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Vein graft failure

Christopher D. Owens, Warren J. Gasper, Amreen S. Rahman, and Michael S Conte
University of California San Francisco Medical Center, Division of Vascular and Endovascular 
Surgery, San Francisco, California

Abstract

Following the creation of an autogenous lower extremity bypass graft, the vein must undergo a 

series of dynamic structural changes to stabilize the arterial hemodynamic forces. These changes, 

commonly referred to as remodeling, include an inflammatory response, the development of a 

neointima, matrix turnover, and cellular proliferation and apoptosis. The sum total of these 

processes results in dramatic alterations in the physical and biomechanical attributes of the 

arterialized vein. The most clinically obvious and easily measured of these is lumen remodeling of 

the graft. However, though somewhat less precise, wall thickness, matrix composition, and 

endothelial changes can be measured in vivo within the healing vein graft. Recent translational 

work has demonstrated the clinical relevance of remodeling as it relates to vein graft patency and 

the systemic factors influencing it. By correlating histologic and molecular changes in the vein, 

insights into potential therapeutic strategies to prevent bypass failure and areas for future 

investigation are explored.

Introduction

The autogenous vein bypass remains the most effective and durable revascularization 

strategy for patients suffering from lower extremity ischemia despite the seemingly 

exponential proliferation of endovascular devices and techniques. In the United States, there 

are about 250,000 coronary artery and 80,000 lower extremity vein grafts implanted per 

year.[1] Vein grafts, in contrast to inanimate stents or prosthetic grafts, are living and 

evolving conduits which respond to hemodynamic stimuli and to signals from the local 

environment.[2] Recent randomized controlled trials inform us that 30-40% of coronary and 

lower extremity vein grafts occlude or develop significant stenosis within the first year 

following implantation.[3, 4] These figures have largely remained unchanged for the past 

several decades.[5] On one hand this is a cause for optimism as results remain constant 

despite ever more challenging and complex patients.[5] However it is discouraging to 
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consider that 5 decades of high-powered science has not effectively changed bypass graft 

outcomes.

Endophlebectomy of vein graft stenosis, described first in 1965 at the University of 

Rochester, was used to treat a 56 year old man who developed a one centimeter stenosis in 

his femoro-politeal bypass 16 months after its construction.[6] Here the authors describe a 

white fibrous tissue which was sharply excised and repaired with a vein patch angioplasty. 

This all too familiar description betrays the underlying inflammatory mayhem which 

conspired to produce such a bland appearing lesion. We now characterize the lesion as 

intimal hyperplasia which is present to some extent in all vein grafts. Unlike coronary 

bypass grafts, duplex surveillance of lower extremity vein grafts can detect 

hemodynamically significant stenosis due to the vein graft's superficial location within the 

leg. The distribution of ultrasound-detected stenosis are diffuse in about 12% vein grafts but 

the majority of stenotic lesions are focal often occurring in the peri-anastomotic regions or at 

valve sites.[7-9]

Limitations of existing animal models

Growth factor inhibitors, transcription factors, cell cycle regulators, immunomodulators, 

nitric oxide donors among others have all been effective at reducing intimal hyperplasia in 

experimental models.[10] Yet surprisingly, very few of these have entered into phase 1 

human clinical trials. The lack of translation may be due to the fact that existing animal 

models do not adequately represent human counterparts. They are generally constructed 

with short interposition grafts in high flow environments, produce minimal to moderate 

stenosis, and rarely develop the severe occlusive lesions seen in the human vein grafts. Most 

preclinical programs have relatively short endpoints, commonly 28 days, which may not be 

sufficient to account for the late lumen loss due to fibrous expansion.[11-14] The healing of 

human vein grafts are known to occur well beyond this time frame suggesting more chronic 

models are necessary to fully study complex mature lesions.

The remodeling of human vein bypass

While the extent and time frame of development of intimal hyperplasia in animals 

substantially differs from humans, one important similarity is the ability of the vein to 

rapidly remodel in order to stabilize hemodynamic stress.[12, 15] The idea of human vein 

graft remodeling is hardly novel. Szilagyi noted in the 1960s studying autopsy specimens 

that vein grafts had increased their diameter by as much as 50% to 75%.[16] More recently 

serial ultrasound studies in patient cohorts have demonstrated in vivo changes in human vein 

grafts.[17]

Remodeling of the vein graft can be thought of as the morphologic and geometric changes in 

the vein which happens through luminal dilation, reorganization of matrix and collagen, and 

the development of a neointima. The effects of the arterial environment on the vein have 

been best characterized by Dobrin and others whereby 4 pairs of deformations and 

counteracting stresses (circumferential, longitudinal, radial (compressive), and pulsatile) in 

addition to the well known shear stress. Hence exposing a vein graft to arterial pressure 

subjects it simultaneously to deformations and stresses in 9 different directions.[18, 19]
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We hypothesized that the early geometric remodeling of the vein graft is a crucial 

determinant to successful long-term function of the bypass graft. To test this hypothesis, we 

initiated a prospective cohort study to systematically determine remodeling characteristics of 

lower extremity bypass grafts over the first year of implantation.[20-23] Employing high-

resolution ultrasound images, luminal and wall changes were characterized from a defined 

region of the vein graft. We also employed pulse wave velocity (PWV) analysis to 

determine stiffness changes in the vein over time. PWV is the speed at which the flow pulse 

propagates through the conduit and is one measure of stiffness that is relatively independent 

of the outflow. Because it was impractical to map the entire bypass graft we used a 5 cm 

segment (no branches or valves) of the graft as a surrogate for the behavior of the entire 

graft. Using high resolution M-mode ultrasound, vein graft lumen measurements were 

conducted at pre-determined time points beginning in the operating room after the 

anastomoses were complete ,and then subsequently at 1, 3, 6, 9, and 12 months thereafter.

In these same patients, we collected demographic information, cardiovascular risk factors 

and tracked bypass- and limb-related outcomes. Pre-operative blood samples were obtained 

to measure lipids, biomarkers, and cytokines associated with inflammation and thrombosis 

to assess their clinical value and also to provide insights into mechanisms of vein graft 

failure. To ensure that these markers were not spuriously elevated, any patient with active 

infection, a recent procedure, or concurrent systemic illness was excluded from biomarker 

evaluation.

Our early findings of this study were largely descriptive in nature. We determined that the 

majority of the luminal and wall remodeling of the graft occurs in the first 30 days followed 

by relative stability. There was on average about a 25% increase in lumen change of the vein 

graft between the operating room and 1 month, but there was substantial variability in the 

luminal remodeling response.[20, 21] While the majority of the grafts increased their 

lumens, about one quarter decreased in size. Similarly there was on average a 35% increase 

in wall thickness during this same period. As expected from animal data, the initial shear 

stress at the time of implantation was the single biggest hemodynamic factor accounting for 

the variability in luminal remodeling but even so only explained about 10% of luminal 

remodeling. This begins to get at some of the discrepancy between animal and human data 

as most animal models of vein grafts employ juvenile healthy animals without severe 

systemic illness such as advanced diabetes mellitus, hypertension, or dyslipidemia.

Our PWV studies determined that bypass grafts developed an increase in stiffness but was 

un-expectantly temporally delayed from the wall thickness changes. In fact, stiffness 

initially decreased and then rapidly rose, reflecting re-organization of matrix proteins.[21] 

On average, the arterialized vein dramatically increased in stiffness by about 65% from 3 to 

6 months. Considering the vein wall consists of 3 principle components, cells and 

proteoglycans, elastin, and collagen, only an increase in the fibrous protein collagen could 

account for this.[20] This observation nicely complements animal data whereby the wall 

thickness changes over the first 6 months were accompanied by a marked increase in 

collagen production.[11, 12, 24]
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These early observations began to paint a picture that early luminal and wall thickness 

changes were followed by a period of stiffening of the graft and changes could be measured 

for at least 6 months following implantation. Because we encountered so much variability in 

lumen caliber that was not explained by the graft's inflow, outflow, or hemodynamic stress, 

other explanations were sought. By assessing the patient's baseline level of inflammation, 

determined by pre-operative measurement of high sensitivity C-reactive protein (hsCRP), it 

was noted that there was an inverse correlation between inflammation and the magnitude of 

luminal remodeling.[22] Specifically veins placed in patients who had elevated preoperative 

hsCRP levels (≥ 5 mg/l) dilated substantially less than those with hsCRP < 5 mg/l and were, 

on average, 0.5 mm smaller by the end of the first month. This was true despite having 

similar initial size at the time of implantation to those patients with hsCRP < 5 mg/l. Other 

significant demographic and clinical factors found to be associated with the early 

remodeling of vein grafts included the patient's race and the use of a statin at the time of 

operation, both of which have been shown to be associated with vein graft patency.[25, 26] 

Specifically, African American race was associated with less positive remodeling over the 

first month of implantation and vein grafts implanted in these patients never achieved the 

diameter of those in Caucasians.[23] Just as importantly diabetes mellitus, hypertension, and 

hyperlipidemia were not associated with remodeling; none of which have been shown to be 

associated with reduced patency of lower extremity vein grafts.

By linking bypass outcome data with serial imaging data, we next determined that early vein 

graft remodeling is associated with mid-term vein graft patency independent of initial vein 

size or other risk factors. Veins that do not enlarge or get smaller over the first postoperative 

month, referred to by us as poor remodelers, have a 13–fold increase risk of failure at 2 

years compared to “robust remodelers”, ie. those demonstrating >25% change in lumen 

diameter, Figure 1.[23] To put this in perspective the use of small veins for bypass only has 

about a 2.5-fold increased risk of failure at one year[27] suggesting that the remodeling of 

the vein in the first 30 days is at least as important as vein implantation size.

Thus vein graft failure cannot be thought of as simply a segmental hyper-proliferative 

disease which develops within a static tube. But rather, intimal hyperplasia develops within 

a dynamic conduit, molded by hemodynamics, under the influence of systemic and regional 

factors. Thus inflammation,[22] race,[25] gender,[28] and genetics[29] can act globally on 

the entire vein graft to influence its adaptation in the arterial circulation. However, should 

local levels of shear stress and wall tension be impeded from reaching or reestablishing 

baseline conditions – due to either local environmental conditions, flow disturbances, or 

intrinsic vein disease - the proliferative intimal reaction would be expected to continue and 

stenosis to supervene.[30, 31] Therefore one explanation for segmental stenosis may be a 

hyper-proliferative response superimposed on a restrictive pattern of inadequate outward 

remodeling, Figure 2.

Given the critical importance of early vein graft remodeling, mechanistic insights may 

inform future local or systemic therapy to improve patency. However studies specific to 

lower extremity venous bypass remodeling are relatively scarce. Examining other 

experimental models such as arteriogenesis (collaterogenesis), arterio-venous fistula (AVF) 

maturation, and even varicose vein development may provide important clues to direct 
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future research.[32-34] However, there are fundamental differences between these models 

and vein bypass remodeling as denoted in table 1. We believe that revisiting some of the 

early histological and ultrastructural studies of experimental vein grafts through the lens of 

recent molecular biology is informative in understanding inciting pivotal events.[35-37]

Histological remodeling

The injury associated with venous harvesting and implantation into the arterial environment 

is unlike any other known vascular injury including development of atherosclerosis, balloon 

angioplasty and stenting, and even creation of the AVF. It is abrupt, severe, and affects the 

entire length of the bypass graft. Histologic and ultrastructural consequences of this have 

been well described and are depicted in Figure 3.[35-41] Within 24 hours to 3 days after 

pressurization, vein graft endothelial cells (EC) are either focally absent or appear attenuated 

and elevated by sub-endothelial edema and infiltrating inflammatory cells which are present 

in the subendothelial space as early as 4 hours following implantation.[42, 43] Platelets, 

inflammatory cells and fibrin are adherent to denuded areas of endothelium where they 

release growth factors such as platelet derived growth factor BB (PDGF-BB), basic 

fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and insulin-like 

growth factor (IGF-1) among many others.[36, 44, 45] Areas of intact endothelial cells 

either subsequently slough or lose their barrier function so that they are permeable to plasma 

proteins, macromolecules, lipids, and growth factors. Remaining endothelial cells 

demonstrate vacuolation and increase in golgi and rough endoplasmic reticulum (rER), 

indicative of conversion to a pro-inflammatory phenotype.[36] By 3 days, bare collagen, 

elastin and other matrix proteins are visible with adherent platelets, red blood cells and 

fibrin.

Depending on the animal model, the endothelial monolayer is largely restored by 10 days to 

2 weeks but it is likely that functional restoration in a 60 cm long human bypass graft takes 

far longer than the short interposition grafts used in animals.[36, 39, 46] While the exact 

time frame of human vein graft re-endothelialization is currently not known, we do know 

that mature (>12 months) vein grafts exhibit endothelium dependent relaxation mediated by 

nitric oxide (NO).[2] Evidence is emerging that the production of endothelium-derived 

relaxing factors, may be delayed for up to 6 months following bypass grafting - long after 

the critical geometric remodeling period is complete suggesting that early luminal 

remodeling is independent of this process.(Owens unpublished) We now believe that 

reconstitution of a physiologically functional endothelium represents the third and final 

clinical stage of vein graft remodeling following luminal and wall thickness changes and 

stiffening. Programs focusing on earlier restoration of a functional endothelial cell 

monolayer and clinical measurements re-endothelialization are likely to provide valuable 

data to our understanding of vein graft failure with immediate translational impact.[47]

Early after implantation, the media is marked by edema and focal hemorrhage which likely 

accounts for the early thickness changes which can be measured by ultrasound.[36] The 

increased radial (compressive) stress of pressurization and disruption from the vaso vasorum 

creates a zone of ischemia in the vein media. Almost immediately SMC show evidence of 

apoptosis or frank necrosis, as evidenced by marked vacuolated and pyknotic nuclei. 
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Remaining SMCs, like the ECs, demonstrate severe structural changes including cellular 

hypertrophy, mitochondrial swelling and bleb formation, and increased rER and golgi. 

Inflammatory cells, particularly macrophages, gradually increase in the media and engulf the 

necrotic SMCs where as many as 70% of medial SMC cells are lost during this early time 

period.

Despite the substantial acute loss of medial SMCs, most remaining SMCs resist apoptosis 

and enter the cell cycle as early as 48 hours following injury.[48-50] The early injury 

response transcription factors c-fos and c-jun of the activator protein 1 (AP-1) complex, can 

be seen to be induced in SMCs subjacent to the intima where the first wave growth and 

serum factors from adherent platelets and inflammatory cells emerge.[51, 52] PDGF, IGF-1, 

and other growth factors signal increases in SMC migration and proliferation via 

phosphoinositol-3-kinase (PI3K)-dependent pathways by binding to receptor tyrosine 

kinases and G protein-coupled receptors.[53] PI3K in turn activates numerous downstream 

pivotal effector molecules related to cell proliferation including mammalian target of 

rapamycin (mTOR), p38MAPK, extracellular signal related kinases -1 and -2 (ERK 1/2) and 

Akt/PKB which collectively lead to neointimal hyperplasia.[54, 55] Inhibition of c-jun and 

PI3K have been shown to reduce vein graft stenosis in experimental models.[51, 56] Many 

excellent reviews address SMC proliferation and migration with respect to vascular injury 

and intimal hyperplasia.[55, 57-59]

The adventitia is characterized by fibroblasts within a loose connective tissue stroma with 

occasional vaso vasorum and vaso nervosum.[39] Adventitial fibroblasts, rich in 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, have been shown to be a 

source of reactive oxygen species (ROS) in blood vessels following mechanical stretch and 

injury.[60] In models of balloon injury and vein grafts, perivascular fibroblasts can be 

converted into SMC-like cells (“myofibroblasts”) that have migratory and synthetic 

capacity.[61-63] In vivo marker gene transfer studies show that these cells can migrate into 

the developing intima and contribute to intimal hyperplasia.[63] Further evidence is 

supported by disruption of transforming growth factor-β (TGF-β) or PDGF-BB signaling 

pathways which can attenuate myofibrobast migration into the neointima,reduce collagen 

content, and reduce constrictive remodeling following balloon angioplasty.[64, 65]

Soon after implantation, breaks in collagen fibers, thrombosis of the vaso vasorum and 

fragmentation of the adventitia can be seen. The vasa vasorum, initially disrupted by 

harvesting the vein, has been shown to return fully functional to the adventitia and outer 

media as early as 7 days following implantation where it participates not only in nourishing 

the healing vein but also inflammatory cell trafficking into and out of the vein graft.[40, 66] 

It has been generally assumed that the newly implanted vein graft receives oxygenation via 

passive diffusion from luminal arterial blood.[67] However, the vasa vasorum in veins 

penetrate close to the intima and possibly through to the lumen so that retrograde filling by 

oxygenated blood may be possible.[68, 69] The in situ bypass, originally described by Hall 

in 1962 [70] and more recently advanced by Shah and Leather, has several theoretical 

advantageous over the reversed saphenous vein graft.[71, 72] First, there is less dissection 

and therefore less disruption of the vaso vasorum which should reduce the ischemia 

reperfusion injury. Second, small arteriovenous fistula could increase the shear stress 
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through the vein and improve outward remodeling. And third there is a reduced size 

disparity at the femoral and distal anastomosis. However, in practice these theoretical 

advantageous have not translated to increased patency. It is likely that traumatic lysis of the 

valve leaflets, mobilization of the proximal and distal swing segments and ligation of the 

numerous arteriovenous fistula offsets these advantages.

The adventitia is also a compartment housing progenitor cells which contribute to vascular 

repair by differentiating into a myofibroblast phenotype and possibly other cell types such as 

pericytes or ECs.[73, 74] Because the adventitia lies between the vessel wall and 

surrounding tissues, it likely contributes to vein graft remodeling by integrating diverse 

signals from the vessel wall and the local environment. Indeed a number of experimental 

programs have exploited adventitial delivery of therapeutic agents to the vein graft to take 

advantage of these mechanisms.[75-78]

By 3 weeks the media and adventitia demonstrate extensive fibrous replacement with 

collagen and a much smaller amount of elastin. Histologic studies of mature grafts 

demonstrate normal appearing endothelium, a thick neointima composed of abundant 

collagen and ground substance and a relatively thinner media.[41]

Molecular remodeling

The cellular stress and tissue damage associated with venous implantation activate the innate 

immune system through several different mechanisms. Necrotic cellular debris exposes 

modified lipids and proteins such as phosphoenthanolamine and phosphorylcholine which is 

recognized by C-reactive protein (CRP), a member of the pentraxin family of proteins. 

Pentraxins can be thought of as primitive antibodies which circulate at normally low levels 

and police for a limited repertoire of damage patterns commonly seen in invading microbes 

or damaged cell surfaces.[79] In this sense they can be thought of as the humoral arm of the 

innate immune system.[80] CRP can bind to these normally cryptic epitopes and activate the 

complement system and recruit inflammatory cells to the injured vein which exacerbates 

injury and necrosis. CRP may also activate local SMC to promote migration. Thus, although 

frequently viewed as a non-specific biomarker of inflammation, CRP may act directly as a 

modulator of acute vascular injury.[81-86]

The release of endogenous stress-response proteins such as heat shock protein 60 (HSP60), 

extracellular high mobility group box 1 (HMGB1), tenascin-C, and biglycan are some of the 

first mediators of immune activation.[87-91] These proteins, collectively referred to as 

damage associated molecular patterns, (DAMPs) are released by shear stress and matrix 

remodeling and are the endogenous ligands of the toll like receptors (TLRs).[92] TLRs 

transmit stress signals through adaptor proteins myeloid differentiation protein-88 (MyD88) 

or the toll or interferon (TIR) domain-containing adapter-inducing interferon (TRIF) to 

orchestrate the inflammatory response through transcription factors including nuclear factor 

kappa B (NFKB).[93, 94] TLR-4 and its endogenous ligands are found in human vein grafts 

demonstrating its relevance to the current discussion. In TLR-4 deficient mice, vein grafts 

demonstrate a reduction in outward remodeling.[95] However TLR4 deficient mice also 

exhibit reduced wall thickening and reduced SMC content causally implicating this pathway 
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in the formation of intimal hyperplasia and making it difficult to separate lumen dilation and 

wall thickening.

To separate remodeling from intimal hyperplasia, carotid ligation models have been used. 

Following carotid artery ligation, flow in the contralateral carotid artery increases in a 

compensatory manner resulting in flow mediated vasodilation without the induction of 

intimal hyperplasia. In mice lacking TLR-4, there is defective flow-induced outward 

remodeling of the carotid artery and there is an increase in collagen content suggesting that 

TLR-4 is necessary for the matrix turnover required for expansile remodeling.[96] By 

contrast, mice deficient in the NF-KB p50 subunit demonstrate increased flow-induced 

outward remodeling and reduced collagen content.[97] Homodimers of p50 bind to DNA 

but inhibit transcription activity by other NF-κB dimers thereby acting as a brake on NF-κB.

[98] Therefore p50 null mice have a more pronounced inflammatory reaction in response to 

a flow stimulus. [97] Other studies show that TLR-4 is integral to osteocalcin-induced 

myofibroblast transformation from adventitial fibroblast which involves the inflammatory 

mediators, protein kinase C-δ(PKC-δ) and cylco-oxygenase 2 (cox-2).[99] These studies 

highlight the link between innate immune activation and matrix turnover with respect to 

vascular remodeling.

Reactive oxygen and nitrogen species (ROS) are also integral messengers in the innate 

immune system and important mediators of hemodynamic remodeling in the vein. Shear 

stress in the great saphenous vein, normally about 0-4 dynes/cm2, abruptly rises to as high as 

25-30 dynes/cm2 after implantation[21] which is more than sufficient for induction of ROS.

[100] ROS can be generated from NADPH oxidases, nitric oxide synthase (NOS) isoforms 

including the inducible form (iNOS), xanthine oxidase, Cox-2, cytochrome P450, and the 

mitochondrial electron transport chain.[101] Hydrogen peroxide generated from the electron 

transport chain is essential for flow mediated dilation of the microcirculation and is a 

recognized hyperpolarizing factor.[102] ROS, particularly peroxynitrite, generated from the 

NADPH oxidase subunit p47phox – a cytosolic component of the NADPH oxidase 

complex- in response to a high flow fistula, mediates MMP gelatinase induction and 

outward remodeling of murine AVF.[103] NADPH oxidase and superoxide are abundant in 

the early vein graft wall, as they are produced not only by infiltrating neutrophils but also by 

SMCs and ECs.[104] In vein grafts and AVFs, increased superoxide production has been 

directly correlated with de-differentiated cells in the neointima as well as a reduction in free 

radical scavenging enzymes, super oxide dismutase (SOD) and Cu/Zn SOD activity. [105, 

106] The presence of peroxynitrite, a product of superoxide and NO, suggest uncoupling of 

NOS isoforms and demonstrates the altered redox state which exists in the healing vein.

[103, 106]

ROS are essential for activation of MMPs by cleaving their pro-domain and unmasking the 

active site.[100, 103, 107] MMPs consists of a family of about 20 related proteins that 

collectively can degrade all of the core proteins and proteoglycans in the venous wall during 

remodeling.[108] Because of this potential destructiveness, MMPs are tightly regulated at 

several levels including transcription, activation of protease proforms, secretion of stored 

MMPs, and through binding to their natural inhibitor, tissue inhibitor of MMP (TIMP).[109] 

Thrombin, plasmin, and neutrophil proteases activates MMP2 bound to membrane type 1 
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metalloproteinase (MT1-MMP) while the signal transducer ERK 1/2 controls MMPs in 

experimental vein graft models.[43, 110] In addition, shear stress results in phosphorylation 

of the p65 subunit of the inflammatory transcription factor NFκB which, along with AP-1, 

and other transcription factors stimulate MMP transcription through coordinated promoter 

binding.[100, 109] MMP-2 and MMP-9, referred to as gelatinases due to their ability to 

break down gelatin and several other collagens in particular the type IV collagen of the 

basement membrane, are upregulated within as little as 3 hours after venous implantation.

[43, 111-113] Ultrastructural studies have documented progressive loss of type IV collagen 

in the early bypass graft indicating destruction of basement membrane (BM) which normally 

surrounds 95% of saphenous vein medial SMCs.[114, 115] The SMC BM not only 

represents a physical barrier to SMC migration but focal contacts between SMC and BM 

laminin keeps the cell in a quiescent, differentiated phenotype.[116] Therefore destruction of 

the BM by MMPs both liberates the SMC to migrate and results in loss of differentiation.

[117, 118] Experimental inhibition of MMPs limits flow-mediated arterial enlargement and 

elastin degradation in rat and rabbit models[119, 120] whereas various in vivo and ex vivo 

techniques to increase TIMPs in the venous wall have been successfully employed to 

mitigate intimal hyperplasia.[121-123] These studies highlight the fact that matrix turnover, 

intimal hyperplasia and vascular remodeling are inextricably linked to one another.

The local renin-angiotensin-alsosterone system may be an important link between vein graft 

collagen production and inflammation. Aldosterone, signaling through the mineralocorticoid 

receptor (MR), has been shown to be an important mediator of vascular inflammation, 

oxidative stress, and fibrosis in both clinical and experimental settings.[124-126] 

Aldosterone promotes vascular fibrosis in response to injury and the MR regulates a number 

of profibrotic genes in SMCs including type 1 and type 3 collagens and connective tissue 

growth factor.[127] The mineralocorticoid receptor has been demonstrated to be upregulated 

in experimental vein graft models as well as in human explanted vein grafts establishing its 

clinical relevance.[128] More recently, antagonism of the MR with spironolactone reduced 

vein graft wall thickening, fibrosis, and inflammation in a mouse vein graft model.[126] In 

this study, spironolactone treatment reduced vein graft intima-media collagen area by 53% 

while reducing the number of infiltrating PMNs by 3-fold.

The cytokine tumor necrosis factor-α (TNF-α) is also involved in immune-mediated 

vascular remodeling in animal models. In arteriogenesis, TNF-α co-localizes with 

macrophages located in a perivascular cuff surrounding remodeling arteries and mice 

lacking either TNF-α or the p55 TNF receptor show significant reduction in collateral blood 

flow. By contrast, inhibitors of TNF-α attenuate collateral artery development.[129] While it 

was once thought that flow mediated vascular remodeling was a phenomena intrinsic to the 

vascular wall, recent work has demonstrated that macrophages are prerequisite for dilation 

or shrinkage of conduit vessels in response to flow stimuli.[130-132]

Inflammatory cell phenotype and the fate of remodeling

The homing, trafficking, and retention of inflammatory cells into the vein graft wall is 

unlikely to be uniform along the entire graft length but rather dependent on local flow 

disturbances and injury variance.[133, 134] In general however, monocytes and 
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polymorphonuclear cells (PMN) can bind to the vein graft in high shear conditions (20-40 

dynes/cm2) through the leukocyte β2-integrins, αMβ2 (MAC-1) and αLβ2 (LFA-1) receptors 

allowing firm adhesion to vascular cells and more than 30 proteins of the extracellular 

matrix including fibrinogen.[135, 136] Early induction of MMPs to breakdown BM and 

other ECM barriers not only permits SMC migration out toward the intima, but also 

facilitates PMNs and monocyte entry into the vessel wall.[43] While macrophages are 

essential for vessel remodeling, they also contribute to the inflammatory state of the newly 

implanted vein as evidenced in macrophage depletion studies in which there is both a 

reduction in inflammatory cytokines as well as intimal hyperplasia.[137, 138]

Monocyte chemotactic factor-1 (MCP-1) and its receptor CC-chemokine receptor-2 (CCR2) 

is the classic chemoattractant pathway for monocyte invasion in the vein graft. Its 

importance in arteriogenesis is evidenced by the fact that MCP-1 administration augments 

collateral artery development after femoral artery ligation in experimental models.[139] 

Conversely transgenic mice deficient in MCP-1 have reduced collateral artery formation.

[140] MCP-1 has been shown to be induced in SMCs and ECs within 24 hours of exposure 

to increases in circumferential wall tension or stretch (cyclic stress) in a manner that is 

dependent on the inflammatory transcription factor AP-1.[141] AP-1 regulates the 

expression of many stress response genes including those associated with the 

proinflammatory phenotype of ECs and VSMC and is activated by ROS.[142] Increasing 

venous pressure in vivo increases SMC proliferation and MMP2 activation in an AP-1-

dependent manner.[143] MCP-1 also directly participates in growth and migration of SMCs 

by targeting cyclins through the inflammatory transcription factor, nuclear factor of 

activated T cells (NFAT).[144-147] Hence, cyclic stress may induce MCP-1 production in 

vascular cells through AP-1-dependent mechanisms and in turn MCP-1 can induce 

neointimal formation through NFAT. Inhibition of either MCP-1 or CCR2 reduces vein graft 

intimal hyperplasia.[145, 148]

Other pathways are involved in inflammatory cell recruitment to the vein graft besides 

MCP-1. The CXC chemokine ligand-12 (CXCL12), also called stromal cell-derived 

factor-1α (SDF-1) an essential cytokine for stem cell mobilization and is involved in homing 

circulating cells to the vein graft. Theoretically SDF-1 and its receptor CXCR4 could be 

beneficial by recruiting progenitor cells to repair the healing vein graft.[149] However 

CXCR4+/- heterozygote mice have significantly lower CXCR4 cell surface receptor levels 

on bone marrow-derived mononuclear cells and are less responsive to SDF-1. Vein bypasses 

placed in these mice exhibit less inflammatory cell infiltrate and less neointimal formation 

than do wild type controls.[150] A CXCR4 small molecule antagonist, inhibits neointimal 

formation and smooth muscle progenitor cell mobilization after arterial injury in an apoE-/- 

mice model providing further circumstantial evidence of the importance of this pathway in 

vein graft failure.[151]

That inflammation and macrophages are involved in both inward and outward remodeling 

suggests that we should not be looking solely at the magnitude of inflammation but rather 

the nature of the inflammatory response.[131] Receptor characteristics and densities on the 

macrophage cell surface dictates what it “sees” and contributes to preferential trafficking 

and retention into blood vessels. For example longer lived resident macrophages expressing 
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the chemokine receptor CXCR3 have been found in humans within the adventitia of 

abdominal aortic aneurysms and in areas of flow disturbance such as the carotid bifurcation, 

suggesting that they are associated with pathological states.[130] CXCR3 is the receptor for 

interferon (IFN)-induced protein of 10 kD (IP-10) as well as monokine induced IFN-γ 

(Mig). IFN-γ in turn is the classic T- cell Helper (TH1) cytokine which induces macrophage 

activation and production of the prototypical cytokines, TNF-α, IL-1, and IL-6. These 

macrophages are further classified by a low expression of the lymphocyte antigen 6c 

(Ly6clow) and CXCR3+, Ly6clow macrophages are known to patrol the microvasculature 

including adventitia microvessels.[152] In mice, CXCR3 signaling contributes both to 

accumulation of adventitial macrophages and is involved in negative remodeling associated 

with reduced flow.[130] Signaling through the CXCR3 receptor stimulates the 

transglutaminase crosslinking enzyme, factor XIII subunit a (XIIIa) which exerts its effects 

by cross-linking ECM proteins and serves as a biological glue.[130, 153, 154] The 

combination of fixation of the ECM by cross linking and increased collagen production 

clearly would prohibit luminal expansion. Might persistent flow disturbance around valve 

sites lead to a more pathologic inflammatory cell subset accumulation into the wall leading 

to focal stenosis or failure of luminal expansion?

Polarization of the initial immune response may decide the ultimate fate of the vein graft. 

While infiltrating monocytes contribute most conspicuously to vein graft remodeling, 

lymphocyte subpopulations and macrophage phenotype switching might ultimately set the 

stage for resolution or chronic inflammation and fibrosis. Both the professional antigen 

presenting cell, the dendritic cell and CD3+ T-lymphocytes have been identified in human 

vein graft specimens.[155, 156] Studies involving lung and liver fibrosis indicate that TH2 

type dominant cytokine responses involving IL-4, IL-5, IL-13, and IL-21 are profibrotic 

whereas TH1 associated cytokines, dominated by IFN-γ and IL-12, may be important in the 

resolution of inflammation and possess anti-fibrotic properties.[157] Both IFN-γ and IL-12 

treatment attenuates fibrosis in experimental pulmonary and renal models of fibrosis.

[158-160]

Of note, recent work has demonstrated that the resolution of inflammation, formerly viewed 

as a passive decrescendo of pro-inflammatory signals, is in fact an orchestrated process 

driven by specific “pro-resolving mediators” (PRM). Using unbiased lipidomics in models 

of self-limited inflammation, it was discovered that novel lipid mediators derived from 

polyunsaturated fatty acids (PUFA) are generated by specific biosynthetic pathways 

[161-163]. There are four distinct classes of PRMs that have been recognized: the lipoxins 

derived from the ω-6 PUFA arachidonic acid (AA), and the resolvins, protectins, and 

maresins derived from the ω -3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic 

acid (DHA)[164-166]. Resolvins act via specific G-protein coupled receptors (GPCRs)

[167-169] to reduce expression of pro-inflammatory cytokines and adhesion molecules, 

increase expression of anti-inflammatory cytokines, and increase clearance of cellular 

debris. Emerging evidence from our group and others has demonstrated biological activity 

of PRMs on vascular cells [170, 171]. Lipoxins and resolvins regulate leukocyte-endothelial 

interactions, reduce the formation of reactive oxygen species, and regulate the production of 

prostacyclin and nitric oxide [172-176]. More recently we have demonstrated a broad 

spectrum of beneficial actions of D-series resolvins on vascular cells.[177] These include: i) 
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inhibition of leukocyte adhesion and adhesion molecule expression; ii) inhibition of cytokine 

expression; iii) inhibition of VSMC proliferation and migration; iv) reduction in oxidative 

stress; v) and a reduction in neointima formation following balloon angioplasty in rabbit 

arteries. These studies suggest that endogenous resolution mechanisms may be an important 

element of the homeostatic process of vascular remodeling, and may offer a new therapeutic 

target to manipulate vascular healing.

Summary

We have described 3 measurable, temporarlly-distinct clinical stages of vein graft 

remodeling: luminal and wall thickness changes, changes in stiffness, and the return of 

endothelial function, table 2. To gain some mechanistic insights into these clinical stages we 

have attempted to relate them to both histologic and molecular changes associated with vein 

graft implantation. Of course this is an over simplification. For example, stimulating 

macrophages alone through the TLR4 and its 2 adaptor proteins discussed above produces 

775 unique proteins including 52 cytokines![178] Regulation of this single receptor and its 

effectors occurs not only at the genetic and epigenetic layers but also dependent on adaptor 

protein interplay which can be either synergic or redundant. As demonstrated in figure 2, 

intimal hyperplasia and constrictive remodeling often occur together to reduce lumen area 

suggesting common signaling pathways. However, we have chosen to highlight specific 

examples to create a temporal molecular framework of the innate immune system's role in 

the clinical stages vein graft remodeling.

While it is clear that inflammation is crucial for remodeling of the new vein graft we must 

be specific when characterizing inflammation. It is paradoxical that diabetes mellitus and 

renal failure, two diseases hallmarked by systemic inflammation and oxidative stress, have 

not been shown to directly affect vein graft remodeling or patency.[179, 180] It is possible 

that an intense tissue-level inflammatory response to implantation that quickly subsides is 

most conducive to vascular wall remodeling as denoted in figure 4. However should vein 

graft wall inflammation fail to resolve then the stage is set for pathologic remodeling and 

fibrosis and vein graft stenosis. Likewise, time and again, hemodynamic stress has been 

shown in animal models to influence the development of intimal hyperplasia.[18, 19, 181] 

High shear conditions skew the cytokine repertoire to a Th2 type response with lower 

inflammatory and higher anti-inflammatory cytokines compared with low shear stress.[182] 

However, blood flow and shear stress are largely un-modifiable factors dictated by the 

inflow and outflow conditions and vein diameter. Vascular surgeons know that vein grafts 

remain patent and function successfully in conditions of extremely low flow, such as the 

pedal bypass.[179] Even more extreme is the bypass to an isolated popliteal artery segment, 

initially described by Mannick, which provides testimony to the functionality of vein grafts 

whose outflow to the leg is solely through popliteal artery collateral circulation.[183] 

Hemodynamic stresses are the blunt forces of global remodeling but it is the nature of the 

inflammatory response that finely sculpts vein graft geometry.
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The autogenous vein bypass graft remains the gold standard revascularization method for 

the ischemic limb. Newly implanted vein grafts undergo dramatic structural changes in 

response to the new high flow, high pressure environment. These changes, commonly 

referred to as remodeling, include a pronounced inflammatory response accompanied by 

the development of a neointima and significant changes in matrix composition. Similar to 

how maturation of arm veins predicts the performance of an arteriovenous fistula, recent 

translational work has demonstrated that remodeling of the vein graft is important for 

subsequent patency of the lower extremity bypass graft.
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Figure 1. 
Index segment diameter based on eventual loss of primary patency. Values shown represent 

the mean diameter ± standard error of the mean at each interval. Although the starting 

diameter was at a similar size as those that remained patent, vein grafts that eventually lost 

primary patency failed to dilate and had a significantly smaller lumen size over time, A. 

Early (30 day) remodeling is associated with primary patency, P=.02. Adapted from Gasper 

et al.
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Figure 2. 
Histological evidence for negative remodeling and intimal hyperplasia as a cause of late 

lumen loss in a great saphenous vein bypass graft. Masson's Trichrome sections are from an 

8 month old femoro-posterior tibial artery vein bypass graft that was explantated due to 

hemodynamically significant stenosis identified by surveillance duplex ultrasound. The 

repair was constructed by an interposition graft and an 8 cm piece of diseased segment was 

explanted, registered, and serially sectioned from A (proximal graft) to H (distal graft). Note 

two areas of significant stenosis, sections A and B, and sections F-H with an intervening 

area of relatively normal vein. While the vein was uniform size and luminal caliber at the 

time of original surgery the stenotic areas demonstrate loss of total vessel area indicating 

lumen loss is due not only to initimal hyperplasia but also negative remodeling. Note the 

amount of fibrous protein, blue stain (arrows), in the stenotic segments of the graft.
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Figure 3. 
The histology of the healing autogenous vein graft. In the normal vein, the intima is lined by 

large flat endothelial cells that are more permeable than those in arteries. The intima is 

separated from the media by a fenestrated internal elastic laminae. The tunica media is thin 

compared to an artery with 2 or more layers of smooth muscle cells (SMC) while the 

adventitia is relatively thick consisting of a loose collagenous network interspersed with 

fibroblasts and vaso vasorum and small autonomic nerves, A. Within 24 hours following 

implantation the vein grafts exhibit significant endothelial cell loss and sub-endothelial 

edema. Inflammatory cells, platelets and fibrin are seen adherent to the surface and 

infiltrating underneath the attenuated endothelial cell monolayer. There is edema in the 

tunica media with extensive SMC necrosis or swelling and hypertrophy of the remaining 

SMCs with infiltration of inflammatory cells, B. By 2 to 4 weeks there is re-

endothelialization of the luminal surface and a developing neointima. While the endothelium 

is continuous, it remains dysfunctional as evidenced by organelle hypertrophy and adhesion 

molecule expression. The medial edema and inflammation is reduced and there is increased 

collagen content. Surviving medial SMCs appear hypertrophic with increased rough 

endoplasmic reticulum and Golgi apparatus indicating synthetic transformation. Over time 

the adventitia becomes incorporated in surrounding tissue and vaso vasorum and adrenergic 

nerve fibers grow in from adjacent arteries and connective tissue, C. By 4 weeks there is a 

predominant layer of intimal thickening characterized by SMCs embedded in a matrix of 
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collagen and ground substance. While early medial thickening is caused predominantly by 

edema and inflammation, fibrous transformation is responsible for late medial thickening. 

Areas of the medial wall are devoid of cells and entirely replaced by fibrosis. Clinically 

stiffening of the vein graft is likely from from the increase in fibrous protein as well as 

increased cross linking of extracellular matrix proteins.
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Figure 4. 
Hypothetical sequence of vein graft healing. Inflammation peaks early following 

implantation and then subsides. The critical period of vein graft luminal remodeling is 

largely complete by the first 30 days. Functional endothelial recovery is temporally delayed 

by several months. Mature vein grafts exhibit an endothelial layer overlying a stable 

neointima. Endothelium-dependent relaxation in mature grafts is mediated by nitric oxide.
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