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ABSTRACT 

The hypernetted-chain integral equation has been 

applied to two polyelectrolyte models to study the Donnan 

equilibrium for an aqueous mixture containing large polyions 

and ordinary ionized salts. The first is a traditional one­

component model with the polyions interacting via a screened 

Coulomb potential. The second is a multicomponent model 

which describes the solution as an aqueous mixture of a 

highly asymmetric electrolyte where poly ions, 'counter ions 

and coions are represented by charged hard spheres. The 

polyion-polyion distribution functions and the Donnan 

pressure are evaluated for a range of typical experimental 

conditions for aqueous solutions of globular proteins. The 

results show that a screened Coulomb potential model 

provides a good approximation if the charge on the polyions 

is not too high. However, there are some important 

differences between the results of one- and multicomponent 

models for the polyion-polyion distribution function. At 

concentrations above 1 M of simple electrolyte, there is a 

region of interparticle distances for which the potential of 

mean force is attractive according to the multicomponent 

model; while this effect is not reproduced by the one­

component model based on the screened Coulomb potential 

alone, it is shown correctly when we include an "osmotic" 

potential due to the presence of the small ions. Using the 

hypernetted-chain theory, a one-component model provides a 

successful analysis of experimental osmotic-pressure data of 

aqueous solutions of bovine serum albumin in 0.15 M sodium 

chloride for albumin concentrations up to 450 gjl. 

f 
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INTRODUCTION 

Toward increasing theoretical understanding of the 

properties of aqueous polyelectrolytes, this work considers the 

Donnan equilibrium [1-3] which is established by the 

equilibrium distribution of a simple electrolyte between an 

aqueous polyelectrolyte-electrolyte solution and an aqueous 

solution of the same simple electrolyte, when the two phases 

are separated by a semipermeable membrane. A difference in 

osmotic pressures exists across a membrane impermeable for 

polyions; this difference can be measured, providing important 

information about solute-solute interactions in polyelectrolyte 

solutions. 

Traditionally, osmotic-pressure measurements have been 

applied to dilute solutions to obtain molecular weight and 

conformational data. Application is usually limited to dilute 

systems because there is little familiarity with a quantitative 

theory able to explain the behavior of highly nonideal systems. 

An earlier theoretical treatment of Donnan equlibrium was given 

by Hill [4,5]. Recently, Stell and coworkers have successfully 

applied techniques of modern statistical mechanics to this 

problem [6-9]. 

The properties of solutions of colloids, micelles and 

globular proteins are often dominated by Coulombic interactions 

between highly charged polyions and small ions. There are at 

least three levels of theoretical description which may be used 

to study polyelectrolyte solutions. The first is the so-called 

cell model [10], which is motivated by the asymmetry in size 

and magnitude of charge between the species. The second level, 

providing the most widely used model, describes the solution as 
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an effective one-component fluid with electrostatic 

interactions modeled by a screened Coulomb potential [11]. The 

effects of a solvent and a dissolved simple electrolyte are 

given in the continuum approximation; only the polyion-polyion 

interactions are considered explicitly. In the third level, 

here called the multicomponent model, the solution is described 

as a mixture of charged hard spheres, while the solvent is 

still considered to be a continuum [12]. This multicomponent 

model is an extension of the so-called "primitive model" of 

simple electrolyte solutions. 

Solutions of asymmetric electrolytes have recently been 

studied by computer simulations and integral equations [13-16]. 

One of them, the hypernetted- chain integral (HNC) equation, 

provides physically meaningful agreement with the Monte-Carlo 

data. When applied to multicomponent models, the HNC theory is 

computationally very demanding and therefore not appealing for 

analysis of experimental data; one-component model HNC 

calculations require much less computational effort [17]. 

Because so many experimental data-exist in the form of the 

polyion-polyion structure factor, spp(k), the one-component 

approach is popular. The preferred one-component model, based 

on the McMillan-Mayer theory [5,18], yields in a natural way 

the Donnan pressure, an experimentally well-studied property. 

The goal of this work is to examine the importance of 

simplifying assumptions inherent in the one-component model. 

Several authors have analyzed the approximations in the 

one-component model which uses a screened Coulomb interaction 

between polyions [16,19-21]. In this paper we present a 

numerical study of both the one-component and the 

multicomponent models, using the same statistical-mechanical 

theory. The HNC integral equation is applied to both models of 

polyelectrolyte solutions to obtain results for thermodynamic 
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and structural properties. In particular, the Donnan pressure 

is studied for a range of polyelectrolyte and electrolyte 

concentrations and for a range of charges on the polyion. The 

data are used to test the validity of the one-component model 

(or screened Coulomb potential) over a range of parameters, 

mimicking typical experimental conditions for solutions of 

globular proteins. The objective of this work is to establish 

the simplest meaningful molecular model of polyelectrolyte 

solutions to facilitate significant interpretation of 

experimental data for aqueous solutions of globular proteins. 

POLYELECTROLYTE MODELS 

a) Potential for the one-component model 

Here, the solution is modeled as a solution of single­

component macroparticles with diameter a, interacting through 

the screened Coulomb potential in the form [11] 

puR (r) = A/r exp [ -Kr], r > a, 

puR (r) = oo, r < a, (1) 

A =Zp z La exp(Ka)/(1 z + K0/2) 1 and 
z La = Pe I ( 47r€o€r) • 

In Equation (1), r is the distance between macroion centers, 
• • -1 Zpe 1s the charge on a poly1on and, as usual, p =ksT (T is the 
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absolute temperature and ks Boltzmann's constant). The solvent 

and simple ions are not treated explicitly; they are reflected 



in the screening length K-
1 and in the relative permittivity €r 

of the solution. Equation (1) gives the free energy of 

bringing two macroions isothermally from r=00 to r=r in a 

solution containing "ordinary" ions such that the screening 

(Debye) length is K-
1

• When the macroions are at infinite 

dilution, Equation (1) gives the potential of mean force. 

An attractive van der Waals term can be added to the top 

· line of Equation (1) to account for short-range attraction 

between the macroparticles. 

b) Potential for the multicomponent model 

In this model all ions are represented as charged hard 

spheres, immersed in a continuous dielectric representing the 

solvent [12]. The potential energy between ions i and j, 

uij (r) , is 

uij (r) = oo , r < aij, (2) 

where zie is the charge on ionic species i, and aij=(ai+aj)/2. 

The solution is modeled as a mixture of charged hard spheres. 

THE HNC INTEGRAL EQUATION 

Integral-equation theories are based on the diagrammatic 

6 



expansion of the total correlation function h(r)=g(r)-1, where 

g(r) is the radial distribution function. For a mixture, the 

total correlation function hij(r) may be written as [18] 

hij(r) = exp[-Puij(r) + Eij(r) + hij(r) - cij(r)]- 1, (3) 

where E1j(r) is the so-called bridge function and c 1j(r) is the 

direct correlation functio~ defined via the Ornstein-Zernike 

equation [18] 

(4) 
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where Pk stands for the number density of component k. In 

general, the bridge function Eij(r) is unknown and the HNC 

approximation sets Eij (r) =0. For a "three-component" system 

(polyions, counterions and coions) there are six total 
correlation functions and the same number of direct correlation 
functions. Altogether a system of six coupled integral 

equations has to be solved numerically. 

To avoid divergence of integrals with potentials 

proportional to r-1
, the long-range (Coulombic) interactions 

require special treatment. The pair potential uij(r) may be 

separated into a short-range part (s) and a long-range 

Coulombic part (1), u\j(r). The long-range part of the direct 

correlation function, given by c\j(r)=-Pu\j(r) [18], is 

subtracted from cij (r) to yield c\j (r), a well-behaved function 

of shorter range. Details of the numerical procedure to solve 

the multicomponent HNC equation have been described in several 

recent papers [13,14,22] and need not be repeated here. The 

computer program, previously used for single electrolytes 

[13,14], is extended to apply to solutions with more than two 

species of ions [23]. 



An application of the HNC equation to a one-component 

model (Equation 1) requires a computational effort which is at 

least an order of magnitude smaller than that for the 

multicomponent case [17]. 

THE DONNAN PRESSURE 

Once results for the radial distribution functions are 

known, the thermodynamic properties may be determined using 

standard equations [18]. In particular, the equation of state 

has been evaluated via the so-called "virial" route [18]. For 

the multicomponent model we obtain: 

p p = 1 - j!_ r r p . p ·JI ( OU ij ) g . . (I) 41t I 2 di 
p 6 p LJ LJ ~ J or ~] 

(5) 
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where p = LPi• Within the McMillan-Mayer framework, P is the 

osmotic pressure of the solution at temperature T and solute 

number concentrations Pi· The procedure to evaluate the Donnan 

pressure for the multicomponent model is described below. 

Chemical equilibrium across a membrane requires that for 

each permeable charged species, the electro-chemical potential 

is the same in both compartments. Chemical equilibrium also 

requires the equality of the chemical potential of water on 

both sides. We denote the osmotic pressure in the 

polyelectrolyte-electrolyte mixture as P6 and the osmotic 

pressure in "ordinary" electrolyte solution as Pa. Similarly, 
a a the ionic activities on both sides are defined as ai and ai . 
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The Donnan pressure IT is defined as IT= Pa - Pa. Under 

conditions of interest for us (IT< 5x105 Pa), the activities of 

water on both sides do not differ appreciably [24] and for the 

1:1 electrolyte added to a polyelectrolyte solution we obtain 

(6) 

In Equation (6) a±,s is the mean activity of pure electrolyte at 

molar concentration n 5 • To evaluate IT we must first solve the 

HNC equation for a polyelectrolyte-electrolyte mixture to 

obtain the osmotic pressure Pa [Equation (5)] and ionic 

t . 't' a d a ac 1v1 1es, a+ an a_ . Once the activities of small ions in a 

polyelectrolyte-electrolyte mixture are known, the HNC equation 

is used again to determine the equilibrium concentration ns and 

the osmotic pressure Pa of "ordinary" electrolyte with mean 

activity a±s [cf. Equation (6)]. This, however, can only be 

done by a trial-and-error procedure. The activity coefficients 

yi=aijni are obtained in the framework of the HNC approximation 

[12): 

lnyi = :E {-pie}j(O) + 21tpifhii(x) [hii(r)-cii(r)Jr 2 dr} 
j 

(7) 

where ci/(r) is the short-range part of the direct correlation 

function and the caret denotes the Fourier transform. Equation 

(7) provides only an approximation whose accuracy has not as 

yet been thoroughly tested. 

Finally, the Donnan pressure is evaluated as a difference 



' II 13 a h ' 1 between two osmotl.c pressures, = P - P • T e numerl.ca 
a /3 error associated with this procedure (frequently P ::.::: P >> II) 

is given in Table 1 and indicated in Figure 2. For a one­

component model, the Donnan pressure can be obtained directly 

using the one-component version of Equation (5). 

THEORETICAL RESULTS 

a) The Donnan potential: Comparison with Monte-Carlo data 

/3 a The Donnan potential Vis defined by peV = ln(aijai ). 
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Recently, limited Monte-carlo results for the Donnan potential 

have become available [25]. Figure 1 compares the HNC results 

with Monte-Carlo data for the same (multicomponent) model, as a 

function of polyion charge Zpe. For salt-free polyelectrolyte 

systems, it was found previously [13-16] that the Monte-Carlo 

method and the HNC equation are in reasonable, but not exact, 

agreement. The same conclusion can be inferred from the 

limited comparison presented in Figure 1. Unfortunately, the 

HNC approximation does not yield a convergent solution for 

highly charged systems; therefore we have not been able to 

obtain results for lzpl=35 and higher. Zhou and Stell [9] have 

studied the Donnan potential by using various integral-equation 

theories. As shown in Figure 2 of Reference 25, their "best 

theory" is in equally good or even slightly better agreement 

with the simulation data than our HNC result. 
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b) The Donnan pressure 

Figure 2 and Table 1 present a comparison between results 

for the Donnan pressure IT as obtained by various models. Figure 

2 shows the Donnan pressure as a function of polyion charge 

Zpe. The radius of polyion in this calculation is 2.0 nm, and 

the distance of closest approach between small ions is 0.4 nm. 

All results apply to aqueous solutions at 298 K. The 

concentration of counterions (n+) in polyelectrolyte­

electrolyte mixtures is 0.1 M, and therefore n_ = n+- :zp:nP. 

As indicated in Figure 2, agreement between the two models is 

good, except for highly charged polyelectrolytes with lzp: > 

25. We cannot now say which of these calculations is more 

accurate because the HNC approximation becomes less reliable 

when applied to highly charged asymmetric electrolytes [13-

15]. To answer this question we need to evaluate the leading 

term in the bridge function Eij(r) [Equation (3)], as proposed 

in Reference 14. 

Table 1 presents additional results for the Donnan 

pressure. As expected, good agreement is obtained for a 

relatively low charge on the protein and for systems where a 

simple electrolyte is added in excess. The electrostatic 

interactions in these systems are suppressed to the degree that 

there is little difference in the activity coefficients of the 

simple electrolyte on both sides of the membrane. In other 

words, the system behaves as an ideal Donnan system. Good 

agreement between the two levels of description applies to the 

concentration range (cases 3 and 5 in Table 1; cf. also Figures 

1 and 4a) where a simple electrolyte is added in only moderate 

excess. This corroborates the findings of Linse [16] for the 

two-component model, i.e. for salt-free polyelectrolyte 

solutions. His conclusion is that the screened Coulomb 

potential yields an accurate description of the structure in 
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solutions of polyions and counterions. 

c) The polyion-polyion distribution function 

One aim of this work is to contribute toward better 

understanding of the role of electrostatic interactions in 

solutions of globular proteins with the ultimate goal to 

develop a predictive theory for protein precipitation. In this 

respect, it is important to consider the difference between the 

two levels of description shown in Figure 3. In this 

figure the value of the polyion-polyion distribution function 

at contact, gpp(a), is plotted as a function of the 

concentration of simple electrolyte, n (n=n_) in a 

polyelectrolyte-electrolyte mixture. While the distribution 

function, obtained by the screened Coulomb model, is always 

smaller than unity, the gpp(a) as obtained by the 

multicomponent model increases above unity for salt 

concentrations higher than 1 M. In other words, the 

probability of finding two polyions next to each other (in the 

multicomponent model) increases strongly with the concentration 

of simple electrolyte, and it is substantially underestimated 

by the one-component model described above. This increase 

represents an essential driving force for protein precipitation 

[26-28]. We discuss this important question below. 

Figure 4 presents the polyion-polyion distribution 

functions as obtained by two models. Figure 4a shows gw(r) 

for polyions with Zp=-20 at electrolyte concentration n=0.04 M, 

and nP=0.002 M. For this case, the distribution functions 

obtained by different models are in very good agreement. On 

the other hand, correlation functions presented in Figure 4b 

(zp=-6, n=l.S M, and nP=O.OOOS M) are in total disagreement. 
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There is a region of interparticle distances r, for which the 

potential of mean force is attractive according to the 

multicomponent model. This effect, however, is not reproduced 

within the one-component level that was used here. It is 

evident that something is missing from our one-component model. 

The difference between the two models in describing the 

polyion-polyion distribution function at high salt 

concentrations stems from the osmotic pressure due to the small 

mobile ions on a pair of closely adjacent polyions [19,27-29]. 

Under certain conditions, this attractive contribution may 

overshadow the repulsion between two polyions. This 

interaction is missing in the one-component level of 

description, where the ions have no size and enter into the 

pair potential only via the screening length. The effect 

vanishes for more strongly charged polyions <lzpl>18) and seems 

not to be an artifact of the HNC equation [30]. 

To illustrate this osmotic effect, the potential of mean 

force for the one-component model, Equation (1), has been 

corrected to include the "osmotic" attraction potential of 

Asakura and Oosawa [27] used also by Hallet al. [28]. 

u(r) = oo, 
-1 3 3 3 

u (r) = uR (r) -47r~ a 23 p3/3 [ 1-3r/ 4a23+r /16a23 ] , a 2<r<2a231 ( 8) 

u (r) = uR (r) , r>2a23 • 

In Equation (8) a2 is the diameter of the polyion, a 3 is the 

diameter of the small ion (0.4 nm for this calculation), p3 is 

the number concentration of small ions and a 23= ( a2 + a 3 ) /2. 

Equation (1) gives uR(r). The results for the corrected one­

component potential given by Equation (8) are presented in 

Figure 4b (filled triangles). These results show an essential 

improvement over the previous calculation (continuous line in 
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Figure 4b), based on Equation (1) alone. Inclusion of the 

attractive potential described by Equation (8) gives a 

significant contribution only for high concentrations of simple 

electrolyte (above 1 M) and does not affect the excellent 

agreement between the one- and multicomponent models presented 

in Figure 4a. 

COMPARISON WITH EXPERIMENTAL OSMOTIC-PRESSURE DATA 

The calculations presented above indicate that there is a 

range of experimental parameters for which the screened Coulomb 

potential correctly reproduces the results of the more 

realistic multicomponent model. This is helpful since the one­

component model is numerically much easier to implement. In 

this final section we apply the HNC integral equation to a one­

component model to analyze the experimental data of Vilker, 

Colton and Smith [31); they report Donnan-pressure 

measurements of bovine serum albumin (BSA) solutions for 

concentrations ranging from 84 to 475 g/1 in 0.15 M sodium 

chloride at several pH. The charge on the protein as a 

function of pH has also been determined. The authors have 

based their analysis on the classical one-component model 

(DLVO), where the pair potential u(r) between two proteins is 

given by [11]: 

(9) 

and uR(r), the repulsive part of the potential, is described by 



Equation (1). The attractive part of the potential, 

representing dispersion interactions, is [11]: 

1 + 2ln ( 1- ...!.. ) ] 
s2 

15 

(10) 

where H is the Hamaker constant and s=rja. Other contributions 

to the potential of mean force are considered to be less 

important under these conditions; they are not included in 

their or our calculations [31]. The contribution of "osmotic" 

forces [Equation (8)] is negligible because p3 is very small 

for the conditions considered here. 

The theoretical analysis presented in Reference 31 is 

based on the virial expansion, derived by McMillan and Mayer 

[5,18,32]. 

( 11) 

In Equation 11, R is the universal gas constant, n2 is the 

protein concentration in gjl, B22 is the second and B222 the 

third virial coefficient. From the potential of mean force, 

given by Equation (9), the second and the third virial 

coefficients have been calculated. The fourth and fifth virial 

coefficients have been approximated by the corresponding terms 

for a solution of hard spheres. Agreement between theory and 

experiment, presented in Figure 10 of Reference 31, is poor. 

The predicted curves fail to show the experimentally observed 

sensitivity of osmotic pressure to solution pH, i.e. to the 

protein charge. This failure has led Vilker et. al. [31] to 

'1 
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the conclusion that the major defect in the analysis is in the 

description of the potential of mean force. 

In what follows we show that the potential of mean force, 

given by Equation (9), may yield reasonable agreement with the 

experimental data, provided that a more accurate statistical­

mechanical theory is used. In this analysis we use the same 

potential function [Equations (9) and (10)] and exactly the 

same values of parameters as those used previously by Vilker 

et. al. [31]. The only difference between the two calculations 

is that we apply the HNC integral equation to evaluate the 

Donnan pressure instead of a truncated virial expansion. In 

Reference 17, the HNC equation applied to the screened Coulomb 

model [Equation (1)] has been tested against the Monte-Carlo 

data. The conclusion is that the theory yields reliable 

predictions for thermodynamic variables, except for highly 

structured fluids close to the order-disorder transition, where 

a better approximation for the bridge graph has to be used 

[17,25]. 

Figures 5 and 6 compare results for the Donnan pressure as 

obtained by the HNC equation with the experimental data [31]. 

The comparison applies to pH=7.4 and 5.4 where the average 

number of (negative) charges on the BSA is 20.4 and 9.2, 

respectively. The protein radius is 3.13 nm and the Hamaker 

constant H is 1. 65x10-21 
J [ 31]. Agreement between experiment 

and theory is now satisfactory. It is especially gratifying 

that the simple model given by Equation (9) reproduces well the 

pH dependence observed experimentally. 

We do not show a comparison for the Donnan pressure at 

pH=4.5 where the average number of charges on the BSA is about 

4.5. For this case, the agreement between HNC theory and 
experiment, though.better than that obtained before [31], is 



merely qualitative. As pointed out by Vilker et. al. [31], 

poor agreement is due to the approximations in Equation (9) 
~ . 

[33]. For example, the model used here (and 1n Reference 31) 

is not able to take into account lowering of the osmotic 

pressure due to the formation of dimers or higher oligomers. 

This effect is more important for pH=4.5 where the charge on 

the protein is low. 

CONCLUSIONS 
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In their analysis, Medina-Noyola and McQuarrie [19] have 

pointed out basic approximations in the derivation of the 

screened Coulomb potential as a substitute for a more realistic 

multicomponent description of polyelectrolyte solutions. Our 

calculations based on the HNC integral equation show that these 

approximations may not be severe for the range of parameters 

describing globular proteins. This means that a one-component 

model with a DLVO potential [11] may be used as a starting 

point to describe phase separation in globular proteins, 

induced by a simple electrolyte. At higher salt concentrations 
the DLVO potential must be modified to include an attractive 

"osmotic" contribution [27]. Our calculations, based on the 

one-component (DLVO) model and the HNC theory, yield good 

agreement with experimental data for the Donnan pressure. 

These results also demonstrate that, unless an accurate 

statistical-mechanical theory is used, conclusions concerning 

suitability of a physical picture may be misleading. 
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TABLE 1. ll1 and Hro are Donnan pressures for the one- and 

multicomponent model, respectively, in Pascal units and n is 

the concentration of electrolyte (n=n_) in the polyelectrolyte-

electrolyte mixture. The polyion radius is 2.0 nm and the 

small-ion radius is 0.2 nm. Uncertainties in nl are about 1-

2~ ... 
nP10

3
/M -Zp n/M ll1/Pa Hm/Pa 

1. 0.1 10 0.99 249 250 ± 10 

2. 1.0 10 0.09 2946 3025 ± 60 

3. 5.0 10 0.05 33530 35350 ± 400 

4. 0.5 12 0.25 1304 1310 ± 20 

5. 2.0 20 0.04 12300 11200 ± 200 

Figure Captions 

Figure 1. The reduced Donnan potential, pVe, as a function of 

macroionic charge. Symbols are Monte-Carlo data as compiled 

from Figure 2 of Reference 25, and the line represents HNC 

results for the multicomponent model. Polyelectrolyte 

concentration is 0.001 M, small ions have radii 0.2 nm and the 

polyion radius is 2.0 nm. The concentration of counterions in 

the polyelectrolyte-electrolyte mixture n+ is 0.1 M. The 

relative permittivity of the solution is 78.5. 



22 

Figure 2. The Donnan pressure as obtained by the HNC-integral­

equation theory for the one-component (line) and multicomponent 

model (symbols) as a function of -zp. Data as in Figure 1. 

Figure 3. The polyion-polyion correlation function at contact, 

as obtained for the one-component model (line) and the 

multicomponent model (symbols) as a function of the 

concentration of simple electrolyte n. In this calculation 

Zp=-12 and nP=O. 0005 M. 

Figure 4. The polyion-polyion correlation functions as a 

function of r. Squares denote results for the multicomponent 

model and the lines show results for the screened Coulomb model 

[EqUation (1)]. Figure 4a: -zp=20, n=0.04 M, and nP=0.002 M, 

Figure 4b: -zp=6, n=1.5 M and nP=0.0005 M. Filled triangles 

show results for the one-component model augmented by Equation 

( 8) 0 

Figure 5. The reduced Donnan pressure ITjn2 as a function of 

the protein (BSA) concentration n2 for pH=7.4 (-zp=20.4). 

Donnan pressure is in mm Hg; n 2 in gjl. Symbols denote 

experimental data [31) and the line represents HNC 

calculations. 

Figure 6. The reduced Donnan pressure ITjn2 as a function of 

protein (BSA) concentration n 2 for pH=5.4 (-zp=9.2). Symbols 

as for Figure 5. 

.. 



0.4 

0.3 

~ 0.2 
~ 

c:l. 

0.1 

23 

10 20 30 
-z p 

FIGURE 1 



24 

4.5 r-------r------.------,------.-----r---

4.0 

~ 

~ 3.5 
t::: 
~ 
~ 

~ 3.0 

2.5 

10 - z 20 
p 

30 

FIGURE 2 



,.-.. 
tJ 
'-" 
eLl 

1.5 

1.0 

0.5 

0.0 
u.O 

• 
0.5 

25 

• 

• 

• 

1.0 1.5 
np /M 

FIGURE 3 



26 

1.2 

0.8 

0.4 

8 12 16 
r/nm 

FIGURE 4a 



...--. 
:.. 

"-" 
~ 

2.5 
0 

2.0 

1.5 

1.0 

0.5 
£+.0 

0 .. 
0 

0 .. 
0 

0 

~ 
0 .. 

0 
0 o• 

oo • 

4.2 4.4 

r/nm 

FIGURE 4b 

27 

4.6 4.8 



28 

10 

8 

M 
6 

= --
2 

a~--~--~--~--~--~--~~ 

0 150 300 450 
n 

2 
/(g/1) 

FIGURE 5 



4 

3 

('1 2 
= --

1 

0 
0 

29 

150 300 450 
n

2 
/(g/1) 

FIGURE 6 



""....... ',._,. 

LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

~ -·· 




