value of the Wilson 
loop is related to the classical, action of the string, with appropriate bound­
ary conditions. To the leading order in A, we can ignore the effect of the 
Ramond-Ramond flux and use the Nambu-Goto action, namely the area of 
the minimal surface 

Because of the y-2 factor, this area is infinite. After regularizing the diver­
gence, the infinite part was identified as due to the mass of the W -boson 
and subtracted [9]. Taking 2 parallel lines (with opposite orientation) as a 
quark-anti quark pair, the remaining finite part defines the quark-anti quark 
potential. Such calculations were used to study the phases of the N = 4 super 
Yang-Mills theory and to demonstrate confinement in non-supersymmetric 
generalizations [11, 12]. 

We will argue below that the correct action of the Wilson loop is not the 
area of the minimal surface,'but the Legendre transform of it with respect to 
some of the loop variables. The reason is that some of the string coordinates 
satisfy Neumann conditions rather than Dirichlet conditions. For a certain 
class of loops, this Legendre transform exactly removes the divergent pi~ce 
from the area. As the result, the expectation values of such loops are finite. 

The appropriate Wilson loop for N = 4 super Yang-Mills theory is an 
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operator of the form (suppressing all fetmion fields for the moment) 

W[C] = ~TrP exp (f(i-:!~:i;~ + ~(ii)ds) ; (1.4) 

where A~ are the gauge fields and ~i are the six scalars in the adjoint repre­
sentation, and C represents the loop variables (x~(s),yi(s)). (x~(s)) deter­
mines the actual loop in four dimensions, (yi(s)) can be thought of a!) the 
extra six coordinates of the ten-dimensional N = 1 super Yang~Mi1ls theory, 
of which our theory is the dimensionally reduced version. It turns out that 
minimal surfaces terminating at the boundary of AdS5 correspond only to 
loops that satisfy the constraint :i;2 = il. This constraint was derived before, 
and we study in greater depth its origin and meaning. In [9], the constraint 
was introduced as a consequence of the fact that the mass of the open string 
and the Higgs VEV are proportional to each other. We will show that the 
constraint also has a geometric interpretation in terms of a minimal surface 
in AdS5 x S5. Another interpretation of the constraint has to do with the 
N = 4 supersymmetrYi the loops obeying the constraint are BPS-type ob­
jects in loop-space. After discussing various aspects of loops ,obeying the 
constraint, we present some idea on how to extend the calculation to a more 
general class of loops. 

The loop equation is a differential equation on the loop space. We evalu­
ate, using string theory on AdSs, the action of the loop differential operator 
L on a certain class of Wilson loops. On a smooth loop C, we find the dif­
ferential operator annihilates the vacuum expectation of the loop (W), in 
accord with the loop equation as derived in the gauge theory. On the other 
hand, for a loop with a self-intersection point, the gauge theory predicts that 
L(W) is non-zero and proportional to g?MN. We point out the gauge theory 
also predicts that a cusp (a sharp turning point) in a loop gives a non-zero 
contribution to the loop equation, proportional to g?MN. We will show that 
L(W) for a loop with a cusp evaluated by the minimal surface in AdSs x S5 
is indeed non-vanishing and proportional to g?MN. We have not been able 
to reproduce the precise dependence on the angle at the cusp due to our 
lack of detailed understanding of loops not obeying the constraint :i;2 = il. 
For the same reason we were unable to reproduce the expected result at an 
intersection. 

The paper is organized as follows. 

In Section 2, we start with a brief review of the Wilson loop operator in 
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the pure-Yang-:Mills theory. We ,then;point out~n important isubtlety,in 
performing the Wick rotation in the supersymmetric theory. We will present 
some results from the perturhation'theory where' the subtlety in the Wick 
rotation plays an interesting role. 

In Section 3, we turn to string theory in AdS5 x S5. We will give a precise 
specification of boundary conditions on the string worldsheet and the geo­
metric origin of the constraint :i;2 = il. For some cases, we can compute the 
area of minimal surfaces explicitly. These include loops with intersections or 
cusps., For such loops, the areas have logarithmic divergences. After calcu­
lating those areas, we explain the need for the Legendre transform and show 
that it removes the linear divergence. The absence of a linear divergence 
fits well with what we expect for the supersymmetric gauge theory. We will 
clarify the issue of zig-zag symmetry, and end the section with a discussion 
of loops that do not satisfy the constraint. 

Section 4, we give a review of the loop equation in the pure Yang-Mills theory 
and derive its generalization to the case of N = 4 super Yang-Mills theory 
in 4 dimensions. 

In Section 5, we will discuss to what extent the minimal surface calculation 
in AdS5 is consistent with the loop equation. 

To make the body of the paper mor~ readable', some details are presented in 
appendices. In Appendix A we derive the Wilson loop as the first quantized 
action of the W-boson. In Appendix B we calculate the area of a minimal 
surface near a cusp. In Appendix C, we present some more details on the 
loop equation of the N = 4 theory. 

2 Wilson Loops in N =4 Gauge Theory 

We define the Wilson loop operator in the supersymmetric gauge theory, 
and review some of its basic properties. We pay particular attention to its 
coupling to the scalar fields in the supermultiplet. 
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2 ~ 1 Definition 

One of the most interesting observables in gauge theories is the Wilson loop, 
the path-ordered exponential 9f the gauge field, 

W = ~ Tr'P exp (i f AlLdx i1
) , (2.1) 

with the trace in the fundamental representation. The Wilson loop can be 
defined for any closed path in space, providing a large class of gauge invariant 
observables. In fact, these operators, and their products, form a complete 
basis of gauge invariant operators for pure Yang-Mills theory. An appropriate 
definition of the loop operator for the N ~ 4 super Yang-Mills theory in 4 
dimensions will be given below. 

One of physical applications of Wilson loops stems from the fact that an 
infinitely massive quark in t~e fundamental representation moving along the 
loop will be tr'ansformed by the phase factor in (2.1). Thus the dynamical 
effects of the gauge dynamics on external quark sources is measured by the 
Wilson loop. In particular for a parallel quark anti-quark pair, the Wilson 
loop is the exponent of the ~ffective potential between the quarks and serves 
as an order parameter for confinement [13]. 

The Maldacena conjecture states that type lIB string theory'on AdS5 x S5 
is dual to N = 4 super Yang-Mills theory in 4'dimensions. This gauge theory 
does not contain quarks in the fundamental representation. To construct the 
Wilson loop, we separate a single D-brane from the N D-branes and take it 
very far away. For large N, we can ignore the fields on the distant D-bran,e, 
except for open strings stretching between it and the other N. The ground 
states of the open string are the W-bosons and their superpartners of the 
broken, SU(N), gauge group. Their trajectories should give the same effect 
as that of an infinitely massive particle in the fundamental representation. 

The correlation functions of the W-boson can be written in the first quan­
tized formalism as an integral over paths. This description is studied in detail 
in Appendix A. When the 4-dimensional space has the Lorentzian signature 
metric, the phase factor associated to the loop is given by the vacuum ex­
pectation value of the operator 

(2.2) 
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When the metric is Euclidean, there is .an important'i'FIloeiifica.tion to ;this 
formula as 

(2.3) 

Notice the presence of i in the second term in the exponent. The "phase­
factor" in the Euclidean theory is not really a phase, but contains a real 
part. 

In the above, Oi are angular coordinates of magnitude I and can be re­
garded as coordinates on 55. In the gauge theory, we may consider a more 
general class of Wilson loops of the form 

w = ~ TrP exp (f (iAp.5;IL + CfJi'ii)ds) . (2.4) 

with an arbitrary function yi(s). This is the general loop we would get by 
dimensional reduction from the IO-dimensional gauge theory, where CfJi would 
be the extra six components of the gauge field. Equation (2.3) restricts us to 
the case of 5;2 - iJ2 = 0 .. This suggests that the metric on the loop variables 
(XIL(S), yi(s)) has the signature (4,6). It is important to stress that this is not 
the signature of Ad55 x 55 but of the space where the loops are defined2

• As 
we will show later, the signature of th.e loop space metric is related to the fact 
that the 6 loop variables yi (s) correspond to T .dual coordinates on the string 
worldsheet. The constraint 5;2 - iJ2 = 0 is also related to supersymmetry. 

Gauge invariance in 4 dimensions requires that the Wilson loop close in 4 
dimensions, i.e. the loop variables xIL(s) are continuous and periodic around 
the loop. This is not the case for the other 6 variables yi( s ), and the loop 
may have a jump in these 6 directions~ 

2.2 Perturbation Theory 

As a warm-up, we study properties of the Wilson loops in perturbation the­
ory. To first order in g} M N, the expectation value of the loop (W) is given 

20ne may regard the extra factor of i in the Euclidean case (2.3) as a Wick-rotation of 
the 6 y-coordinates so that we can express the constraint as :i;/J:i;/J -+ ii-iii = 0, both in the 
Lorentzian and the Euclidean cases. To avoid confusions, we will not use this .convention 
and write the i explicitly in all our expressions in the Euclidean case. 
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1 - g~MN f ds f ds'[xJL(s)xV(s~)dJLV (x(s) - x(s')) 

-i/(s)i/(s')Gij (x(s) - x(s'))], (2.5) 

where GJLV and Gij are the gauge field and scalar propagators. The relative 
minus sign comes from the extra i in front of the scalar piece in 'the exponent 
in (2.3). This integral is linearly divergent. With a regularization of the 
propagator with cutoff f. (i.e. replacing 1/x2 with 1/(x2 + f.2)), the divergent 
piece coming from the exchange of the gauge field AJL is evaluated as 

.x f'd JTh d "JL( )'V( ,)dJLV - .x fd 1'1- \ L (26) - 871'2 S -Th S x s x s ~ - - (27r)2f. S X - -"'(27r)2f.' . 

where L is the circumference of the loop. The divergent contribution from 
the exchange of the scalars <Pi is 

.x E d.x '2·' fd Jm d '.i( ).j(,) ij - fd l'I Y 
-8 2 S E S Y S Y S 2 - (2)2 S x 72' 71' -m f. 71' f. X 

(2.7) 

Combining these terms together, we find 

W = 1 + (2:)2(: f dslxl (1 - ~:) + finite. (2.8) 

We note that the linear divergence cancels when the constraint i 2 = y2" is 
satisfied. 

At n-th order in the .x = gfMN expansion, one finds a linear divergence 
of the form 

(2.9) 

for some polynomial Gn(z). We now argue that Gn(1) = 0, namely the 
linear divergence cancels when x2 = y2, to all order in the perturbative ex­
pansion. The n-th order term is calculated by connected Feynman diagrams 
with external legs attached to the loop. The linear divergence appears when 
all the external legs come together in 4 dimensions. Since the Feynman rule 
of the N = 4 gauge theory is obtained by the dimensional reduction of the 
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Fig. 1: (a) At one loop, there is a linear divergence from 
the propagator connecting coincident points. The divergence 
is proportional to the circumference of the loop. (b) At cusps 
and intersections, an additional logarithmic divergence ap­
pears when the 2 external legs approach the singular point. 

9 

10-dimensional theory, the 10-dimensional rotational invariance of the Feyn­
man rule is recovered in the coincidence limit. Therefore the contractions of 
the external indices by the Feynman rule produce only rotational invariant 
combinations of (xl-', iii), namely a polynomial of (x2 - iJ2). The polynomial 
does not have a constant term since a connected Feynman diagram for (W) 
needs to have at least 2 external lines attached to the loop. Therefore the 
polynomial vanishes when x2 - iJ2 :- O. 

When the loop has a cusp, there is an extra logarithmic divergence from 
graphs as shown in fig. 1. Let us denote the angle at the cusp by O. We 
choose the angle so that 0 = 7l" at a regular point of the loop. A one-loop 
computation with the gauge field gives 

A L 
(27l")2 ((7l" - 0) cot 0 + 1) log~. (2.10) 

A cusp is a discontinuity of xl-'. There may also be a discontinuity in iJi, 
which we measure by an angle E>. We choose 0 so that 0 = 0 when iJi is 
continuous. A one-loop computation with the scalar fields gives 

A ( 7l"-O ) L 
- (27l")2 - sinO cos E> + 1 log~. (2.11) 

Combining (2.10) and (2.11) together, we obtain· 

A 7l"-O L 
(2 )2~(COSO + cos 0) log -. 

7l" SIn H t 
(2.12) 



A ,similar computation at an intersection gives 

AlL 
-~(cosn + cos 8) log-. 
211" sma f 
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(2.13) 

3 Minimal surfaces in Anti de-Sitter Space 

According to the Maldacena conjecture, the expectation value of the Wilson 
loop is given by the action of a string bounded by the curve at the boundary 
of space: 

(W[C]) = hx=c'DX exp( -J'XS[XD, (3.1 ) 

for some string action S[X]. Here X represents both the bosonic and the 
fermionic coordinates of the string. For large A, we can estimate the path 
integral by the steepest descent method. Consequently the expectation value 
of the Wilson loop is related to the area A of the minimal surface bounded 
by C as 

(W) ~ exp( -J'XA). (3.2) 

The motivation for this ansatz is that the W-boson considered in section 
2.1 is described in the D-brane language by an open string going between 
the single separated D-brane and the other N D-branes. In the near horizon 
limit, the N D-branes are replaced by the AdSs geometry and the open string 
is stretched from the boundary to the interior of AdSs. 

To be precise, this argument only tells us that the Wilson loop and the 
string in AdSs are related to each other. The expression (3.1) is schematic at 
best, and there may be an additional loop-dependent factor in (3.2). A simi­
lar problem exists in computation of correlation functions of local operators; 
there is no known way to fix the relative normalization of local operators 
in the gauge theory and supergravity fields in AdSs. To determine the nor­
malization factor, one has to compute the 2 point functions [14, 15]. In 
our case, the normalization factor in (3.2) may depend oil the loop variables 
C = (xp,(S),yi(s)). In fact, we will argue below that the correct action to be 
used in (3.2) is not the area A of the surface, but the Legendre transform 
of it. This modification does not change the equations of motion, and the 
solutions are still minimal surfaces. However the values of the classical action 
for these surfaces are different than their areas. 
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We will assume that, to the leadingordeNin,A, there is;nofurther;:@':d~ 
pendent factor. Otherwise the conjecture would b~ meaningles:=; ,(l.S it would 
produce no falsifiable predictions. On the other hand, one expects a C de­
pendent factor in the subleading order, such as 'the fluctuation determinant 
of the surface in AdS5. There can also be a factor in the relation between the 
W-boson propagation amplitude and the Wilson loop computed in Appendix 
A. Such a factor would be kinematic in nature and independent of A, and 
therefore negligible in our analysis. 

3.1 Boundary Conditions and BPS Loop 

The Wilson loop discussed in [9] obeys the constraint 

·2 ·2 
X =y. (3.3) 

This constraint was originally derived by using the coupling of the funda­
mental string to the gauge fields and to the scalars. In our derivation of the 
loop operator from the phase factor for the W-boson amplitq.de in Appendix 
A, the constraint arises from the saddle point in integrating over different 
reparametrizations of the same loop; essentially for the same reason as in [9]. 

In this section, we will give another interpretation of the constraint (3.3), 
in terms of the string theory in AdS5 x S5. For this interpretation we need 
to give a precise specification of the boundary condition on the string in 
AdS5 x S5. 

We begin with super Yang-Mills theory in 10 dimensions, which is realized 
on space-filling D9-branes. We ignore the fact that this theory is anomalous 
since we will reduce it to the anomaly free theory in 4 dimensions. More­
over, we are onlyinterested in the boundary conditions on bosonic variables3

• 

The Wilson loop in 10 dimensions corresponds to an open string worldsheet 
bounded by the loop, i.e. we should impose full Dirichlet boundary condi­
tions on the string worldsheet. This is natural since, without the Wilson 
loop operator, the string end-point obeys fully Neumann boundary condi­
tions along the D9-brane. The conditions imposed by the Wilson loop are 
complementary to the boundary conditions on the D9-brane. 

3Boundary conditions for fermionic variables are not relevant in our analysis of the loop 
for large A. 
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,To reduce the theory to4dimensioJ;ls, we perform :F-:;duality along ,6 
directions. An open string ending on the D3~brane obeys 4 Neurnannand-6 
Dirichlet boundary conditic)fls. Consequently, the Wilson loop operator in the 
4-dimensional gauge theory imposes complementary 'boundary conditions; 
namely 4 Dirichlet and 6 Neumann boundary conditions. If the Wilson loop 
is parametrized by the loop variables (XIL( s), yi( s)), where yi( s) couples to 
the 6 scalar fields, then the 6 loop variables yi (s) are to be id'€ntified with 
the 6 Neumann boundary conditions on the string worldsheet. 

We are ready to specify the boundary condition on the string worldsheet 
living in AdS5 x S5, with line element, 

(3.4) 

Choose the string world~sheet coordinates to be ((jl , (j2) such that the bound~ 
ary is located at (j2 = o. S'ince XI-' is identified with the 4 dimensional 
coordinates where the gauge theory lives, it is natural to impose Dirichlet 
conditions on XI-', so that 

(3.5) 

The remaining 6 string coordinates yi( (j\ (j2) obey Neumann boundary con­
ditions. We propose that these boundary conditions are 

(3.6) 

where J,,/3 (Q, j3 = 1,2) is the complex structure on the string worldsheet 
given in terms 6f the induced metric 9,,/3, 

J /3 = _1_9 f'Y/3 " ..;g "'Y 
(3.7) 

Although we do not have a derivation of the boundary condition (3.6) 
from first principles, it can be motivated as follows. Because of the identifi­
cation of the SO(6) symmetries in the AdS/CFT correspondence, it is clear 
that Neumann boundary conditions must set il equal to J1 "o"yi up to a 
relative normalization of the two. The use of the induced complex structure 
J / in the Neumann boundary condition is required by the reparametriza­
tion invariance on the worldsheet. The fact that the condition :1;2 = y2 has 
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a natural interpretation in terms o£.the 'minimal surface, as we :will e:x:plain 
below, suggests that the normalization, factor is ~) .as in (3,.6), . , 

For a generic choice of the 100p variables (x#:Es), yi (s», there isa unique 
minimal surface in Euclidean'space obeying the 10 boundaryconditioIiS, 
(3.5) and (3.6). However the resulting minimal surface does not necessarily 
terminate at the boundary yi = 0 of AdS5. The condition yi = 0 would be 
additional Dirichlet conditions, which mayor may not be compatible with 
(3.6). In fact, one can show that, for a smooth loop, the additional condition 
yi( 0\ 0) = 0 is satisfied by the minimal surface if and only if the loop 
variables obey the constraint x2 = fl. To see this consider the Hamilton­
Jacobi equation4 for the area A of a minimal surface bounded by a loop 
(XJL(s), yi(s)) in AdS5 X S5: 

U;.)' + u:,)' = (2?T~2Y< ((UIXP)2 + «Wi)'). (3.8) 

Since the momenta conjugate to the X""s and the yi's are given by 

8A _ 1 J a~ X'" 
8XJL - 2rry2 1 Va , 

8A l'
J 
a~ yi 

8yi = 2rry2 1 Va , 
(3.9) 

we obtain 
(3.10) 

If the minimal surface obeys the boundary conditions (3.5) and (3.6), this 
becomes 

(3.11) 

Now impose the additional condition that the string worldsheet terminates 
at the boundary of AdS5, i.e. yi(o\O) = O. Obviously 81yi(0"t,0) = O. This 
alone tells us that x2 

- il ~ o. Moreover, if the boundary is smooth, it 
costs a large area to keep J1 a8aX'" non-zero near the boundary of AdS5 , so 
it has to vanish at the boundary Y = 0 [9]. Therefore, the condition that 
the minimal surface terminates at the boundary of AdS5 requires x2 = il. 

4 In general, the Hamilton-Jacobi equation for the area of a minimal surface on a 
Riemannian manifold with a metric G I J takes the form, 
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When the cOIl,straint· :i;2= ii is satisfied,one :can reinterpret the 6.Nell­
mann condition (3.6) as DirichletconditiQns on S5. To see this, it is useful 
to decompose the 6 coordinates yi as 

yi = Y(i (3.12) 

where ()i are coordinates on S5 and Y = U-1 is one of the coordinates on 
AdS5 • Since for a smooth loop the classical solution has oayi ::.-. (oay)()i at 
the boundary Y = 0 of AdS5 , the Neumann conditions (3.6) turn into the 
Dirichlet conditions on S5 as 

. i 
i 1 Y 

() (0" ,0) = lifl. (3.13) 

This justifies the boundary conditions used in [9]. 
There is yet another interpretation of the constraint :i;2 = 'Ii, and it has 

to do with supersymmetry. The loops we have considered so far couple only 
to bosonic fields: the gauge field AJ.t and scalars <'pi. We also need to allow 
coupling to the fermionic fields in the exponent. Fermionic variables ((s) 
along the loop couple to the gauginos W as 

(3.14) 

where we are using 10-dimensional gamma matrices r J.t and r i with signature 
(10,0). This is derived in Appendix C. Exactly when the constraint is sat­
isfied this combination of gamma matrices becomes nilpotent. Consequently 
only half the components of ( couple to W, putting the loop in a short repre­
sentation of local supersymmetry in super loop-space. The simplest example 
is when the Wilson loop is a straight line, when :i; and if are independent of 
s. If ( is also constant, this loop is the phase factor associated with the a 
trajectory of a free BPS particle. 

3.2 Calculating the Area 

The computation of the Wilson loop in AdS5 requires an infrared regulariza­
tion, since the area of the minimal surface terininating at the boundary of 
AdS5 is infinite due to the factor y-2 in the metric. In order to make sense 
of the ansatz (3.2), we need to regularize the area. One natural way to do so 
is to impose the boundary conditions (3.5) and (3.6) at Y = 0, but integrate 
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the area element only over the part of the surface with Y .~ t. On the gauge 
theory side, the Wilson loop requires regulatizatioRindtheultraviolet. Ac­
cording to the UV JIR relation in the AdS jCFT.,correspondence [16], the IR 
cutoff fin AdS5 should be identified with the UV cutoff in the gauge theory. 

There are a few cases when minimal surfaces can be studied analytically. 

(1) Parallel Lines: 
The minimal surface for parallel lines, each of length L and separated by a 
distance R, was obtained in [9, 10]. The area of the loop is 

2L 471"v'2 L 
A = 271"f - f(1/4)4 R· (3.15) 

(2) Circular Loop: 
The minimal surface in AdSs bounded by a circle of radius R is found in 
[17, 18] as 

(3.16) 

where rand <p are radial coordinates on a plane in the 4 dimensions, and 
we use them as coordinates on the string worldsheet also. The area of the 
surface with the cutoff f is 

1 J l VR2 -€2' r dr 271" R A = - drrd<py-2Jl + yl2 = R . 3 = - -1. (3.17) 
271" 0 (R2 - r 2)2 271"f 

(3) Cusp: 
Another family of minimal surfaces we can solve analytically is a surface 

near a cusp on ]R4 and its generalization including a jump on S5. We can 
find analytical solutions in this case since the boundary conditions are scale 
invariant. Using radial coordinates in the vicinity of the cusp, rand <p, as 
world sheet coordinates, the scale invariant ansatz, 

r 
Y(r,<p) = f(<p)' .(3.18) 

reduces the determination of the minimal surface to a one-dimensional prob­
lem. The resulting surface is depicted in fig. 2. When there is also a jump on 
S5, one needs to introduce another variable. An analytical solution in this 
case is found in a similar way. These solutions are presented in Appendix B. 



Fig. 2: A minimal surface for a Wilson loop with a cusp. 
The regularized ared is evaluated over the shaded region. 
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The result is that the area of the surface has a logarithmic divergence as well 
as a linear divergence. It behaves as 

. L 1 'L 
A= ---F(n,E»log-+···, 

211"( 27r ( 
(3.19) 

where nand 8 are the cusp angles in Jr1 and S5 respectively. 
When either 8 or n vanishes, we can express F(n,8)/211" in terms of 

elliptic integrals. In fig. 3. we show the numerical evaluation of the function 
F(n, 0) in the solid curve. This is to be compared with the perturbative 
expression (2.12) shown in the dashed curve. The function F(n,O) is zero 
at n = 11" and has a pole at n = o. As the angle n ~ 0 at the cusp, the 
loop goes back along it's original path, or backtracks. Regularizing the extra 
divergence from the pole turns it into a linear divergence which cancels part 
of the linear divergence from the length of the loop. This is related to issues 
discussed in the section on the zig-zag symmetry. 

A way from the cusp, the surface approaches the boundary along the Y­
direction without a momentum in the X -direction. Right at the cusp, how­
ever, the surface has momentum in both the Y and r direction. This means 
that, although the constraint :i;2 = iJ2 is obeyed almost everywhere, it is 
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Fig. 3: The solid curve shows the function F(Q,0)/211", 
which appears in the logarithmic divergence of the minimal 
surface with the cusp of angle Q. This is compared with the 
perturbativeresult (2.12) at the cusp shown in the dashed 
curve. The dotted curve is half of the perturbative result 
(2.13) at an intersection. 

modified at the cusp as 
±2 = (1 + f~)il, 

where fo = f( I{) = 0/2) is the minimal value of I(I{))· 

( 4) Intersection: 
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(3.20) 

The minimal surface for a self-intersecting loop is just the sum of 2 cusps. 
The only difference is that, by the exchange symmetry of the 2 components 
of the loop, the intersection forces 

(3.21) 

instead of (3.20). 

In all the examples above, there is a linear divergence (27rf)-1 in the 
regularized area. This is true for any loop. As explained in [9], this leading 



a. 

Fig. 4: The comparison of the two regularization prescrip­
tions. The boundary conditions are imposed at Y, = 0 in 
(a) and at Y = E in (b). The shaded regions represent the 
regularized areas. 
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divergence in the area of the minimal surface in AdS5 is proportional to the 
circumference of the loop5. The linear divergence arises from the "leading 
behavior of the surface at small Y, i.e. near the boundary of AdS5• 

In this section, we have computed the regularized area by imposing the 
boundary condition at the boundary Y ~ 0 of AdS5 and integrating the area 
element over the part of the surface Y ~ f. This is not the unique way to 
regularize the area. Another reasonable way to compute the minimal surface 
is to impose the boundary conditions, not at Y = 0, but at Y = L The 
area bounded by the loop on Y = f is then by itself finite. A comparison 
of the two regularization prescriptions are illustrated in jig. 4. These two 
regularizations give the same values for the area, up to terms which vanish 
as f -+ O. For example, consider the circular loop. The solution (3.16) can 
also be regarded as a minimal surface with the boundary condition on Y = E, 

s We are using the coordinates XIJ in (1.2) to describe the configurations of the Wilson 
loops. With these coordinates, there is no factor of A in the relation between the IR cutoff 
(; in AdSs and the UV cutoff of the gauge theory [16]. These coordinates are different from 
the coordinates on the D3-brane probe, by a factor of';>' [19]. 
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except that the radius of the circle on Y = f is now Ro = J R2 - (2. The 
area computed igt~t~)leW regularization is then 

. -" .. ,", .~ ,"': .,:+: ~,~.:.' 

A' -:IJm ~' _ 21rRo ~ . - ( + € - 1 - 21r€- 1 + 2Ro + .... (3.22) 

Thus the results of the two regularizations are the same up to terms which 
vanish as ( ~ O. It is straightforward to show that this is also the case 
for the parallel lines. We have also verified that when the loop has a cusp 
or an intersection, the two regularizations give th~ same area modulo terms 
which are finite as £ ~ 0, which are subleading compared to the logarithmic 
divergence. 

When we impose the boundary condition at Y = €, the constraint on the 
loop variables is not exactly :i:2 = iJ2, but it is modified. If the loop is smooth, 
the modification is only by O( €) terms6

• Therefore most of the results in this 
paper are independent of the ,choice between the two ways of imposing the 
boundary conditions. The only exception to this rule is the discussion of the 
zig-zag symmetry. The zig-zag symmetry of the string worldsheet on AdS5 

seems to fit well with our expectations about the gauge theory when we use 
the boundary conditions at Y = € rather than at Y = o. 

3.3 Legendre 'Transformation 

The Maldacena conjecture implies that the Wilson loop is related to a string 
ending along the loop on the boundary of space. In the classical limit, we 
expect that the string worldsheet is described by a minimal surface. This 
argument, however, does not completely determine the value of (W) for large 
A since there are many actions whose equations of motion are solved by 
minimal surfaces. They differ by total derivatives, or boundary terms. Since 
the surface has boundaries, such terms can be important. In [9, 10] it was 
assumed that one should use the N ambu-Goto action, so the Wilson loop 
was given in terms of the area A of the minimal surface. This is what we 

6 If the loop has a cusp or an intersection, as we saw earlier, the boundary conditions 
imposed at Y = 0 imply the constraint :i:2 = if holds almost everywhere along the loop, 
except at a cusp or an intersection point. When we impose the boundary conditions at 
Y = i, the constraint is modified in regions of size i near the cusp and the intersection 
point. 
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have studied so far. In this section,we argue that (W) is in fad given not 
by A but by an appropriate Legendre transform .. 

We have shown that the loop variables ii impose Neumann boundary 
conditions (3.6) on the coordinates Vi. Therefore (W) should be regarded 
as a functional of the coordinates XIL and the momenta Pi conjugate to yi, 
defined by, 

(3.23) 

The Nambu-Goto action is a natural functional of XIL(S) and yi(s) and is 
more appropriate for the full Dirichlet boundary conditions. To replace it 
with a functional of XIL(S) and pi(s), we need to perform the Legendre 
transform 

(3.24) 

or 
(3.25) 

To show that A is a natural functional of (XIL, Pi), we use Hamilton-Jacobi 
theory. Under a general variation of the Y coordinates, the variation of the 
area A of the minimal surface is given by 

JA 

Here we used the equations of motion. Therefore, after performing the Leg­
endre transformation, we obtain 

(3.27) 

Thus A is a functional of the momenta pi at the boundary, not the coordi­
nates Vi. 

The Neumann boundary conditions (3.6) are conditions on the momenta 
pi , 

(3.28) 
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In fact, if the loop variablesy~( s) are Gontinuous, the ;coordinates yi are 
parallel to the momenta Pi, as we saw in (3.13). In this case, the Legendre 
trallsform gives 

- 1 yi. ;"- 1 !y! 1 
A = A - 271" f dUl y2 Y' = A - 271" f dUl Y = A - 271"f f ds!y!, (3.29) 

where f is the regulator. In the last step, we have set Y = .. ( since the 
regularized action is evaluated for Y ~ f. 

In the previous section, we saw that the area A of minimal surface has 
a linear divergence proportional to the circumference of the boundary. By 
combining it with (3.29), we find 

A = 2~f f ds (!xl - !yl) + finite (3.30) 

for a smooth loop. Therefore the linear divergence cancels when the con­
straint x2 = y2 is satisfied.· The minimal surface in AdS5 is supposed to 
describe the Wilson loop for large coupling A. We saw in section (2.2) that 
the cancellation of the divergence also takes place to all order in the perturba­
tive expansion A. This suggests that the cancellation of the linear divergence 
is exact, and a smooth loop obeying x2 = y2 does not require regularization. 
We suspect that this is a consequence of the BPS property of the loop. When 
the loop is a straight line, it preserves a global supersymmetry, not only the 
local one. In that case the lowest order perturbation calculation is exact. 
The modified action is zero, the expectation value of the Wilson loop is 1. 

We were not able to find an explicit expression for i, as a function of 
X I1 , pi and their derivatives. We only know how to evaluate it for classical 
solutions in terms of the old variables. 

By definition, the area A of the minimal surface is positive. On the other 
hand, its Legendre transform A may be negative and the expectation value 
of the loop (W) = exp( -VXA) may be larger than 1. In the pure Yang-Mills 
theory, the Wilson loop is a trace of a unitary operator (divided by the rank 
N of the gauge group), and its expectation value has to obey the inequality 
(W) ~ 1. This is not the case in the supersymmetric theory in the Euclidean 
signature space since W in (2.3) is not a pure phase, and there is no unitarity 
bound on its expectation value. 

We have shown that the expectation value of a smooth Wilson loop obey­
ing x2 = y2 is finite. If the loop has a cusp or an intersection, the cancellation 
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is not exact and we are left with the logarithmic divergence.7 

- 1 L 
A = --2 F(n, 0) log - + finite .. 

7f f 
(3.31 ) 

. It is interesting to note that the constraint x2 = y2 is not satisfied either at 
a cusp 

or at an intersection point 
. i 
Y iii = 0 

(3.32) 

(3.33) 

We suspect that the logarithmic divergences at the cusp and the intersection 
are caused by the failure of the loop to satisfy the BPS condition at these 
points. 

3.4 Zig-Zag Symmetry 

A Wilson loop of the form 

(3.34) 

is reparametrization invariant, in s, namely unchanged bys ---t f( s). For­
mally it is even invariant under reparametrizations which backtrack (namely 
when j(s) is not always positive) since the phase factor going forward and 
then backwards will cancel. Polyakov has argued in [20] that this "zig-zag 
symmetry" is one of the basic properties of the QeD string. One must 
however be careful, even in pure Yang-Mills theory, since the loop requires 
regularization. Zig-zag symmetry, in fact, is only true perturbatively for reg­
ularized loops, where the backtracking paths are closer than the ultraviolet 
cutoff. It was pointed out in [9] that the Wilson loop in the supersymmetric 
theory (2.3), with the constraint x2 = y2, does not have this symmetry. This 
is because the couplings of the Wilson loop to the scalar fields ~i is propor­
tional to lxi, which does not change the sign when the loop backtracks. Thus 
if the loop stays at the same point ()i on S5, there is no cancellation of the 
coupling to the scalar fields. 

7 If e f. 0, the function F(O, e) gets a contribution from the Legendre transformation. 
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Fig. 5: The zig-zag looPi the loop goes in one direction along 
C1 and comes back along C2 • The two segments C1 and C2 

are parallel and their distance 'T/ is less that the gauge theory 
UV cutoff €. 
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In perturbation theory, one can easily prove that the zig-zag symmetry 
holds for the Wilson loop (2.4) when il = O. Suppose we have a segment C1 

of a loop which goes in one direction and another segment C2 which comes 
back parallel to C1 but in the opposite direction, as shown in fig. 5. If the 
distance'fJ between C1 and C2 is much less than the UV regularization E of the 
gauge theory, there is one-to-one cancellation between a Feynman diagram r 
which has one of its external leg ending on C1 'and another diagram r' which 
is identical to r except that the corresponding leg ends on C').. Therefore, 
to all order in the perturbative expansion, the segments C1 and C2 do not 
contribute to the expectation value of the Wilson loop. On the other hand, if 
if = IxlOi and Oi is fixed at a point on S5, a diagram with a leg coupled to '1/ 
on C1 and one with the-corresponding leg coupled to if on C2 add up, rather 
than cancel each other. The perturbative computation therefore shows no 
zig-zag symmetry in this case. 

When the coupling A is large, we expect that (W) is related to the minimal 
surface. The area functional, and as a matter of fact any other functional 
which is an integral over a minimal surface, has zig-zag symmetry. The proof 
is simple. If we look at the region Y ~ E, the minimal surface bounded by 
a backtracking loop is almost identical to the surface bound by the curve 
without backtracking if the separation 'fJ between C1 and C2 is much less 
than the cutoff E. This is illustrated in fig. 6. Therefore an action on the 
surface given by an integral over the part of the surface in Y ~ E is the same 



Fig. 6: The area of a loop with a zig-zag (a) is roughly the 
same as the loop without it (b). 

with or without the backtracking. 
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At first sight, the zig-zag symmetry of the minimal surface appears in 
contradiction with the gauge theory expectation since we know the minimal 
surface ending along a smooth loop on the boundary of AdSs obeys the 
constraint :V = il and therefore il i= O. In the gauge theory, we do not expect 
zig-zag symmetry when i/ is non-zero and constant. A close examination of 
the boundary condition, however, reveals that the situation is more subtle. It 
is true that, if we impose the boundary conditions at Y = 0, the part of the 
surface connecting Cl and C2 db not reach Y = ( and does not contribute to 
the regularized area for Y 2: L Therefore zig-zag symmetry holds for (W). 
This is also the case when we impose the boundary condition at Y = t. In 
this case, if t » TJ, the minimal surface goes from Cl to C2 along the Y = ( 
surface. Therefore the contribution of the segments to the regularized area is 
proportional to TJ / (2 times the length of the segment and vanish in the limit 
TJ -t O. 

However the physical interpretation of the two computations are quite 
different. If the boundary conditions are imposed at Y = 0, the constraint 
5;2 = iJ2 holds provided the segments Cl and C2 are smooth. On the other 
hand, if the conditions are imposed on the Y = t hypersurface, the minimal 



Fig. 7: (aJ A self-intersecting loop which corresponds to 
a single trace operator and (b J A pair of loops obtained by 
reconnecting the loop at the intersection. 
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surface bounded by Cl and C2 stays within 1J from Y = f, and il vanishes 
as 1J I f -+ O. If we take the latter point of view, the apparent contradiction 
with the gauge theory expectation disappears since the minimal surface in 
question is related to the Wilson loop which does not couple to the scalar 
fields in the segments Cl arrd C2 • This is exactly the situation in which 
zig-zag symmetry arises in the gauge theory. 

One may argue that the boundary condition at Y = f gives a more 
precise definition of the Wilson loop (W) as a functional of the loop variables 
(xII.(s),yi(s)). The Legendre transformation of the area A in section (3.3), 
for example, is a way to define a functional of the momenta pi evaluated at 
Y = f and not at Y = O. It does not make sense to perform this procedure 
at Y = 0 since the factor l/f in the right-hand side of (3:25) needs to be 
replaced by 00. In most of the cases discussed in this paper, whether we 
impose the boundary conditions at Y = 0 or Y = f does not make much 
difference since the value of the momenta pi stays almost the same in the 
region 0 ::; Y ::; f. The analysis of zig-zag symmetry, however, seems to 
be an exception to this rule. If we use the boundary condition at Y == f, 

the existence of the minimal surface requires the constraint i/( s) = 0 rather 
than ±2 = iJ2 for the backtracking loop, and theresult fits well with the gauge 
theory expectation. Clearly the regularization dependent nature of zig-zag 
symmetry needs to be clarified further. 

An analysis similar to the one given above leads to the following ob­
servations about the Wilson loop, which we find interesting. Consider a 
self-intersecting loop as in jig. 7. The area calculated on the minimal surface 
bound by the loop (a) is the same as the sum of the two areas bounded by 
the separated loops (b). In the gauge theory, these loops are very different 
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objects. One is a single traceeperator and the other a multi-trace operator. 
We can even connect two distant closed loops by a long neck without 

changing the value of the loop since the minimal surface spanning the neck 
region does not contribute to 'the area. Graphically this can be written as 

(3.35) 

This suggests that the parallel transport U = Pexp(i J AJ.ldxJ.l) along an open 
curve behaves as a random matrix. As in the case of the zig-zag symmetry, 
if we impose the' boundary condition at Y = €, the minimal surface exists 
only when i/( s) = 0, and we are considering a loop which does not couple to 
the scalar fields in the neck region. 

3.5 Removing the qonstraint 

So far we considered loops of the form (2.3) which satisfy the constraint 
3;2 - iP = O. When the loop has a cusp or an intersection, this constraint 
is modified as in (3.20) and (3.21). In the gauge theory, we can define the 
loop operator for any (xJ.l(s), yi(s)), not necessarily obeying the constraint. 
Consequently, we need to find a way to calculate an expectation value of 
such a loop in AdS5 so that the relation between the gauge theory and string 
theory is complete. 

The reason given by Malda~ena for the constraint (and also in Appendix 
A) is that theW-bosons are BPS particles and their charges and masses 
are related. To break the constraint, one needs a non-BPS object with an 
arbitrary mass. Fortunately string theory contains many such objects. In­
stead of considering the ground state of the open string corresponding to the 
W-boson, one may use excited string states, which have extra mass from the 
string oscillations. As shown in the Appendix A, an excited string indeed 

. generates a loop obeying the modified constraint, 

'2 '2 M2 
Y = X M2 +m2' . (3.36) 

where M = €-l is the original W-boson mass and m is the mass of the 
excitations. This makes it possible to relax the constraint, at least for 3;2 ~ 
y2. 
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For the loop obeying the original constraint :i:2 = y2, the regularized-area 
has the linear divergence of the form 

A = -l-fdsl:i:1 + ... = ~fMI:i:1 + .... 
2~f 2~ 

(3.37) 

We expect that the corresponding computation using the string excitation 
replaces M by J M2 + m 2 as 

(3.38) 

The Legendre transformation turns this into 

A - _1_ f dslill 
2~f 

1 ( ·2 ) 
- 2~f f ds ~I - lill + .... (3.39) 

This shows that the linear divergence is not completely canceled for Ixl =1= lill. 
Since a highly excited string state may be sensitive to stringy corrections, we 
can trust this estimate of the li~ear divergence only for small deviation from 
the constraint. In the following, we will use <}n approximate expression for 
Ixl rv lill as 

A = ~f ds(I:i:I-lill) + .... 
~f 

(3.40) 

4 The Loop Equation 

Since the expectation value of the Wilson loop is a measure of confinement, 
much attention has been given to calculating them. In particular, in the 
large N limit of gauge theory, they satisfy a closed set of equations [2] . .In 
this section, we first give a review of the loop equation for pure Yang-Mills 
theory (for more details see [21, 22]). The equation is easy to write down 
and is formally satisfied, order by order, in the perturbative expansion of 
the gauge theory. -The lattice version of the loop equations are also satisfied 
in the non-perturbative lattice formulation of the theory. However, the only 
case where one can solve explicitly for Wilson loops is in 2 dimensions. There 
indeed they do satisfy the loop equation. We will then formulate the loop 
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equation for the N = 4 super Yang.:. Mills. theory,in 4 :dimensions. As far 'as 
we know, the loop equation in this case has not been derived beforE::. We will 
find that the BPS condition (3.3) will playa crucial role. We will discuss 
details of the construction in Appendix C and present only the general ideas 
here. 

4.1 Bosonic Theories 

The action of pure gauge theory in any number of dimensions isS 

( 4.1) 

and the Wilson loop is given by 

W = -NTrP exp (i f AJ!dxJ!) , (4.2) 

where the integral is over a path parametrized by xJ!. The main observation 
is that there is a differential operator on loop space which brings down the 
variation of the action DV FJ!v as 

where Ta( s) is the generator of the gauge group inserted at the point s along 
the loop. 

There are a few equivalent definitions of t. We will use 

t . lim f ds r+lI 
ds' J2 . 

lI~O J8-1I JXJ!(s')JxJ!(s) 
(4.4) 

As we will explain below, TJ has to be taken much shorter than the UV cutoff 
scale € in order to extract the term DV FJ!v. The insertion of DV FJ!v into the 
loop would be zero if we use the classical equation of motion, but quantum 
corrections produce contact terms. To see that, one can write the equations 

8The complete action contains a gauge fixing term and ghosts. Those appear also in 
the equations of motion, but can be dropped by a Ward identity [23]. 
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of motion. as the fUIictionalderivative of the actionS and .use the $chwinger­
Dyson equations, i.e. integration by parts in the- functional integral; 

. -s 
L (W) = ig~M J VA f ds ~ TiPTa(s)exp (i f Al!dxl!) xl!(s) 8A~:(X(S)) 

= -i9~M(f dsxl!(s) 8Al!a~x(s)) ~ TrPTa(s)exp (i f A~dxl!) ).(4.5) 

The functional derivative 8/8AI!(x(s)) in this equation is formally evaluated 
as 

L(W) ~2 f ds f ds'8(xl!(s') - xl!(s))XI!(s)xtt(s') X 

x (TrPTa(s)Ta(s')exp (i fAttdxl!)). (4.6) 

We then use the relation between the generators of SU(N), 

T a Ta " 8nm8kl 
nm kl = UnkUml - N (4.7) 

Ignoring the 1/ N term, the trace is broken into two. This gives the correlation 
function of two loops. In the large N limit, the correlator factorizes and we 
obtain, 

Here WSSI is a Wilson-loop that start at s and goes to s' and WSI s goes from s' 
to s. They are closed due tothe delta function9

• 

Equation (4.8) shows that L(W) receives contributions from self-inter­
sections of the loop. Since the derivation of the equation is rather formal, 
it is not clear whether we need to count the trivial case of s = s', in which 
case WSSI = 1 and WSIS = W. In most of the literature on the loop equation, 

9The delta-function is not sharp, but is regularized by the cutoff f. That means that 
the loops WSSI and WSIS are not exactly closed loops, and the two ends may be separated 
by a distance f. This does not contradict gauge invariance since one may consider only 
gauge transformations which do not vary much over that scale, so the "almost" closed 
loop are "almost" gauge invariant. We expect those loops to be equal to the closed loops 
up to O(f) corrections. 
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this trivial self-intersection is ignored. In any case, it can be taken care of 
by multiplicatiye renormalization of the loop operator. In the supersymmet­
ric gauge theory, the leading contribution from the trivial self-intersection 
cancels when :i;2 = iJ2. 

In the definition of the loop derivative L, it is important to take the limit 
'f/ --+ O. This procedure isolates the term DV Fvp., which is a contact term 
of the double functional derivative; If 'f/ is of the order of the UV cutoff 
€, there will be other contributions to the loop equation such as Fp.vFvpxp. 
When calculating the loop equation in perturbation theory, we can take 'f/ to 
be arbitrarily small, and in particular 'f/ « L This is how we view the loop 
equation in the continuum theory. In fact, it was shown that the perturbative 
expansion of the Wilson loop solves the loop equation [23]. When we study 
the loop equation the string in AdSs, we will consider the same limit 'f/ --+ O. 

In the lattice regularization, it is not possible to calibrate the variation 
of the loop in distance short~r than the lattice spacing L In this case, a 
different definition of L is used which does not require taking such a limit. 

It is possible to define a loop derivative localized at a point on the loop, 
instead of the integrated version considered above. The entire derivation 
goes through by simply dropping one § ds. 

4.2 Supersymmetric Case 

We briefly summarize how to derive the loop equation in the supersymmetric 
theory, leaving the details in Appendix C. We derive them only for variations 
from constrained loops :i;2 = iJ2. One important modification is due to the 
extra factor of i in front of the scalars in the Wilson loop operator in the 
Euclidean theory, 

(4.9) 

Another novelty is the need to include the fermions. The fermions are impor­
tant even when the loop equation is evaluated at the body part ((s) = 0 of 
super loop-space since the fermions appear as source terms in the equations 
of motion for the gauge fields and the scalars. Here we will explain the effect 
of the extra i. In Appendix C, we will discuss how to deal with the fermions. 
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If we define loop derivative 

(4.10) 

then the relative minus sign combines with the extra i to give 

£(W) 

= _ig~M 1 ds ( (iJj <51Jja - iii <5~ia ) TrP Ta exp (I (iAJji~'+ ~di) dS)) 

=,.\ 1 ds 1 ds' (iJj(s)il£(s') - yi(S)Yi(S')) <54(X(S) - x(s'))(W1 )(W2 ). (4.11) 

A simple way to obtain this is by considering the extra i as the Wick rotation 
of the yi coordinates and repeat the derivation from (4.4) to (4.8). The 
right-hand side of the bosonis:; loop equation contains a cubic divergence 
proportional to the circumference of the loop. In the supersymmetric case 
this "zero-point energy" cancels for a smooth loop by the constraint i 2 = y2. 

4.3 Predictions 

In this subsection, we evaluate the right-hand ~ide of the loop equation (4.11) 
for various types of loops. In the next section, we will compare it with 
computations of the loop using the minimal surface spanned by the loop in 
AdS5 • 

In the supersymmetric theory, the trivial self-intersection at s = s' does 
not contribute to the right-hand side if the loop is smooth and obeys the 
constraint i 2 = y2. This is related to the fact that such a loop does not 
require regularization. To be precise, the constraint only cancels the leading 
divergence proportional to c 3

• Since the delta-function in (4.11) has a width 
£, the Taylor expansion of x( s') at s' = s gives subleading terms in £ such as 

,.\ Id ( .. 2 .. 2) - 3£ S X - Y . (4.12) 

However this expression is highly regularization dependent. Moreover there 
are other contributions of the same order due to the fact that the loops W ss' 
and Ws's are not precisely closed, as explained in the last footnote. At any 
rate, these terms are negligible (by a factor £) compared to the terms we will 
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find at cusps and intersections, and we will ignore them for the rest of the 
paper. 

For a loop with an interseCtion, the integral over the regularized delta-
function in the right-hand side" of the loop equation gives 

A(cosn+cos8) f ds f ds'li(s)lli(s')lo;(xlL(s) -xIL(s')) 

A(COS n + cos 8) 1: dx 1: dx' 0; (sinn(x - x')) 

Acosn+cos8 
27rE2 sinn . 

(4.13) 

It is important to note that the result depends explicitly on the UV cutoff 
c 2 • Here we have evaluated the leading term in the c 1 expansion only. 
There are sub leading terms in the expansion which are comparable to (4.12) 
at the trivial self-intersection. 

A cusp also gives an interesting contribution to the loop equation. This 
may be regarded as a special case of the trivial self-intersection. In fact, 
in the literature, this effect is ignored together with that of the trivial self­
intersectionlO• In the supersymmetric theory, the contribution from the triv­
ial self-intersection at a smooth point on the loop is canceled by the con­
straint i 2 = iJ2. The situation is more interesting at the cusp since the 
tangent vector iIL( s) is discontinuous there. If ,there is a jump on S5, iJi( s) is 
also discontinuous. A simple calculation (identical to (2.12), where we found 
the log divergence in perturbation theory) shows that the cusp contribute to 
the right-hand side of the loop equation as 

2A( cos n + cos 8) 1°00 dx 10
00 

dx' 0; (sin n( x - x')) 

A(7r-n)(cosn+cos8) (4.14) 
(27rE)2sinn . 

To summarize, we can express the loop equation as 

t (W) = ~(:L: (7r - nn)( co~ nn + cos 8 n ) (W)+ 
27r€ n:cusps 27r sm nn 

+ :L: cosn~ + cos 8 m (Wm)(Wm)) +0 (~), (4.15) 
m:intersections SIn nm . E 

10 In the lattice formulation, the effect of the cusp to the loop equation is not seen since 
there is no local definition of a cusp. 
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where Wm and W m are Wilson loops one obtains "by detaching the original 
loop into two at the intersection point m. 

5 Loop Equation" in AdS5 x S5 

5.1 General Case 

In this section, we will examine whether the computation of the loop using 
string theory in AdS5 agrees with the predictions of the loop equation. A 
general form of the loop expectation value is 

(W) = ~ exp ( -v'1A) . (5.1) 

We assume that the dependence of the prefactor ~ on the loop variables is 
subleading for large A. Since the loop derivative L does not commute, with 
the constraint x2 = il2 , we need an expression for A when the constraint is 
not satisfied: As we saw in section 3.5, the exponent A has a linear divergence 
of the form 

A(x, y) = ~ f ds(lxl- lill) + ... 
7ft 

(5.2) 

to the leading order in (Ixl - lill). The loop derivative is a second order 
differential operator. When the derivatives act on the exponent and bring it 
down twice, the result is proportional to A. On the other hand, when they 
act on ~ or on the same A twice, we get things only of order V>. or less. In 
the following, we will pay attention to the leading term in A only. The exact 
expression we have to evaluate is therefore, 

We do not have to include the fermionic derivative. When it acts once on a 
bosonic loop, it gives a fermion whose expectation value is zero. There are 
also non-zero contributions when it acts twice on A, but they are subleading 
in A. 

Let us evaluate (5.3). Although the linear divergence 2~f f ds(lxl .-:. lill) 
in A(x, y) vanishes for the loop obeying the constraint, the variation L does 



34 

not commute with the constraint. Thus the linear 9.ivergence term gives an 
important contribution to (5.3). Since the variation of the length functional 

(5.4) 

gives the acceleration iJL (in the parametrization where Ixl = 1) and the same 
for y, we obtain 

A (8A 8A _ 8A 8A) 
8xJL(s') 8xJL(s) 8y i(s') 8Yi(s) 

; 2 (iJL(s)iJL(s') - iii(s)i/(s')) + .... 
7r f 

(5.5) 

Note that it has the same divergence, c 2
, as the right-hand side of the loop 

equation. Moreover the powers of ). match up in the loop equation and in . . 
(5.5). The··· in the right-hand side represents variations of the remaining 
terms in A, which are finite for a smooth . loop. To compute L(W), we 
integrate (5.5) over s - "I ::s; s' ::s; s + "I. When the loop is smooth, the 
acceleration (iJL, i/) itself is finite. Therefore, by taking "I -+ 0, one finds that 
L(W) = 0 in this case. This is consistent with the loop equation. Therefore 
we reach the first conclusion that a minimal .surface in AdS5 bounded by a 
smo<?th loop solves the loop equation. 

5.2 Loops with Cusps 

If the loop has a cusp of angle n, the tangent vector is discontinuous and i 
has a delta-function pointing along the unit vector bisector e 

(5.6) 

A similar thing happens when if is discontinuous, with the angle e replacing 
n in the above. This delta-function is regularized by "I, not f, since it is 
related to the shortest length scale on which the loop is defined. Thus the 
integral of (5.5) over sand s' gives a non-zero result as 
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(5.7) 

In comparison with the prediction of (4.14) of the loop equation, we are 
missing the factor of (7r - n)/ sin n. This, however, is not a contradiction. 
The expression for the linear divergence term in (5.2) is an alpproximation 
for small (Ixl - LvI). Since x2 = (1 + fo)iJ2 with fo = f(n/2) at the cusp, 
this approximation is valid only when fo is small. Apart from this factor, 
(5.7) agrees with the prediction of the .loop equation that the cusp gives a 
non-zero contribution to the loop equation proportional to ,\ = g} M N times 
-2 

~ . 
When (Ixl - liJl) is not small, the expression (5.2) needs to be modified 

as 
1 ('2) A(x,y)::;:: -fdslxlG ~2 + ... 
7r~ . X 

(5.8) 

for some function G(z). By repeating the computation that lead to (5.7), we 
find that the contribution of the cusp takes the form 

Lexp(-v'XA) = ,\g(Jo)(cosn + cos El)exp(-v'XA) +"', (5.9) 

where g(Jo) is a function related to G(z). The agreement with (4.14) requires 

7r-n 
g(J(n/2)) = 8 . n' (5.10) sm 

Proving this would be a very strong evidence for the conjecture. 
Loops with cusps have also logarithmic divergences, which could con­

tribute to the loop equations. To see that, one may write the logarithmically 
divergent term as 

-2
1 

F(n) log L = 21 .jdsjds'lx(s)llx(s')1 sincp F(cp) ( \2 2 (5.11) 
7r € 7r 7r - cp X - x' + ~ 

where 7r -cp is the angle between x(s) and x(s'). To check this equation one 
should integrate over two straight lines meeting at a point. Differentiating 
(5.11) gives a few terms, among them 

x(s)! sinn F(n) (5.12) 
~7r - n 

which has the same divergence as the piece that gave (5.7). 
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5.3 . Self-Intersecting. Loops 

The situation at a self-intersection is more mysterious since x and iJ are both 
continuous at the intersection point. However we have problems in our ability 
to test the loop equation in thi"s case. First of all, iJi = 0 at the intersection, 
and the function G(z) which appears in the linear divergence term in (5.8) 
may be singular at z = liJl/lxl = O. Since we do not know about the function 
G(z) except for its behavior near z = 1, it is difficult to tell whether there is 
a contribution from the intersection. 

The presence of the unknown factor ~ in (5.1) makes the situation worse. 
As we explained before, the Wilson loop is 

(W) = ~ exp (-JXA) . (5.13) 

For a self-intersecting loop we expect 

t (W ) = A cos n + cos e (W )(W ) 
1+2 . {"\ 1 2 , 

sInH . 
(5.14) 

where W1+2 is the self-intersecting loop and WI and W2 its two pieces. In 
order for this to be consistent with the AdS5 computation, we need to find 

A (/\ -) cos n + cos e ~1~2, ( /\ - -) Lexp -vAA1+2 =A . n A exp -vA(A1 +A2 ) • 
SIn· u1+2 

(5.15) 

Since we do not know the relation between the factors ~1J ·~2 and ~1+2, a 
quantitative test is difficult in this case. Though it seems unlikely that the 
ration would be zero. 

It would be very interesting to determine the function G( z) what appears 
in the linear divergence as it would settle the question as to whether the 
intersection gives the contribution to L exp( -JXA) predicted by the loop 
equation. 

6 Discussion 

The AdS/eFT correspondence allows us to calculate certain Wilson loops in 
terms of minimal surfaces in anti de-Sitter space. We presented a few reasons 
why only loops satisfying the constraint x2 = iJ2 (generically) are given in 
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terms of minimal surfaces. For more general loops wef.'i'un'into,the'prolJlem 
of i~consistent boundary conditions. ., h' 

The constrained loops are invariant under half of the local supersymme­
try in super loop-space. As such they are BPS objects and are free from 
divergences. The area of the minimal surface is divergent, so it is not the 
correct functional that yields the Wilson loop. Since the minimal surface 
satisfies Neumann boundary conditions, it's natural to take for the action 
the Legendre transform of the area. We showed this yields a finite result. 

In other examples of the AdS JCFT correspondence the action has to be 
modified as well. In non-supersymmetric cases, such as the near extremal 
D3-brane, the effect of adding the boundary term is to subtract Lj(27r€}. The 
result is finite, but contains a piece proportional to the circumference times 
the radius of the horizon. This may be considered a mass renormalization 
of the W-boson. The scale of the renormalization is not the UV cutoff, but 
rather the scale of supersym~etry breaking. In addition, if i;2 -;. ii, the 
Wilson loop will contain a linear divergence proportional to the UV cutoff. 

The surface observables on the M5 brane theory, as calculated in AdS7 x 
S4 have quadratic and logarithmic divergences [9, 18, 28].· Taking the Leg­
endre transformation will eliminate the quadratic divergence, but we are not 
sure whether it will also remove the log divergence. 

Recently there were some attempts to go b~yond the classical calculation 
and include fluctuations of the minimal surfaces [24, 25, 26]. One of the 
goals was to find the "Luscher term," the Coulomb like correction to the 
linear potential in a confining phase [27]. Any attempt to perform such a 
calculation will require using the correct Neumann boundary conditions on 
the spherical coordinates, and including the appropriate boundary terms. 

Finally we formulated the loop equations for those loops, and checked if 
the AdS ansatz satisfies them. For smooth loops, due to the supersymmetry, 
the loop equations should give zero. This is indeed the result we find also 
from the variation of the minimal surface. 

This calculation actually requires extending the prescription to loops that 
do not satisfy the constraint. We propose that the natural extension for small 
deviation from the constraint gives a linear divergence proportion~l to v0.L. 
This term is particularly important when we consider the loop equations for 
loops with cusps. The expected result is finite and proportional to >.. This is 
in fact what we find, but we do not have enough control over the calculation 
to compare the coefficients. 
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The situation with self-intersecting lpops is more mysterious, we expect 
a non-zero answer, but cannot reproduce that. There are, however, some 
reasons why this test is more difficult than the other cases .. In particular, the 
constraint is broken by a large amount at the intersection. 

Classical string theory tells us only how to calculate loops satisfying the 
constraint. These are BPS objects in loop space, and therefore easier to 
control. As we argued, non-BPS Wilson loops are related to~excited open 
strings, but we are unable to evaluate them reliably. A similar statement 
is true for local operators, one has control only over the chiral operators. 
Non-chiral operators should be given by excited closed string states. Despite 
the large effort devoted to testing the Maldacena conjecture, there is still no 
good understanding of non-BPS objects. 
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A Derivation of the Wilson Loop 

In this appendix, we will define the coupling of the Wilson loop to the bosonic 
fields, AI-' and <pi, in the .Af = 4 super Yang-Mills theory. We will pay special 
attention to the effect of the Wick rotation to the Euclidean signature space. 
In a gauge theory containing a matter field in the fundamental representa­
tion of the gauge group, the Wilson loop is derived by writing a correlation 
function of the matter fields in terms of the first quantized path integral over 
trajectories of the corresponding particle. The resulting phase factor dictates 
the proper coupling of the Wilson loop to the gauge field. The.Af = 4 super 
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Yang-Mills theory in 4 dimensions .does not contain such fields. Instead we 
use W-bosons that appear when we break SU(N + 1)-+ SU(N) x U(1). 

The bosonic action for the SU(N +1) theory is 

(A.I) 

By decomposing the gauge group to SU(N) x U(l) a~ 

A = (A/L Wp.) 
/L wt a /L p. 

(A.2) 

with (P = I, the action can be written as 

A I 2 I 2 1 [ ]2 I ( 2 2 
S = +4F/LV + '2(D/L<Pi) - 4 <Pi, <Pj + '2 8p.MOi ) + (8[/Lav]) 

+~wt (( <Pk - MOk)20ij - (<Pi - MOi )( <Pj - MOj )) Wj 

+~((D/L - ia/L)Wi? + ... 
I )2 1 2 I (( .)')2 

SSU(N) + '2(8/LMO j + 4fp.v + '2 D/L - zap. Wi 

+~wt ((<Pk- MOk)20ij - (<Pi - MOi)(<Pj - MOj)) Wj + ... ,(A.3) 

where F/LV and fp.v are the field strengths of the SU(N) and U(I) factors 
respectively. The··· in the action represents terms in higher powers of Wi, 
etc. If OJ is in the I direction, the mass term for Wi with i =1= I becomes 

(A.4) 

with approximate mass eigen-values <PI - MOl' To simplify the following 
analysis, we replace these terms with 

(A.5) 

Let us consider the correlation function 

(W(x )tw(x )w(y)tw(y)). (A.6) 
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We can integrate over the w field -and find 

! VAp.ViP/DwVap.VM(h e-s w(x)tw(x)w(y)tw(y) 

'1 1 ! VMfhVap. exp (! "2(8p.M()i)2 + 4(fp.v)2) ! VAp.ViPi e-SSU(N) 

1 
x(xl_!(DJL - iaJL)2 + !(<1>i - M()i)2ly) 

1 
x(YI_1(D _ ia )2 + 1(<1>. _ M().)2 Ix ). (A.7) 

2 JL JL 2' , 

The correlation functions in this expression can be written 'as 

Combining everything together and integrating over y, we obtain 

! dy(w(x )tw(x)w(y)tw(y)) 

! VM()i e- f ~(8I'M9i)2! dT l X
(T)=x Vx(s) e-~ JoT ds(x!+M2) 

x(O)=x ! VaJL eJ tUl'v)2 ef dsial'XI' ! VAJLViP
i 

e-SSU(N) ef ds(iAl'xl'-~~t+M~i9i). 

(A.9) 

Lets examine (A.9) carefully. The first term M2 f H8p.()i)2 is the action of 
the ()i field, which for large M becomes classical. The second term includes 
an integral over all the closed paths through x. To define the Wilson loop 
we just look at one such path, leaving the integration over paths for latter. 
The next term in the exponent breaks repararnetrization invariance and will 
set x! = ();, as shown below. The next term is the action for the Abelian 
gauge field on the single brane and the effect of the Wilson loop on it. Since 
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N » 1 and we are taking the ptobeapproximation, we should ignore this 
term. As we'll see, for large M the <1>2 terrp will be subleading, so the last 
term is simply the Wilson loop 

>" 

(W(XIl,(Ji)) = f 'DAIl'D<1>ie-sSU(N) efds(iAI . .i:"-~i9i). (A.I0) 

The term with x2 + M2 is not reparametrization invariant. When we per­
form the integral over different parametrizations of the same path (including 
the integral over T) we find a saddle point. A general parametrization is 
s -+ s(s) such that s(O) =0 and sCI') = T. To integrate over different 
parametrizations, we can perform the path integral over c(s) = dsjds with 
action 

- loT ds ~ (~i: + CM2) + loT ds( iAJli
ll 

- C~<1>t + cM<1>i(Ji). (A.ll) 

For large M the first term dominates, so it will pick the saddle point 

·2 
2 XJl 

c(s) = M2' (A.12) 

and indeed the <1>2 piece in the loop drops out. 
Combining them together, we obtain, 

/ dy( w(x)tw(x)w(y)tw(y)) 

= f Vx(s) e- f dsMlxl / 'DAJl'D<1>i e-SSU(N) efo
1 

ds(iA,.x"+lxl~i9i) .(A.13) 

The integral f dslxlM is the length of the loop times the mass LM. Since it 
is a c-number independent of A, we can ignore it as subleading in the large 
A analysis in this paper. For the same reason, possible determinant factors 
are also neglected in the above. 

The calculation above can also be done in Lorentzian signature. The 
difference is an extra i in (A.8) 

(A.14) 
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The rest of the calculation carries through with this i showing up in different 
places. The final result is 

f VOi eiJ!(a,.Oi)2! i>x(s)eiJ01dSMlxl! 'Dap.eiftU,.v)2eifdsa,.xIJ 

! 'DAp.'D~i eiSSU(N) ei f01 ds(A,.xIJ+lxlc)i Oi ) (A.l5) 

though it is less clear now why the term i(x2 + M2) should nominate the 
path integral to set the saddle point. C 

Instead of the W-boson, we may consider a more general particle with an 
arbitrary mass with a propagator 

1 
(A.l6) l(D - ia )2 + 1(~. - MO·)2 + 1m2. 2 p. p. 2' t 2 

By the same calculation as above, we obtain the exponent 

_ (l ds Ix2(M2 + m2) ~ {l ds (iAp.XP. + Mlxl ~iOi) . 
10 V p. 10 vi M2 + m 2 

(A.l7) 

Excited states of the open strings have this propagator and can be used to 
construct loops with x2 #- ii. 

So far 0 is a constant. To construct loops which move in the 0 directions, 
we have to use many probe D-branes, one for, each value of 0 the loop goes 
through. We start with SU(N + M) and break to SU(N) x SU(M) which 
will then be broken to SU (N) x U (l )M. Likewise one should be able to couple 
the loop to the fermions to get the supersymmetric loops used in Appendix 
C 

B Area of a Cusp 

B.l At One Point on 8 5 

Here we study the minimal surface near a cusp. We consider a loop on a 
2-dimensional plane in 4 dimensions, staying at the same point on S5. We 
take the opening angle of the cusp to be 11. We choose radial coordinates r 
and c.p on the plane and use them to parametrize the worldsheet also. The 
boundary conditions are (using the first regularization discussed in 3.2) 

Y(r,O) = Y(r,11) = 0 (B.l) 
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To study the behavior of the surface near the cusp, we can use scale invariance 
to set 

r 
~(r,cp) = I(cp) (B.2) 

Using this ansatz, the area is 

(B.3) 

This reduces the minimal surface to a one-dimensional problem with the 
effective Lagrangian 

Since £" does not depend explicitly on cp, the energy E given by 

is conserved. At the minimum of I, the energy is given by 

E = loV1 + 16, (fo = 1(0,/2)). 

Substituting this back in (B.5), 

n Ion
/

2 

- dcp 
2 0 

fi V1 + I? rXJ 

r11 
o 0 1/0 IV(1 + P)(P - 16)(P + 16 + 1) 

/ 1000 
dz loy 1 + 16 

o (Z2 + fJ)J(z2 + fJ + 1)(z2 + 2/6 + 1) 

z . . JO . ( V1 + 2f:2 

10 n arCSIn zoo, 10 ' 1 + 2/6 ) 
1 + 16 ' 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

where n is an elliptic integral of the third kind. The regularized action is 
then 



Z2 +Il + 1 
Z2 + 216 + 1 

iVl + PoE ( arcsin i 1 + 216 ) 
1 +IJ 
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(B.8) 

where E is an elliptic integral of the second kind. For small 'f, it diverges 
linearly as 2r/f - F(f!). The function F is obtained by solving (B.7) for 10 
as a function of f! and substituting it into L in the above. The total area is 

1 jL 1 (2r ) 2L 1 L A = - dr- - - F(f!) = - - -F(f!)log-. 
27f r f 27ff 27f f 

(B.9) 

This is the regular linear divergence plus a logarithmic divergence. After the 
Legendre transformation, we obtain 

- 1 L 
A = --F(f!) log -. 

27f f 
(B.I0) 

B.2 With a Jump on S5 

The same analysis can be done for a loop which jumps, at the cusp, to a 
different point on S5 with a relative angle E>. We parametrize the string 
worldsheet by rand B, where B is a coordinate along the large circle con­
necting the 2 different points on S5 . . Because of scale invariance, we can 
set r 

Y(r, B) = -_ -, 
I(B) 

(B.ll) 

for some function }( B). The other angular parameter <p is a function of B 
only. The area is therefore 

(B.12) 

The problem is integrable since there are two conserved quantities, 
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In general the result cannot be written in terms of elliptic integrals, and we 
will leave it, to the over motivated reader~ofind simple expressions for those 
integrals. If we set n = 7r, there is no cusp in the x plane. In this case, the 
integrals are simplified, and the results are expressed in terms of the elliptic 
integrals. 

c Details of Loop Equation in N 
Yang-Mills Theory 

4 Super 

The bosonic part of the Euclidean Wilson loop is 

(C.l) 

We can define the bosonic P9-rt of the loop derivative to be 

(C.2) 

The extra i in front of iIJi'ii in the exponent conspires with the relative minus 
sign in the loop derivative to give the bosonic p,art of the equations of motion 

£(W) = -iJ ds ((xJL(DvFJLv)a+ixJL[iIJi,DJLiIJi]a+i?i(DVDviIJit 

-i1i[iIJj , [iIJi, iIJjW) TrP T a( s )ef(iAl'xl'+~;i';) dS) (C.3) 

This is a linear combination of the bosonic equations of motion for AJL and 
iIJi, but we are missing source terms due to the fermions. What we would 
like to do here is to modify the functional differential operator £, including 
derivatives of fermionic variables, so that the full equations of motion are 
reproduced. With such £, the loop equation can be written as 

L(W) _i9fM J ds ((XJL_8_ - iii~) TrP Ta(s)ef(iAI'XI'+~ii';)dS) 
N 8AJLa 8iIJ,a 

A J ds J ds' (xJL(s)xJL(s') - ii(s)Yi(S')) 84 (x(s) - x(s'))W1 W2 

(C.4) 
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The Euclideai1 super Yang-Mills theory has fermionic fields W whidiare 
Euclidean Majorana fermions [29] with 16 complex components. The gamma 
matrices rM satisfy the Dirac algebra in 10 dimensions, with signature (10,0), 
with the index M = (/-t,i). The loop is parametrized by (xl-'(s), yi(s)) and 
their superpartner C( s) coupling to the gauginos w. 

A natural choice for the supersymmetrized loop is 

W = ~ Tr'P [ef«s)Q dsef(iAJlxJl+CPil/) ds e- f«S)QdS] (C.5) 

Here Q is the generator of supersymmetry of the gauge theory, which acts as 

{Q,W} (C.6) 

in the exponent, but it does not affect our analysis since we will only be 
interested at the top component of the Grassmann algebra and at the end of 
the calculation we set C = 0. The exponent of the Wilson loop is therefore 
given by 

e<Q(iAl'xl-' + <Pi!i)e-<Q 

(iAl-'xl-' + <pi~i) - ~((xl-'r I-' - iliri )w 

1 ·I-'FvP"ir r i -16 x ':. I' vp':. + .... (C.8) 

We will write the loop equation only for loops satisfying the constraint 
x2 = '1/. Therefore XMrM = xl-'r I' - iyiC is nilpotent. In this case, it is 
useful to work in the basis where 

(C.9) 
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and 
-(C.10) 

where C is the charge conjugation matrix. The Majorana spinor in Lorentzian 
signature space satisfies the reality condition ( = (fro. In the Euclidean case, 
we do not impose any reality condition [29]. The exponent of the loop (C.8) 
in this basis becomes 

(C.ll) 

By applying the fermionic derivative operator 

(C.12) 

we obtain the desired combination for the source terms in the equation of 
motion, 

(C.13) 

All other terms contain at least one (( s) and is not relevant for our analysis 
of the loop at ( = O. Thus we found the supersymmetric loop derivative 
defined by 

L = lim! ds18

+7) ds' ( 8
2 

_: 8
2 

+ _8_-l-) 
7)-+0 8-7)· 8xlL(s')8xlL(s) 8Y'(s')8Yi(S) 8((s') 8((s) 

. (C.14) 
produces the variation of the action. For the loop at ( = 0, this completes 
the loop equation for the N = 4 super Yang-Mills theory. 
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