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SUMMARY
Single-cell sequencing could help to solve the fundamental challenge of linking millions of cell-type-specific
enhancers with their target genes. However, this task is confounded by patterns of gene co-expression in
much the same way that genetic correlation due to linkage disequilibrium confounds fine-mapping in
genome-wide association studies (GWAS). We developed a non-parametric permutation-based procedure
to establish stringent statistical criteria to control the risk of false-positive associations in enhancer-gene as-
sociation studies (EGAS). We applied our procedure to large-scale transcriptome and epigenome data from
multiple tissues and species, including the mouse and human brain, to predict enhancer-gene associations
genome wide. We tested the functional validity of our predictions by comparing them with chromatin confor-
mation data and causal enhancer perturbation experiments. Our study shows how controlling for gene co-
expression enables robust enhancer-gene linkage using single-cell sequencing data.
INTRODUCTION

Enhancer-gene association studies (EGAS) seek to define

cell-type-specific gene regulatory networks via single-cell

sequencing.1–7 These studies have used a variety of experi-

mental and computational strategies, leveraging diverse data

modalities including single-cell transcriptomics and epigenom-

ics. The gold standard for linking enhancers with target genes

are experiments that perturb enhancer activity and measure

gene expression in the same cells.8,9 However, perturbation ex-

periments are complex and, to date, have been limited to

screening pre-selected enhancers in cell culture.8,9 By contrast,

single-cell transcriptomes and epigenomes from complex tis-

sues, such as the brain, contain distinct genome-wide profiles

from dozens to hundreds of cell types.10,11 Correlating enhancer
This is an open access article under the CC BY-N
epigenetic profiles with transcription across cell types or cell

states can identify potential cell-type-specific enhancer-gene

links,1,3–5,12 but the statistical validity and biological significance

of these associations are unclear.

An obstacle to EGAS analysis is the widespread correlation

of gene expression patterns across distinct cell types. Gene

co-expression arises from shared functions in related cell

types, such as the common expression of synaptic proteins

in neurons, but not glial cells in the brain. Such co-expression

reflects the hierarchical organization of cell types in terms of

their functional and developmental relatedness.13 In the context

of EGAS, co-expression can create incidental associations be-

tween a gene and enhancers that are not directly linked in a

regulatory interaction. Instead, those enhancers may regulate

other genes whose expression pattern across cells is similar.
Cell Genomics 3, 100342, July 12, 2023 ª 2023 The Authors. 1
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Figure 1. Identifying enhancer-gene links through integrated analysis of single-cell transcriptomes and epigenomes

(A) A procedure to link enhancers with target genes.

(B) Strength of enhancer-gene association as a function of genomic distance. The wide interquartile range (shading) indicates high variability.

(C–F) Correlation of the gene Stim2 with nearby (C) and trans (D–F)-enhancers.

(G–I) Stim2 expression versus enhancer mCG (G), ATAC (H), and enhancer-TSS chromatin contact frequency in human orthologs (I). The pseudobulk profiles are

computed using major types and subtypes.

(J) Enhancer-gene association from linear-genome features (mCG, ATAC) versus 3D-genome features (chromatin contact frequency) for Stim2 proximal en-

hancers. The x axis shows the minimum absolute correlation between mCG-RNA and ATAC-RNA.
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These spurious associations are analogous to the effect of link-

age disequilibrium in genome-wide association studies

(GWAS),14 in which many non-causal but statistically significant

associations arise from their genetic correlation with a causal

SNP within a risk locus.

To separate spurious from genuine associations, trans-

enhancer-gene correlations can be used as a negative con-

trol.2,6,7,15–17 However, major questions about the best prac-

tices for EGAS remain open. Different epigenome assays,

such as single-nucleus assay of transposase-accessible chro-

matin (snATAC-seq)5 and single-nucleus methylcytosine

sequencing (snmC-seq),4 measure distinct signatures of

enhancer activity and may have different sensitivity and speci-

ficity for EGAS. In addition, correlation results may be strongly

influenced by clustering analysis of single-cell data, which in
2 Cell Genomics 3, 100342, July 12, 2023
turn depends on multiple unconstrained parameters and algo-

rithmic choices.18

To address these gaps, we identify high-confidence, robust

enhancer-gene links using a non-parametric procedure to con-

trol for gene co-expression by shuffling genomic re-

gions2,6,7,15–17 (Figures 1A and S1A). We leveraged three com-

plementary data modalities (RNA, DNA methylation, and open

chromatin) to cross-validate enhancer-gene links with indepen-

dent data. We further validated our predictions with chromatin

conformation data19 (single-nucleus methyl-3C sequencing

[snm3C-seq]) and with large-scale functional perturbation

data.8 Our study shows that single-cell sequencing can identify

significant enhancer-gene links across diverse cell types despite

the background of spurious associations from gene co-

expression.
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RESULTS

Gene co-expression confounds EGAS
To illustrate the risk of false associations due to gene co-expres-

sion, we analyzed a large set of single-cell sequencing data from

the mouse primary motor cortex.10 We integrated single-cell

transcriptomes (single-cell RNA sequencing [scRNA-seq]) and

epigenomes (open chromatin, snATAC-seq, and DNA methyl-

ation, snmC-seq), to generate multimodal profiles and estimate

enhancer locations in over 50 cell types.10 The integrated data

showed that putative enhancers (see STAR Methods;

Table S1; Figure S1B) within �100 kb of a gene promoter were

enriched in associations with gene expression, including positive

correlations for chromatin accessibility and negative correlations

for enhancer DNA methylation (mCG) (Figures 1B, S1C, and

S1D). However, these associations were highly variable: we

observed many weak correlations for proximal enhancers

(<100 kb) and relatively strong correlations for some distal en-

hancers (>500 kb) (Figure 1B; interquartile range �0.4). This

broad distribution of correlation strength across all enhancer-

gene pairs makes it difficult to identify the subset of enhancers

that directly regulate their target gene.

A representative example is the gene Stim2, encoding a cal-

cium sensor that helps maintain basal Ca2+ levels in pyramidal

neurons.20 In cortical neurons, we identified 33 putative en-

hancers within 100 kb of the Stim2 promoter. Stim2 expression

correlates with lowmCG (r =�0.87, p = 9e�13, n = 38 cell types)

and high chromatin accessibility (r = 0.87, p = 1e�12) at a nearby

enhancer (Figures 1C, 1G, and 1H). By contrast, 15 other nearby

enhancers have weaker, though still significant (false discovery

rate [FDR] < 0.05), correlation with Stim2 expression (|r| = 0.46–

0.85). Moreover, Stim2 expression also correlated significantly

with 25,027 other enhancers located throughout the genome

(FDR < 0.05; both mCG-RNA and ATAC-RNA), most of which

(n = 23,526) were located on different chromosomes

(Figures 1D–1F). The majority of these trans-associations likely

reflect gene co-expression rather than direct causal links with

the Stim2 gene. For example, many of these enhancers might

directly regulate nearbygeneswhoseexpressionpatterns across

cell types are similar to Stim2 (Figures S1E–S1H, S1J, and S1K).

Next, we used 3D genome conformation data to test whether

putative enhancer-gene links correspond to bona fide physical

interactions.21 We analyzed the 3D chromatin contact frequency

of the predicted enhancer-gene pair (Figure 1C) across homolo-

gous human brain cell types using multiomics snm3C-seq

data.19 Chromatin contact frequency for this enhancer was

strongly correlated with Stim2 expression (r = 0.95, p = 3e�4;

Figures 1I and S1I). By contrast, other proximal enhancers

were less correlated (Figure 1J).

The Stim2 locus also illustrates the challenges associated with

defining cell types.22 The same set of cells can be grouped into

either 8 major types or 38 fine-grained subtypes, leading to

different correlation values (Figures 1G, 1H, S1J, and S1K).

Permutation-based control for linking enhancers to
genes
To address these issues, we developed a procedure that con-

trols the risk of false positives from gene co-expression and
compares predicted links across data modalities and cell-type

resolutions (Figures 2A and S2). Our analysis can use multiomics

data23 or separate measurements of each data modality that are

computationally combined through data fusion. To demonstrate

the general applicability of our approach, we first integrated

single-cell transcriptomes (RNA) and epigenomes (DNA methyl-

ation or chromatin accessibility) using correlated gene-level fea-

tures to link cells of the same type across data modalities

(SingleCellFusion).10,24,25 Next, we defined metacells,26 which

aggregate the transcriptomic and epigenomic profiles from

groups of similar cells. Eachmetacell has a complete multimodal

profile, enabling analysis of correlated enhancer epigenetic fea-

tures with gene expression. When working with multiomics data,

we created metacells by aggregating single cells without a data

fusion step. Importantly, metacells have a controllable resolution

determined by the number of cells contributing to eachmetacell.

This adjustable resolution allowed us to capture both discrete

and continuous patterns of variation and to characterize the

impact of cell-type resolution on enhancer-gene links.

We reasoned that genuine enhancer-gene interactions should

have stronger correlations than the background induced by co-

expression. Correlations mediated by co-expression are inher-

ently limited in their strength by the magnitude of gene-gene

correlations, whereas direct enhancer-gene interactions can

produce stronger associations. Importantly, this assumption ap-

plies to the strongest enhancer-gene interactions; weak interac-

tions that do not exceed the background of gene co-expression

may be present but cannot be detected by correlation-based

methods. This is a fundamental limitation of any correlation-

based analysis method, which could be potentially overcome

using perturbation experiments.

To test the significance of observed correlations, we

compared themwith two null distributions: shufflingmetacells3–5

and shuffling regions2,6,7 (Figures 2B–2D). Shuffling metacells

decouple epigenetic and transcriptomic signatures, removing

both enhancer-gene correlation and gene co-expression (Fig-

ure 2B). The significance arising from this distribution is inflated

by gene co-expression, potentially leading to false positives in

which an enhancer-gene pair may be correlated due to shared

upstream regulation rather than direct interaction. Shuffling re-

gions, by randomly swapping the locations of genes across the

genome, retains the gene co-expression structure imposed by

the hierarchical organization of cell types, but it correlates

each gene’s expression with distant, randomly selected en-

hancers (Figure 2C).2,6,7

As expected, the null distribution of correlations after shuffling

regions was wider than after shuffling metacells (Figure 2D) due

to gene co-expression. Enhancer-gene pairs within 500 kb of the

transcription start site (TSS) are significantly enriched in both

positive and negative correlations when compared with shuffling

metacells. However, when compared with shuffling regions, we

only found significant correlations with a positive sign for the

ATAC-RNA comparison or a negative sign for the mC-RNA com-

parsion. Shuffling regions is thus a more stringent null distribu-

tion that effectively controls for spurious enhancer-gene correla-

tions due to gene co-expression.

We call an enhancer-gene pair significantly correlated if it

passes an FDR-adjusted threshold based on shufflingmetacells,
Cell Genomics 3, 100342, July 12, 2023 3
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Figure 2. Systematic identification and characterization of enhancer-gene links across null models, data modalities, and cell-type granu-

larity

(A) Method for linking enhancers to target genes using metacells with bimodality profiles.

(B and C) Null distributions derived from shuffling metacells (B) or shuffling regions (C).

(D) Distribution of enhancer-gene correlations. Bars indicate regions of statistical significance (FDR <0.2 for <100 kb pairs). Two null models induce two different

bars: linked (black; shuffle regions) and correlated (gray; shuffle metacells).

(E) The number of significantly linked or correlated pairs using mCG-RNA, ATAC-RNA, or both.

(F) Joint distribution of mCG-RNA correlation versus ATAC-RNA correlation for enhancer-gene pairs (2–100 kb).

(G) p value histograms of enhancer-gene pairs (2–500 kb) using shuffled regions (top) or shuffled metacells (bottom). Numbers show estimated fraction of true

positives.27

(H) Estimated fraction of true associations versus enhancer-TSS distance.

(I) Enrichment of chromatin contact frequency of linked and correlated enhancer-gene pairs compared with random genomic region pairs (mean ± 95% con-

fidence interval). Enrichment profiles are aggregated across sites and across 8 neuronal cell types in Lee et al.19

(J) Spread (95% range) of correlation coefficients as a function of the number of metacells. Dots represent observed data; lines represent inverse square root fit

(y � a=
ffiffiffi
x

p
+b).

(K) Number of linked pairs as a function of the number of metacells (FDR = 0.2; mean ± standard deviation across 5 bootstrap samples with 80% of cells).

(L) Number of linked pairs called using either multiome information (103 multiome PBMCs28) or computational integration.
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whereas we reserve the term ‘‘linked’’ for pairs that pass the

criteria set by shuffling regions. We used a relatively lenient

FDR threshold of 0.2 to reduce the risk of false negatives from

our stringent null distribution. Linked pairs (n = 12,243 within

100 kb, FDR < 0.2) are a subset of correlated pairs (187,343

within 100 kb, FDR < 0.2) (Figures 2E and 2F) that rise above
4 Cell Genomics 3, 100342, July 12, 2023
the background from gene co-expression. Lowering the FDR

threshold to 0.1 or 0.05 reduced the number of linked pairs to

3,142 and 489, respectively.

Our shuffling procedure is a non-parametric analog of gener-

alized least-squares (GLS) regression,29 which transforms data

matrices to decorrelate observations. We found that removing
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sample covariance using GLS abolished the difference between

shuffling regions and shuffling cells (Figures S3A and S3B) and

between correlated and linked pairs (Figure S3C). In contrast

with GLS, our procedure does not rely on parametric assump-

tions about gene co-expression.

Differences in the genomic context of different enhancers

could impact the strength of their effect on gene expression.

To control for this, we verified that our findings were robust

when we randomly shuffled enhancers across the genome while

controlling for their GC content and distance to the nearest gene

(Figures S4A–S4D).

Comparison with alternative strategies
We compared our results with two alternative strategies for esti-

mating enhancer-gene interactions using the same single-cell

epigenome dataset.10 CICERO uses chromatin accessibility

(snATAC-seq) data to identify co-accessible regions near each

gene’s promoter, without transcriptome data.1 The procedure

does not explicitly control for the significance of associations

but instead uses an arbitrary threshold (default 0.2) to link re-

gions with the strongest co-accessibility. We used CICERO to

identify 1,869 enhancer-gene associations exceeding the default

threshold and located within 100 kb, far fewer than our set of

linked enhancers (7,575 using mCG-RNA; 8,769 using ATAC-

RNA). Most of the CICERO links (76%) overlap with a subset of

the correlated pairs we identified (11%) and to a lesser degree

with linked pairs (26.9% of CICERO links, 4.1% of our linked

pairs) (Figures S5A and S5B). Mean CICERO co-accessibility

scores were 4.8- to 5.9-fold higher (p < 2e�8) for linked than

correlated pairs (Figure S5C). This indicates that CICERO had

lower power for detecting linked pairs compared with our anal-

ysis of combined snATAC+scRNA-seq data.

The activity-by-contact (ABC) model9 identifies enhancer-

gene links using both chromatin accessibility (snATAC) and

chromatin conformation (e.g., Hi-C) data. This model processes

each cell type independently without considering correlated

variability in expression across cells. The ABC model can use

snATAC-seq without matched Hi-C data by substituting a po-

wer-law function of distance to estimate chromatin contact fre-

quency.30 Using the ABC model, we identified 150,228 associa-

tions within 100 kb, closely matching the number identified by

our snATAC-RNA (150,285) and mCG-RNA analyses (156,932).

The ABC linked pairs largely overlap our correlated (70%) and

linked pairs (68%–73%) (Figures S5D and S5E). The ABC scores

are 1.09- to 1.22-fold higher (p < 1e�8) for linked pairs than for

correlated pairs (Figure S5F). This comparison shows that ABC

largely recapitulates our analysis of correlated enhancers

without control for gene co-expression. Linked enhancers repre-

sent a distinct set of strongly correlated candidate enhancer-

gene pairs that are not fully captured by CICERO or ABC. These

candidate enhancer-gene pairs must be validated by perturba-

tion experiments performed in the same cell types.

Biological and statistical validation of EGAS links
A potential pitfall of our stringent procedure is a higher risk of

false negatives, i.e., failure to detect genuine interactions. We

next empirically compared correlated versus linked pairs on

both biological and statistical criteria to test whether the correla-
tions filtered out by our method are likely false positives arising

from gene co-expression.

First, we observed that correlated pairs frequently had a non-

canonical direction of association (Figures 2D and S6A). For

example, we found that about a third (47,137/150,285) of corre-

lated pairs had a negative association of gene expression with

chromatin accessibility and that a similar proportion (53,687/

156,932) had a positive association with mCG. Non-canonical

associations were also reported in recent large-scale studies

of brain cell epigenomes.4,5 These correlations could suggest

novel biological mechanisms such as methylcytosine-preferring

transcription factors.31 However, they may also include false-

positive associations due to gene co-expression. Indeed, none

of the non-canonical associations passed our threshold for

linked pairs (Figures 2D–2F). This is consistent with the canonical

understanding of enhancer activity associating primarily with low

DNA methylation and open chromatin.

Second, as enhancer-gene interactions are mainly within

�100–500 kb of the TSS,8,9 we compared the distance depen-

dence of linked and correlated pairs. Using a p value histogram

method,27 we estimated that 16%–19.9% of enhancers de-

tected within 2–500 kb from a promoter are linked (Figures 2G

and S6B). By contrast, a much larger fraction (66.8%–71.2%)

are estimated to be correlated. Notably, the proportion of corre-

lated pairs remains high (>60%) even for distal pairs (>1 Mb) or

trans-pairs on different chromosomes. In contrast, <5% of these

pairs are linked (Figures 2H and S6C). The correlated pairs

contradict the biological understanding that most enhancers

activate genes in cis; the linked pairs are more coherent with

this canonical framework.

Third, we validated the predicted links with independent chro-

matin conformation data, generated by snm3C-seq from the hu-

man brain.19 We reasoned that linked enhancer-gene pairs that

are conserved across species should have higher chromatin

contact frequency compared with random regions. Indeed, we

found enrichment of contact frequency for both linked (mean

fold change [FC] = 1.51, p = 2e�4) and correlated pairs (mean

FC = 1.28, p = 2e�5). Moreover, linked pairs located 20–100

kb apart have higher levels of contact enrichment than correlated

pairs (p = 0.047; Figures 2I and S6D–S6F).

Impact of cell cluster granularity
A key parameter for our analysis is the cell-type granularity,

determined by the number of metacells or clusters. The sparse

genomic coverage of single-cell sequencing and the limited

number of profiled cells create a trade-off between the number

of metacells and the quality of each metacell—i.e., between

fine-grained resolution and signal-to-noise ratio. As the number

ofmetacells (N) increases, thewidth of the null distribution for the

shuffled metacells approaches zero as 1ffiffiffi
N

p (see STAR Methods;

Figures 2J and S7A–S7C). By contrast, the range of the null dis-

tribution for shuffled regions does not vanish for large N but

instead asymptotes at a non-zero value that reflects gene co-

expression (Figure S7B). Notably, the shuffled region’s null distri-

bution is less sensitive to the number of metacells and more

closely reflects the behavior of the observed correlations. This

suggests that linked enhancer-gene pairs are less sensitive to

the choice of cell-type granularity correlated pairs. We found
Cell Genomics 3, 100342, July 12, 2023 5
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Figure 3. Consistent gene- and enhancer-level signatures across data modalities

Gene expression (A), gene body non-CG DNA methylation (mCH) (B), enhancer mCG (C), and enhancer accessibility (ATAC) (D) across cell types. Signals from

multiple enhancers linked to the same gene were averaged. The colormaps for the mC modalities (mCH and mCG) are reversed.
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more linked pairs as the number of metacells increases but with

diminishing returns after N> 50. (Figures 2K and S7D).

Multiome data improve link detection
Our methods can also be applied to multiomics data, which pro-

file transcriptome and epigenome signatures in the same cells

and do not require computational data fusion. Using ATAC-

RNA multiomics data (103 Genomics, human cerebellum32

and peripheral blood mononuclear cells [PBMCs]28; Table S5),

we identified thousands of linked enhancer-gene pairs (6,182

in cerebellum, 5,452 in PBMCs; Figures S8A and S8C) with

strong positive associations (Figures S8B and S8D). Using

mCG-RNA multiomics data (snmCAT-seq, human frontal cor-

tex25; Table S5), we identified 616 linked pairs with strong nega-

tive associations (Figure S8E). Linked pairs were also more en-

riched in chromatin contacts (snm3C-seq, human frontal

cortex19; Table S5) than correlated pairs (Figure S8F).

We compared the effectiveness of enhancer-gene linkage

using multiome data with computational integration of single-

modality data using the PBMC dataset.28 As the number of

metacells increased from a few to �70, the accuracy of compu-
6 Cell Genomics 3, 100342, July 12, 2023
tational integration (using SingleCellFusion25) decreased from

over 80% to less than 20% (Figure S8G). More than twice as

many links were found using multiome information than using

computational integration (Figures 2L and S8H). Thus, when

multiome data are available, they have the potential to improve

the sensitivity and specificity of enhancer-gene link calling.

Functional validation of predicted enhancer-gene links
To validate our predicted links, we used data from perturbations

of enhancer activity in human K562 cells using CRISPR-dCas9

followed by scRNA-seq.8 Functionally validated enhancer-

gene pairs from causal CRISPR-dCas9-based perturbations

had stronger correlations in the multiomics datasets compared

with other proximal (<100 kb) enhancer-gene pairs (median

r = 0.18 for cerebellum, 0.23 for PBMCs; Figures S9A and

S9C). We then directly compared our predicted links with the

functional study at enhancers that were tested in both datasets

(1,606 enhancers in cerebellum; 2,345 in PBMCs). Notably, this

comparison was limited by the different cell types used for the

functional study compared with our analyses. Despite this, we

found that predicted linked pairs overlapped with functionally
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validated pairs 7.1- to 8.5-fold more than expected by chance

(Figures S8B and S8D; p < 0.001). Moreover, a >5-fold higher

proportion of the predicted linked pairs than correlated pairs

was validated in the functional assay (Figures S9E and S9F).

The precision of our predicted linked pairs was notable given

the differences in the cell types between the datasets, as well

as the limited power of both the functional validation and sin-

gle-cell enhancer-gene linkage assays. Future perturbation ex-

periments, including in vivo measurements in matched cell

types,33 will better evaluate our predicted links.

Thousands of enhancer-gene links in mouse brain cells
with multimodal validation
We comprehensively examined regulatory interactions in neu-

rons of the mouse primary motor cortex.10 Linked enhancer-

gene pairs (discovered using mCG-RNA correlation) formed

15 modules that capture diverse cell-type-specific signatures.

Notably, the complementary data types (gene body DNAmethyl-

ation [mCH] and enhancer ATAC), which were not used in the

discovery of enhancer-gene links, showed consistent correlated

signatures (Figures 3A–3D). For example, genes inmodule 13 are

specifically expressed in GABAergic neurons, with correspond-

ing low CG methylation levels and open chromatin at linked en-

hancers. Module 9 is most active in caudal ganglionic eminence

(CGE)-derived inhibitory neurons (Lamp5, Sncg, and Vip) and in

superficial-layer excitatory neurons (L2/3 IT and L4/5 IT). These

consistent gene- and enhancer-level signals from three datamo-

dalities provide support for the robustness of our enhancer-gene

links.

DISCUSSION

Our procedure shares some features with Signac,15 a single-cell

chromatin analysis tool that also evaluates statistical signifi-

cance by shuffling regions (enhancers). However, unlike Signac,

which tests each enhancer-gene pair separately, we efficiently

test millions of enhancer-gene pairs at the same time with robust

empirical p values and multiple comparison correction. In addi-

tion, by applying our procedure to different data modalities

(gene expression, DNA methylation, and chromatin accessi-

bility), we found that mCG-RNA and ATAC-RNA associations

are strikingly consistent, despite measuring distinct epigenetic

features with opposite effects on gene expression. Predicted

enhancer-gene links are robust with respect to the granularity

used to analyze cell types across a broad range of parameters.

Our method can be applied to computationally integrated sin-

gle-modality datasets or to multiomics data. Single-modality

data are more widely available and generally offer higher quality

and throughput, but their use for enhancer-gene linkage analysis

is limited by the accuracy and resolution of computational inte-

gration. By contrast, multiomics data can directly correlate

enhancer activity with gene expression at the level of fine-

grainedmetacells or single cells, taking full advantage of the nat-

ural variation across cells to find enhancer-gene links.

Limitations of the study
Correlation-based analysis has notable limitations for linking en-

hancers with genes. This approach cannot identify constitutive
enhancer-gene links that are present in all cell types. Larger da-

tasets including more diverse tissues or cell types may partly

address this limitation. Rigorous control for spurious correlations

limits the power for detecting genuine but weak enhancer-gene

interactions, leading us to potentially underestimate the number

of genuine links. Finally, causal interactions cannot be inferred

from correlational analysis alone; our linked pairs are strong can-

didates that must be tested by perturbative experiments.34,35

Improved experimental techniques, including large-scale as-

says8,9,36 in vivo33 on complex tissues with diverse cell types,

will help to test correlation-based predictions. Our study shows

that single-cell transcriptomic and epigenomic data can identify

statistically and biologically robust enhancer-gene links in com-

plex tissues, a prerequisite for elucidating the regulatory princi-

ples of cell-type-specific gene expression.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

scRNA-seq from mouse primary motor cortex (MOp) Yao et al.10 nemo:dat-ch1nqb7

snmC-seq from mouse MOp Yao et al.10 nemo:dat-ch1nqb7

snATAC-seq from mouse MOp Yao et al.10 nemo:dat-ch1nqb7

Integrated genome browser of mouse MOp data Yao et al.10 https://brainome.ucsd.edu/BICCN_MOp

snm3C-seq from human cortex Lee et al.19 https://salkinstitute.app.box.com/s/

fp63a4j36m5k255dhje3zcj5kfuzkyj1

Multiome (RNA+ATAC; 10X Genomics) from

human PBMC

10X Genomics https://www.10xgenomics.com/resources/datasets/

pbmc-from-a-healthy-donor-granulocytes-removed-

through-cell-sorting-10-k-1-standard-2-0-0

Multiome (RNA+ATAC; 10X Genomics) from

human cerebellum

10X Genomics https://www.10xgenomics.com/resources/datasets/

frozen-human-healthy-brain-tissue-3-k-1-standard-2-0-0

snmCAT-seq from human cortex Luo et al.25 Raw data: GEO GSE140493

Clustering and DMRs: Luo et al.25 Table S6 and Table S9.

Functional validation data (CRISPER-dCas9 +

scRNA-seq) in K562 cell lines

Gasperini et al.8 Gasperini et al.8 Table S2

Software and algorithms

robustlink This paper https://github.com/mukamel-lab/robustlink

Zenodo: https://doi.org/10.5281/zenodo.7911853

SingleCellFusion Luo et al.25 https://github.com/mukamel-lab/SingleCellFusion

ABC-Enhancer-Gene-Prediction Fulco et al.9 https://github.com/broadinstitute/ABC-Enhancer-

Gene-Prediction

CICERO Pliner et al.1 https://www.bioconductor.org/packages/release/bioc/

html/cicero.html

Cooler Abdennur and Mirny37 https://github.com/open2c/cooler
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to the lead contact, Eran A. Mukamel (emukamel@ucsd.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Sequencing data used in this project are all fromprevious studies and are publicly available. Accession numbers and links to the

datasets are listed in the key resources table.

d All original code has been deposited at GitHub, archived at Zenodo and is publicly available as of the date of publication.

GitHub URLs and DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Datasets
We used three single-cell sequencing datasets from the mouse primary motor cortex (MOp)10 to demonstrate our enhancer-gene

association analysis. They are scRNA-seq (single cell; 10x genomics V3; Allen Institute for Brain Science), snmC-seq (single nucleus;

DNA methylation; Ecker lab at the Salk Institute), and snATAC-seq (single nucleus; chromatin accessibility; Ren lab at UCSD). Only
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high-quality neuronal cells, as determined in Ref.10 (from its Table S2; column SCF/SingleCellFusion), are retained for our analysis.

These datasets are publicly available with identifiers listed in the key resources table. The starting point of all analyses are gene-by-

cell matrices for transcriptomes and enhancer-by-cell matrices for epigenomes. For the scRNA-seq dataset, we used the gene-by-

cell count matrix. For the snATAC-seq dataset, we quantified the enhancer-by-cell count matrix by counting the number of reads

overlapping with each enhancer region in each cell. For the snmC-seq dataset, we quantified both enhancer-by-cell CGDNAmethyl-

ation profiles and gene-by-cell non-CG (CH) DNAmethylation profiles. TheDNAmethylation profile for a particular region and cell can

be summarized by two numbers: the number of methylated cytosines (mC) and the total number of cytosines covered (C). The DNA

methylation level is the ratio of mC to C (mC/C). Please see sections below for dataset specific procedures of normalizations. The

mouse gene annotation file is downloaded from gencode (vM16). The enhancer list is adapted from the putative enhancer list

from Ref.10 (see below).

We also used single-cell multiomics data, multimodal chromatin conformation data, and functional perturbation data to validate

our methods. See Table S5 for a summary of all the datasets used in this study. See sections below for dataset-specific processing

procedures.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calling putative enhancers
We constructed our putative enhancer list based on the mouseMOp neuronal cell type-specific putative enhancers from Ref.10 (from

its Table S7). In that study, the enhancers are called using REPTILE,38 an algorithm that uses the DNA methylation and ATAC-seq

profiles of 13 mouse neuronal cell types, as well as mouse embryonic stem cells, as input. Starting from this list, we first selected

regions with enhancer score >0.5 and merged overlapping regions using bedtools.39 We subsequently removed regions overlapping

any gene promoter regions (transcription start site +/� 2kb; all transcripts from gencode vM16), exons (vM16), and ENCODE black-

list.40 This leaves us with 233,524 enhancers in total, with a median size of �250 bp (Figure S1B; Table S1).

Curated cell types
For analyses related to Figure 1, we curated a list of 38 neuronal cell clusters based on the SingleCellFusion clusters (L1 and L2, with

n = 29 to 56 cell types respectively) in Ref.10. We aimed tomerge small clusters to increase pseudo bulk coverage at enhancers, while

retaining as much cell type diversity as possible. To achieve this, we first call an enhancer covered in a cluster if it has at least 20

sequenced CpG sites in that cluster, where the cluster-level coverage is the sum of cell-level coverages. Next, we call an enhancer

common, if it is covered in more than half of the L2 clusters. We call a cluster covered, if more than half of the common enhancers are

covered in that cluster. For each L1 cluster we then evaluate 3 cases.

1. If the cluster itself is not covered, we drop it along with all its child (L2) clusters.

2. Else if less than 2 (n < 2) of its child (L2) clusters are covered, we retain the L1 cluster itself, but drop all its child (L2) clusters.

3. Else if at least 2 (n R 2) of its child (L2) clusters are covered, we retain the covered L2 clusters, but drop the uncovered L2

clusters and the L1 cluster.

This procedure resulted in 38 clusters with adequate coverage. Table S4 summarized the correspondence between the 38 clusters

we get from this procedure and the cell types defined in Ref.10.

To compare with the cell types in snm3C-seq data,19 we further merged these 38 fine-grained clusters into 8 major clusters based

on the well-established neuronal cell type taxonomy.13 Table S4 summarized the correspondence between the 38 fine grained and

the 8 major cell clusters defined in this study and those defined in Ref.10,19.

Clustering and defining metacells
For analyses related to Figure 2, we generated cell clusterings with a range of cluster resolutions. We start by normalizing the scRNA-

seq countmatrix with log10(CPM+1), where CPM stands for counts per millionmapped reads.We then calculated the top 50 principal

components (PCs), and built a k-nearest neighbor graph (k = 30) connecting cells according to the Euclidean distance in the PC

space. We used Leiden community detection to generate clusters.41 Different resolution parameters (r = 1–794) were chosen to

generate clusters with different granularity (n = 13–8850 metacells). The pseudo bulk profiles from each of the individual clusters

were used as metacells.

Feature selection and normalization
We preprocessed the data matrices separately for each data modality. The starting point is always cell-level matrices containing

counts (RNA and ATAC) or methylation level (mC). To get cluster-level (metacell) matrices, we summed counts from cells in the

same clusters (metacells) to create pseudo-bulk samples. For methylation data, we summed methylated counts and total counts

(coverage) separately. Next, we normalized matrices as follows.

- For an RNA matrix (gene-by-cluster/metacell), we normalize the raw count matrix with log10(CPM+1).
Cell Genomics 3, 100342, July 12, 2023 e2
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- For an ATAC matrix (enhancer-by-cluster/metacell), we normalize the raw count matrix with log10(TPM+1), where TPM stands

for transcripts per million mapped reads. Enhancers that are covered in <50% of clusters are removed.

- For a gene body mCH matrix (gene-by-cluster/metacell), we first removed low coverage genes if the gene has <50% clusters

surpassing 1000 counts in the gene body (or <80% metacells surpassing 20 counts). We then take the ratio of the number of

methylated to the number of coverage to get themethylation fraction. All the steps here consider cytosines in non-CG (CH) dinu-

cleotide context only.

- For an enhancer mCG matrix (enhancer-by-cluster/metacell), we first removed low coverage enhancers if the gene has <50%

clusters surpassing 20 counts (or <80% metacells surpassing 5 counts) in the enhancer region. We then take the ratio of the

number of methylated to the number of coverage to get the methylation fraction. All the steps here consider cytosines in CG

dinucleotide context only.

After normalization and filtering of individual matrices, we then consider only enhancers that are shared in both ATAC and mCG

matrices for downstream analyses.

Correlating enhancer-gene pairs across cell types
We calculate the Spearman correlation coefficient between any pair of enhancer and gene that are within 1 Mbp (enhancer center to

gene TSS) across curated cell types (n = 38 or n = 8). This was done separately for enhancer mCG vs. RNA and enhancer ATAC vs.

RNA. Enhancer mCG signals are normalized by the global mean mCG levels of each cell type; enhancer ATAC signals are

log10(TPM+1) normalized; RNA expression levels are log10(CPM+1) normalized.

To assess the statistical significance of the enhancer-gene correlations, we repeated the correlation analysis with 2 types of data

shuffling control, as explained in themain text. To control for random noise, we shuffled cell cluster labels of the gene-by-cluster RNA

matrix, followed by calculating correlation coefficients. To control for background co-expression across enhancer-gene pairs, we

shuffled gene labels of the gene-by-cluster RNA matrix, followed by calculating correlation coefficients.

Correlating enhancer-gene pairs across metacells
Given a transcriptomic dataset (scRNA-seq) and an epigenetic dataset (e.g. snmC-seq) collected from the same tissue, we first

generate a constrained k-nearest neighbor network linking cells across the two modalities (SingleCellFusion; Ref.10,25). This network

allows us to impute the DNA methylation profiles (mC) for each RNA cell. We then cluster scRNA-seq cells using Leiden community

detection41 (see section Clustering/Generating metacells). We call these clusters metacells, to emphasize that they do not neces-

sarily correspond to discrete cell types, but could also capture continuous changes among cell populations. These preparations

allow us to construct bimodal profiles for each metacell, by aggregating counts–either observed or imputed–from cells in the

same metacells. Finally, we evaluate the correlations between enhancer-gene pairs across metacells.

To be specific, the starting point of this analysis involves 4matrices: an enhancer-by-cell mCG (or ATAC) matrix Eec, a gene-by-cell

RNA matrix Rgc0 , a cross-modal cell-to-cell k nearest neighbor matrix: Kcc0 , and a metacell assignment matrix of RNA cells Kc0z. Here

we use c; c0 and z to denote an mC cell, an RNA cell, and a metacell, respectively. A metacell is a group of RNA cells generated by

Leiden clustering.We use e and g to denote an enhancer and a gene, respectively. All matrices contain unnormalized raw counts.Kcc0

is generated by SingleCellFusion10,25 with default settings and cross-modal k = 30.Kc0z is generated by Leiden clustering on the RNA-

seq dataset as mentioned in previous sections.

To get bimodal profiles for a metacell, we aggregate counts from the cells belonging to that metacell: Rgz =
P

c0Rgc0Kc0z, and

Eez =
P

cEecKcc0Kc0z. The metacell profiles are then normalized as mentioned in previous sections to adjust for metacell size, library

size, and gene length. Finally, normalized Rgz and Eez allow us to correlate a specific pair of gene gðiÞ and enhancer eðiÞ across meta-

cells (z). We calculated Spearman correlation coefficients for all enhancer-gene pairs with distance between 2kb and 1Mb (enhancer

center - TSS).

Estimating the statistical significance of enhancer-gene links
To assess the statistical significance of a correlation coefficient r, we constructed two null distributions by shuffling metacells and

shuffling regions. In the first case, we shuffle metacell labels independently for transcriptomic and epigenetic data, such that the

two data modalities become independent of each other. In the second case, we permute genes by randomly swapping the location

of each gene with that of another gene, while keeping the labels of metacells. Permuting genes randomizes the spatial relationship of

enhancer-gene pairs, and is equivalent to permuting enhancers but are more computationally efficient.

Either null distribution can be used to get empirical p values and false discovery rate (FDR). The empirical p value of a correlation

coefficient r is defined as the cumulative fraction of the null distribution that has more extreme (stronger) correlation coefficients

than r. We calculated two-sided p values when using the shuffled metacells distribution, and single-sided p values when using

the shuffled regions distribution. FDRs are then calculated using the Benjamini-Hochberg procedure.42 We call an enhancer-gene

pair significantly linked (correlated) if its empirical FDR is < 0.2 using shuffling regions (metacells) as the null.

To see if the shuffled regions distribution depends on enhancer properties such as its sequence GC content and distance to the

nearest gene, we also performed stratified shuffling analyses (Figure S4). To control for GC content, we first grouped enhancers into

10 bins (deciles) according to their GC content.We then shuffled enhancers within each bin, i.e., randomly swapping each enhancer’s
e3 Cell Genomics 3, 100342, July 12, 2023
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location with that of another enhancer that has similar GC content. The same procedure was separately done to control for en-

hancers’ distance to the nearest gen as well.

Enrichment of 3D chromatin contact frequencies
We validated the predicted enhancer-gene links using single-cell measurements of 3D-chromatin contact frequency in human pre-

frontal cortex.19 Raw contact matrices of 8 neuronal cell types were downloaded asmcool files.19 We calculated contact frequencies

from raw counts using matrix balancing using Cooler.37,43 We then focused on analyzing these contact frequency matrices at a res-

olution of 10kb non-overlapping genomic bins across the genome.

To compare our enhancer-gene links predicted in the mouse brain with the chromatin contact data from human brain, we lifted

genes (gencode vM16 whole genes) and putative enhancers from mm10 to hg19 using LiftOver44 with parameters -minMatch =

0.8 and -minBlocks = 1.00.

To calculate enrichment, we first assigned enhancers (center) and genes (TSS) to their corresponding genomic bins (non-overlap-

ping 10kb bins genomewide). We compared the contact frequencies of the predicted enhancer-gene pairs with random genomic

region pairs with similar genomic distance. We separately tested the enrichment of contact frequencies of 6 groups of predicted

enhancer-gene pairs: mCG-RNA linked, ATAC-RNA linked, pairs linked by both modalities, mCG-RNA correlated, ATAC-RNA corre-

lated, and pairs correlated in bothmodalities. For each of the 8 neuronal cell types, we only include pairs that are active in the specific

cell type, i.e. whose gene expression is greater than the median across all 8 cell types.

Comparison with CICERO
We installed the R package CICERO1 from the Bioconductor following the instructions from the authors’ tutorial (https://

cole-trapnell-lab.github.io/cicero-release/docs_m3/#constructing-cis-regulatory-networks). We ran CICERO on MOp ATAC-seq

data using default parameters. The program takes as input a peak-by-cell ATAC-seq matrix, where peaks include both putative en-

hancers we specified and gene promoters (500 bp upstream of TSS). The program returns co-accessibility scores for peak pairs. We

filtered the output down to enhancer-promoter pairs only, removing enhancer-enhancer and promoter-promoter pairs. We also

focused on analyzing enhancer-gene pairs that are within 100kb apart, to compare with our correlation-based analysis. We used

a threshold = 0.2 following ref.12 to call positive enhancer-gene pairs.

Comparison with the ABC model
We downloaded code from the github repository of the ABC model9 (https://github.com/broadinstitute/ABC-Enhancer-Gene-

Prediction) and followed instructions. We ran ABC for each MOp cell type (n = 38) using our identified putative enhancer list

(n = 233,524) and pseudo-bulk ATAC-seq and RNA-seq data as input. We used genomic-distance based power law estimation to

model chromatin contacts (–score_column powerlaw.Score). The software returns a score (ABC score) for each enhancer-gene

pair and cell type. We excluded the expressed genes from the results, as suggested by the authors. We also focused on analyzing

enhancer-gene pairs that are within 100kb. We used a threshold = 0.022 as recommended by the authors to call positive enhancer-

gene pairs.

Multiomics (ATAC + RNA) and functional validation analysis
We downloaded single cell Multiome ATAC and gene expression datasets,28,32 which were generated from human cerebellum and

peripheral blood mononuclear cells (PBMCs). Please see Table S5 for detailed descriptions of the datasets. Notably, the cells in 10X

multiome datasets are pre-filtered by 10XGenomics to exclude the low-quality cells.We did not impose extra cell-level quality control

on top of the existing ones. For each dataset, we were provided with a cell-by-gene RNA count matrix, and a cell-by-peak ATAC

count matrix for the same cells.

For each of the two 10X multiome dataset, we generated metacells by clustering single cells based on their gene expression in-

formation using a off-the-shelf workflow of Scanpy. This includes library size normalization using scanpy.pp.normalize_total, log

transformation of normalized counts using scanpy.pp.log1p, highly-variable gene selection using scanpy.pp.highly_variable_genes,

reducing dimensions using scanpy.tl.pca (n_comps = 50), building a cell-cell neighboring graph using scanpy.pp.neighbors (n_neigh-

bors = 10), and Leiden clustering using scanpy.tl.leiden (resolution = 1–10).We adopted default parameters unless otherwise noted. A

range of resolution (1–10) was used to generate clusterings of different granularities.

For each clustering, wemerged single-cell countmatrices, for both the cell-by-gene RNAmatrix and the cell-by-peak ATACmatrix,

into metacell level count matrices. We then removed lowly expressed genes (%100 counts in total across all metacells), followed by

normalization and correlation acrossmetacells with shuffling controls to identify enhancer-gene links (see Section estimating the sta-

tistical significance of enhancer-gene links). As a result, we identified thousands of linked enhancer-gene pairs (FDR <0.2) for a range

of clustering resolution. For each dataset, we focused on reporting the results using the clustering that generates themost number of

significant pairs.

We next seeked to validate our predicted links by comparing with functional experimental data. In the past few years, high-

throughput functional examinations of enhancer-gene links have been developed, by combining enhancer activity perturbation using
Cell Genomics 3, 100342, July 12, 2023 e4

https://cole-trapnell-lab.github.io/cicero-release/docs_m3/#constructing-cis-regulatory-networks
https://cole-trapnell-lab.github.io/cicero-release/docs_m3/#constructing-cis-regulatory-networks
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction
https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction


Short Article
ll

OPEN ACCESS
CRISPR-dCas9 and gene expression readouts.8,9,45 To the best of our knowledge, ref.8 contains the largest functional enhancer-

gene validation experiment to date, which perturbed 5,779 putative enhancers in the K562 human leukemia cell line, and found

664 positive enhancer-gene links (FDR<0.1).

To make a direct comparison, we lifted over enhancer coordinates perturbed by ref.8 from hg19 (n = 5,779) to hg38 (n = 5,778),

including all 664 positive ones. We next overlapped them with the ATAC-peaks from the 10X multiome datasets. Requiring at least

20 bp overlap, we found 1,606/133,233 ATAC peaks in the human cerebellum dataset overlap with those enhancers, and 2,345/

143,160 ATAC peaks in the human PBMC dataset overlap with those enhancers. For the overlapped enhancers, we then compared

the overlap between functional validation results and multiome predictions by generating a 2-by-2 confusion matrix of enhancer-

gene pairs, and tested its significance by Fisher exact test. Other common statistics, including precision and recall, were derived

from the confusion matrix.

Human snmCAT-seq multiomics and chromatin contact validation analysis
We acquired a single-nucleus methylCytosine, chromatin Accessibility and Transcriptome sequencing (snmCAT-seq) dataset from

human frontal cortex from the co-authors of ref.25. This assay measures both DNA methylomes and transcriptomes for the same

cells. Notably, the DNA methylation profiles in this dataset is confounded by its chromatin accessibility component, which uses a

GpCmethyltransferaseM.CviPI tomethylate GpC sites at accessible chromatin regions. To remove this confounding factor, we char-

acterized CG DNA methylation level using HCG sites (ACG, TCG, CCG) only, whenever it occurs below.

To get a list of putative enhancers for this dataset, we started from a list of cell type-specific differentially methylated regions

(DMRs) provided by Table S9 in ref.25. We concatenated hypo-DMRs for all neuronal cell types (n = 2,172,541), removed any

DMRswith less than 3 CpG sites (n = 1,439,125 remain), andmerged overlapping regions using bedtools merge (n = 412,730 remain).

We subsequently filtered the remaining non-overlapping DMRs by keeping only regions in autosomes and chromosome X, removing

the top and bottom 1%of regions by length (>3,477 bp and <36 bp). This in the end left us with n = 402,665 regions, which we used as

putative enhancers for the following analysis.

We quantified CG methylation profiles at enhancers and gene expression profiles for 52 neuronal subtypes identified in ref.25 by

summing over the counts from single-cell profiles (n = 3,898). To get robust enhancer-gene correlation, we then filtered out lowly

expressed genes (total counts %100 summing over all subtypes), and included DMRs with coverage R10 in R90% cell types.

We then ran correlation analysis across these 52 metacells to identify enhancer-gene links, following the same methods described

in other parts of the methods.

We next compared our predicted links from snmCAT-seq with chromatin conformation data profiled by snm3C-seq,19 following the

same procedure as described in section Enrichment of 3D chromatin contact frequencies. Notably, in this case, both datasets were

generated from the human frontal cortex and analyzed using the same genome version (hg19), therefore the regions are directly com-

parable with no genome liftover needed.We reconciled the cell type resolution difference (n = 52 for snmCAT-seq and n = 8 for snm3C-

seq) based on cell type annotations provided by the original ref. 19,25. Their exact correspondence was also documented in Table S4.

Generalized least squares (GLS) analysis to decouple covariance across metacells
We usedGLS29 to test the association between gene expression and enhancer activity across cell types (metacells). Wewill focus on

only one given enhancer-gene pair ðg; eÞ, as the same procedure applies to all enhancer-gene pairs independently. Given an

enhancer e and gene g, Let ycg be the mRNA expression in cell type c, xce be the enhancer activity (e.g., mC or ATAC). Let C be

the number of cell types. A linear model associating g and e can be written as:

yc = a+ bxc + εc (Equation 1)

where c is the index for cell types, b is the association strength, and ε is a noise term. In addition, a is an intercept term that can be

omitted after data centering (x and y can be pre-centered to ensure E½yc� = E½xc� = 0). In matrix notation, (Equation 1) can be simply

noted as y = bx + ε.

In ordinary least squares (OLS), we assume ε is uncorrelated across cell types: E½εc� = 0;E½εcεc0 � = s2dc;c0 . The correlation coef-

ficient r = E½xy�=sxsy is then a measure of the linear association, and it has an associated p value calculated using the t distribution.

Alternatively, inference can be performed by permutation analysis to get an empirical p value.

However, in our case we have correlated noise: E½εcεc0 � = Uc;c0 , which reflects the correlation between cell types due to gene co-

expression. That is, Uc;c0 represents the background of correlated variability in gene expression due to the hierarchical structure of

cell types in complex tissues. We can estimate the correlation using the genome-wide covariance, bUc;c0 = Cov½y�c;c0 . In this case,

generalized least squares29 (GLS) can be used to give an estimate of the coefficient b. This corresponds to transforming the variables

x; y from the original basis (cell types/metacells, denoted) to an decorrelated basis (denoted r), and then performing OLS on the de-

correlated variables.

We first use singular value decomposition (SVD) to decompose the mean-subtracted gene expression matrix, ycg =
P

rUcrSrrV
T
rg,

where r = minðc;gÞ. Defining Z = US, we have U = ZZT . Multiplying both sides of (Equation 1) by Z� 1 = S� 1UT corresponds to a

transformation from correlated with decorrelated (or whitened) basis:

y0 = bx0 + ε
0 (Equation 2)
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where y0 = Z� 1y, x0 = Z� 1x, and ε
0 = Z� 1

ε. The noise term is now uncorrelated, because

Cov½ε0 � = E
�
ε

0
ε

0 T�
= E

h
εε

T
�
Z� 1

�T i
= Z� 1U

�
Z� 1

�T
= Z� 1ZZT

�
Z� 1

�T
= I

where I is the identity matrix. We can therefore use the correlation coefficient and its associated test statistics on transformed data y0

and x0, as in the case of OLS.

Expected range of correlation coefficients for independent variables
Herewe provide theoretical justification onwhywe expect the range of correlation coefficients (br ) to scale as 1ffiffiffi

N
p , as seen in Figures 2J

and S7B, where N is the number of metacells.

Let X and Y be two independent random variables. Let xi and yi be independent and identically distributed samples of X and Y,

where i˛ f1;2;.;Ng. In our case, N represents the number of metacells, and xi and yi are the transcriptomic and epigenetic signals

for a given enhancer-gene pair formetacell i.We requireX andY to be independent of each other as they are unlinked, and xi and yi be

independent samples as different metacells are also independent observations of X and Y, such as in the case of null distribution

created by shuffling cells.

To simplify the notation, we assume E½X� = E½Y � = 0, as the mean does not affect correlation coefficient r. We also assume X and

Y are symmetric, as in the case of normal distribution. It is obvious that rðX;YÞ = 0. However, we are interested in how the variance ofbr depends on N, where br is the sample estimate of r by fxig and fyig.

var½br � � E
� br2� � E

264
�PN

i = 1xiyi

�2

PN
i = 1xi

2$
PN

i = 1yi
2

375 = E

"PN
a = 1

PN
b = 1xayaxbybPN

i = 1xi
2$
PN

i = 1yi
2

#
=

XN

a = 1

XN

b = 1
E

"
xayaxbybPN

i = 1xi
2$
PN

i = 1yi
2

#

=
XN

a = 1
E

"
ðxayaÞ2PN

i = 1xi
2$
PN

i = 1yi
2

# (Equation 3)

The last equality holds, as only non-interaction terms (a = bÞ are nonzero. Moreover, as ðxayaÞ2 are equivalent for different a =

f1.Ng, the above summation can be further simplified as:

XN

a = 1
E

"
ðxayaÞ2PN

i = 1xi
2$
PN

i = 1yi
2

#
= N $E

"
ðx1y1Þ2PN

i = 1xi
2$
PN

i = 1yi
2

#
= N $E

"
x1

2PN
i = 1xi

2

#
$E

"
y1

2PN
i = 1yi

2

#
; (Equation 4)

where E

	
x1

2PN

i = 1
xi2



= 1

NE

	PN

i = 1
xi

2PN

i = 1
xi2



= 1

N, due to the symmetry among indices. Therefore, we finally arrive at

varðbrÞfN $E

"
x1

2PN
i = 1xi

2

#
$E

"
y1

2PN
i = 1yi

2

#
= N $

1

N
$
1

N
=

1

N
; (Equation 5)

and thus the range of the distribution goes as 1ffiffiffi
N

p .
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