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Abstract

Critical Assessment of Structure Prediction (CASP) is an organization aimed at

advancing the state of the art in computing protein structure from sequence. In the

spring of 2020, CASP launched a community project to compute the structures of

the most structurally challenging proteins coded for in the SARS-CoV-2 genome.

Forty-seven research groups submitted over 3000 three-dimensional models and

700 sets of accuracy estimates on 10 proteins. The resulting models were released to

the public. CASP community members also worked together to provide estimates of

local and global accuracy and identify structure-based domain boundaries for some

proteins. Subsequently, two of these structures (ORF3a and ORF8) have been solved

experimentally, allowing assessment of both model quality and the accuracy esti-

mates. Models from the AlphaFold2 group were found to have good agreement with

the experimental structures, with main chain GDT_TS accuracy scores ranging from

63 (a correct topology) to 87 (competitive with experiment).
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1 | INTRODUCTION

The advent of the COVID-19 crisis spurred major efforts to combat

the disease from biologists all over the world. Key to understanding

many aspects of the disease mechanism is knowledge of protein

structure. Experimental research groups have devoted major effort to

this task, but progress has been necessarily slow and more than 2300

amino acids in the Severe Acute Respiratory Syndrome (SARS2) pro-

teins still have no experimental structural coverage. Computed protein

structure, while until recently not as accurate as experiment,1–5 can

nevertheless provide models that may aid in the choice of drug tar-

gets, development of vaccine strategies, and insights into viral mecha-

nisms. Early in the pandemic, a number of leading structure modeling

research groups, including SWISSMODEL https://swissmodel.expasy.

org/repository/species/2697049; AlphaFold https://deepmind.com/

research/open-source/computational-predictions-of-protein-structures-

associated-with-COVID-19; Baker https://www.ipd.uw.edu/2020/02/

rosettas-role-in-fighting-coronavirus; Zhang https://zhanglab.ccmb.

med.umich.edu/COVID-19; Feig https://github.com/feiglab/sars-cov-

2-proteins; and the Xu group, produced sets of computed structures

of severe acute respiratory syndrome—coronavirus-2 (SARS-CoV-2)

proteins. Because of earlier experimental work on other viruses, par-

ticularly SARS, there are homologous structures available for the

majority of SARS-CoV-2 proteins, so that useful models can be pro-

duced with straightforward template-based methods.6–11 The Critical

Assessment of Structure Prediction (CASP) initiative engaged the

broader modeling community with the aim of producing the best pos-

sible structures for the more demanding cases, those without detect-

able homology to experimentally determined structures, where a

community effort was likely to have the most impact. The strategy for

this CASP community-wide experiment on modeling SARS-CoV-2

proteins causing the coronavirus disease (CASP-COVID) experiment

was to collect models from as many modeling groups as possible and

to also solicit community input on evaluating the accuracy of those

models, so as to provide the scientific community with the most accu-

rate structures currently possible. The strategy built on three things—

the existence of a closely knit CASP modeling community, extensive

previous CASP results on the reliability of modeling and accuracy esti-

mation methods,10–17 and the CASP infrastructure.18–22

The CASP-COVID experiment was started on March 9, 2020. The

experiment proceeded through six stages, followed by the discussion

of the results at the CASP14 conference in December 2020. The

stages were as follows: (1) Selection of targets and their analysis,

(2) Call for three-dimensional (3D) models, (3) Call for accuracy esti-

mates of the models, (4) Community discussion of the initial results,

(5) Call for revised and refined models and accuracy estimates, and

(6) Re-release of some targets in CASP14, allowing thorough compari-

son of models with new experimental data. In addition, there was a

post-CASP follow-up to further assess effectiveness of estimates of

model accuracy (EMA) methods.

There was a strong community response to the call for CASP-

COVID participation, with 47 research groups submitting models

using a total of 53 3D modeling approaches and 30 accuracy

estimation approaches. All groups who submitted at least five models

to CASP-COVID and submitted an abstract to CASP14 Abstract book

(or had a documented history of participation in CASP) were invited

to contribute their method description to this article.

2 | RESULTS

2.1 | Selection of targets and their analysis

The CASP organizers analyzed 29 proteins coded for by the SARS-

CoV-2 genome23 and identified 10 for which part or all of the

sequence did not have reliable homologs in the structural data-

base.24 These were selected as CASP-COVID targets. Table S1

shows graphical representations of the HHsearch25 sequence

searches against the structural database for the selected targets.

The targets were analyzed to identify the predicted secondary struc-

ture and domain composition,26 disorder regions,27 trans-membrane

regions28 and signal peptides.29 The results of the analysis were

posted on the CASP-Commons web site https://predictioncenter.

org/caspcommons/target_analysis.cgi. Target sequence information

was also posted at https://predictioncenter.org/caspcommons/

targetlist.cgi. Participants were asked to return their models in

3 weeks.

2.2 | 3D Structures

Over 1500 3D models were submitted in the first CASP-COVID

round. Those included models from the most capable research groups

as previously assessed in CASP.30–37 Methods descriptions provided

by authors of this article are in available in the Supporting Information

(“TS methods” file). The full list of participants and associated statis-

tics are at https://predictioncenter.org/caspcommons/groups_

info.cgi.

All collected models were posted at the Prediction Center Data

Archive site https://predictioncenter.org/download_area/CASPCOMMONS/

2020_COVID-19/ immediately after closing the first round of submis-

sions. The models were analyzed for structural consensus based on the

average pair-wise global and local LDDT38 and GDT_TS39,40 scores. The

results of the analysis allowed identification of consensus regions of

structure and of groups with structurally similar models. For example, for

the SARS-CoV-2 M-protein (target C1906), high local consensus scores

in regions 1–105 (marked with the black box in Figure 1) suggested the

protein has two domains, and that a split into two domain level targets

in Round 2 of the experiment might assist modeling.

2.3 | Community-wide discussion of the results
and second round of modeling

Following the first round of modeling, the community discussed the

results in two Zoom conferences and group chat using the Microsoft
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teams. Consensus analyses helped identify consistent domain bound-

aries within the targets, used in the second modeling round. Commu-

nity members also discussed possible features of models such as

membrane regions and signal peptides, that could help guide the next

stage of modeling.

The second round ran for 2 weeks in May 2020, immediately

before the start of the regular CASP14 experiment. The round con-

sisted of 15 domain-level targets derived from the Round 1 analysis,

and seven first-round targets re-released for prediction. Thirty-three

groups submitted over 1500 3D models, which were again made pub-

lic immediately after the deadline.

Second round models underwent the same evaluation procedure

as those from Round 1.

2.4 | Accuracy estimates

Each of the submitted models in both rounds of modeling was evaluated

by accuracy estimation methods developed by the CASP community.

Overall, 32 EMA methods were used. The list of participated methods

and brief descriptions are provided in the “EMA methods” Supporting

Information file. All submitted accuracy estimates are available at

https://predictioncenter.org/caspcommons/models_QAresults.cgi.

The overall goal of this step was to identify the best models for

each target and to estimate their accuracy. This was the first time

CASP has addressed this non-trivial task in a real-life situation. Previ-

ous regular CASP experiments have shown that EMA methods are

overall effective at ranking models by accuracy, but even the best-

performing methods cannot identify the most accurate models for all

targets.41–43 The CASP-COVID results showed surprisingly high varia-

tion in model rankings: for no target was there unanimous agreement

on the best 3D model. Rather, for most targets over 10 distinct

models were selected as the best (Table STQA1), creating a problem

in recommending which model should be used. To address this issue,

the Venclovas group devised a new EMA-jury algorithm that identifies

which models were most favored by the EMA methods. The algorithm

is described in detail in the Supporting Information. Briefly, the

method pools the top 1, top 2,…, top 10 models selected by each

EMA ranking into 10 corresponding supersets. If a model is selected

by more than one EMA method, it is included multiple times, thus

receiving more weight. A consensus structural similarity score is calcu-

lated for every model in each superset as an average of CAD-scores44

from the model's pairwise comparisons with other models in the

superset (Figure SFQA1). The maximum of superset-specific consen-

sus scores for a model is recorded as the EMA-jury consensus score.

Note that the EMA-jury consensus score quantifies how typical the

structure of a model is among the top selections made by the EMA

methods rather than the expected level of its structural similarity to

the native structure (as individual EMAs do). The EMA-jury scores

together with two additional refinement criteria described in the

Supporting Information are used for the final selection of models that

are most strongly supported by the EMA methods (Table STQA2).

Comparison of the EMA-jury scores with the overall consensus

scores computed on full sets of models for each CASP-COVID target

shows that the EMA-jury method always selects a subset of models

that are more structurally similar within the subset than overall

(Figure 2). This indicates that individual EMA rankings are not random

and often agree in favoring some structural features.

F IGURE 1 Screenshot of the model consensus table (https://predictioncenter.org/caspcommons/models_consensus2.cgi) for the SARS-CoV-2
M-protein (target C1906) showing local structural agreement along the sequence of the selected model (second column) with the remaining models.
The black box shows the region where many models agree, suggesting a relatively easy to model domain
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The EMA-jury algorithm was also run using the LDDT scoring

function (instead of CAD-score). The results are presented in the

Supporting Information (Figures SFQA2 and 3, and Table STQA3).

They are very similar to the CAD-score based results with 84% of

selected CASP-COVID models being the same, and at least one model

in common for every target.

To assess the effectiveness of the EMA-jury method, we evalu-

ated its ability to select the best available model from a set of models.

Such an analysis requires knowing actual accuracy of models with

respect to the target structure. Since only two CASP-COVID targets

have been solved so far, we tested the EMA-jury on CASP13 set of

server models (almost 11 000 models. on 80 targets). Figure 3 shows

that the EMA-jury very often picks the best or nearly the best model,

and that the EMA-jury selection is better than simple consensus-

based selection. The mean score of the EMA-jury-selected models

(0.622) is just slightly behind the mean of the maximum CAD-scores

of CASP13 models (0.640) and better than the mean score of models

selected with simple-consensus (0.574). The average Z-score (calcu-

lated from the distribution of individual EMA scores) of Jury-selected

models stands at 1.67, almost twice the value of the average simple-

consensus z score (0.87). Of interest is also the fact that the relative

performance of the EMA-jury with respect to simple consensus

becomes even more dominant on harder modeling targets. For exam-

ple, the average EMA-jury z score grows from 1.67 on all CASP13 tar-

gets to 2.02 on FM targets, while the corresponding numbers for

simple consensus are trending downward: 0.87!0.75. Similar tenden-

cies in scores are observed when analyzing the LDDT-based results

(Figure SFQA5).

2.5 | Evaluation of ORF3a and ORF8 models

Structures of two CASP-COVID proteins—ORF3a (Target ID: C1905)

and ORF8 (Target ID: C1908)—were experimentally solved by the

start of CASP14 conference allowing full CASP evaluation of accuracy

of the corresponding models against experimental structures.

Full-length sequences of both solved targets were released for

modeling in both rounds of CASP-COVID, and ORF3a was addition-

ally released in the second round as domain targets C1905-D1 and

C1905-D2. Independently, ORF8 was also released in the CASP14

experiment as target T1064. The number of 3D models and EMA esti-

mates collected in the CASP-COVID experiment are summarized in

Table 1.

Since there was no significant accuracy improvement in models

submitted on full-length targets in the second round, we report only

the first-round results for those.

2.6 | Post-CASP EMA experiment

From the CASP-COVID and CASP14 evaluation of ORF3a and ORF8

targets, it was immediately apparent that models from DeepMind's

AlphaFold2 group were by far the most accurate, consistent with the

broader CASP14 results. An interesting question to check was

whether accuracy assessment methods can recognize the high accu-

racy of these models. However, it was impossible to answer this ques-

tion only with the available data at hand: AlphaFold2 did not submit

models in the second round of CASP-COVID (thus no domain-based

models for ORF3a), nor did they submit ORF8 models to CASP-

COVID (only to CASP14). To adjust for that, we added five AlphaFold

models to each of the three CASP-COVID model sets. For ORF8, we

added AlphaFold2 (AF2) models submitted on the CASP14 T1064 tar-

get. For ORF3a domains, we added AlphaFold models submitted to

CASP-COVID (AF-COV) and a-posteriori split into domains.

Additional accuracy estimates were solicited on the added

AlphaFold models from the authors of 10 established in CASP EMA

F IGURE 2 Maximum consensus scores on CASP-COVID targets
(EMA-jury—gray bars; overall consensus—black). Targets are ordered
by increasing EMA-jury values. The gray bars are always longer than
black ones, indicating that the EMA-jury method successfully selects
subsets of models that are more structurally consistent. The vertical
dashed line corresponds to the consensus level of 0.6, which
represents 100th percentile of overall consensus scores for all models
(Figure SFQA4). CASP, Critical Assessment of Structure Prediction;
CASP-COVID, CASP community-wide experiment on modeling SARS-
CoV-2 proteins causing the coronavirus disease; EMA, estimates of
model accuracy;

1990 KRYSHTAFOVYCH ET AL.



methods. We discuss here the results for four (out of these 10) that

participated both in CASP-COVID and CASP14: ModFOLD8_rank,

ProQ3D, VoroMQA-dark, and QMEANDisCo. The overall conclusions

do not change by including all 10 post-CASP EMA methods.

This analysis, aimed at determining whether accuracy estimation

methods were able to recognize high accuracy of AlphaFold models of

the two CASP_COVID targets, is referred to here as the post-

CASP EMA.

F IGURE 3 Selection of the top model by the estimates of model accuracy (EMA)-jury (top panel) and simple structural consensus (bottom
panel) on 80 CASP13 targets. Maximum per-target CAD-scores are shown as pointing up triangles; the CAD-scores of models selected by the
EMA-jury approach (top) and simple structural consensus method (bottom) are shown as pointing down triangles. The hardest to predict targets
(FM) are in red, others in green. Vertical lines between the corresponding triangles represent the error in the selection process. Comparison of the
top and bottom panels demonstrates that the EMA-jury method selects models closer to the best absolute value more often than the simple
consensus

TABLE 1 The number of 3D models
and accuracy estimates in the CASP-
COVID experiment for ORF3a and ORF8 CASP-COVID target ID

ORF3a ORF8

C1905 C1905-D1 C1905-D2 C1908

No. 3D models (GDT_TS ≥40) 153 (6) 83 (38) 79 (0) 181 (0)

No. EMA submissions in CASP-COVID 30 19 19 29

Note: Numbers in parentheses show the number of high-accuracy models. ORF3a was treated as one

target in the first round of CASP-COVID (C1905) and as two separate domains in Round 2 (C1905-D1,

C1905-D2).

KRYSHTAFOVYCH ET AL. 1991



2.7 | Results for ORF3a (C1905)

2.7.1 | Round 1 results: models of the full structure

Among the first-round 3D models of the full structure, only six models

have GDT_TS scores above 40 (green crosses in Figure 4A). Five of

these models are from AlphaFold (with accuracy ranging from 45 to

59 GDT_TS), and the sixth is from FEIGLAB-R, who attempted to

refine an AlphaFold model resulting in a lower (worse) GDT_TS score

of 42. The six top models are all monomeric, while the experimental

ORF3a structure is dimeric. Overall, the best AlphaFold model (AF-

COV_2, GDT_TS = 59) correctly reproduces ORF3a's fold

(Figure SFQA6a), but loops and orientation of helixes around the

dimeric interface are less accurate: the average per-residue distance

error (as calculated from the optimal LGA model-target superposition)

is 3.9 Å for the whole structure, and 4.6 Å for the interface region.

In terms of global EMA, BAKER was the only group who selected

a reasonable model (GDT_TS > 40) as top1. However, it was the

sixth-ranked model with the GDT_TS of 42 rather than the most accu-

rate model with GDT_TS of 59. Other EMA methods selected a num-

ber of much less accurate models (black squares at low LDDT and

GDT_TS), including the EMA-Jury method (orange circles), which by

its nature selects models preferred by the majority of

individual EMAs.

In the evaluation of local accuracy in the post-CASP EMA, the

ProQ3D group had the best average results, with the ASE score of

85.4 (ASE—Assessment of S-function Errors, see the EMA assessment

paper41), AUC of 0.86 (AUC—Area Under the ROC Curve of the pre-

diction of accurate/inaccurate residues), and the ULR-F1 score of 0.4

(ULR-F1—the F1-score on Unreliable Local Regions, see papers41,45)

for the best submitted model AF_2 (C1905TS156_2). AlphaFold's self-

estimate of per-residue distance errors was worse than the results of

ProQ3D, scoring ASE of 72.7, AUC of 0.78, and ULR-F1 of 0.0. The

BAKER local EMA method was able to identify some part of the ULRs

in the beta sheet domain (actual ULRs = 163–198 and 219–235;

predicted ULRs = 163–199 and 214–238), but the ULRs in the alpha

helix domain were identified less precisely (actual ULRs = 40–48, 51–

55, and 102–104; predicted ULRs = 40–43, 62–68, and 99–101), as

illustrated in Figure 4B. ULRs are defined as regions consisting of

three or more sequential model residues deviating by more than 3.8 Å

from the corresponding target residues in the optimal superposition

on the crystal structure.

2.7.2 | Round 2 results: prediction of the domain
structures

Figure 5 shows the accuracy distribution of CASP-COVID second

round models for the two domains of ORF3a separately. The domain

structures of the AF-COV models submitted in the first round are

included (pink stars), and are substantially more accurate that those

from other groups, especially for Domain 2.

In the post-CASP experiment, three and two out of four EMA

groups picked an AF-COV model as top1 for Domains 1 and 2, respec-

tively (pink squares in Figures 5A,B). Although some EMA groups

could discriminate AF-COV models from the others, no group was

successful in predicting the correct ranking within the five AF-COV

models, although these models are very close.

2.8 | Results for ORF8 (C1908)

For ORF8, no high-accuracy models were submitted during CASP-

COVID (maximum GDT_TS = 26, AlphaFold not participating; see

F IGURE 4 Round 1 three-dimensional (3D) and accuracy estimation results for SARS2 ORF3a (C1905). (A) Each green cross represents a 3D
model, black squares indicate models selected as high accuracy by accuracy estimation methods, and orange circles indicate models selected by
the estimates of model accuracy (EMA)-Jury method. 3D model accuracy is shown in terms of LDDT (y-axis) and GDT_TS (x-axis). Only one
accuracy estimation method selected a higher accuracy model. (B) Locally inaccurate regions of the highest-scoring model, AF-COV_2, according
to the ULR definition (left) and as predicted for the same model by the BAKER EMA method (right). The superpositions are identical; the crystal
structure is in yellow, ULRs and predicted inaccurate regions are in red and the rest of the model in green

1992 KRYSHTAFOVYCH ET AL.



green crosses in Figure 6). The protein was re-released in the regular

CASP14 experiment as target T1064 (without 15 N-term residues

corresponding to a signal peptide, a feature which almost all CASP-

COVID participants ignored, and one cause of poor models). The

AlphaFold2 group submitted five high-accuracy predictions for this

target. These models (ranging from 64 to 87 GDT_TS) were added to

the pool of models for the post-CASP analysis (pink stars in Figure 6).

The crystal structure of ORF8 was solved as a covalent dimer, while

AlphaFold models were monomeric. Despite this, the best monomeric

model possesses some important structural features needed for for-

ming the dimeric assembly. In particular, the model correctly repro-

duces the side chain orientation of the cysteine involved in covalent

chain linkage (Figure SFQA6b). The average per-residue distance error

is similar for the whole structure (1.25 Å) and for the interface

region (1.46 Å).

In global accuracy estimation, only VoroMQA-dark could identify

AF2 models as superior to others (pink squares in Figure 6). However,

this method did not predict the big difference in absolute model qual-

ity (as quantified by GDT_TS). For example, VoroMQA-dark assigned

the best AF2 model (AF2_1, GDT_TS = 87) a global EMA score of

67 (on the 0–100 scale), while some models by other groups with the

GDT_TS < 20 were assigned a relatively high EMA score of 50+ (all

scores are for ORF8 without the signal peptide). It should be noted

that VoroMQA-dark has a narrow range of values so that a difference

of 10+ may indicate substantial difference in model accuracy.

In the evaluation of local accuracy in the post-CASP EMA, the

best results were shown again by the ProQ3D, with ASE of 88.5, AUC

of 0.89, and the perfect ULR-F1 score of 1.0 for the AlphaFold2

model AF2_1 (CASP14 id: T1064TS427_1). AlphaFold2's self-estimate

of per-residue distance errors was comparable or better than the

results of the best EMA method, scoring ASE of 92.7, AUC of 0.96

and ULR-F1 of 1.0.

All AlphaFold2 models showed local structural differences to

experiment near residues 60–86, which are involved in a crystal con-

tact (Figure SFQA6c), and residues 104–110 which have high crystal-

lographic B-factor of �70 (Figure SFQA6d). ProQ3D could identify

the structural deviations in these two loop regions of AF2 models

with high accuracy, scoring 0.78 with ULR-F1 measure. GraphQA also

showed a high performance with average ULR-F1 score of 0.68, while

F IGURE 5 Round 2 3D and accuracy estimation results for two domains of SARS-CoV-2 ORF3a protein (A) C1905-D1 and (B) C1905-D2.
3D model accuracy is shown in terms of LDDT (y-axis) and GDT_TS (x-axis) (green crosses). The panels show both models from CASP-COVID and
AF-COV models added in the post-CASP EMA experiment (pink stars). The models selected by EMA methods as top1 during CASP-COVID are
shown as black hollow squares; models selected in the post-CASP experiment are in pink hollow squares. For Domain 1, three out of four EMA
groups selected one of the higher accuracy AlphaFold models, with many low accuracy models also selected. There is a similar pattern for Domain
2, where two of four methods picked two different AlphaFold models

F IGURE 6 Round 1 3D modeling and accuracy estimation (EMA)
results for SARS-CoV-2 protein ORF8 (C1908). 3D model accuracy
for submissions in terms of LDDT (y-axis) and GDT_TS (x-axis) (green
crosses) and EMA selections (black squares for CASP-COVID, pink
squares for post-CASP experiment, orange circles for EMA-Jury). Five
AF2 models added in the post-CASP experiment are shown as pink
stars. Two of the AF2 models are impressively accurate. Two post-
CASP EMA methods succeeded in selecting those models as best
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AlphaFold2's self-assessment scored 0.47. On the other hand, it is not

clear that the models have errors in either of these regions rather than

being a crystal artifact and a crystallographic error respectively. It is

possible that the EMA methods are predicting relatively flexible

regions of polypeptide, rather than model errors.

3 | DISCUSSION

The central goal of CASP is to make assessment of both 3D modeling

methods and accuracy estimation methods as rigorous possible, by

using a blind prediction system and comparison with experiment. In

doing so over 14 rounds, CASP has built a strong community. Further,

recent advances in modeling methods show the field has advanced to

the point46–48 where taking on the most challenging structures should

yield useful results. In the past, CASP has also found that properly bal-

anced consensus models can achieve higher accuracy than any of the

contributing models.49 So, there was an obvious appeal to drawing on

this community resource to address one aspect of the COVID-19

emergency. Indeed, there was very enthusiastic response and partici-

pation from the CASP community.

From a more pragmatic point of view, the CASP-COVID modeling

initiative also provided a different, real-world application of the

modeling methods. Although CASP strives to be as realistic as possi-

ble, assessment is done with knowledge of the experimental answers.

What can be done when the goal is to generate useful information

from models?

Since we do not yet know most of the experimental structures of

the target proteins, conventional CASP analysis is limited to just two

targets. In both cases, correct folds were produced by just one group,

AlphaFold2. Based on the most recent CASP14 results,46,48,50 we

expect better performance overall, with at least the majority of the

folds correctly predicted by multiple groups. We will have to wait for

more experimental results to see if that is true.

The most difficult task in generating recommended models turned

out to be estimating relative accuracy and, beyond that, absolute

accuracy of the submissions. CASP has nurtured the development of

accuracy estimation methods for more than a decade, and assessment

against experiment has shown impressive progress, with apparently

very useful outcomes.41–43,45,51–53 However, in the absence of experi-

mental ground truth, initial focus was on agreement between methods

and this was low. In turn, this prompted the development of a new

method for obtaining consensus accuracy estimates.

In spite of these limitations, overall, we regard the experiment as

a success, both in terms of bringing the community together to tackle

an urgent problem, and in producing a set of potentially useful models.

As noted above it was also valuable in drawing attention to issues in

real world use that were not apparent in the standard CASP environ-

ment. It also once again demonstrated the value of community sci-

ence. In particular, the experiment was particularly impactful for

undergraduate students just beginning in the field, as they were able

to better understand the role of their research in a broader scientific

context and its potential for benefiting society at large.
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