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Abstract

Towards socially acceptable algorithmic models:

A study with Actionable Recourse

by

Jayanth Yetukuri

The integration of machine learning (ML) models into our daily lives has become

ubiquitous, influencing almost every aspect of our interaction with technology. However,

as these models become more prevalent, particularly in sensitive areas such as healthcare,

banking, and criminal justice, they must undergo rigorous scrutiny. This scrutiny

addresses several critical social challenges, including data accessibility and integrity,

privacy, safety, algorithmic bias, the explainability of outcomes, and transparency.

To foster trust and transparency in ML models, tools like Actionable Re-

course (AR) have been developed. AR empowers negatively impacted users by providing

recommendations for cost-efficient changes to their actionable features, thereby helping

them achieve favorable outcomes. Traditional approaches to providing recourse focus

on optimizing properties such as proximity, sparsity, validity, and distance-based costs.

However, our work recognizes the importance of incorporating User Preference into the

recourse generation process. By capturing user preferences through soft constraints—such

as scoring continuous features, bounding feature values, and ranking categorical fea-

tures—we propose a gradient-based approach to identify User Preferred Actionable

Recourse (UP-AR). Our extensive experiments validate the effectiveness of this approach.

x



Moreover, as ML models automate decisions in various applications, it is

crucial to provide recourse that considers latent characteristics not captured in the

model, such as age, sex, and marital status. We explore how the cost and feasibility of

recourse vary across latent groups. We introduce a notion of group-level plausibility and

develop a clustering procedure to identify groups with shared latent characteristics. By

employing a constrained optimization approach, which we call Fair Feasible Training

(FFT) procedure, we aim to equalize the cost of recourse over these groups. Our empirical

study on simulated and real-world datasets demonstrates that our approach can produce

models with improved performance in terms of cost and feasibility at the group level.

In addition to addressing group-level disparities, our study suggests a model-

agnostic set of actions from a presupposed catalog called Conformal Recourse AcTions

Framework (CRAFT), ensuring the high probability of including the Desired action.

This framework is adaptable to a black-box model setup and can be generalized across

different models. It is intuitive, requiring only a set of calibration data points, and its

effectiveness is corroborated by extensive experiments with real-world datasets.

The challenge of integrating ML models into practical applications extends

to search engines, which play a pivotal role in retrieving relevant items based on user-

specified queries. A significant challenge arises when there is a mismatch between the

buyer’s and seller’s vocabularies, leading to insufficient recall or unsatisfactory results.

This issue is exemplified by "Null and Low" (N&L) queries, which can significantly

degrade the user experience. Our analysis of user search behavior data from a major

e-commerce company revealed that approximately 29% of search queries have multiple

xi



category interpretations, a phenomenon we term "multi-faceted query interpretations."

Drawing a conceptual parallel between N&L query reformulation and counterfactual

explanation literature, we propose a novel method that utilizes a neural translation model

to provide diverse and multiple reformulations, thereby enhancing the user experience

for N&L queries.

In conclusion, the advancement of machine learning models necessitates a

multifaceted approach to ensure their ethical and equitable application. This thesis

represents a necessary step in the pursuit of Trustworthy ML. By addressing the challenges

of transparency, user preference, latent group disparities, and practical search engine

limitations, we can move towards more responsible and user-centric machine learning

systems. Additionally, it sheds light on potential avenues for future studies, underscoring

the importance of continuous innovation and advancement within this vital field.
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Chapter 1

Introduction

This chapter gives a brief and sufficient introduction to all the necessary back-

ground required for the subsequent chapters of this thesis. We start with a general

introduction to Artificial Intelligence and Machine learning followed by a quick look

at adversarial machine learning. We then proceed to introduce Trustworthy Machine

Learning and discuss the role of counterfactual and actionable recourse towards achieving

the end goal of socially acceptable models.

1.1 Artificial Intelligence and Machine Learning (AIML)

Artificial Intelligence (AI) represents a frontier in computational technology.

Here machines exhibit capabilities similar to human intelligence. These systems can

perform several tasks, such as recognizing speech, making decisions, and solving critical

problems. Machine Learning (ML), a subset of AI, enables computers to learn from

historical data. Instead of having an explicitly programmed logic, ML algorithms use

1



foundational statistical techniques to infer existing patterns and improve their functions

over time. This self-improvement aspect of ML allows machines to adapt and perform

tasks with increasing accuracy, revolutionizing industries from healthcare to finance by

providing insights and automation that were previously neither unattainable nor scalable.

Together, AI and ML are shaping a future in which intelligent machines augment human

capabilities.

Building on its foundational principles, Machine Learning continues to evolve,

using vast amounts of data to refine algorithms. Deep learning, a complex ML technique,

mimics the neural networks of the human brain, allowing machines to process data with

layers of abstraction. This has led to breakthroughs in image and speech recognition,

natural language processing, and autonomous systems. As computational power grows

and data become more accessible, the potential of ML expands, promising personalized

medicine, predictive maintenance, and smarter cities. Ethical considerations also emerge,

as ML’s transformative power necessitates discussions on privacy, bias, and the future of

work in an increasingly automated world.

1.1.1 Supervised machine learning

Within the last couple of decades, we have witnessed exponential growth in

the field of Artificial Intelligence (AI). Specifically, some systems have achieved better

than human-level performance in a variety of tasks such as speech recognition [29], image

classification [46], face recognition [58] and self-driving cars [12]. These achievements were

made possible by the exponential increase in machine learning techniques. Depending on

2



the available data type, machine learning tasks can be classified into supervised learning,

unsupervised learning, and semi-supervised learning. If the training data contains features

explaining the problem along with labels for these features, this is called labeled data,

and learning from such data is called supervised learning. Unsupervised learning handles

unlabeled data that do not contain labels for the features. In this study, we do not

consider unsupervised learning tasks. Based on the type of label available, supervised

learning tasks can be further classified into classification problems or regression problems.

We refer to classification models if the dataset contains countable discrete labels, which

often have a symbolic meaning. For example, if the dataset contains images of cats and

dogs, the labels would be 0 and 1 or vice versa. If the dataset contains continuous labels,

we refer to regression models.

1.1.2 Adversarial machine learning

Adversarial machine learning deals with various adversarial attack techniques

and defense techniques [95]. Although adversarial examples improve Deep Neural Net-

work’s (DNN) image recognition performance, [88], adversarial examples during post-

training inference have been shown to affect the model’s performance severely. There

is a plethora of research beginning with [77] to understand the process of generating

adversarial examples and defending a DNN against them. Its pros and cons accompany

every strategy. For example, the most effective method to improve robustness is through

adversarial training [25] and its variants [?]. Adversarial machine learning research has

seen a surge in recent years. Since its dawn, adversary has been considered to have

3



malicious intent. Such adversaries can be seen in spam detection [44], fraud detection [96]

and in image classification [25]. In [25], authors proposed adversarial training to improve

the performance of the model under attacks. Here, an adversary generates perturbed

samples and augments them into the training data for training. Such an adversary

within the system is working towards improving the system. An inherent assumption in

this technique is the availability of an adversarial module that benefits the system. To

distinguish between an external adversary trying to harm the system and an internal

adversary working to improve its performance, we call the latter an Ethical Adversary.

1.2 Trustworthy Machine Learning

Recent years have seen significant growth in real-world applications of Machine

learning models directly impacting society. Several AI regulations and policies discuss

the crucial components of trustworthy machine learning [80, 42] or responsible machine

learning. These challenges can be summarized as data accessibility and integrity, privacy,

safety, algorithmic bias, the explainability of outcomes, and transparency [64]. Active

research is being conducted to address each of these challenges independently. We intend

to resolve these limitations by leveraging the techniques of an ethical adversary.

Trustworthy Machine Learning has become paramount as AI systems become

integral to our daily lives. It emphasizes the creation of algorithms that are not only

effective in terms of performance but also fair, transparent, and accountable. Ensuring

trust involves addressing critical biases in the data, providing explainable AI decisions,

4



and maintaining robustness against manipulation of inputs. Researchers and practitioners

continuously strive to develop models that respect privacy and ethical standards, and

improve user confidence. As regulatory frameworks evolve, they aim to guarantee that

the ML applications adhere to societal norms and legal requirements. Trustworthy ML

thus represents a commitment to advancing technology responsibly, prioritizing human

values alongside innovation for sustainable progress in the AI domain.

In the pursuit of Trustworthy Machine Learning, interdisciplinary collaboration

becomes highly essential. Experts in the fields of ethics, law, and social sciences should

join forces with data scientists to design systems that respect human rights and democratic

values. This holistic approach ensures that the ML tools are not only technically sound but

also socially beneficial. Continuous monitoring and evaluation are key, with mechanisms

for feedback and redress to address any adverse impacts swiftly. As we embed AI more

deeply into the societal fabric, education and awareness are crucial, empowering users

to understand and engage with ML technology. Ultimately, Trustworthy ML seeks to

cultivate an ecosystem where innovation thrives without compromising the trust and

well-being of its users.

1.3 Counterfactuals and Actionable recourse

1.3.1 Counterfactuals

The notion of Counterfactuals plays a critical role in the field of Trustworthy

Machine Learning, particularly in the realm of explainability. They provide the hypo-
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thetical scenarios that answers the "what-if" questions, allowing users to understand

how different model inputs can alter an AI model’s decision. For example, in a loan

approval domain, a counterfactual explanation can illustrate how a higher income or

a lower debt-to-income ratio could have led to the model outcome. This not only aids

model transparency but also empowers the individuals with actionable insights which

can potentially help them change future model outcomes.

Counterfactuals also contribute to model debugging and fairness analysis. By

analyzing how modifications in the data instances affect model predictions, developers

can identify and address biases within the algorithms. They can also serve as a critical

tool for regulatory compliance, helping to meet requirements that mandate explanations

of the algorithmic decisions.

1.3.2 Actionable Recourse

Actionable recourse is a vital extension of counterfactual explanations for

building a Trustworthy Machine Learning system, which focuses on providing users with

actionable steps to alter any unfavorable decisions by the ML system. It goes beyond

explaining what factors has led to a decision, offering a definitive steps for individuals

to change the model outcome. For example, if a credit scoring model denies a loan

application, actionable recourse will suggest specific actionable updates to an individual’s

features to improve the applicant’s score for a future decision.

Incorporating actionable recourse requires careful consideration of the user’s

circumstances and the feasibility of any suggested actions. It’s not enough to just propose
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theoretical changes; the recommendations must be realistic and achievable from user’s

perspective. This approach enhances user satisfaction, as it aligns with the principles

individual’s ability to influence model decisions.

Building models that provide actionable recourse encourages a more responsible

AI design, as it prompts developers to consider the broader impact of their systems on

people’s lives and the overall health of the society. By ensuring that a model does not

dictate outcomes without the possibility of a recourse, Trustworthy Machine Learning

can help maintain social cohesion and trust in AI systems.

1.3.3 Fairness of algorithmic recourse

The concept of fairness in actionable recourse is pivotal in ensuring justice

and equity within various systems, including legal, financial, and social institutions.

Actionable recourse provides individuals with the means to seek redress or correction

when they have been wronged or harmed. Fairness in this context implies that the

mechanisms for recourse are accessible, unbiased, and transparent, allowing for consistent

and impartial outcomes. It requires that all parties have the opportunity to present

their case, be heard, and receive a fair evaluation based on established rules and ethical

considerations. Ultimately, the fairness of actionable recourse upholds the integrity of

institutions and fosters trust among the individuals they serve.
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1.4 Societal aspects of Actionable Recourse

The various societal aspects of the subfield of actionable recourse in trustworthy

machine learning highlight the importance of equitable access to opportunities for all

individuals of a society. When an AI system provides steps for recourse, it must account

for the diverse socio-economic backgrounds of the affected individuals. Such an inclusivity

ensures that this procedure is not only available to the privileged few who have the

resources to act on it, but can also be tailored to those who may face systemic barriers

to take actions.

For example, actionable recourse in a job application screening tool should offer

realistic advice to applicants from various educational and professional backgrounds.

Similarly, in healthcare, personalized recommendations should consider patient’s varying

access to medical facilities or treatments.

Furthermore, the societal impact of actionable recourse is closely tied to the

concept of justice. When AI systems are used in critical high-stakes decisions, such

as criminal sentencing or welfare distribution, the ability to understand and challenge

these decisions is a matter of civil rights. Actionable recourse in these contexts must

be transparent, accessible, and sensitive to the complexities of human life. It should

empower people to advocate for themselves and seek redress when necessary.

In a broader scope, the integration of actionable recourse into AI systems can

catalyze positive social change. By motivating AI developers with this information and

tools, society can push for more ethical and responsible ML systems. This accountability
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can lead to an uplifting of the overall health of the society. As such, actionable recourse

is not just a feature of ethical AI but a cornerstone for building a more equitable society

in the contemporary age of artificial intelligence.

Complex Machine learning models are making several crucial decisions with a

direct impact on an average individual. For the group of individuals adversely affected

by its decisions, it becomes crucial and often required to provide recourse actions that,

when acted upon, can help achieve a desired outcome from the model. This recourse

action is typically aimed at satisfying individual preferences without any guarantees of

acceptance and is designed to work only with the model in context.

1.5 Research Questions and Contributions

In the previous subsections, we have motivated that ML models must consider

individual centric approach while designing and deploying them in to the several domains

of the society. However, for the sole purpose of improving the trustworthiness of the

models, this thesis answers the following critical research questions.

1. How to capture individual preferences for generating recourse actions? The subfield

of actionable recourse often considers human in the loop approach to capture

the individual centric preferences. However, existing literature lacks an easily

comprehensible techniques for gathering individual preferences.

2. Can we quantify recourse action plausibility unfairness at group level? Unfairness at

group level is typically measured in terms of average recourse costs for each group.
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However, we argue that the novel notion of recourse plausibility which considers

the latent characteristics of the individual provides a nuanced understanding of

recourse difficulty at ground level.

3. How can we enable an independent entity capable of auditing recourse actions?

Existing studies are highly specific to the ML model in context and lack the

provision of providing recourses with user acceptance guarantees. We explore the

possibility of incorporating a framework of a universal independent ethical entity

with the capability of providing recourses with data driven acceptance guarantees.

4. Can we identify other domains with critical recourse generation? The notion

of actionable recourse has been identified to be applicable to several real-world

domains. We also aim to extend this set and discuss its applicability to the domain

of e-Commerce.

To address these critical questions, this thesis consolidates my research into

multiple chapters with extensive details of the proposed solutions. Here is the list of

publications contributed as part of writing this thesis:

1. Jayanth Yetukuri and Yang Liu. Conformal Recourse Actions framework (under

review) 2024

2. Jayanth Yetukuri, Yuyan Wang, Ishita Khan, Liyang Hao, Zhe Wu and Yang Liu.

2024. Multifaceted reformulations for Null & Low Queries and its Parallelism with

Counterfactuals in 2024 IEEE 40th International Conference on Data Engineering

(ICDE), Utrecht, Netherlands.

10

https://icde2024.github.io/industry.html
https://icde2024.github.io/industry.html


3. Jayanth Yetukuri, Ian Hardy, Vorobeychik, Y., Berk Ustun, and Yang Liu. 2024.

Providing Recourse over Plausible Groups. Proceedings of the AAAI Conference

on Artificial Intelligence. 38, 19 (Mar. 2024), 21753-21760.

Doi: https://doi.org/10.1609/aaai.v38i19.30175.

4. Jayanth Yetukuri, Ian Hardy, and Yang Liu. 2023. Towards User Guided

Actionable Recourse. In AAAI/ACM Conference on AI, Ethics, and Society (AIES

’23), August 08–10, 2023, Montréal, QC, Canada. ACM, New York, NY, USA 10

Pages.

Doi: https://doi.org/10.1145/3600211.3604708.

5. Jayanth Yetukuri. 2023. Individual and Group-level considerations of Actionable

Recourse. In Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and

Society (AIES ’23). Association for Computing Machinery, New York, NY, USA,

1008–1009.

Doi: https://doi.org/10.1145/3600211.3604758.

6. Ian Hardy, Jayanth Yetukuri, and Yang Liu. 2023. Adaptive Adversarial

Training Does Not Increase Recourse Costs. In Proceedings of the 2023 AAAI/ACM

Conference on AI, Ethics, and Society (AIES ’23). Association for Computing

Machinery, New York, NY, USA, 432–442.

Doi: https://doi.org/10.1145/3600211.3604704

7. Jayanth Yetukuri and Yang Liu, Robust Stochastic Bandit algorithms to defend

against Oracle attack using Sample Dropout, 2022 IEEE International Conference
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on Big Data (Big Data), Osaka, Japan, 2022, pp. 5845-5854.

Doi: http://dx.doi.org/10.1109/BigData55660.2022.10020649.

My research integrates individual preferences into recourse generation proposes

method to mitigate plausibility bias to promote socially responsible ML models.
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Chapter 2

User Preferred Actionable Recourse

2.1 Introduction

Actionable Recourse (AR) [82] refers to a list of actions an individual can take

to obtain a desired outcome from a fixed Machine Learning (ML) model. Several domains

such as lending [75], insurance [71], resource allocation [14, 74] and hiring decisions

[1] are required to suggest recourses to ensure the trust of a decision system; in such

scenarios, it is critical to ensure the actionability (the viability of taking a suggested

action) of recourse, otherwise the suggestions are pointless. Consider an individual named

Alice who applies for a loan, and a bank, which uses an ML-based classifier, who denies

it. Naturally, Alice asks - What can I do to get the loan? The inherent question is

what action she must take to obtain the loan in the future. Counterfactual explanation

introduced in Wachter [86] provides a what-if scenario to alter the model’s decision, but

it does not account for actionability. AR aims to provide Alice with a feasible action
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set which is both actionable by Alice and which suggests as low-cost modifications as

possible.

While some features (such as age or sex) are inherently inactionable for all

individuals, Alice’s personalized constraints may also limit her ability to take action on

certain suggested recourses (such as a strong reluctance to secure a co-applicant). We

call these localized constraints User Preferences, synonymous to user-level constraints

introduced as local feasibility by [52]. Figure 2.1 illustrates the motivation behind UP-AR.

Note that how similar individuals can prefer contrasting recourse.

Actionability, as we consider it, is centered explicitly around individual prefer-

ences, and similar recourses provided to two individuals (Alice and Bob) with identical

feature vectors may not necessarily be equally actionable. Most existing methods of

finding actionable recourse are restricted to omissions of features from the actionable

feature set and box constraints [56] that bound actions. In this chapter, we discuss three

forms of user preferences and propose a user-provided score formulation for capturing

these different idiosyncrasies. We believe that communicating in terms of preference

scores (by say, providing a 1-10 rating on the actionability of specific features) improves

the explainability of a recourse generation mechanism, which ultimately improves trust in

the underlying model. Such a system could also be easily re-run with different preference

scores, allowing for diversifiable recourse. We surveyed 40 individuals and found that an

overwhelming 60% majority preferred to provide their preferences on individual features

for influencing a recourse mechanism, as opposed to receiving multiple “stock” recourse

options or simply receiving a single option. Additional details of our survey are included
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in the Appendix. We provide a hypothetical example of UP-AR’s ability to adapt to

preferences in Table 2.1.

Motivated by the above considerations, we capture soft user preferences along

with hard constraints and identify recourse based on local desires without affecting the

success rate of identifying recourse. For example, consider Alice prefers to have 80% of

the recourse “cost” from loan duration and only 20% from the loan amount, meaning

she prefers to have recourse with a minor reduction in the loan amount. Such recourse

enables Alice to get the benefits of a loan on her terms, and can easily be calculated to

Alice’s desire. We study the problem of providing user preferred recourse by solving a

custom optimization for individual user-based preferences. Our contributions include:

• We start by enabling Alice to provide three types of user preferences: i) Scoring, ii)

Ranking, and iii) Bounding. We embed them into an optimization function to guide

the recourse generation mechanism.

• We then present User Preferred Actionable Recourse (UP-AR) to identify a recourse

tailored to her liking. Our approach highlights a cost correction step to address the

redundancy induced by our method.

• We consolidate performance metrics with empirical results of UP-AR across multiple

datasets and compare them with state-of-art techniques.

2.1.1 Related Works

Several methods exist to identify counterfactual explanations, such as FACE [63],

which uses the shortest path to identify counterfactual explanations from high-density
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Alice’s pre-

ferred space

Bob’s pre-

ferred space

Decision

boundary

Alice
Bob

Figure 2.1: Illustration of UP-AR. Similar individuals Alice and Bob with contrasting preferences can

have different regions of desired feature space for a recourse.

Actionable

Features

Curr. val. UP-AR values

Alice Bob

LoanDuration 18 8 17

LoanAmount $1940 $1840 $1200

HasGuarantor 0 0 1

HasCoapplicant 0 1 0

Table 2.1: A hypothetical actionable feature set of adversely affected individuals sharing similar features

and corresponding suggested actions by AR and UP-AR. UP-AR provides personalized recourses.
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regions, and Growing Spheres (GS) [49] which employs random sampling within increasing

hyperspheres for finding counterfactuals. CLUE [7] identifies counterfactuals with low

uncertainty in terms of the classifier’s entropy within the data distribution. Similarly,

manifold-based CCHVAE [61] generates high-density counterfactuals through the use of

a latent space model. However, there is often no guarantee that the what-if scenarios

identified by these methods are attainable.

Existing research focuses on providing feasible recourses, yet comprehensive

literature on understanding and incorporating user preferences within the recourse

generation mechanism is lacking. It is worth mentioning that instead of understanding

user preferences, [56] provides a user with diverse recourse options and hopes that the user

will benefit from at least one. The importance of diverse recourse recommendations has

also been explored in recent works [86, 56, 69], which can be summarized as increasing the

chances of actionability as intuitively observed in the domain of unknown user preferences

[38]. [41] and [13] also resolve uncertainty in a user’s cost function by inducing diversity

in the suggested recourses. Interestingly, only 16 out of the 60 recourse methods explored

in the survey by [38] include diversity as a constraint where diversity is measured in

terms of distance metrics. Alternatively, studies like [82, 66, 15] optimize on a universal

cost function. This does not capture individual idiosyncrasies and preferences crucial for

actionability.

Efforts of eliciting user preferences include recent work by [16]. The authors

provide interactive human-in-the-loop approach, where a user continuously interacts with

the system. However, learning user preferences by asking them to select from one of
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the partial interventions provided is a derivative of providing a diverse set of recourse

candidates. In this chapter, we consider fractional cost as a means to communicate with

Alice, where fractional cost of a feature refers to fraction of cost incurred from a feature

i out of the total cost of the required intervention.

The notion of user preference or user-level constraints was previously studied

as local feasibility [52]. Since users can not precisely quantify the cost function [66],

[90] diverged from the assumption of a universal cost function and optimizes over the

distribution of cost functions. We argue that the inherent problem of feasibility can be

solved more accurately by capturing and understanding Alice’s recourse preference and

adhering to her constraints which can vary between Hard Rules such as unable to bring a

co-applicant and Soft Rules such as hesitation to reduce the amount, which should not be

interpreted as unwillingness. This is the first study to capture individual idiosyncrasies

in the recourse generation optimization to improve feasibility.

2.2 Problem Formulation

Consider a binary classification problem where each instance represents an

individual’s feature vector x = [x1,x2, ·,xD] and associated binary label y ∈ {−1,+1}.

We are given a model f(x) to classify x into either −1 or +1. Let f(x) = +1 be the

desirable output of f(x) for Alice. However, Alice was assigned an undesirable label

of −1 by f . We consider the problem of suggesting action r = [r1, r2, ·, rD] such that

f(x + r) = +1. Since suggested recourse only requires actions to be taken on actionable
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features denoted by FA, we have ri ≡ 0 : ∀i ̸∈ FA. We further split FA into continuous

actionable features Fcon and categorical actionable features Fcat based on feature domain.

Action r is obtained by solving the following optimization, where userCost (r,x) is any

predefined cost function of taking an action r such that:

min
r

userCost (r,x) (2.1)

s.t. userCost (r,x) =
∑
i∈FA

userCost (ri,xi) (2.2)

and f(x + r) = +1. (2.3)

2.2.1 Capturing individual idiosyncrasies

A crucial step for generating recourse is identifying local feasibility constraints

captured in terms of individual user preferences. In this chapter, we assume that every

user provides their preferences in three forms. Every continuous actionable feature

i ∈ Fcon is associated with a preference score Γi obtained from the affected individual.

Additional preferences in the form of feature value bounds and ranking for preferential

treatment of categorical features are also requested from the user.

User Preference Type I (Scoring continuous features): User preference for

continuous features are captured in Γi ∈ [0, 1] : ∀i ∈ Fcon subject to
∑

i∈Fcon
Γi = 1.

Such soft constraints capture the user’s preference without omitting the feature from the

actionable feature set. Γi refers to the fractional cost of action Alice prefers to incur from

a continuous feature i. For example, consider Fcon = {LoanDuration, LoanAmount} with

corresponding user-provided scores Γ = {0.8, 0.2} implying that Alice prefers to incur 80%
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of fractional feature cost from taking action on LoanDuration, while only 20% of fractional

cost from taking action on LoanAmount. Here, Alice prefers reducing LoanDuration to

LoanAmount and providing recourse in accordance improves actionability.

User Preference Type II (Bounding feature values): Users can also provide

constraints on values for individual features in FA. These constraints are in the form

of lower and upper bounds for individual feature values represented by δi and δi for

any feature i respectively. These constraints are used to discretize the steps. For a

continuous feature i, action steps can be discretized into pre-specified step sizes of

∆i = {s : s ∈ [δi, δi]}. For categorical features, steps are defined as the feasible values

a feature can take. For all categorical features we define, ∆i = {δi, . . . , δi} : ∀i ∈ Fcat

representing the possible values for categorical feature i.

User Preference Type III (Ranking categorical features): Users are also asked

to provide a ranking function R : Fcat −→ Z+1 on Fcat. Let Ri refers to the corresponding

rank for a categorical feature i. Our framework identifies recourse by updating the candi-

date action based on the ranking provided. For example, consider Fcat = {HasCoapplicant,

HasGuarantor, CriticalAccountOrLoansElsewhere} for which Alice ranks them by {3, 2, 1}.

The recourse generation system considers suggesting an action on HasGuarantor before

HasCoapplicant. Ranking preferences can be easily guaranteed by a simple override in

case of discrepancies while finding a recourse.
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2.2.1.1 Cognitive simplicity of preference scores

The user preferences proposed are highly beneficial for guiding the recourse

generation process. Please note that in the absence of these preferences, the recourse

procedure falls back to the default values set by a domain expert. Additionally, the

users can be first presented with the default preferences, and asked to adjust as per

their individual preferences. A simple user interface can help them interact with the

system intuitively. For example, adjusting a feature score automatically adjusts the

corresponding preference type scores.

2.2.2 Proposed optimization

We depart from capturing a user’s cost of feature action and instead obtain

their preferences for each feature. We elicit three forms of preferences detailed in the

previous section and iteratively take steps in the action space. We propose the following

optimization over the basic predefined steps based on the user preferences. Let us denote

the inherent hardness of feature action ri for feature value xi using cost(r | x) which

can be any cost function easily communicable to Alice. Here, cost(r(t)i | xi) refers to a

“universal" cost of taking an action r
(t)
i for feature value xi at step t. Note that this

cost function or quantity differs from the userCost (·, ·) function specified earlier. This
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i > 0

r(t) . . . r(T )

Figure 2.2: Framework of UP-AR. Successful recourse candidates; r(·), r(·) are colored in pink.

quantity is capturing the inherent difficulty of taking an action.

max
r

∑
i∈FA

Γi

cost(ri | xi)
(Type I)

s.t. f(x + r) = +1

Γi = 0 : ∀i /∈ FA (actionability)

Γj = 1 : ∀j ∈ Fcat

ri ∈ ∆i : i ∈ FA (Type II)

1{ri > 0} ≥ 1{rj > 0} : Ri ≥ Rj ∀i, j ∈ Fcat (Type III)

The proposed method minimizes the cost of a recourse weighted by Γi for all

actionable features. We discuss the details of our considerations of cost function in

Section 2.3.1. The order preference of categorical feature actions can be constrained by

restrictions while finding a recourse. The next section introduces UP-AR as a stochastic

solution to the proposed optimization.
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2.3 User Preferred Actionable Recourse (UP-AR)

Our proposed solution, User Preferred Actionable Recourse (UP-AR), consists

of two stages. The first stage generates a candidate recourse by following a connected

gradient-based iterative approach. The second stage then improves upon the redundancy

metric of the generated recourse for better actionability. The details of UP-AR are

consolidated in Algorithm 1 and visualized in Figure 2.2.

2.3.1 Stage 1: Stochastic gradient-based approach

[63] identifies a counterfactual by following a high-density connected path from

the feature vector x. With a similar idea, we follow a connected path guided by the

user’s preference to identify a feasible recourse. We propose incrementally updating the

candidate action with a predefined step size to solve the optimization. At each step t, a

candidate intervention is generated, where any feature i is updated based on a Bernoulli

trial with probability I
(t)
i derived from user preference scores and the cost of taking a

predefined step δ
(t)
i using the following procedure:

I
(t)
i ∼ Bernoulli

(
σ
(
z
(t)
i

))
(2.4)

where σ
(
z
(t)
i

)
=

ez
(t)
i /τ∑

j∈FA
ez

(t)/τ
, z

(t)
i =

Γi

cost(r(t)i | xi)
(2.5)

With precomputed costs for each step, weighted inverse cost is computed for each feature,

and these values are mapped to a probability distribution using a function like softmax.

Softmax gives a probabilistic interpretation P
(
I
(t)
i = 1|z(t)i

)
= σ

(
z
(t)
i

)
by converting

z
(t)
i scores into probabilities.
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We leverage the idea of log percentile shift from AR to determine the cost

of action since it is easier to communicate with the users in terms of percentile shifts.

Specifically, we follow the idea and formulation in [82] to define the cost:

cost(ri | xi) = log

(
1−Qi (xi + ri)

1−Qi (xi)

)
(2.6)

were Qi (xi) representing the percentile of feature i with value xi is a score below which

Qi (xi) percentage of scores fall in the frequency distribution of feature values in the

target population.

We adapt and extend the idea that counterfactual explanations and adversarial

examples [78] have a similar goal but with contrasting intention [59]. A popular approach

to generating adversarial examples [25] is by using a gradient-based method. We employ

the learning of adversarial example generation to determine the direction of feature modi-

fication in UP-AR: the Jacobian matrix is used to measure the local sensitivity of outputs

with respect to each input feature. Consider that f : RD → RC maps a D-dimensional

feature vector to a C-dimensional vector, such that each of the partial derivatives exists.

For a given x = [x1, . . . ,xi, . . . ,xD] and f(x) = [f[1](x), . . . , f[j](x), . . . , f[K](x)], the

Jacobian matrix of f is defined to be a D × C matrix denoted by J, where each (j, i)

entry is Jj,i =
∂f[j](x)

∂xi
. For a neural network (NN) with at least one hidden layer, Jj,i is

obtained using the chain rule during backpropagation. For an NN with one hidden layer

represented by weights {w}, we have:

Jj,i =
∂f[j](x)

∂xi
=
∑
l

∂f[l](x)

∂al

∂al
∂xi

where al =
∑
i

wlixi (2.7)

Where in Equation 2.7, al is the output (with possible activation) of the hidden layer and
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wl is the weight of the node l. Notice line 4 in Algorithm 1 which updates the candidate

action for a feature i at step t as:

r
(t)
i = r

(t−1)
i + sign

(
J
(t)
+1,i

)
· I(t)i · δ(t)i (2.8)

Following the traditional notation of a binary classification problem and with a bit of

abuse of notation −1 → 1,+1 → +1, sign
(
J
(t)
+1,i

)
captures the direction of the feature

change at step t. This direction is iteratively calculated, and additional constraints such

as non-increasing or non-decreasing features can be placed at this stage.

2.3.1.1 Calibrating frequency of categorical actions

We employ temperature scaling [26] parameter τ observed in Equation 2.5 to

calibrate UP-AR’s recourse generation cost. Updates on categorical features with fixed

step sizes are expensive, especially for binary categorical values. Hence, tuning the

frequency of categorical suggestions can significantly impact the overall cost of a recourse.

τ controls the frequency with which categorical actions are suggested. Additionally, if a

user prefers updates on categorical features over continuous features, UP-AR has the

flexibility to address this with a smaller τ .

To study the effect of τ on overall cost, we train a Logistic Regression (LR)

model on a processed version of German [9] dataset and generate recourses for the 155

individuals who were denied credit. The cost gradually decreases with decreasing τ since

the marginal probability of suggesting a categorical feature change is diminished and

the corresponding experiment is deferred to the Appendix. Hence, without affecting the

success rate of recourse generation, the overall cost of generating recourses can be brought
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Algorithm 1 User Preferred Actionable Recourse (UP-AR)
Input: Model f , user feature vector x, cost function cost(· | ·), step size

∆i : ∀i ∈ FA, maximum steps T , action r initialized to r(0), fixed τ , t =

1.

1: while t ≤ T or f
(
x + r(t)

)
̸= +1 do

2: z
(t)
i = Γi

cost(r(t)i | xi)
: ∀i

3: I
(t)
i ∼ Bern(σ(z(t)i )) : ∀i,where σ(z

(t)
i ) = ez

(t)
i

/τ∑
j∈FA

ez
(t)/τ

4: r
(t)
i = r

(t−1)
i + sign

(
J
(t)
+1,i

)
· I(t)i · δ(t)i : ∀i ∈ FA

5: t = t+ 1

6: Let t̂ be the smallest step such that f(x + r(t̂)) = +1 and initialize t = t̂

7: if ∃i ∈ Fcat : r
(t)
i > 0 then

8: while f
(
x + r(t)

)
= +1 do

9: r(t) = r(t)

10: r
(t)
i = r

(t̂)
i : ∀i ∈ Fcat

11: t = t− 1

12: return r(t) as action r =0
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down by decreasing τ . In simple terms, with a higher τ , UP-AR frequently suggests

recourses with expensive categorical actions. We note that τ can also be informed by a

user upon seeing an initial recourse. After the strategic generation of an intervention, we

implement a cost correction to improve upon the potential redundancy of actions in a

recourse option.

2.3.2 Stage 2: Redundancy & Cost Correction (CC)

In our experiments, we observe that once an expensive action is recommended

for a categorical feature, some of the previous action steps might become redundant.

Consider an LR model trained on the processed german dataset. Let FA = {LoanDuration,

LoanAmount, HasGuarantor} out of all the 26 features, where HasGuarantor is a binary

feature which represents the user’s ability to get a guarantor for the loan. Stage 1

takes several steps over LoanAmount and LoanDuration before recommending to update

HasGuarantor. These steps are based on the feature action probability from Equation

2.5. Since categorical feature updates are expensive and occur with relatively low

probability, Stage 1 finds a low-cost recourse by suggesting low-cost steps more frequently

in comparison with high-cost steps.

Once an update to a categorical feature is recommended, some of the previous

low-cost steps may be redundant, which can be rectified by tracing back previous

continuous steps. Consider a scenario such that ∃i ∈ Fcat : r
(T )
i > 0 for a recourse

obtained after T steps in Stage 1. The CC procedure updates all the intermediary

recourse candidates to reflect the categorical changes i.e., ∀i ∈ Fcat : r
(T )
i > 0, we update
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Features to

change

Current

values

Stage 1

values

Stage 2

values

LoanDuration 18 8 12

LoanAmount $1940 $1040 $1540

HasGuarantor 0 1 1

Table 2.2: Redundancy corrected recourse for a hypothetical individual.

r
(t)
i = r

(T )
i : ∀t ∈ {1, 2, . . . , T − 1} to obtain r(t). We then perform a linear retracing

procedure to return r(t) such that f
(
x + r(t)

)
= +1 for the smallest t.

2.4 Discussion and analysis

In this section, we analyze the user preference performance of UP-AR. For

simplicity, a user understands cost in terms of log percentile shift from her initial feature

vector described in Section 2.3. Let Γ̂i be the observed fractional cost for feature i

formally defined in Equation 2.11. Any cost function can be plugged into UP-AR with no

restrictions. A user prefers to have Γi fraction of the total desired percentile shift from

feature i. Consider FA = {LoanDuration, LoanAmount} and let the corresponding user

scores provided by all the adversely affected individuals be: Γ = {0.8, 0.2}. Here, “Denied

loan applicants prefers reducing LoanDuration to LoanAmount by 8 : 2.” Figure 2.3 shows

the frequency plot of feature cost ratio for feature LoanDuration out of total incurred cost
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Figure 2.3: AR and UP-AR’s distribution of

Γ̂LoanDuration for a Logistic Regression model

trained on German.
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Figure 2.4: GS and UP-AR’s distribution of

Γ̂DebtRatio for a Neural Network model trained on

GMSC.

from LoanDuration and LoanAmount. i.e., y−axis represents Γ̂i. Also, Figure 2.4 further

shows the fractional cost of feature DebtRatio for recourses obtained for a NN based

model trained on Give Me Some Credit (GMSC) dataset. These experiments signify the

adaptability of UP-AR to user preferences and provides evidence that distribution of Γ̂i

is centered around Γi.

Lemma 1. Consider UP-AR identified recourse r for an individual x. If C(T ∗)
i,min and

C
(T ∗)
i,max represent the minimum and maximum cost of any step for feature i until T ∗, then:

E [cost(ri | xi)] ≤ T ∗σ

(
Γi

C
(T ∗)
i,min

)
C

(T ∗)
i,max. (2.9)

Lemma 1 implies that the expected cost E [cost(ri | xi)], specifically for a

continuous feature action is positively correlated to the probabilistic interpretation of

user preference scores. Hence r satisfies users critical Type I constraints in expectation.

Recall that Type II and III constraints are also applied at each step t. Lemma 1 signifies
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Alice Bob Chris

Features

to change

Current

values

AR

values

User

Pref

UP-AR

values

User

Pref

UP-AR

values

User

Pref

UP-AR

values

LoanDuration 30 25 0.8 20 0.8 10 0.2 27

LoanAmount $8072 $5669 0.2 $7372 0.2 $6472 0.8 $5272

HasGuarantor 0 1 1 1 0 0 1 1

Table 2.3: Recourses generated by UP-AR for similar individuals with a variety of preferences.

that UP-AR adheres to user preferences and thereby increases the actionability of a

suggested recourse.

Corollary 1. For UP-AR with a linear σ (·), predefined steps with equal costs and

cost(r | x) =
∑

i∈FA
cost(ri | xi), total expected cost after T ∗ steps is:

E [cost(r | x)] ≤ T ∗
∑
i∈FA

σ (Γi) . (2.10)

Corollary 1 states that with strategic selection of σ (·), δ·(·) and cost(· | ·),

UP-AR can also tune the total cost of suggested actions. In the next section, we will

compare multiple recourses based on individual user preferences for a randomly selected

adversely affected individual.
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2.4.1 Case study of individuals with similar features

Given an LR model trained on german dataset and Alice, Bob and Chris be

three adversely affected individuals. FA = {LoanDuration, LoanAmount, HasGuarantor}

and corresponding user preferences are provided by the users. In Table 2.3, we consolidate

the corresponding recourses generated for the specified disparate sets of preferences.

From Table 2.3 we emphasize the ability of UP-AR to generate a variety of

user-preferred recourses based on their preferences, whereas AR always provides the

same low-cost recourse for all the individuals. The customizability of feature actions for

individual users can be found in the table. When the Type I score for LoanAmount is

0.8, UP-AR prefers decreasing loan amount to loan duration. Hence, the loan amount is

much lesser for Chris than for Alice and Bob.

2.5 Empirical Evaluation

In this section, we demonstrate empirically: 1) that UP-AR respects Γi-fractional

user preferences at the population level, and 2) that UP-AR also performs favorably on

traditional evaluate metrics drawn from CARLA [60]. We used the native CARLA cata-

log for the Give Me Some Credit (GMSC) [36], Adult Income (Adult) [20] and

Correctional Offender Management Profiling for Alternative Sanctions

(COMPAS) [6] data sets as well as pre-trained models (both the Neural Network (NN)

and Logistic Regression (LR)). NN has three hidden layers of size [18, 9, 3], and the

LR is a single input layer leading to a Softmax function. Although AR is proposed
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for linear models, it can be extended to nonlinear models by the local linear decision

boundary approximation method LIME [67] (referred as AR-LIME).

PERFORMANCE METRICS: For UP-AR, we evaluate:

1. Success Rate (Succ. Rate): The percentage of adversely affected individuals for

whom recourse was found.

2. Average Time Taken (Avg.Tim.): The average time (in seconds) to generate

recourse for a single individual.

3. Constraint Violations (Con. Vio.): The average number of non-actionable features

modified.

4. Redundancy (Red.): A metric that tracks superfluous feature changes. For each

successful recourse calculated on a univariate basis, features are flipped to their

original value. The redundancy for recourse is the number of flips that do not

change the model’s classification decision.

5. Proximity (Pro.): The normalized l2 distance of recourse to its original point.

6. Sparsity (Spa.): The average number of features modified.

We provide comparative results for UP-AR against state-of-the-art counterfactual/recourse

generation techniques such as GS, Wachter, AR(-LIME), CCHAVE and FACE. These

methods were selected based on their popularity and their representation of both in-

dependence and dependence based methods, as defined in CARLA. In addition to the
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Neural Network Logistic Regression

Data. Recourse

Method

Succ.

Rate

pRMSE Avg

Tim.

Con.

Vio.

Red. Pro. Spa. Succ.

Rate

pRMSE Avg

Tim.

Con.

Vio.

Red. Pro. Spa.

GS 0.75 0.16 0.02 0.00 6.95 1.01 8.89 0.62 0.18 0.03 0.00 4.08 1.39 8.99

Wachter 1.00 0.18 0.02 1.49 6.84 1.08 8.46 1.00 0.17 0.03 1.23 3.51 1.42 7.18

GMSC AR(-LIME) 0.03 0.17 0.45 0.00 0.00 0.17 1.72 0.17 0.17 0.73 0.00 0.00 0.93 1.91

CCHVAE 1.00 0.18 1.05 2.0 9.99 1.15 10.1 1.00 0.18 1.37 2.00 8.64 2.05 11.0

FACE 1.00 0.17 8.05 1.57 6.65 1.20 6.69 1.00 0.16 11.9 1.65 7.47 2.30 8.45

UP-AR 0.94 0.07 0.08 0.00 1.30 0.49 3.22 1.00 0.07 0.12 0.00 1.47 0.68 3.92

GS 0.84 0.10 0.03 0.00 2.86 1.30 5.09 0.84 0.10 0.04 0.00 1.76 2.05 5.85

Wachter 0.55 0.10 0.04 1.44 3.05 0.74 4.90 1.00 0.11 0.10 1.68 0.90 1.44 5.81

Adult AR(-LIME) 0.42 0.10 9.20 0.00 0.00 2.10 2.54 0.76 0.10 7.37 0.00 0.03 2.10 2.31

CCHVAE 0.84 0.11 0.77 4.47 5.83 3.95 9.40 0.84 0.10 1.08 4.22 6.85 3.96 9.45

FACE 1.00 0.10 6.78 4.58 7.54 4.11 7.91 1.00 0.10 8.37 4.53 5.91 4.28 7.81

UP-AR 0.82 0.10 0.76 0.00 0.78 1.77 2.78 0.82 0.05 0.67 0.00 0.55 1.78 2.88

GS 1.00 0.15 0.03 0.00 1.09 0.47 3.35 1.00 0.14 0.04 0.00 0.34 1.12 3.98

Wachter 1.00 0.14 0.05 1.00 1.61 0.56 4.35 1.00 0.14 0.04 1.00 0.85 1.06 4.83

COMPASAR(-LIME) 0.65 0.13 0.20 0.00 0.00 0.78 0.90 0.52 0.15 0.24 0.00 0.00 1.45 1.57

CCHVAE 1.00 0.14 5.09 2.27 4.31 1.70 4.91 1.00 0.14 0.02 1.62 2.70 1.74 4.92

FACE 1.00 0.15 0.37 2.39 3.96 2.35 4.72 1.00 0.15 0.40 2.47 4.38 2.46 4.81

UP-AR 0.92 0.08 0.04 0.00 0.60 0.63 1.82 1.00 0.10 0.05 0.00 0.81 0.82 2.74

Table 2.4: Summary of performance evaluation of UP-AR. Top performers are highlighted in green.
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traditional performance metrics, we also measure Preference-Root mean squared error

(pRMSE) between the user preference score and the fractional cost of the suggested

recourses. We calculate pRMSEi for a randomly selected continuous valued feature i

using:

pRMSEi =

√√√√ 1

n

n∑
j=1

(
Γ̂
(j)
i − Γ

(j)
i

)2
(2.11)

where Γ̂
(j)
i =

cost(ri | xi)∑
k∈Fcon

cost(rk | xk)
(2.12)

Here Γ
(j)
i and Γ̂

(j)
i are user provided and observed preference scores of feature i for an

individual j. In Table 2.4, we summarize pRMSE, which is the average error across

continuous features such that:

pRMSE =
1

|Fcon|
∑

i∈Fcon

pRMSEi. (2.13)

DATASETS: We train an LR model on the processed version of german [9] credit

dataset from sklearn’s linear_model module. We replicate [82]’s model training and

recourse generation on german. The dataset contains 1000 data points with 26

features for a loan application. The model decides if an applicant’s credit request

should be approved or not. Consider Fcon = {LoanDuration, LoanAmount}, and

Fcat = {CriticalAccountOrLoansElsewhere, HasGuarantor, HasCoapplicant}. Let the

user scores for Fcon be Γ = {0.8, 0.2} and ranking for Fcat be {3, 1, 2} for all the denied

individuals. For this experiment, we set τ−1 = 4. Out of 155 individuals with denied

credit, AR and UP-AR provided recourses to 135 individuals.

Cost Correction: Out of all the denied individuals for whom categorical
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actions were suggested, an average of ∼ $400 in LoanAmount was recovered by cost

correction. For the following datasets, for traditional metrics, user preferences were set

to be uniform for all actionable features to not bias the results to one feature preference

over another:

1. GMSC: The data set from the 2011 Kaggle competition is a credit underwriting

dataset with 11 features where the target is the presence of delinquency. Here, we

measure what feature changes would lower the likelihood of delinquency. We again

used the default protected features (age and number of dependents). The baseline

accuracy for the NN model is 81%, while the baseline accuracy for the LR is 76%.

2. Adult Income: This dataset originates from 1994 census database with 14

attributes. The model decides whether an individual’s income is higher than 50, 000

USD/year. The baseline accuracy for the NN model is 85%, while the baseline

accuracy for the LR is 83%. Our experiment is conducted on a sample of 1000 data

points.

3. COMPAS: The data set consists of 7 features describing offenders and a target

representing predictions. Here, we measure what feature changes would change an

automated recidivism prediction.

The baseline accuracy for NN is 78%, while baseline accuracy for LR is 71%.

Performance analysis of UP-AR. We find UP-AR holistically performs favorably

to its counterparts. Critically, it respects feature constraints (which we believe is
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fundamental to actionable recourse) while maintaining a significantly low redundancy and

sparsity. This indicates that it tends to change fewer necessary features. Its speed makes

it tractable for real-world use, while its proximity values show that it recovers relatively

low-cost recourse. These results highlight the promise of UP-AR as a performative,

low-cost option for calculating recourse when user preferences are paramount. UP-AR

shows consistent improvements over all the performance metrics. The occasional lower

success rate for a NN model is attributed to 0 constraint violations.

pRMSE: We analyze user preference performance in terms of pRMSE. From

Table 2.4, we observe that UP-AR’s pRMSE is consistently better than the state of art

recourse methods. The corresponding experimental details and visual representation of

the distribution of pRMSE is deferred to Appendix 2.5.1.

2.5.1 Random user preference study

We performed an experiment with increasing step sizes on German dataset.

We observed that, with increasing step sizes, pRMSEi increased from 0.09 to 0.13,

whereas it was consistent for AR. In the next experiment, we randomly choose user

preference for LoanDuration from [0.4, 0.5, 0.6, 0.7, 0.8]. The rest of the experimental

setup is identical to the setup discussed in Section 2.4. In this experiment, we observe

pRMSE with non-universal user preference for adversely affected individuals. Here the

average pRMSE of both LoanDuration and LoadAmount for UP-AR is 0.19, whereas

for AR it is 0.34.

Further, using the CARLA package, we generated recourses for a set of 1000
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Figure 2.5: Logistic Regression model
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Figure 2.6: Neural Network model

Figure 2.7: Distribution of the average pRMSE of UP-AR and other recourse methodologies.
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individuals and Γ for two continuous features was randomly selected from [0.3, 0.6, 0.9].

Figure 2.7 provides a visual analysis of the distribution of average pRMSE using

violin plots. The experiments were performed on the 3 datasets discussed in Sec-

tion 3.4 for both the LR and NN models. For GMSC dataset, Fcon = {DebtRatio,

MonthlyIncome} and FA = {RevolvingUtilizationOf UnsecuredLines, NumberOfTime30-

59DaysPastDueNotWorse, DebtRatio, MonthlyIncome, NumberOfOpenCreditLinesAnd-

Loans, NumberOfTimes90DaysLate, NumberRealEstateLoansOrLines, NumberOfTime60-

89DaysPastDueNotWorse}. For COMPAS dataset, Fcon = {priors-count, length-of-

stay} and FA = {two-year-recid, priors-count’ length-of-stay}. For Adult dataset,

Fcon = {education-num, capital-gain} and FA = {education-num, capital-gain, capital-

loss, hours-per-week, workclass-Non-Private, workclass-Private, marital-status-Married,

marital-status-Non-Married, occupation-Managerial-Specialist, occu- pation-Other}.

With these experiments we conclude that UP-AR’s Γ̂ deviation from the user’s

Γ is consistently lower than the existing recourse generation methodologies. We observe

that AR is unaffected by the varying user preference due to the fact that AR and other

state-of-the-art recourse methodologies lack the capability of capturing such idiosyncrasies.

On the other hand, UP-AR is driven by those preferences and has significantly better

pRMSE in comparison to AR.

2.5.2 Cost Correction analysis

In Table 2.5 we explore the effect of UP-AR’s cost correction procedure on the

Adult and COMPAS datasets. We do not include the GMSC dataset as it does not

38



Metrics Adult COMPAS

Number of Factuals 1000 568

Success Rate 79.3% 99.6%

Percent of Recourse with a Binary Action 71.9% 82.6%

Percent of Recourse with Cost Correction 38.4% 25.5%

Average Percentage of Steps Saved 67.9% 63.5%

Average Percentage of Continuous Cost Saved 83.1% 76.0%

Table 2.5: The Frequency and Effect of Cost Correction

include binary features, and therefore does not utilize the cost correction procedure. In

Table 2.5 we show the number of factuals, the percentage of factuals for which recourse

was found, the percentage of recourse found which contained at least one binary action,

the percent of recourse found which underwent cost correction, the average percentage of

steps saved by the cost correction procedure, and the average percent of cost savings,

measured as the percent reduction in continuous cost (l2 distance) between a factual and

its recourse before and after the cost-correction procedure.

2.5.3 Analysis

Interpretable and Incremental steps: In this chapter, each step δ
(t)
i is a predefined

minimal feature modification inherently derived from the feature vector x. A recourse
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suggested by UP-AR can be broken down into interpretable actions. Alice was denied a

loan application, and her suggested recourse is to decrease the loan amount from $8072

to $6472 and decrease the loan duration from 30 years to 10 years. Here the recourse is

broken down into reducing the loan amount by 16 steps of $100 each, implying that the

loan amount is 16 steps connected with the original feature value. Such steps increase

the comprehensibility of recourse.

2.6 Ethics Statement

We proposed a recourse generation method for machine learning models that

directly impact human lives. For practical purposes, we considered publicly available

datasets for our experiments. Due care was taken not to induce any bias in this research.

We further evaluated the primary performance metric for two groups (males and females)

for german dataset.

This study reflects our efforts to bring human subjects within the framework

of recourse generation. Comprehensible discussion with the users about the process

improves trust and explainability of the steps taken during the entire mechanism. With

machine learning models being deployed in high-impact societal applications, considering

human inputs (in the form of preferences) for decision-making is a highly significant

factor for improved trustworthiness. Additionally, comprehensible discussion with human

subjects is another crucial component of our study. Our study motivates further research

for capturing individual idiosyncrasies.
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Gathering preferences from an individual could be another potential source

of bias for UP-AR recourses, which needs to be evaluated with further research with

human subjects. Preferential recourses will have a significant positive impact on humans

conditioned on truthful reporting of various preferences. Preference scores are subject

to various background factors affecting an individual, some of which can be sensitive.

Additional care must be taken to provide confidentiality to these background factors

while collecting individual preference scores, which have the potential to be exploited.

2.7 Ablation studies

In this section, we perform multiple experiments to understand several properties

of UP-AR. First, run an experiment to measure the disparities in pRMSE between

the two gender groups. Secondly, we run experiments to understand the effects of the

temperature parameter τ on UP-AR. Thirdly, we try to understand the relation between

T ∗ and Γ̂, if any.

2.7.1 UP-AR user preference disparities

UP-AR satisfies user Type I user preferences as observed in Section 2.4. For

the following experiment, we consider a similar setup as in Section 2.4. We now evaluate

similar performance among males and females separately in terms of pRMSE. With a

similar setup as Section 2.4, Figure 2.8, shows a distribution of cost between the two

gender groups. Observed pRMSELoanDuration for males is 0.09, whereas for females

it is 0.11. With this simple experiment, we conclude that UP-AR does not show any
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significant disparities in terms of adhering to user preferences.
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Figure 2.8: Comparison of UP-AR’s distribution of Γ̂LoanDuration between males and females for a

Logistic Regression model trained on German.

2.7.2 Ablation study on τ

For the following experiment, we again consider a similar setup as in Section 2.4.

Each data point in the plot represents the mean total cost of recourses for the target

population for 20 independent runs of UP-AR, and the shaded region represents the ± 1

standard deviation of the 20 runs. We observe:

1. Effect of calibrating the overall cost of target population using τ . τ controls the

frequency of categorical actions detailed in Section 2.3.1.1.

2. Γ̂LoanDuration is not affected by any setting of τ as observed in Figure 2.10.
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Figure 2.9: Total cost of the recourses generated

for target population for varying τ . The user pref-

erence scores are fixed for the individuals.
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Figure 2.10: Mean fractional feature cost ratio of

LoanDuration for varying τ . For this experiment,

ΓLoanDuration is set to 0.8 for the target population.

2.7.3 Relation between Γ̂ and T ∗

Again considering a similar setup as in Section 2.4, Figure 2.11 visualizes the

relation between the observed Γ̂LoanDuration and the number of steps taken to identify

a recourse T ∗. We conclude that Γ̂LoanDuration is not affected by the number of steps

taken to identify a recourse by UP-AR.

2.7.4 Real cost vs Expected cost

In this experiment, we compare the expected cost and the actual observed cost

of the recourses generated. Figure 2.12 visualizes the expected cost and observed cost for

actionable features. We observe that with increasing τ , the total cost of recourses increases

suggesting high categorical actions suggested in the generated recourses. Additionally,

We also notice the consistency in Γ̂LoanDuration for varying τ . Please note that careful

calibration of τ can help individuals who prefer categorical feature actions over continuous
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Figure 2.11: Scatter plot between Γ̂LoanDuration and T ∗ on the recourses generated for adversely

affected target population.

features.

2.7.5 Ablation study on Actionable Feature Set

We conducted an experiment on the average computational cost (modeled by

execution time) of UP-AR and GS across a varying number of actionable features to

explore how their performance changes as the actionable set size increases. Figures 2.13

and 2.14 show the performance trends for an LR model and NN model on the Adult

Income dataset, while figures 2.15 and 2.16 show the performance trends for an LR

model and NN model on the German Credit dataset. We observe that UP-AR’s average

time increases as the actionable feature dimension increases whereas gradient based

GS remains relatively consistent. This can be attributed to the additional user scoring

preference and ranking preference constraints while identifying a recourse, as well as the
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Figure 2.12: Expected and observed cost of modifications on Fcon for all the recourses generated on

the adversely affected target population.

Figure 2.13: Average time to find recourse for LR

model on the Adult dataset with a variable number

of actionable features.

Figure 2.14: Average time to find recourse for

NN on the Adult dataset with a variable number

of actionable features.
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Figure 2.15: Average time to find recourse for LR

model on the Credit dataset with a variable number

of actionable features.

Figure 2.16: Average time to find recourse for NN

on the Credit dataset with a variable number of

actionable features.

cost correction procedure as the number of binary changes increases.

2.7.6 Additional proofs of results discussed in Section 2.4

2.7.6.1 Proof of Lemma 1

Consider that recourse r was suggested by UP-AR for Alice represented by

a feature vector x. Let r was obtained at time step T ∗. Here cost(r(t)i | xi + r
(t−1)
i )

measures the cost of taking an action r
(t)
i at time t− 1 for feature i.

E [cost(ri | xi)] = E

[
T∑
t=1

I
(t)
i · cost(r(t)i | xi + r

(t−1)
i )

]

=
T∑
t=1

E
[
I
(t)
i · cost(r(t)i | xi + r

(t−1)
i )

]
≤

T∑
t=1

E
[
I
(t)
i · C

(T ∗)
i,max

]
(where C

(T ∗)
i,max is the maximum cost of an individual feature change at any step)

≤
T∑
t=1

Pr
(
I
(t)
i = 1

)
C

(T ∗)
i,max
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Steps for each feature action at time t are decided by the inverse cost weighted by user

preference score Γi. Let us call this weighted inverse cost which is then mapped to a

probability distribution using usual choices such as normalization or a softmax function.

Let σ(·) be a function which maps weighted inverse cost to a probability distribution.

Let C
(T ∗)
i,min be the minimum cost of an individual feature change at any step. We have,

E [cost(ri | xi)] ≤
T∑
t=1

σ

(
Γi

C
(T ∗)
i,min

)
C

(T ∗)
i,max

giving us Lemma 1.

2.7.6.2 Proof of Corollary 1

For simplicity, consider a cost function where the overall cost of recourse is the

sum total of individual feature action costs, i.e., cost(r | x) =
∑

i∈FA
cost(ri | xi). The

total expected cost of a recourse r is:

E [cost(r | x)] ≤
∑
t∈T ∗

∑
i∈FA

σ

(
Γi

C
(T ∗)
i,min

)
C

(T ∗)
i,max

Considering that all the steps are of equal cost and a linear function σ(·), we get

Corollary 1:

E [cost(r | x)] ≤ T ∗
∑
i∈FA

σ (Γi)

2.7.7 User interface example

Below we present an example user interface to capture various user preferences.

A model could first provide the user with the default values and let the user adjust
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the preferences accordingly. Any user update will automatically readjust other feature

default preferences. Such an interface will help reduce the cognitive burden on the end

user while capturing necessary preferences.

Please rate your ability to change 
the following in your application:

Income

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Debt

Size of Loan

Co-Applicant

Cannot Change Neutral Can Change

Guarantor

Cannot Change Neutral Can Change

Figure 2.17: An example interface to capture user preference.
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Chapter 3

Fair Recourse over Plausible Groups

3.1 Introduction

In this chapter, we explore the notion of recourse plausibility across groups

and how a vanilla model training procedure can render recourses to be unfair. Existing

methods for recourse provision may output actions that exhibit biases across groups in

a target population. Such biases may affect the difficulty or feasibility of recourse. For

example, research [22] suggests that race has a profound correlation with the level of

education a person has access to. In the context of a lending model, this relationship

would imply that actions that are identical may have diverging “actionability" across

protected racial groups. In practice, they may arise due to historical biases within the

training data [43] or due to the underlying model [17, 55].

Some existing literature seeks to address these issues through interventions at

the group level. For example, [85] considers an individual’s hidden feature(s) in recourse
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Figure 3.1: Toy example scenario demonstrating the existence of group-level actionability unfairness. In

these figures, orange and red represent the negatively (A−
1 ) and positively (A+

1 ) affected sub-populations

of the disadvantaged group (A1), respectively. Blue and Green represents the negatively (A−
0 ) and

positively (A+
0 ) affected sub-populations of the advantaged group (A0). Consider a hypothetical situation

where the average cost of recourse a
(1)
0 and a

(1)
1 for similar individuals x0 and x1 from A0 and A1,

respectively, is identical. Such recourse can be commonly followed by A0 but not necessarily by A1.
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generation, using group-level information to provide subsidies. Likewise, [51] identify

hidden confounders, which are unobserved factors that alter the cost and feasibility of

recourse at an individual level.

[27] argues that negatively impacted individuals from different groups should

have equal chances of obtaining recourse, seeking to equalize the distance from the

decision boundary across groups. In this chapter we consider the actionability at the

group level instead of relying on a universal cost function. Consider an individual who

applies for a loan and gets denied; we answer:

“What actions can I take to be part of the approved sub-group of people with my

socioeconomic background? ”

The difference between the notion of group-level fair actionability and fair

recourse is demonstrated using Figure 3.1 (a). Here, feature distribution for working

hours follows a high variance unimodal distribution for group A0, whereas we notice

bimodal distribution for group A1, implying that higher plausibility regime (of recourses)

for group A0 is closer to the decision boundary compared to A1. Additionally, Fig-

ure 3.1 (b) shows the decision boundary using a scatter plot. Low density of individuals

near the decision boundary for A1, makes the recourse a
(1)
1 predominantly undesirable in

comparison with a
(1)
0 for A0. Alternatively, a(2)0 and a

(2)
1 from Figure 3.1 (c) shows post

action features which fall within the corresponding high-density regions.

Group-level recourse plausibility of a post-action feature is defined as its be-

lievability or realizability with respect to the distribution of the group-specific approved
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sub-population. Given the spatial proximity nature [28] of plausibility, we observe that:

“plausibility of post-action features is proportional to the density of the resulting region

and similarity with the resulting region of approved profiles.”

We leverage the group-level approved sub-population signals to understand

actionability and thereby train a fair actionable model. Here, a group can be any

immutable categorical feature in your dataset. We argue that a recourse a0 for an

individual x0 ∈ H− has higher chances of actionability if x0 + a0 ∈ H+, where H+ is the

distribution of the approved group to which x0 belongs.

3.1.1 Motivating Scenarios

We describe two real-world scenarios for motivation for loan approval. Appli-

cant A belongs to the old group, whereas Applicant B belongs to the young group, and

both of them have approached a bank for a loan. Both the individuals’ loan applications

were denied by the bank and were suggested a similar recourse.

Applicant A: Single Parent. The recourse provided by the bank suggests increasing

their working hours from 32 per week to 40 per week. Considering that they belong to

the sub-population of denied single parent, the recourse may not be actionable, as they

may not have the flexibility of increasing working hours per week. They are more likely to

consider taking a second remote job instead. Hence, recourse actions that align with those

of other single parents help improve the actionability and benefit such disadvantaged

groups.
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Applicant B: International Student. Applicant B is an undocumented employee

with severe restrictions due to his immigration status, often limiting their flexibility in

acting on the recourse provided. He may need more capabilities to act upon several

features such as income, working hours, job sector etc. Such constraints are further

exacerbated if Applicant B is a student. For the holistic benefit of society and improved

trust in machine learning systems, the suggested recourses must be unbiased in terms of

plausibility metrics. The main contributions of this chapter include:

1. We introduce a notion of group-level plausibility using latent characteristics related

to immutable categorical features.

2. We introduce a fairness notion group-level plausibility bias and provide metrics for

quantification using a general purpose clustering procedure.

3. We provide evidence of group-level plausibility bias using a real-world dataset

dataset to show its detrimental effects on the trustworthiness of a model.

4. We consolidate the traditional performance metrics of recourse generation and

compare the proposed fairness metric between naturally trained models and trained

with our proposed optimization.

3.1.2 Broader Impacts

This chapter is primarily designed to mitigate specific failure modes of machine

learning models used in consumer-facing applications such as lending, hiring, and the

allocation of services. In particular, we seek to study how these models can assign
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predictions that are difficult or impossible to change across groups that are difficult to

identify using features that are not used by the model. This chapter studies these biases

in responsiveness through the lens of recourse and outlines a general-purpose approach

to correct them. In particular, we (re)introduce plausible recourse as an alternative to a

low-cost recourse.

3.2 Framework

We consider a classification task where a model f : X → Y assigns a binary

label y ∈ {±1} to an individual with features x = [x1, . . . , xd] ∈ X = X1×· · ·×Xd ⊆ Rd.

Let D =
{(

x(i),y(i)
)}n

i=1
be the set of data samples observed from the true underlying

distribution. Let g observing values g ∈ G = {1, . . . ,K} denote a categorical attribute

encodes a protected characteristics.

We define the following subspaces based on the true label y and predicted

labelf (x): D− = {x ∈ X : y = −1}, D+ = {x ∈ X : y = +1}, H− = {x ∈

X : f (x) = −1}, and H+ = {x ∈ X : f (x) = −1}. Let v(i) ∈ D be a labeled

example where each v(i) is associated with a group g ∈ G. Given a group membership

function m : Rd → {±1}, we define H+
g = {v(i) ∈ D| m

(
v(i)
)
= g, f (x) = +1}. and

H−
g = {v(i) ∈ D| m

(
v(i)
)
= g, f (x) = −1}.
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Recourse. Given an individual with features x0 such that f (x0) = −1, we return an

action a0 that achieves recourse by solving an optimization problem of the form:

min
a0

cost (x0,a0)

s.t. f (x0 + a0) = +1,

a0 ∈ A (x0) .

(3.1)

Here, cost (x0,a0) : A (x0) → R+ is any cost function used to capture the difficulty of

taking a set of actions a0 by an individual represented by x0 and let A (x0) be the set of

feasible actions.

3.2.1 Measuring Plausibility

Recourse actions are traditionally specified by the cost of changes and action-

ability constraints, e.g., feasibility sets of [40]. Instead, we intend to maximize the overall

feasibility in terms of a proximity score prox(x0 + a0,S0) for an individual x0 with respect

to a user-specified Exemplar Set S0.

An exemplar set contains all clusters of predefined individuals with certain

robust properties, including prevalence and model agnostic adversarial robustness. Given

a classifier f , a set of feasibility constraints A (x0), we recover an action by solving the
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optimization problem:

min
a0

cost (x0,a0)

s.t. prox (x0 + a0,S0) ≥ ρ,

f (x0 + a0) = +1,

a0 ∈ A (x0) .

(3.2)

Here:

• prox(x0 + a0,S0) : X → R+ is a proximity score for the post-action features x0 + a0

to an Exemplar Set S0.

• ρ measures the minimum required proximity for x0 + a0 to be feasible and can vary

for each group.

ρ can be specifically configured for every group based on the variance within S0.

This ensures that a0 ensures underlying group characteristics. ρ ensures that x0 + a0

gets closer to S0. Configuring ρ = 0 returns a traditional low-cost action and ρ > 0 leads

x0 + a0 to be within a specified width of S0, for example, an ε-ball around S0.

Let x̂0 = x0+a0 be the post action feature profile of x0. prox(x̂0,S0) estimates

a plausibility score by capturing the proximity of x̂0 to the closest exemplar set S0. Our

choice is motivated by [37]’s definition of: (i) domain-consistency; (ii) density-consistency;

and (iii) prototypical-consistency.

Group Plausibility. For a the post-action feature profile x̂0 for an individual x0 from

a group g, we characterize plausibility score using the proximity nature of prox(x̂0,S0)

as plaus (x̂0,Sg) of a post-action feature profile x̂0 with respect to any corresponding
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Figure 3.2: Demonstration of the effectiveness of plaus (x̂0,S0). x̂
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0 has a high plaus
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due

to its high coverage
(
S

(2)
g

)
and similarity

(
x̂
(2)
0 , S

(1)
g

)−1

, unlike x̂
(1)
0 which has a low plaus

(
x̂
(1)
0 ,S0

)
.

(approved) exemplar set Sg ∈ H+
g , using:

plaus (x̂0,Sg) ∝ density of Sg, and

plaus (x̂0,Sg) ∝ similarity with Sg

(3.3)

We now define group plausibility using the patch proximity index [28] used to

quantify the spatial context of a patch in relation to its neighbors. In our context, we

define the proximity of x̂0 with respect to any resulting neighbors set S(i)
g ∈ Sg.

Definition 3.2.1 (Group Plausibility). For any individual x0 in group g ∈ G, we measure

the group-level recourse plausibility plaus (x̂0,Sg) of post-action features x̂0 using:

plaus (x̂0,Sg) := max
{

coverage
(
S(i)
g

)
× similarity

(
x̂0,S(i)

g

)
: S(i)

g ∈ Sg

}
(3.4)

where coverage
(
S(i)
g

)
measures the fraction of data points covered by S(i)

g and similarity
(
x̂0,S(i)

g

)
provides a score of how similar x̂0 is with respect to S(i)

g , respectively.

We maximize the proximity score of the resulting post-action features with
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respect to any S(i)
g ∈ Sg. The resulting x̂0 must be closer to any of the exemplar profile

clusters irrespective of the proximity score with other clusters.

Alternatively, mean based proximity score
∑

S
(i)
g ∈Sg

coverage
(
S
(i)
g

)
×similarity

(
x̂0, S

(i)
g

)
fails in the following scenario in our formulation. Let plaus (x̂0,S0) = 2.0 with two

clusters having coverage
(
S(1)
g

)
× similarity

(
x̂0,S(1)

g

)
= 2.0 and coverage

(
S(2)
g

)
×

similarity
(
x̂0,S(2)

g

)
= 2.0. Here, the resulting profile is not specifically closer to any of

the exemplar sets.

3.3 Equalizing Recourse across Plausible Groups

In this section, we introduce exemplar set, our proposed metric to measure the

plausibility of a post-action feature profile, and introduce a notion of plausibility bias.

Then, we propose an optimization based model training technique to alleviate such bias

caused at the group level.

3.3.1 Specifying an Exemplar Set

Action plausibility does not rely on the traditional cost of actions due to its

prototypical nature [37]. This is unlike the traditional model decision boundary based

low-cost actions. This provides degrees of freedom to capture individual action costs. For

example, a low-density cluster signals profiles that are more likely to be outliers, which

are possible to attain but peculiar or atypical for most individuals from that group.

The proposed plausibility metric captures the individual’s group-level desirability

of the actions. Identification of G should be done with care to ensure that it will not lead
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to inadvertent discrimination across protected groups.

We are motivated by the fact that an individual is more likely to enact actions

that have led to approval for individuals in their exemplar group. We define groups

based on the prevalence of feature values. We start by clustering the approved profiles of

the group g from the training dataset into c clusters Sg =
{
S(1)
g , . . . ,S(c)

g

}
, where c is a

hyperparameter selected by a domain expert. The details of the main procedure are as

follows:

1. We estimate the density of each cluster S(i)
g ∈ Sg using the training dataset. We

cluster approved data samples from the training dataset and associate a coverage

score coverage
(
S(i)
g

)
to each cluster. The choice of clusters must satisfy:

1) Positive Coverage: coverage
(
S(i)
g

)
> 0 ∀ S(i)

g ∈ Sg,

2) Total coverage:
∑

S(i)
g ∈Sg

coverage
(
S(i)
g

)
= 1.

2. The number of clusters c is domain dependent and can influence the average plaus (·)

score. Please note that any choice of c should be identical across all the groups for

consistency of plaus (·).

For both the special cases of c = 1, and of c = |D+
g | where |D+

g | = |D+
g′ | : ∀g, g

′ ∈ G,

we have plaus (·) ∝ similarity (·). In the former scenario, we have 1 cluster per

group, and in the latter scenario, we have |D+
g | clusters for every g ∈ G.

3. Similarity score similarity
(
x̂0,S(i)

g

)
of the post-action feature profile x̂0 with

respect S(i)
g can be approximated using any ℓp norm based distance metric. We

choose ℓ2 norm-based distance metrics to estimate the similarity score for our
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experiments.

3.3.2 Measuring Plausibility Bias

Our formulation of plausibility draws on group level information, which requires

a closer look at differences across groups. Existing literature focuses on equalizing

recourse costs across groups [27]. However, fairness in terms of the traditional cost

function, which is approximated using a distance metric from the factual profile, may not

capture the unfairness in plausibility. To address this blind spot, we propose to capture a

straightforward notion of group-level unfairness in plausibility. We start with a measure

of the group-level plausibility-based unfairness measure for a classifier f .

Definition 3.3.1 (Expected plausibility). The expected plausibility of recourse for a

classifier f : X → {±1} over H− is: plausH− (f) = E [H−,D+] plaus (x̂0,S0), where x̂0

is the post-action feature profile resulting from solving the optimization problem in (3.2).

Definition 3.3.2 (Group plausibility bias). The group-level plausibility unfairness of a

classifier f for a dataset D is measured as: ∆P := maxg,g′∈G

∣∣∣∣plausH−
g
(f)− plausH−

g′
(f)

∣∣∣∣ .
where plausH−

g
(f) is the group average of plaus (x̂0, f) : ∀ x0 ∈ H−

g .

This chapter advocates for equalized plausibility across protected groups. We

propose an optimization-based modeling procedure we call “Fair Feasible Training” (FFT)

to train a model with an additional bias constraint. We now alleviate the effects of

plausibility bias. [27] equalizes recourse action costs across groups, while we propose to
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Standard Training Proposed Training

Model Method Succ.

Rate

Avg.

Tim.

Con.

Vio.

Red. Pro. Spa. Succ.

Rate

Avg.

Tim.

Con.

Vio.

Red. Pro. Spa.

GS 1.00 0.03 0.00 2.63 1.14 4.97 1.00 0.03 0.00 2.10 1.24 5.05

Wachter 1.00 0.05 2.00 3.20 1.25 6.94 1.00 0.05 2.00 1.77 1.42 6.95

N.N. AR(-LIME) 0.51 1.72 0.00 0.00 1.34 1.60 0.76 1.94 0.00 0.00 1.31 1.50

CCHVAE 1.00 0.11 3.73 7.82 3.11 8.64 1.00 0.28 3.74 7.80 3.13 8.64

FACE 1.00 4.37 4.81 6.63 4.35 7.84 1.00 4.46 4.66 6.39 4.34 7.79

GS 1.00 0.02 0.00 2.30 1.50 5.32 1.00 0.02 0.00 2.19 1.74 5.59

Wachter 1.00 0.05 2.00 2.00 1.38 6.94 1.00 0.06 2.00 1.43 1.69 6.92

L.R. AR 0.80 1.84 0.00 0.00 1.81 1.98 0.80 2.14 0.00 0.00 1.52 1.64

CCHVAE 1.00 0.17 3.74 8.78 3.77 9.29 1.00 0.22 3.71 3.33 3.91 9.41

FACE 1.00 4.29 4.72 6.57 4.42 7.87 1.00 5.83 4.69 6.11 4.49 7.71

Table 3.1: Overview of recourse actions for models trained using baseline methods and our approach

on the Adult Income dataset.

Reference– Succ. Rate: Success Rate, Avg. Tim.: Average Time, Con. Vio.: Constraint Violations, Red.:

Redundancy, Pro.:Proximity, Spa.: Sparsity.
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train models that equalize recourse across latent groups by including ∆P as part of the

model training procedure.

Definition 3.3.3 (Fair Feasible Training). Given a dataset D =
{(

x(i),y(i)
)}n

i=1
and

ϵ > 0, we train a feasibly fair classifier f by solving the following optimization problem:

min L (x, y)

s.t. max
g,g′∈G

∣∣∣∣plausH−
g
(f)− plausH−

g′
(f)

∣∣∣∣ ≤ ϵ.

(3.5)

where L (x, y) is overall loss aggregated across D and we approximate plausH−
g
(f) using

plausD−
g
(f) during the training process. plausD−

g
(f) measures the mean distance of

denied individuals of group g to their approved group counterparts, using the training

dataset.

The main idea for this approximation is to equalize the spread between approved

and denied sub-populations across groups during model training. With the proposed

optimization, any existing recourse methodologies can be used to achieve equalized

group-level plausibility across groups. An alternate approach of post-training based

technique carries the risk of increased recourse costs for disadvantaged groups.

3.4 Experiments

In this section, we present empirical results to show that the traditional ap-

proaches for recourse provision lead to plausibility bias and that our proposed approach

(FFT) can mitigate these effects.
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(a) Comparison chart of plaus(·) (f) (b) Stacked distribution of plausD+
(·)
(f)

Figure 3.3: plaus(·) (f) of various recourse techniques for gender and race groups. For reference,

plausD+
(·)

(f) for training data is also shown in image (a). Image (b) visualizes distributional differences

of plausD+
(·)

(f) across immutable groups.

(b) Standard training (c) Fair Feasible Training

Figure 3.4: Stacked distribution of plaus(·) (f) illustrates the distribution of plausibility scores across

groups.
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3.4.1 Setup

We train two kinds of classification models on the Adult Income dataset: Neural

Networks (NN) and Logistic Regression (LR). For each model class, we fit a model using

a baseline algorithm that optimizes cross-entropy loss and another using our proposed

risk minimization in (3.3.3) utilizing the Male and Female sub-populations as the

constraining groups. The NN models contain three layers of [18, 9, 3] nodes with ReLU

activation functions, a standard drawn from the CARLA [60] recourse package. All

models achieved comparable accuracy on the holdout set: the standard and constrained

NN models denoted by θbasenn , θfairnn saw 78.8% and 79.4% accuracy, respectively. While

the standard and constrained LR models denoted by θbaselr and θfairlr saw 79.2% and 78.6%

accuracy, respectively. We chose sex_Female as our protected group for our experiments.

Recourse methods. Although our experiments focus on one protected group, we note

that the selection of groups can be parameterized to capture all the necessary groups. For

all models, we then calculated a variety of recourse options on a sample of 500 adversely

impacted individuals. Recourse Methods used for our experiments are: Wachter [86],

Growing Spheres (GS) [49], Actionable Recourse (AR) [82], Feasible and Actionable

Counterfactual Explanations (FACE) [63] and CCHVAE [62].

3.4.2 Results & Discussion

We provide evidence of several forms of plausibility bias. For instance, we

identify that a particular feature distribution of a population categorized by strategically
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(a) NN model: costH− (f) (b) NN model: plaus−1
H− (f)

(c) LR model: costH− (f) (d) LR model: plaus−1
H− (f)

Figure 3.5: Feasibility performance metrics for NN and LR models across a variety of recourse methods.
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identifying protected groups shows idiosyncrasies across these groups.

On Group Level Effects Firstly, we show that feature distributions vary signifi-

cantly at the immutable feature level. The distribution of age, education-num and

hours-per-week for the Adult Income [21] dataset, when stratified by group shows

the distributional uniqueness of individual protected groups (corresponding figures are

included in the Appendix). For example, we observe twin peaks for single woman in

education-num, which suggests that any recourse that lands the individual in the

low-frequency region may not be actionable. The similar small second peak for single

woman can be observed for hours-per-week feature.

Recourse Performance Metrics. Our results in Table 3.1 show that performance is

remarkably consistent for FFT. Although FFT often incurs longer recourse generation

times (seeing an average 24.6% increase in run time across recourse methods), it con-

sistently identifies recourse that shows lower redundancy (an average 31.7% reduction).

This is somewhat surprising; although we hypothesize that FFT learns more separable

data representations, which may impact the ultimate redundancy of generated recourse.

We observe that overall proximity costs are not significantly affected by FFT. Rather,

FFT constrains the ultimate recourse to be feasibly fair to protected groups. Although

recourse proximity fairness is not explicitly included in the cost function, we suspect

the ultimate gains in proximity fairness result from learning a max-margin classifier on

underlying fair representations.
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Standard Training Exhibits Plausibility Bias. Figure 3.3 (a) shows plaus(·) (f) for

the recourse actions generated by Wachter, GS, AR, FACE. Figure 3.3 (b) further shows

the distributional differences of plaus(·) (f) at an individual level for the raw dataset.

FFT moderates Plausibility Bias. We compare the plaus (·) distributional differ-

ences across individuals based on their prediction, group, true label, and model. We

observe from Figure 3.4 that the proposed training induces a consistent uni-modal plaus (·)

distribution across groups, while standard training results in bimodal feasibility scores

where female individuals in particular, see higher feasibility costs. To assess the fairness

performance of FFT, we compare:

• Expected recourse cost of a classifier [82], costH− (f): measured as the average ℓ2

distance x̂0 and x0, of the protected groups used to constrain the training process.

• Expected Plausibility of a classifier (Definition 3.3.1), plausH− (f): measured as the

inverse average ℓ2 distance of x̂0 and corresponding exemplar set S0 of its associated

positive group.

Our findings are shown in Figure 3.5. We observe that for both model families, FFT

consistently provides recourse that is fairer in terms of plausibility and the overall cost.

3.5 Concluding Remarks

In this chapter, we outlined a new approach to account for latent groups in

applications where we wish to provide recourse. In particular, we developed machinery

to identify such groups from data and studied the implicit disparity in plausibility across
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these groups. For example, suggesting naive and arguably famous recourse action of

increasing the working hours to a single parent is not feasible. We proposed a method to

train classifiers to mitigate these effects and demonstrated their capacity in practice.

Limitations. Group-level plausibility may not ensure individual actionability [45].

Our proposed approach may also exacerbate the cost of recourse. Our study raises the

question of whether it is sufficient for a recourse to change the model’s decision or whether

a recourse improves the affected individual’s overall group-level profile.

Related Work. This work is related to a previous study [40] where the authors

referred to it as believability or realizability of recourse and refers to the likeness of the

counterfactual profile resulting from the suggested set of actions. [37] refers plausibility

as (i) domain-consistency; (ii) density-consistency; and (iii) prototypical-consistency.

Providing recourse based on manifold learning [62] motivates us to utilize underlying

group distributions for suggesting group-level data-dependent recourse that accounts for

group-level actionability patterns [92]. Manifold-based CCHVAE [62] generates high-

density counterfactuals using a latent space model. However, there is often no guarantee

that the what-if scenarios identified are attainable. Another line of research [37] leverages

causal knowledge [40] to identify recourse via minimal interventions. Taking causal

knowledge is beneficial for identifying a recourse; however, the true underlying structural

causal model is often unavailable [41].

Density-based soft constraints are essential for capturing group-level feasibility

signals. FACE [63] follows high-density paths to produce feasible counterfactual explana-
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tions, establishing the necessary condition of density for a feasible recourse. However, such

feasible paths may not exist for certain groups if the approved and denied sub-populations

are significantly farther apart than other groups. Other studies that learn from the

dataset’s underlying structure include REVISE [34] and CRUDS [19]. However, existing

literature does not consider the distributional differences across groups while suggesting

a recourse leading to plausibility bias across groups. We differ from existing literature,

which prioritizes distance to the decision boundary by evaluating the actionability of

recourse with respect to the distance to H+.
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Chapter 4

Conformal Recourse Actions Framework

4.1 Introduction

In this chapter, we propose a novel framework to provide recourse actions set

to an adversely affected individual with guarantees of user acceptance and additionally

such recourses are model-agnostic. Decisions made by ML models have the potential to

significantly impact the lives of individuals, and these decisions can often be undesired by

a group of individuals, causing detrimental effects to the overall well-being of the society.

Generating a recourse is an expensive process with a variety of complexities [37],

including, but not limited to, knowledge of the decision making model [35, 61], individual

preferences [93] or group-level information [92], group-level recourse plausibility [94],

extensive computations such as integer programming [82] for a low-cost recourse. Several

critical issues are often overlooked by any state of art recourse generation mechanisms.

Firstly, the pivotal dependency on the training datasets leading to non-transferablility
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Figure 4.1: Side by side comparison of the state-of-the-art recourse mechanisms and the proposed

conformal recourse framework. Any two ML models in the same domain can have their own recourse mech-

anisms. We provide an essential framework to distinguish and provide a separate recourse mechanisms

from ML models.
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across models within the same domain. Secondly, there is an apparent inability to

understand behavioral patterns in capturing the true cost of actions which is still an

active research area. Third, these action selection patterns are dependent both on

unpredictable macro-level economic policies and micro-level patterns of user action

selection behaviors. Lastly, existing methods do not provide any guarantees of acceptance

of an action by the user.

This chapter aims to address these issues with a model-independent entity

which holds the responsibility of action suggestion. Specifically, with this chapter, we try

to answer the following question:

• Can we provide an audit-able model-agnostic set of recourse actions with guaranteed

user acceptance?

Here, audit-ability refers to the provision of an independent ethical agency that

oversees the performance of the (model) suggested recourse for any domain. Note that

this entity does not require any knowledge about the model parameters. The notion of an

independent entity can solve training dataset associated bias for the models. Furthermore,

from an anonymous survey, we identified that an overwhelming majority of approximately

67% of individuals trusted an independent entity to provide a recourse.

Although it is certainly possible to provide a set of actions that are both audit-

able and model-agnostic; guaranteeing user acceptance is a more challenging task that

can be achieved by strategic consideration of a calibration dataset and leveraging the

recent findings of conformal prediction literature in the domain of machine learning.

Conformal prediction [72, 2] provides a set of predictions that is guaranteed
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to contain the true prediction with high probability. In this chapter, we provide the

foundational framework for the extension of conformal prediction to providing high

probability recourse actions set.

This chapter discusses and addresses the foundational challenges for the im-

plementation of conformal literature in the domain of algorithmic recourse. We focus

primarily on identifying a set of actions R from a finite set of presupposed actions catalog

A for any model specific to a domain. Our procedure deviates from existing techniques

in terms of action acceptance guarantees. We provide the set R with high probability

guarantees of user acceptance. We also include experimental results with real-world

datasets, followed by an analysis and discussion section.

4.1.1 Preview of main results

The goal of this chapter is to provide a set of action recommendations to

an individual adversely affected by a binary classifier model f : X → {−1,+1} with

guaranteed probability of action acceptance, where X ∈ Rd denotes the input space. Each

action a is a vector representing the modifications of the characteristics necessary for an

individual represented by a feature vector x ∈ X .

For this chapter, we assume the availability of a calibration dataset Dcal =

{(xi,ai)}ni=1 which consolidates feature(denied)-action(approved) pairs, where f(xi) = −1

and ai is the action accepted or desired by the user, where f(xi + ai) = +1. We assume

that ai is both valid and feasible, where validity implies that f ’s decision was “flipped”

and feasibility implies that xi was able to perform the feature modifications suggested
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by ai.

In this work, we extend the conformal prediction to sets of recourse actions

where emphasis is on the desirability of the action. Our proposed Conformal Recourse

AcTions Framework (CRAFT) provides a set of recourse actions R (xn+1) to an adversely

affected individual xn+1. We intend to strategically design R (xn+1) such that it contains

the desired action an+1 with high probability. R (xn+1) ⊂
{
a(1), . . . ,a(k)

}
is a function

of n calibration data points which outputs an actions set.

CRAFT constructs actions set intended to find the miscoverage of an unseen

feature-action combination (xn+1,an+1) with guarantee:

Pr (an+1 /∈ R (xn+1) | xn+1) ≤ α (4.1)

Probability (4.1) is over the randomness of n + 1 data points, obtained using the

intuitiveness of the conformal prediction literature [2]. We further extend this result for

a miscoverage penalty function ∆ : R× X → R, which measures the penalty incurred

due to not suggesting the optimal action in R.

Formally, if an+1 is the desired (optimal) action for xn+1 and an+1 /∈ R (xn+1),

then for any configurable lower bound z1 and upper bound z2 penalty for ∆, we provide

guarantees for the penalty ∆(R (xn+1),an+1) of the following form:

Pr (z1 < ∆(R (xn+1),an+1) < z2) ≤ α (4.2)

The significance of the result becomes evident from the following observation:

Pr (∆ (R (xn+1),an+1) = 0) ≥ 1− α (4.3)
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Remark 1. R (xn+1) takes in a feature vector xn+1 which represents an individual who

has received an unfavorable model decision, and outputs a set of actions.

Moreover, R (xn+1) is adaptive to the individual feature vector. A typical

R (xn+1) becomes smaller as it becomes harder for xn+1 to obtain an action and vice

versa. We illustrate the conceptual idea using the right hand side diagram in Figure 4.1.

Our contributions with this chapter include the following.

• We introduce the notion of probability of action acceptance Pr (a|x) and provide a

straightforward technique for its implementation.

• We propose a general-purpose frequency-based approach to consolidate a representative

action catalog R.

• We develop a framework to provide set of formal recourse actions that guarantees the

existence of the desired action with high probability.

• We provide empirical evidence for the efficacy of our approach using experiments with

real-world datasets.

4.1.2 Related Works

Algorithmic Recourse. ML’s proliferation into high stakes decision making domains

such as banking, healthcare and recourse allocation has inspired the field of Algorithmic

Recourse [82, 39], and Counterfactual Explanations [61, 87, 48].

Recourse mechanisms typically follow an optimization principle for action

suggestion. For example, AR [82] follows the principle of identifying a low-cost feasible
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action and FACE [63] identifies a high-density feasible action, etc.

Given an individual with features x such that f(x) = −1, AR returns an action

a that achieves recourse by solving the following optimization problem:

min
a

x,a

s.t. f(x+ a) = +1,

a ∈ A (x) .

(4.4)

Here, x,a : A (x) → R+ is any cost function used to capture the difficulty of

taking a set of actions a by an individual represented by x and A (x) is the set of feasible

actions for x.

The performance of such mechanisms is typically measured two fold: (i) success

rate in terms of the fraction of adversely affected individuals who were provided with

an action, and (ii) average cost which measures the average difficulty of the suggested

actions.

Conformal prediction. The notion of conformal prediction introduced by conformal

provides a distribution-free and statistically rigorous uncertainty quantification in algo-

rithmic randomness. This mechanism has recently gained popularity [72, 2] due to its

intuitive integration into algorithmic models.

Using the calibration data Dcal with n data points, conformal prediction con-

structs an uncertainty set C, that guarantees to include the true prediction with high

probability:

Pr (f(xn+1) ∈ C | xn+1) ≥ 1− α (4.5)
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Recent studies have explained distribution-free reliability guarantees for a model

[4] using conformal prediction, which is extended further to conformal risk control [3] for

ordinal classification [89], gender-balanced conformal prediction [5] and class-conditional

conformal prediction [18].

4.2 Methodology

We divide this section into four parts: the first subsection discusses the required

preliminaries and background information, the second subsection specifies the procedure

to quantify the heuristic notion of uncertainty within the acceptance of an action a for

an individual x and the third subsection follows the conformal prediction framework to

consolidate R (x). And finally in the fourth section, we provide theoretical guarantees of

the proposed methodology.

4.2.1 Preliminaries

The two components discussed in this subsection are:

(i) Identifying a fixed action catalog A, and

(ii) Constructing the calibration dataset for uncertainty estimation.

Action catalog A. Traditionally, recourse actions are tailored specifically for an

individual. For the scope of this chapter, we consider that these actions are selected from

a presupposed set of meaningful actions which covers a broad range of individual profiles.

These actions can vary from a minor change in a real valued feature to a major change
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in the categorical features.

We formulate the problem of action suggestion as a classification framework

with a finite actions space A. The first challenge is to identify a fixed catalog of actions

A which contains k actions, which can be generalized across various models. A domain

specific standard A can be identified by a domain expert or simulated using historical

data (if available).

For example, in credit lending domain, an action a ∈ A can be of the form

“reduce the loan amount by $500 and close 1 existing loan”.

The catalog A can be selected either based on the popularity of certain actions

or by post processing a random sample of a fixed set from all the previously observed

suggested and accepted actions. Or, an alternate procedure is to capture A by selecting

centroids from k-means clustering of the approved subspace.

Calibration data Dcal. The sanctity of calibration dataset is pivotal to the conformal

literature. The second challenge of our framework is gathering calibration data Dcal. For

our context of conformal action sets, Dcal is formally defined as:

Dcal =
{
(xi,ai) : f(xi) = −1, f(xi + ai) = +1,ai ∈ A

}n
i=1

(4.6)

Here, for any data point (xi,ai) ∈ Dcal, we assume ai ∈ A. In this chapter, we

synthetically generate an action âi /∈ A for every xi and map âi to the closest ai ∈ A.

For simplicity, we assume that Dcal remains fixed in this chapter, which can be easily

extended for a dynamically evolving Dcal as discussed in conclusion section of this paper.
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4.2.2 Acceptance Probability

This subsection includes the essence of our work which is rooted in introducing

the notion of Acceptance Probability of an action Pr (a | x), which is defined as the

probability that the action a is preferred (desired) or accepted by the individual x. We

know that:

Pr (a | x) = Pr (x | a)Pr (a)
Pr (x)

(4.7)

We begin by estimating the essential components of Pr (a | x).

(i) Pr (x | a). The first term in the numerator on the right hand side Pr (x | a)

represents the probability of a feature vector x conditioned on the action a. An individual

can select any action and an action can be preferred by a range of individuals. We

know that if an individual x selects an action a, then the cost of taking the action a is

minimal.

Let cost(a | x) define the difficulty of taking the action a suggested by the

individual x with respect to the underlying population. cost(· | ·) is typically measured

using the total log-percentile shift introduced by [82], since it can accurately reflect the

difficulty in taking actions in the target population and captures the notion of increasing

the difficulty of action with features valued at a higher percentile.

For our presupposed cost(a | x), we observe that:

Pr (x | a) ∝ − cost(a | x) (4.8)

Essentially, the farther the post action profile x + a from x, the lower the
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chance that the individual x chooses the action a and vice versa. This is due to the

fact that a low cost action is always preferred by the user and if a is selected by her the

chances of x being closer is higher. However, the other way around may not hold since

several low cost actions are possible for x.

Let quantile-shift (a | x) be estimated using any normalization based technique

which transforms the raw percentile shift scores into probabilities, and we define:

Pr (x | a) := − quantile-shift (a | x) , (4.9)

where,

quantile-shift (a | x) = cost(a | x)∑
b∈R(x) cost(b | x)

(4.10)

(ii) Pr (a). The second term in the numerator on the right hand side in (4.7) refers

to marginal acceptance probability of action Pr (a) which fundamentally represents the

prevalence of the action a. Pr (a) can be effortlessly approximated from the calibration

dataset as:

Pr (a) ≈ 1

n

n∑
i=1

1 {(xi,ai) : ai = a} (4.11)

Pr (a) becomes critical in analyzing whether a is preferred or not, irrespective

of its relative cost. For example, an action suggesting to increase the MonthlyIncome

by $100 may seem easy to modify, but could be ineffective or infeasible (consider the

case of a fixed salaried employees or people with fixed social benefits check).

(iii) Pr (x). The third term Pr (x) is estimated using a probability density function over

the distribution of individual features X . We can obtain Pr (x) using a straightforward
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approach of approximating the density of the region around the individual profile x

within the calibration data.

Pr (x) = Pr (X = x) (4.12)

Similar recourses suggested to different individuals are not equally actionable.

This is exacerbated when sensitive (and often hidden) features are strongly correlated

with other features. For example, [22] found that race has a profound correlation with

the level of education of the individual. Such idiosyncrasies can be handled using Pr (x).

Pr (x) and Pr (a) are approximated using Dcal, which can potentially be im-

proved by a larger n and adaptive Dcal. Now, substituting (4.9), (4.11) and (4.12) into

(4.7) gives us Pr (a | x). We are now equipped to generate R (x) in the next subsection.

4.2.3 Steps for Constructing action sets

Pr (a | x) gives us the acceptance probabilities of all a ∈ A across all the data

points in Dcal. Notice that Dcal and {xn+1,an+1} have the principle of exchangeability,

meaning that their joint distribution does not change for any permutation of the data

points. In simple terms, the distribution does not depend on the order of the individuals

in Dcal. We now utilize the conformal predictions framework to form action sets, which

we will discuss in the following steps.

(i) Quantifying uncertainty for recourse actions. Pr (a | x) introduced in the

previous subsection is an easy-to-understand concept designed to effectively convert the

difficulty of the action into probabilities. Minimal percentile shift action resonates with

81



a small intervention or an easy action, which is synonymous with a higher probability of

acceptance. We leverage acceptance probability in this step, as the conformal literature

[5] is not associated with any specific notion of uncertainty quantification.

(ii) Defining a nonconformity score function. A nonconformity score function

s : X × X → R represents the error in the action suggestions. s can be straightforwardly

obtained using:

s(x,a) = 1− Pr (a | x) (4.13)

We note that the magnitude of the scoring function does not have a meaning

[5]. It is simply a measure of discrepancy of a new example from Dcal. We will now use s

to identify the empirical quantile of the required error rate.

(iii) Computing the calibration quantile. For any required error rate α ∈ [0, 1],

the probability that the suggested conformal action set contains the desired action is

almost exactly 1 − α. We determine an empirical quantile q̂ of the calibration scores

s1 = s(x1,a1), . . . , sn = s(xn,an) as.

q̂ = inf

{
q :

|i : s1 ≤ q|
n

≥ ⌈(n+ 1)(1− α)⌉
n

}
(4.14)

(iv) Selecting actions set. Finally, utilizing the empirical q̂ for an unseen individual’s

feature vector xn+1, we create the conformal action set as:

R (xn+1) = {a : s(xn+1,a) ≤ q̂} (4.15)

Here, R (xn+1) includes all actions from the catalog with sufficient score, which
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guarantees the existence of the desired action with high probability. For example, with

α = 0.05, an+1 is guaranteed to be in R (xn+1) with probability at least 0.95.

4.2.4 Theoretical analysis

In this subsection, we provide guarantees for both the coverage of optimal action

and the miscoverage penalty of conformal recourse for not suggesting the optimal action.

Remark 2 (Conformal recourse coverage). Let {(xi,ai)}i=1,...,n and (xn+1,an+1) be

independent and identically distributed. For q̂ and R defined as (4.14) and (4.15)

respectively, we have:

Pr (an+1 /∈ R (xn+1) | xn+1) ≤ α (4.16)

Assumption 1. For an individual xn+1, each feasible action a(i) ∈ A is associated with

a predetermined maximum percentile shift, that is, cost(a(i) | xn+1) ≤ δi.

Each action a(i) ∈ A is associated with a certain cost of action for the individual

xn+1. (1) assumes that the cost of a particular action is bounded for any individual

feature vector x. An expensive action reduces the likelihood of its feasibility. Here

feasibility implies that not the actions in R (x) are feasible due to the fact that the

actions are highly individual feature dependent.

Feasible cost amplification. We define feasible cost as the cost of feasible actions for

xn+1 in R (xn+1). Here, the set of feasible actions within the set R (xn+1) is denoted by

RF (xn+1). Our next result bounds the feasible cost amplification due to miscoverage.
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We measure feasible cost amplification as the additional cost of actions an

individual incurs due to miscoverage of the preferred action. For simplicity, we measure

the increase in cost of action in terms of cost(· | ·) with respect to the actions in RF (xn+1).

Definition 4.2.1 (Miscoverage penalty). The feasible cost amplification ∆(R (xn+1),an+1)

of an action set R (xn+1) is defined as:

∆(R (xn+1),an+1) = minb∈RF (x)

{
cost(b | xn+1)− cost(an+1 | xn+1)

}
(4.17)

cost(· | ·) is any general purpose cost function to measure the action cost of

a for x. We also refer ∆(R (xn+1),an+1) as the miscoverage penalty of the action set

R (xn+1) for not including the desired action an+1. In line with the existing literature,

we assume an+1 to be the least cost recourses (arguably preferred by the user).

Theorem 1. The cost amplification ∆(R (xn+1),an+1) due to miscoverage of desired

action an+1 is bounded by:

Pr (δmin < ∆(R (xn+1),an+1) < δmax ) ≤ α (4.18)

Proof. To prove Theorem 1, we start by observing the equality of the following two

events:

{an+1 /∈ R (xn+1)} = {∆(R (xn+1),an+1) > 0} (4.19)

The left-hand term implies that the preferred low-cost action an+1 is not

covered by R (xn+1) and the right-hand term implies that the cost amplification due to

miscoverage is non-zero.
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We note that the cost is only amplified when the preferred action is not covered

by R (xn+1) and is 0 otherwise. We will now bound the term ∆(R (xn+1),an+1).

The first edge case event to get a lower bound occurs when cost(an+1 | xn+1) =

δmin. And using the definition of ∆(R (xn+1),an+1), we have:

∆(R (xn+1),an+1) > δmin (4.20)

Moreover, the other edge case scenario happens when R (xn+1) contains an infeasible

action and an+1 is actually a high cost action then:

∆(R (xn+1),an+1) ≤ δmax − δmin (4.21)

∆(R (xn+1),an+1) can now be upper bounded by the maximum quantile shift for any

action denoted by δmax, i.e.,

∆(R (xn+1),an+1) < δmax (4.22)

Now, combining both (4.20) and (4.22), we get the following:

δmin < ∆(R (xn+1),an+1) < δmax (4.23)

From (4.19) and (4.23), we can equate the two events as follows:{
an+1 /∈ R (xn+1)

}
=

{
δmin < ∆(R (xn+1),an+1) < δmax

} (4.24)

Now using Remark 2, we obtain Theorem 1.

Additionally, from the definitions of δmin and δmax, we have a direct observation

following Theorem 1:

Pr (∆ (R (xn+1),an+1) = 0) ≥ 1− α. (4.25)
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Table 4.1: An EASY instance xi with a lower value for PastDue. In this example, note that a(6) and

a(7) are infeasible for x. a(1) is the optimal choice.

Features Current Values
Actions set

a(1) a(2) a(3) a(4) a(5) a(6) a(7)

PastDue 5 -2 -2 -3 -4 - -6 -

Income $8,883 +$592 - +$690 +$50 +$3,570 - +$6,539

Credits 14 - +1 - - - +1 +1

Loans 0 - - - - - - -1

Result (4.25) implies that our framework provides action sets that guarantee non-

amplification of feasible cost with high probability.

4.3 Analysis and Results

This section presents empirical evidence to show the effectiveness of the proposed

framework for conformal action sets. We perform our experiments on three real-world

datasets which focus on banking or lending domain. Our experimental goals are as

follows:

• To analyze the empirical coverage of the action sets generated from the proposed

framework on real world datasets.

• To show that the generated conformal action sets are adaptive across the population
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Table 4.2: A HARD instance xj with a higher value for PastDue. a(1) is the optimal choice. Reference

for this example is shared with Table 4.1.

Features Current Values
Actions set

a(1) a(2) a(3)

PastDue 7 -4 -6 -5

Income $6,265 +$50 - +$70

Credits 14 - +1 -

and also across sub-populations.

• To analyze the adaptability of action sets using qualitative examples.

4.3.1 Setup

Datasets. We train Logistic Regression models for a binary classification task on

processed versions [82] of the three datasets: (i) german [9], (ii) credit [91] and (iii)

givemecredit [36]. Here GoodCustomer, NoDefaultNextMonth and SeriousDlqin2yrs

are the corresponding target labels for german, credit and givemecredit datasets,

respectively. For GoodCustomer and NoDefaultNextMonth, 1 is the desired positive

prediction whereas, for SeriousDlqin2yrs, 0 is the desired prediction; an individual

is adversely affected if their prediction is otherwise.
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Figure 4.2: Histogram of the Conformal scores. The top (a), (b), (c) sub-graphs are for the LR model,

and the bottom (d), (e), and (f) sub-graphs are for the RF model.
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Figure 4.3: Distribution of average empirical coverage across 1000 independent runs. The top (a), (b),

(c) sub-graphs are for the LR model, and the bottom (d), (e), and (f) sub-graphs are for the RF model.
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Figure 4.4: Conformal Recourse Set sizes over a sample of 1000 independent random data splits for

german, givemecredit and credit dataset. The top (a), (b), (c) sub-graphs are for the LR model,

and the bottom (d), (e), and (f) sub-graphs are for the RF model.
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Figure 4.5: Conformal Recourse Set sizes stratified based on gender for german, age (≥ 25) for

givemecredit and age (< 25) for credit datasets respectively. The top (a), (b), (c) sub-graphs are

for the LR model, and the bottom (d), (e), and (f) sub-graphs are for the RF model.
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Baseline models. We perform our analysis on the Logistic Regression (LR) and

Random Forest (RF) classifiers. Each type of model is trained with three different datasets

discussed above. The results provided differs only in the score function while estimating

Pr (x | a), with an additional criterion of the action being valid i.e., f(x+ a) = +1

Nonconformal scores. The number of individuals adversely affected by the models

decision are 864, 2369 and 1678 for german, credit and givemecredit respectively.

Integer Programming technique of [82] is used to secure a low-cost recourse action for

our models, which we consider to be the desired action. A fixed action catalog A with

40 actions is randomly selected for the three datasets separately. The choice of k = 40

to denote the size of A is made using human judgement using some domain knowledge.

The size n of Dcal for each dataset is set to 70% of their corresponding number of

denied individuals. And the remaining 30% denied individuals are used to evaluate our

framework. The results shown in this section are an average of 1000 independent random

data splits across the datasets, and the results are reported for α = 0.05.

4.3.2 Analysis

Coverage. We show the distribution of the conformal scores to capture the empirical

quantile in Figure 4.2. The average coverage across the three datasets for 1000 independent

runs is 95% with a standard deviation of 2%. An illustration of the distribution of coverage

across the runs is shown in Figure 4.3 and we notice that the coverage follows a normal

distribution with the empirical average centered around 1− α.
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Figure 4.6: User preference analysis chart from an anonymous survey. The survey concludes that most

people trust an individual entity to provide actionable recourse regardless of the existing ML model

.

Adaptive sets. Figure 4.4 shows the adaptability of the set sizes using a histogram

plot. Although there are 40 actions in A, our mechanism provides fewer individuals with

larger set sizes. We notice a high frequency of smaller set sizes across the datasets.

Table 4.1 illustrates an easy instance from the givemecredit dataset and

the corresponding actions set. The action a(1) highlighted in green is the true desired

action. On the contrary, Table 4.2 contains a hard instance with a relatively smaller

actions set. The hardness of the instance can be observed in the higher value of 7 for the

feature NumberOfTime30-59DaysPastDueNotWorse.

Please observe that not all suggested actions are feasible for an individual.

However, our high-probability guarantees ensure the coverage of true action in the

suggested actions set. With a finite space A, the actions set R (x) suggested for x can
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contain infeasible actions. For example, in Table 4.2, actions a(6) and a(7) are infeasible.

Here in a(6), NumberOfTime30-59DaysPastDueNotWorse can not be lower than 5

and in a(7), NumberRealEstateLoansOrLines can not be negative.

Group-stratified adaptive sets. In addition to the previous results, we show the

adaptability of recourse set size and further show group stratified set sizes. The sub

populations selected to analyze the performance of set size adaptability are: (i) male and

female groups for german dataset, (ii) age ≥ 25 and otherwise for givemecredit

dataset and (iii) age < 25 for the credit dataset.

For further analysis, we plot Figure 4.5, which illustrates the distribution of set

sizes using group-stratified histogram plots.

4.4 Discussion and Conclusion

With ever evolving modeling and decision making environments, the assumption

of a fixed Dcal over a period of time may become impractical in several critical domains.

This can be addressed using a strategically evolving dynamic Dcal, which gets updated by

one of the following design choices: (i) replacing an oldest entry with a recent successful

(x,a) pair, or (ii) frequency weighted score function to capture the desirability via

popularity of any denied profile and recourse combination.

Distributional shift in A. Calibration dataset is initially synthesized using in-house

techniques. However, as test instances are obtained, the calibration data can be re-
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evaluated in the same manner as distributional drift. After ℓ test samples with available

user recourse selection Dcal = {(xi,ai)}n+ℓ
i=ℓ . We can either pick a rolling window of m or

a domain specific smooth decay:

w(1)
i = 1 {i ≥ m− ℓ} or w(2)

i = 0.99m−i+1 (4.26)

Validity of suggested Actions. The idea of an independent entity suggesting a

recourse raises a critical question of whether the recourse is valid across models. Here,

validity refers to the fact that if the individual acts on the recourse, the model provides

a favorable decision.

Future work in this direction must consider a cost tolerance threshold δ for each

model, which means that the models must be flexible enough to accommodate δ while

making a favorable decision to an individual.

Our proposed framework can also help reduce modeling bias by segregating the

recourse mechanism from a model. To enforce the models to be fairer, δ can be bounded

for each model and a model exhibiting a higher δ signals modeling bias.

Anonymous User Survey. To understand the choice of recourse mechanism entity for

building trust for ML models into the society, we conducted an anonymous one question

survey.

The goal of this survey was to analyze if the proposed framework of an indepen-

dent entity can help build trustworthy framework of accountability and user acceptance.

We asked participants if they preferred the model provider or an independent entity to
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provide actionable recourse. Specifically, the survey included the following question and

choices:

Consider that your loan application has been denied by the bank and you were

provided with a set of steps to take to get it re-approved. Who would you prefer and trust

to provide the said set of steps?

• The Bank who has your background information and an algorithmic system of loan

approval.

• Independent agency with knowledge about individuals and their preference for action

selection.

From the one-question survey, we observed that an overwhelming majority of

approximately 67% of the participants preferred an independent (ethical) agency to

oversee the data-driven recourse generation mechanism. The snapshot of the results of

our anonymous survey is illustrated in Figure 4.6.

Broader Impact statement. Our framework supports the notion of an independent

entity that supervises and audits the ethical aspects of the recourse mechanism for ML

models. Furthermore, such an entity can take the responsibility of providing a truly

model-agnostic set of actions, specifically calibrated for an individual with guarantees of

user actionability.

The proposed framework can accommodate action preferential effects due to
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dynamic macro- and micro-level policy changes. These effects are intuitively captured

by user action selections and dynamic calibration dataset. For example, with increasing

interest rates, individuals would prefer reducing the loan amount to getting a co-borrower.

Such action selection would be reflected in the proposed approach, but not with a fixed

policy of low-cost recourse.

Concluding remarks. We provide an essential toolkit for providing action sets with

guarantees of high probability of action acceptance. This system is essential in a black-box

setting of an ML model, where obtaining high quality model information or individual

preferences is challenging. Even with lack of such information, our novel, yet intuitive

framework can assist in providing high quality action sets with additional independent

audit benefits.

The action sets provided can also be used to understand the difficulty of

identifying an action for an individual. An individual closer to a decision boundary will

have a larger R compared to the individual farthest from the decision boundary. With

this chapter, we bring a new perspective to the generation and auditability of recourse

actions for ML models.
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Chapter 5

Parallelism of Counterfactuals to

Multifaceted Reformulations in

e-Commerce

5.1 Introduction

This chapter discusses other unexplored arenas where counterfactuals are appli-

cable for improving trustworthiness. We start this chapter by introducing the notion of

Loser search queries in an e-commerce domain and its parallelism to the counterfactual

literature.

The performance of search engines in e-commerce domain is measured by several

crucial business metrics like purchases and click-through rate. A drop in these metrics

indicates that user intent is not captured accurately. Here, precision measures how many

items retrieved are relevant and recall measures how many relevant items were retrieved.
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In this setup, there is an apparent vocabulary gap between sellers and buyers; making

retrieval problem extremely complicated. Improving user experience in by capturing

user’s search intent and retrieving relevant items from the inventory catalog is a core

e-commerce [70] problem.

A search engine retrieval system often employs a complex combination [81] of

Machine Learning (ML) models and human-defined rules that aim to return the list

of items that best interpret the user query. In a major e-commerce company eBay ,

approximately 25% queries over a span of 6 weeks result in zero or low relevant inventory

set in the Search Result Page (SRP). These are referred to as N&L queries for the rest of

the paper and suffer from a deteriorating user engagement.

Typically, a naive baseline N&L recovery [54, 81, 31] triggers a heuristic recovery

model, which matches empirically determined fraction of query tokens with the catalog

item titles and drops the rest of query tokens or terms (since matching all the tokens

provides insufficient recall set, which represents the set of items retrieved). This technique

can result in a better recall set while compromising on precision in query-item relevance.

For example, an N&L query, old flower decoration tea pot set might retrieve items that

match two tokens with the item titles regardless of the linguistic signals, which may not

even show the core source query intent of tea pot set.

Furthermore, we have identified multiple category interpretations for a significant

portion of search queries from user search logs at eBay . This suggests that deriving

multiple reformulations for a query and using it for retrieving additional relevant recall

can be highly beneficial when the original query is N&L. With diversity measured in
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terms of a category taxonomy derived from eBay inventory, we have identified that:

“Approximately 29% of user-issued reformulations (of the same source query, by the same

user, in the same session) belong to different item categories”. For example, womens

gothic clothing can be interpreted as both womens gothic dresses and womens gothic

skirts, the items of which belong to different categories. At a high level, the goal of the

proposed novel method is bifold:

1. Providing multiple alternative reformulations to enhance relevant recall for N&L

queries.

2. Ensuring that the reformulations are diverse to enhance user engagement.

Our key contributions with this chapter include:

1. We identify and consolidate the conceptual relations between counterfactual expla-

nations and N&L query reformulations. To the best of our knowledge, this is the

first work to study these similarities.

2. Formulating the N&L reformulation problem into an NMT-based framework, de-

signing a Multi-Seq2Seq model, and proposing a diversity-inducing optimization

function.

5.1.1 Related Work

Although seemingly straightforward, the search domain comes with several

inherent research problems such as query intent detection, personalized recommendations,

query expansion, query reformulation etc. Search engine also suffers from noisy buyer
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input such as misspellings, over-specification [47], under-specification, token reordering,

and unpopular synonyms. A recent study [81] provides the architecture of the search

engine. Query reformulation captures user intent and retrieves relevant items from the

database. An in-depth analysis of query reformulation based on query logs of a search

engine is studied by [30] and studies [32, 33, 57, 53, 24, 8] provides relevant literature on

query reformulation.

Statistical Machine Translation viewpoint for query rewriting has been explored

by [68], where the authors formulate the query reformulation problem as a monolingual

translation problem. Minimum risk training (MRT) [73] has been widely used to train

machine translation models, which aims to minimize the expected loss of the training

data. Recent works have also actively explored machine translation for query rewriting

[65, 11]. A similar approach is also previously studied for N&L query reformulation [79],

where the authors proposed a system to provide multiple reformulations to improve the

relevant recall performance of N&L queries. The widespread popularity and effectiveness

of NMT [76, 10] are also explored for query reformulation. However, these studies lack

the flexibility to capture inherent diversity in the reformulations.

An alternate field of study to identify a counterfactual [56, 84] instance (for a

given instance) to obtain an alternate desired decision from a machine learning model

has recently gained popularity for both robustness and explanation properties. To the

best of our knowledge, this is the first study to identify the optimization and conceptual

similarities between N&L reformulation and counterfactual explanation.
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5.2 Problem Formulation

Given a Search Engine (SE) that takes a user query q and retrieves the relevant

items from the database. With a fixed item index space and retrieval mechanism, we

identify q as N&L query if the number of items retrieved for q is less than a threshold

τ . Let SE (q) = {i1, i2, . . . , inq} be the set of items recovered and let f be a classifier

to identify if q is N&L or not such that: f (SE (q)) = 1 if nq < τ and 0 otherwise. If

f (SE (q)) = 1, a query reformulation procedure is triggered for q to retrieve items from

a reformulated query r with the minimum user intent disparity.

Let intentDisparity (q1, q2) mimic user intent disparity between two queries

q1, q2, and Γ(q) be the set of all plausible reformulations for q. Plausibility refers to

acceptable reformulation behavior such as term dropping or replacement. Traditional

N&L reformulation aims to identify r with minimum intent disparity [32] with the

user-specified query q.

A conservative solution is to recursively obtain r by dropping tokens from q

until nq ≥ τ , or until a pre-determined fraction of tokens has been dropped. However,

such a greedy approach makes it impractical, since we might lose semantic meanings

of the original query. A better solution is to train a deep learning model to learn

user-intent-driven behavior.

Nevertheless, these models still lack the capability of capturing the prevailing

ambiguity in N&L user query interpretations. This study aims to address such ambiguities

and improve user SRP experience for an N&L query by diversifying the items retrieved.
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Building on the existing deep-learning-based solution, we aim to obtain (at least) two

diverse reformulation by solving the following optimization:

argmin {r1, r2}
∑

i∈{1,2}

intentDisparity (ri, q) (feasibility)

s.t. f (r1) = 0, f (r2) = 0 (validity)

r1, r2 ∈ Γ (q) (plausibility)

λr1,r2 ≥ λ∗ (diversity)

where λr1,r2 is the diversity score between two reformulations r1 and r2. Here, λ∗ is the

pre-determined threshold representing minimum required diversity score. We consider:

λq1,q2 = 1− Jacc (q1, q2)

Note that the definition of λr1,r2 is domain dependent and our selection of the

Jaccard-based metric is motivated by ease of understanding. We use K grams (with

K = 3) based Jaccard similarity score defined as:

Jacc (q1, q2) = 3grm (q1) ∩ 3grm (q2)/3grm (q1) ∪ 3grm (q2) (5.1)

where 3grm (q) is the consecutive set of 3 character words from all the tokens in q. A

higher λq1,q2 implies greater diversity in items retrieved between the two queries.

5.3 Lessons from Counterfactual Explanations

A related field of study, Counterfactual Explanations [86, 23] provides the basis

for obtaining a desired prediction from an ML model. Counterfactual generation identifies

an instance closer to the data point, which can alter the model’s behavior. Consider
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a classification-based model g(x) which classifies an instance x to belong to class C1.

[86] solves to find a counterfactual x′ which belongs to class C2 ≠ C1 for x using the

optimization: argminx′ dist (x, x′) s.t. g (x′) = C2.

Our proposed optimization of N&L query reformulation is analogous to this

field of study. We consolidate the shared optimization similarities between counterfactual

generation and N&L query reformulation, prominent to this study:

1. Feasibility: If real-world implications of the ML model’s decision adversely affect

an instance, actionable recourse [83] provides the desired outcome from the ML

model. Analogously, the search science domain intends to capture user intent for

an N&L query and provide a reformulation. Feasibility of a reformulated query is

determined by its closeness to the source query. The higher the similarity of r with

q, the higher the feasibility of r.

2. Validity: A counterfactual, flips the model prediction from its prediction of

the original instance. The reformulation for an N&L query is similarly aimed

at improving the relevant recall set size to be at least τ . A valid reformulation

improves the user experience of an N&L query by increasing the relevant recall set

size.

3. Plausibility: A counterfactual is highly plausible with respect to the training

data. In search science space, plausibility can be interpreted as the acceptable

reformulation behavior. Examples of such behaviors are term dropping, synonym

replacement, or misspelling correction.
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4. Diversity: Given the randomness of counterfactual generation techniques, a wide

range of diverse counterfactuals [56] are possible for a given instance. A similar

observation of diverse user query interpretation is noticed between multiple user

reformulations for the same query.

5.4 Dataset Generation Framework

5.4.1 Training data considerations

We gather user behavioral data from the historical search reformulations with

improved user engagement. We extracted six weeks of search logs and constructed three

different versions of datasets based on the reformulation behavior with the following

steps.

5.4.1.1 SRP bursts

A user enters a search query q, then reformulates it to a reformulated query t1

and reformulates it again if necessary. We assume a user session to last for about 10

minutes and consolidate all the search information in that session into an SRP burst.

Every SRP burst signifies a sequence of successful user query transitions/reformulations

along with user engagement signals. Making the session longer might diverge users’

original intent. Thus by increasing the user burst size, we will only sample more 2 hop

pairs. For sampling more pairs, we increase the dataset window, instead.
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Data Source query Hop-1 query Hop-2 query

TD
apple watch nike sport band apple watch nike sport band apple watch nike sport band

vintage gothic shirts tight vintage gothic shirts tight vintage gothic shirts tight

TDCR
apple watch band official apple watch band nike apple watch band official

womens gothic clothing womens gothic dresses womens gothic leggings

TDR
apple watch sport apple watch nike apple watch nike se 44

vintage gothic vintage gothic dress vintage gown

Table 5.1: Real-world examples of user-reformulated targets from the training dataset extracted from

(real world) raw data Reference characteristics — Strikethrough: Dropped tokens, Red: Replaced

tokens, Blue: Added tokens

5.4.1.2 Data generation

Every consecutive hop-1 and hop-2 reformulations are considered to be valid

one neighbor and two neighbors (away) from the source query. For a user query q, let

the corresponding user-reformulated targets be t1 and t2. Acceptability of t1 and t2 is

established by an increase in user engagement, measured by a User Engagement Score1,

ueScore(q) for q. We use successful user engagement as an approximation for ground

truth from eBay’s standpoint. A typical ueScore(·) is a linear combination of multiple

signals like user clicks, active time spent, and actions like add to cart. A valid user query

transition shows a minimum increase of 10% (established by a domain expert).

• Independence of targets t1 and t2: For simplicity, we consider that both t1 and t2 are
1This is a highly confidential score and can not be shared outside of eBay. Readers can synthetically

estimate this for experimental purposes.
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conditionally independent. This is due to the fact that both the targets are derived

(with some minor modification) from the same source query q. Here, a user can go to

either of the targets from q, implying that t1 is not an intermediate query. This fact is

also backed by our manual inspections of the training dataset and sample examples

are illustrated in Table 5.1.

5.4.1.3 Capturing Diversity in user reformulations

With the criteria of a minimum Jacc (·) score between t1, t2 and q, both t1

and t2 are considered valid reformulations capturing the the user intent of q. However,

we also observe from the training data that items retrieved using t1 and t2 come from

multiple categories, indicating diversity in interpretations. For targets t1, t2 and model

output r1, r2; our solution discussed below aims to minimize the reformulation loss

between the pairs (t1, r1) and (t2, r2) along with maximizing the diversity loss between

the pairs (t1, r2) and (t2, r1).

5.5 Diversity Induced model training

In this section, we propose our solution anchored on user behavioral data to

provide multiple reformulations for a N&L query.

An instance in the training data is a triplet of ⟨q, t1, t2⟩ ∈ D and for the rest

of this study, we call user reformulated queries in training data as targets and model

predictions as reformulations. With the established sanctity of the training data, we will

now propose a solution to the optimization for N&L reformulation in Section 5.2 using
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an NMT-based approach.

5.5.1 Diversity Induction

Consider any source query q = q1, . . . , qk, . . . , qM consisting of M tokens,

where qk represents the kth token. And let corresponding target queries be; t1 =

t11, . . . , t1j1 , . . . , t1N1 , and t2 = t21, . . . , t2j2 , . . . , t2N2 . We model the target translation

probabilities as:

Pr (ti|q; f) =
Ni∏
ji=1

Pr (tiji |q, ti<ji ; f) : i ∈ {1, 2} (5.2)

where f represents the model parameters and t1<j1 = t11, . . . , t1j1−1 is a partial trans-

lated query. As discussed in the previous section, we assume that the translation

probability of hop-2 reformulation t2 is conditionally independent of hop-1 transition t1

i.e., Pr (t2|t1, q; f) ≈ Pr (t2|q; f)

In other words, any reformulated query ri in the SRP burst for any N&L query q

should have a high intent similarity with source query q irrespective of t1 while improving

the performance of retrieved items in terms of recall and relevance.

We incorporate a Diversity loss LDiv component intended to maximize the

diversity between the decoder predictions in conjunction with the traditional Refor-

mulation loss LRef component intended to minimize the error between the training

targets and model predictions. For t1 and t2, let r1 and r2 as the corresponding pre-

dicted reformulations by the model. Let ℓ (ri, ti) be any loss function to measure the

disagreement between the model prediction ri and the training sample ti. For simplicity,
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we choose the crossentropy loss as a representative ℓ. For a given training dataset

D = {⟨q(s), t1(s), t2(s)⟩}Ss=1, the training objective is to minimize the total loss:

f̂ = argmin f {l(()) f} s.t. l(()) f = LRef (f)− α · LDiv (f) ,

where:

LRef (f) =

S∑
s=1

∑
i∈{1,2}

ℓ
(
ri(s), ti(s)

)
, (5.3)

LDiv (f) =
S∑

s=1

∑
(i,j)∈{(1,2),(2,1)}

ℓ
(
ri(s), tj(s)

)
. (5.4)

5.5.2 Significance and estimation of α

The effect of the seemingly adversarial component LDiv is controlled by α,

which represent the intended diversity score. We approximate α from the training

data such that α ≈ λtr.The training diversity score λtr can be leveraged to tune the

reformulation diversity by the model. We define training diversity score as: λtr =

1− 1
S

∑S
s=1 Jacc

(
t1(s), t2(s)

)
.

The domain-specific diversity score can be defined as per the business needs.

For instance, we recognize various types of intent diversities in the e-commerce domain

like: (i) Categorical diversity : where the user targets correspond to items from different

categories, and, (ii) Aspect diversity : where the user targets fetch items with different

aspects/attributes.
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5.5.3 Multi Sequence-to-Sequences (Multi-Seq2Seq) Model

An effective solution to language modeling using Machine Translation has

found widespread usage in query rewrites. Building on the traditional transformer-based

Sequence-to-Sequence (Seq2Seq) architecture [50, 76], we propose one encoder and two

decoder approach with a shared loss function. Each sample in the training data consists

of one source query and two user reformulation targets, and each decoder in the proposed

architecture learns the user reformulation behavior for the corresponding target. The

components of the proposed optimization function capture diversity-induced translation

behavior. For each of the three dataset versions, we train a Multi-Seq2Seq model.

The loss function from Section 5.5 is shared between the two decoders and aims

to minimize reformulation error and maximize weighted diversity error. The model is

trained offline, and when an N&L query is encountered, the Inference phase is triggered.

Reformulated queries r1 and r2 are predicted for input query q. These queries are

then used to fetch item recall set by the SE. For each dataset version, we learn model

parameters and let θtd, θtdcr, and θtdr be the learned models on the training datasets TD,

TDCR, and TDR, respectively.

5.6 Conclusion and future work

With this study, we introduced the necessity for diverse reformulations for a

N&L query in the e-commerce domain. The diversity between reformulations is captured

by considering the targets from multiple hops within a user session. This can be extended
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Model Source query Reformulated queries

θtd

iphone 13 mini

armor case

shockproof

iphone 13 mini armor case

iphone 13 mini shockproof case

iphone 13 mini case shockproof

iphone 13 mini armor shockproof

θtdcr

iphone 13 pro

max case casetify

iphone 13 pro max case

iphone 13 pro max case otterbox

iphone 13 pro max case spigen

iphone 13 pro max case cute

θtdr iphone 13 pro max

iphone 13 pro max case

iphone 13 pro max unlocked

iphone 13 pro max

Table 5.2: Model reformulations consolidated from both decoders
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using other domain-specific diversities between the reformulations. In the e-commerce

domain, one can also consider targets from different categories as a diversity signal.

Our work intends to motivate further study into exploring and capturing user

diversity behavior for multifaceted reformulation for bad-performing user queries. We

show that counterfactual literature and N&L query reformulation shares conceptual

properties, and our study motivates further research to bring these fields closer.
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Chapter 6

Conclusion

6.1 Summary and Takeaways

This thesis motivates other arenas of exploring principles of trustworthiness of

an algorithmic model. With consistent evolving of machine learning model capabilities,

their performance in terms of building trust needs to be re-imagined with ever evolving

principles. In this section we discuss a few of the ideas for further research within this

context.

Contemporary research has often delved into using standard performance metrics

such as recourse cost and success rate. However, from the perspective of trustworthiness,

these metrics may not be the best judge. A high success rate does not give a clear

picture in case of a class-biased dataset. Similarly, the cost of the recourse often does not

capture the individual difficulty in acting on the suggested recourse. One possible research

direction is measuring cost of action in terms of time taken to update a feature. This
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approach has the potential to provide adversely affected individuals with the flexibility

to act on immutable characteristics.

Building trust within the society is an extremely complex tax. Machine learning

models are often blindsided by their performance on the test dataset in terms of selective

performance metrics. However, I argue that a live machine learning models performance

and trust can be significantly improved by bringing all the stakeholders in the decision

making process. Having open discussions and providing realistic expectations to society

about the capabilities of the deployed model will have a huge uplifting impact.

The end goal of any model should be focused towards improving the overall

health and well-being of the society. This can open up a new direction of delayed

performance evaluation and the taking of active feedback from both positively and

negatively affected individuals by the model.

Another crucial takeaway with this research is to recall that one size or solution

does not fit across all the domains of model deployments. Hence, domain specific

evaluations and domain specific end user feedback loop can help build trustworthy

models.

6.2 Concluding Remarks

In this study, we propose to capture different forms of user preferences and

propose an optimization function to generate actionable recourse adhering to such

constraints. We also provide an approach to generate a connected Laugel2019IssuesWP
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recourse guided by the user. We show how UP-AR adheres to soft constraints by

evaluating user satisfaction in fractional cost ratio. We emphasize the need to capture

various user preferences and communicate with the user in a comprehensible form. This

work motivates further research on how truthful reporting of preferences can help improve

overall user satisfaction.

In this work, we outline a new approach to account for latent groups in appli-

cations where we wish to provide recourse. In particular, we developed machinery to

identify such groups from data and studied the implicit disparity in plausibility across

these groups. For example, suggesting naive and arguably famous recourse action of

increasing the working hours to a single parent is not feasible. We proposed a method to

train classifiers to mitigate these effects and demonstrated their capacity in practice.

Limitations. Group-level plausibility may not ensure individual actionability [see

e.g.,][]kothari2023prediction. Our proposed approach may also exacerbate the cost of

recourse. Our study raises the question of whether it is sufficient for a recourse to change

the model’s decision or whether a recourse improves the affected individual’s overall

group-level profile.

Broader Impact statement. Our framework supports the notion of an independent

entity that supervises and audits the ethical aspects of the recourse mechanism for ML

models. Furthermore, such an entity can take the responsibility of providing a truly

model-agnostic set of actions, specifically calibrated for an individual with guarantees of

user actionability.
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The proposed framework can accommodate action preferential effects due to

dynamic macro- and micro-level policy changes. These effects are intuitively captured

by user action selections and dynamic calibration dataset. For example, with increasing

interest rates, individuals would prefer reducing the loan amount to getting a co-borrower.

Such action selection would be reflected in the proposed approach, but not with a fixed

policy of low-cost recourse.

Concluding remarks. Our study provides an essential toolkit for providing action

sets with guarantees of high probability of action acceptance. This system is essential in

a black-box setting of an ML model, where obtaining high quality model information

or individual preferences is challenging. Even with lack of such information, our novel,

yet intuitive framework can assist in providing high quality action sets with additional

independent audit benefits.

The action sets provided can also be used to understand the difficulty of

identifying an action for an individual. An individual closer to a decision boundary will

have a larger R compared to the individual farthest from the decision boundary. With

this study, we bring a new perspective to the generation and auditability of recourse

actions for ML models.

With this study, we introduced the necessity for diverse reformulations for a

N&L query in the e-commerce domain. The diversity between reformulations is captured

by considering the targets from multiple hops within a user session. This can be extended

using other domain-specific diversities between the reformulations. In the e-commerce
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domain, one can also consider targets from different categories as a diversity signal.

Our work intends to motivate further study into exploring and capturing user

diversity behavior for multifaceted reformulation for bad-performing user queries. We

show that counterfactual literature and N&L query reformulation shares conceptual

properties, and our study motivates further research to bring these fields closer.
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