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We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more
robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly
simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular
dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At
this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic
interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated
by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly
nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were
able to bypass the challenge rigorously by merging the van der Waals potential and pressure together
when solving the fluid dynamics equations and by considering its contribution in the free-boundary
condition analytically. The multi-scale simulation method was first validated by reproducing the
solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation
simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at
equilibrium with detailed surface features resembling those found on the solvent excluded surface.
Four typical small molecular complexes were then tested, both volume and force balancing analyses
showing that these simple complexes can reach equilibrium within the simulation time window.
Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer
complexes and found that they agree well with the boundaries as sampled in the explicit water
simulations. Published by AIP Publishing. https://doi.org/10.1063/1.5016052

I. INTRODUCTION

Atomistic simulation has become an important tool for
studying the structures, dynamics, and functions of biomolec-
ular systems. Nevertheless efficient atomistic simulation of
large and complex biomolecular systems is still one of the
remaining challenges in computational molecular biology. The
computational challenges in atomistic simulation of biomolec-
ular systems are direct consequences of their high dimension-
alities. Indeed biomolecules are highly complex molecular
machines with thousands to millions of atoms. What further
complicates the picture is the need to realistically treat the
interactions between biomolecules and their surrounding water
molecules that are ubiquitous and of paramount importance for
their structures, dynamics, and functions.

Since most particles in biomolecular simulations are to
represent water molecules solvating the target biomolecules,
an implicit treatment of water molecules allows greatly
increased simulation efficiency. Indeed, implicit solvation
offers a unique opportunity for more efficient simulations with-
out the loss of atomic-level resolution for biomolecules.1–17

Advance in implicit solvation, coupled with developments

a)Author to whom correspondence should be addressed: ray.luo@uci.edu

in sampling algorithms, classical force fields, and quantum
approximations, will prove useful to the larger biomedi-
cal community in a broad range of studies of biomolecular
structures, dynamics, and functions.

One class of implicit solvent models, the classi-
cal Poisson-Boltzmann solvent model, has become widely
accepted in biomolecular applications after over 30 years of
basic research and development. Efficient numerical PB equa-
tion (PBE)-based solvent models have been widely used to
study biological processes.18–42 However, challenges remain
to achieve more consistent, accurate, and robust analysis of
biomolecules.43–60 The existing dielectric model based on
molecular solvent excluded surface is a major hurdle for appli-
cations of the PBE solvent models. This dielectric model
is ad hoc, expensive, and numerically unstable due to its
treatment of atoms as hard spheres in molecular simula-
tions. Efforts to improve the simple dielectric model have
emerged to describe the physical location of the boundary and
to model the heterogeneous dielectric response of the inter-
facial liquid.61,62 Nevertheless, we also see more pressing
needs in incorporating the classical PBE models in molecu-
lar dynamics (MD)/free energy simulations. Indeed, existing
approximated approaches, such as the molecular mechan-
ics Poisson-Boltzmann surface area method that is currently
widely used in the community, cannot be used to dissect any
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proposed improvements of classical PBE models due to their
approximations and intrinsic errors.

In this study, we intend to explore a multi-scale simulation
algorithm for the classical PBE models to explicitly simu-
late the continuum solvent/solute interface with the solvent
fluid dynamics (FD) that is coupled to the solute molecular
dynamics. This algorithm allows a self-consistent treatment
of the solvation interactions, i.e., the dielectric interface auto-
matically adjusts to local conformational and energetic fluc-
tuations and is guaranteed to be at the system free energy
minimum upon equilibrium, so that it naturally addresses
the limitation of the current dielectric model.61,62 In addi-
tion, our algorithm was developed with the goal of better
utilization of the PBE model in molecular dynamics simu-
lations, in that it (1) allows a “soft” and physical dielectric
interface for stable dynamics; (2) eliminates atom-specific
cavity radii that must be defined, dramatically reducing the
freely adjustable parameters of the PBE treatment; (3) elim-
inates the expensive molecular surface reconstruction step
during dynamics; and (4) eliminates the difficult and expen-
sive molecular surface-to-atom mapping of dielectric bound-
ary forces and hydrophobic boundary forces and applies these
surface forces to the continuum solvent instead. The multi-
scaled simulation method utilizes a 3D numerical algorithm
previously developed to solve the Navier-Stokes (NS) equa-
tion.63,64 It should be pointed out that the use of Navier-Stokes
equation, instead of the Stokes equation that is sufficient for
biomolecular processes of interest, is necessary for the lack of
a predefined solute-solvent interface, or in a “free-boundary”
problem.63,64

This manuscript documents our initial effort in the con-
struction of the multi-scale algorithm. Specifically, we incor-
porated the fluid dynamics algorithm into the Amber molecular
mechanics simulation engine65–67 and assessed the quality
of the solvent-solute interface simulated for several simple
biomolecular systems and compared with explicit solvent sim-
ulations. It should be pointed out that we are mainly inter-
ested in equilibrium properties of the biomolecular solute
in the development of the algorithm, and solvent hydrody-
namics is not our consideration. Thus certain alterations of
the fluid dynamics algorithm can be utilized to artificially
accelerate the solvent relaxation process so that the precious
computing resources can be focused on sampling of solute
conformations.

II. THEORY

In the following, we first review our physical model for
easy understanding of the overall approach. Next we briefly go
over the fluid dynamics algorithm and procedure with a focus
on how to adapt the method to atomistic molecular simulations.
Finally computational details are presented for the numerical
tests of specific molecular systems.

A. Physical model

Our basic model is derived from the Hamiltonian equa-
tion. A Hamiltonian for the entire system is thus defined first.
Its degrees of freedom are atomic positions (x) and their veloc-
ities (v) for the solute molecular dynamics (MD) region and

fluid element displacements (y) and their velocities (u) for the
solvent fluid dynamics (FD) region. For the MD region, all-
atom molecular mechanics will be used. Molecular mechan-
ics usually adopts a relatively simple potential energy func-
tion, or force field, for efficient computation. Many potential
energy functions have been developed for biomolecular appli-
cations, such as Amber,68–73 CHARMM,74–76 and OPLS.77–79

For the FD region, an incompressible viscous fluid model is
adopted.

The Hamiltonian is defined as

H = HMD(x, αx) + HMD/FD(x, αx; y, αy) + HFD(y, αy), (1)

where αx is the momentum of the MD region and αy is the
momentum of the FD region. HMD is the Hamiltonian of for
the MD region modeled by molecular mechanics HMD = U
+ K, where U is the force field potential energy and K is
the kinetic energy. HMD/FD = Uele + Uvdw consists of two
terms. Uele is the Poisson-Boltzmann electrostatic solvation
energy.16,60,80,81 The nonelectrostatic solvation energy is usu-
ally modeled as two components: the van der Waals component
Uvdw and the hard sphere entropy/cavity component Uhse.82–86

However, different from all-particle simulation methods, the
Uhse term is now a component in the FD region as is discussed
below. Here Uele is defined as

Uele =

∫ (
ρf φ −

1
8π

D · E − ∆Πλ

)
dV ,

∆Π = kT
∑

i

ci(e
−qiφ/kT − 1),

(2)

in the classical PBE model. Uvdw is defined as

Uvdw =

Ns∑
a=1

∫
ρaw(raw)uLJ(raw)dV , (3)

where the sum is over all solute atoms (N s) and the inte-
gration is over the solvent-occupied volume. ρaw(raw) is a
solvent distribution function around a solute atom “a” at a
given solute-solvent distance. uLJ(r) = A

r12 −
B
r6 is the force

field Lennard-Jones potential given the coefficients A and B
for each atom. Finally, HFD represents the Hamiltonian for the
incompressible solvent fluid, with the form

HFD =

∫ [
1
2
ρu2 + Uint(ρ, s)

]
dV +

∫
γdA + c, (4)

where ρ is the fluid density, s is the entropy density, 1
2 ρu2

is the kinetic energy density, and U int is the internal energy
density.87 Note that

Uhse =

∫
γdA + c, (5)

where γ is the surface tension and c is an offset constant,
is the second component of the nonelectrostatic solvation free
energy. Here the surface integration is over all interfaces of the
FD region. Since the fluid is infinitely large, the only interface
concerning us is that with the particle solute. The interface
identification and the surface integration, also known as the
surface area as γ is constant, are numerically implemented
with the level set method and are presented in Sec. III.

Now we proceed to derive the dynamics equation by first
using a shorthand notation of β = (x, y) as the position vector
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of the system and α = (αx, αy) as the momentum vector of
the system. The familiar Newtonian dynamics can be derived
from Hamilton’s equation as

α̇ = −
∂H
∂ β

. (6)

Here we have adopted the convention that α and β repre-
sent the moment and position vectors of each particle/element,
respectively.

In the molecule dynamics region, the equation of motion
for an atom at position vector x can be expressed symbolically
as

α̇x = −
∂HMD

∂x
−
∂HMD/FD

∂x
. (7)

−
∂HMD
∂x represents the usual force field terms in molecule

dynamics simulations. The coupling Hamiltonian has two
terms, Uele + Uvdw, so the coupling force terms that the atoms
feel are only those of electrostatics and van der Waals in nature,
i.e., − ∂HMD/FD

∂x = −
∂Uele
∂x −

∂Uvdw
∂x . It is interesting to note that

the electrostatic forces − ∂Uele
∂x are simply the qE forces on

atomic point charges in a force field model.60 −
∂Uvdw
∂x are the

van der Waals forces from the solvent molecules modeled as
continuum.84

In the fluid dynamics region, consider a small fluid vol-
ume element at position y, with volume V and velocity u. The
equation of motion of the fluid element is

α̇y = −
∂HFD

∂y
−
∂HMD/FD

∂y
. (8)

As shown below, the variational principle is applied to this
element. The partial derivative can also be written in the
variational form as

α̇y = −
δHFD

δy
��u −

δHMD/FD

δy
��u. (9)

Here the subscript u denotes that it is fixed during the variation.
Notice here that y = y(q, t) is the Lagrangian coordinate of the
volume element, which is fixed on the fluid element and q
is introduced here to denote the actual spatial position.87 In
this subsection, we consider an interior fluid volume element,
i.e., an element not on the interface, to derive the equations of
motion for the fluid interior. In Sec. II B, we will focus on an
interface element to derive the boundary conditions.

To proceed we impose a variation δy on the element within
time dt to compute the variation of HFD. Since the element is
not on the interface, Uhse does not change under its variation,
so we can focus on the first two terms of HFD only. The process
is also assumed to be very rapid, i.e., δy

dt � 0.
Since the fluid is incompressible,O·δy = 0, the work done

to the environment of the element is87

dW =
∫

pδy · dA =
∫
∇ · (pδy)dV

=

∫
∇p · δydV +

∫
p∇ · δydV

=

∫
∇p · δydV , (10)

where p is the pressure and vector dA denotes the area of the
surface element with the direction along the normal of the

surface element. Given that the first and second laws of ther-
modynamics still hold, the internal energy variation can be
expressed as87∫

δUintdV =
∫

(Tδs)dV − dW =
∫

(Tδs)dV −
∫
∇p · δydV .

(11)

The second law provides a constraint for the entropy variation
as ∫

(Tδs)dV =
∫

fvis · δydV − dt
∫
∇ · QdV , (12)

where Q is the heat flux and f vis is the viscous force density.
Given the fact that the term involving dt can be ignored as
δy
dt � 0, substitution of Eq. (12) into Eq. (11) leads to the
variation of the internal energy as∫
δUintdV =

∫
(fvis · δy)dV −

∫
∇p · δydV =

∫
(f · δy)dV .

(13)

Here the total force density f = fvis −∇p =
∂σij

∂yj
is introduced,

whereσij = −pδij +µ
(
∂ui
∂yj

+
∂uj

∂yi

)
is defined as the stress tensor

and µ is the fluid viscosity constant.88 Given the assumption
that the force density is uniform within the volume element,
substitution of Eq. (13) into the variation of HFD gives

−
δHFD

δy
��u = −

∫
δUintdV

δy
= −fV = −

∂σij

∂yj
V . (14)

The variation of HMD/FD is presented next. In Poisson-
Boltzmann systems with mobile ions, there is an ionic force
term at the Stern layer,60 but it is usually much smaller than
other force terms and is often ignored. If it were not ignored,
the ionic force would act upon relevant volume elements. Thus
the only significant derivative of HMD/FD is the van der Waals
force, which can be treated as the “external force” density (F)
on the fluid element, i.e.,

−
δHMD/FD

δy

�����u
= −

δUvdw

δy
= FV . (15)

Finally, the change of momentum of the fluid volume
element is

α̇y =
d(ρVu)

dt
= ρV

∂u
∂t

+
∑

i

ρV
∂u
∂qi

∂qi

∂t

= ρV
∂u
∂t

+ ρV (u · ∇)u. (16)

Combination of Eqs. (8) and (14)–(16) gives87

ρV
∂u
∂t

+ ρV (u · ∇)u =
∂σij

∂yj
V + FV . (17)

This becomes the incompressible Navier-Stokes equation after
removing the common volume factor and spelling out the stress
tensor (σij),

ρ

(
∂u
∂t

+ (u · ∇)u

)
= −∇p + µ∆u + F. (18)

The conservation of volume/mass, O·u= 0, is often written
together with Eq. (18) to show it is for the incompressible
fluid.
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B. Derivation of interface conditions

To obtain the interface conditions, an infinitely small disk-
like fluid volume element ε is introduced with small area A and
thickness h, with h�

√
A. The disk surfaces are parallel to the

boundary interface and one side of the surface is right next to
the molecule dynamics region. Given a variation of the disk
position with δyε ,

α̇ε = −
δHFD

δyε
−
δHFD/MD

δyε
. (19)

The left-hand side can be computed as

α̇ε = ρAh
du
dt

, (20)

which is proportional to the disk element volume, Ah, and can
be ignored as h is infinitely small. To compute the right-hand
side, we first introduce the local coordinate system, which con-
sists of one normal direction (n) and two tangential directions
(t, τ) at a certain point on the interface, i.e.,




n = cos α1i + cos α2j + cos α3k

t = cos β1i + cos β2j + cos β3k

τ = cos γ1i + cos γ2j + cos γ3k

. (21)

Stress − δHFD
δyε

only exerts on the disk surface in the fluid region
so that

−
δHFD

δyε
= σij · nA −

∂Uhse

∂yε

=

[(
−p + 2µ

∂un

∂n

)
n + µ

(
∂un

∂t
+
∂ut

∂n

)
t

+ µ

(
∂un

∂τ
+
∂ut

∂n

)
τ

]
A −

∂Uhse

∂yε
. (22)

The term − ∂Uhse
∂yε
= −γκAn is the surface tension from the hard

sphere entropy, also known as the hydrophobic term,84 where
κ is the curvature. The last term in Eq. (19) can be worked out
as

−
δHMD/FD

δyε
= −

δUele

δyε
−
δUvdw

δyε
, (23)

where− ∂Uele
∂yε
= fdielecA= 1

2σ
pol Di ·Do

Do
n

An is the dielectric bound-

ary force.60 The van der Waals force, δUvdw
δyε

, proportional to
the disk element volume Ah, can be ignored when compar-
ing to the electrostatic forces and surface tension. Combining
Eqs. (19) and (20) and the terms calculated above, the interface
conditions can be summarized as

−p − γκ + 2µ
∂un

∂n
+ fdielec = 0,

∂un

∂t
+
∂ut

∂n
= 0, on ∂Ω.

∂un

∂τ
+
∂ut

∂n
= 0,

(24)

III. NUMERICAL ALGORITHMS

We explored to implement the multi-scale algorithm
in numerical simulations with a strategy similar to those
of the classical Car-Parrinello molecular dynamics (CPMD)
method,89 which can be regarded as a multi-scale algorithm

via coupling equations of motion for ions and electrons in two
different mechanics. In CPMD, electrons are treated as active
degrees of freedom, via fictitious dynamics variable, and the
fictitious electron dynamics is coupled with ionic dynamics in
the Berendsen heat bath to approach the Born-Oppenheimer
surface. The CPMD method results in a conservative ionic
dynamics that is extremely close to the Born-Oppenheimer
surface.

Our approach is to couple equations of motion for solute
atoms and continuum solvent. The solvent part is also treated
by the fictitious dynamics variable, and since our method is
based on a finite-difference method, it is the fluid element.
The fictitious fluid dynamics is modeled by the incompress-
ible Navier-Stokes (NS) equation. The fictitious fluid dynam-
ics model is coupled with the all-atom molecular dynamics
model in the Berendsen heat bath to approach the surface pro-
vided by all-atom MD simulations at a preset temperature.
In doing so, the changes to the existing molecular mechan-
ics simulation engine can be kept at the minimal and there
is a very clear boundary between the FD and MD simula-
tion routines, facilitating the development of the new algo-
rithm into a viable simulation engine for future biomolecular
applications.

A. FD time integration

Our previous work has addressed the mathematical issues
in solving fluid dynamics equations numerically.63,64 After set-
ting the water density to unity, the velocity can be solved by
the second-order semi-implicit backward Euler method as

3uk+1 − 4uk + uk−1

2∆t
+ (u · ∇u)k+1

= −∇pk+1 + µ∆uk+1 + Fk+1, outside,

3uk+1 − 4uk + uk−1

2∆t
= µ∆uk+1, inside,

(25)

where

pk+1 = 2pk − pk−1,

(u · ∇u)k+1 = 2(u · ∇u)k − (u · ∇u)k−1.
(26)

The pressure is solved by

∆pk+1 = −∇ · ((uk+1 · ∇)uk+1) + ∇ · Fk+1. (27)

A new issue facing the application of the FD simulation
to molecular systems is the presence of van der Waals force
(F), which has a large gradient nearby the interface because
it is too close to the solute atom centers. The large gradient is
almost always challenging to address with a finite-difference
type of method. In this study, we overcome the issue by intro-
ducing a variable p′, where p′ = p + ΓwithOΓ = −F is obtained
analytically. Therefore, we can solveOp′ = µ∆u without com-
puting the numerical gradient of the van der Waals potential.
Specifically given p′(k+1) = pk+1 + Γk+1, the equivalent form in
Eq. (27) is to be solved numerically as

∆p′(k+1) = −∇ · ((uk+1 · ∇)uk+1). (28)

Accordingly, Eq. (25) is updated as
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3uk+1 − 4uk + uk−1

2∆t
+ (u · ∇u)k+1

= −∇p′(k+1) + µ∆uk+1, outside

3uk+1 − 4uk + uk−1

2∆t
= µ∆uk+1, inside,

(29)

where p′(k+1) is taken as

p′(k+1) = 2p′(k) − p′(k−1). (30)

Finally the interface boundary condition equation (24)
becomes

−p′ + Γ − γκ + 2µ
∂un

∂n
= 0,

∂un

∂t
+
∂ut

∂n
= 0,

∂un

∂τ
+
∂ut

∂n
= 0.

(31)

At each time step, p′ is interpolated with the one-side least
square fitting method.50 Γ is computed analytically for each
interface point where the interface boundary condition equa-
tion (31) is enforced. When doing so, we can completely avoid
finite-difference operations involving van der Waals energy
and forces.

As presented in our previous studies, the remaining major
mathematical challenge in solving these coupled partial dif-
ferential equations is the presence of the free-boundary con-
dition equation (24) that allows the solute-solvent interface
to equilibrate according to our physical model. To enforce the
free-boundary condition when solving pressure or velocity, we
utilized the jump conditions of un and p as the augmented vari-
ables, respectively.63,64,90 The considerations of augmented
variables lead to extra correction terms on the right-hand side
in Eqs. (25) and (27). After the correction, each velocity com-
ponent solver is equivalent to a Helmholtz equation. Once the
velocity is updated, the pressure solver is simplified to a Pois-
son equation. In this implementation, we utilized the modified
incomplete Cholesky conjugate gradient numerical solver to
solve these linear differential equations.91–94

When solving the linear systems, the fluid domain is con-
tained in a rectangular box, and the conditions at the outer
boundary of the rectangular R are

u|x=xmin
= 0, u|x=xmax

= 0,

∂u
∂y

�����y=ymin

= 0,
∂u
∂y

�����y=ymax

= 0, on ∂R,

u|z=zmin
= 0, u|z=zmax

= 0,

p = 0,

(32)

which represents a pipe flow in the y direction. The use of the
boundary condition allows the mass conservation law to be
preserved since the incompressible solvent fluid can go in and
out of the simulation box freely.

B. MD/FD interface update

Once the fluid velocity field is known, the next step is
to use it to update the solute/solvent interface. The equiva-
lent step in the solute region is to update particle positions
based on particle velocities. Numerically we use the level set
method based on the finite-difference method.95–97 In the level

set method, a scalar function, i.e., the level set function, is
used to represent the moving interface implicitly. The inter-
face is located where the level set function is zero (d = 0), i.e.,
the zero level set Γ(t)= {y : d(y, t) = 0}. Suppose that Γ(t)
moves according to velocity v, ∂Γ(t)/∂t = v(Γ(t)), where v is
known after the fluid dynamics equations are solved. Given
the interface velocity, if we want the level set function (d) to
satisfy Γ(t)= {y : d(y, t)= 0} after update, we can impose the
following equation upon d(y,t):95–97

∂d
∂t

+ v · ∇d = 0 (33)

with the initial condition Γ(0) = {y : d(y, 0) = 0}, i.e., the
level set function initially set for the initial configuration in our
case. Here the level set function was initially set as a signed dis-
tance function to the solvent accessible surface with a specified
solvent probe.

C. Overview of the MD/FD numerical procedure

In our system, the atomic details for the solute region are
preserved, and the solvent region is modeled as in Sec. II A. To
simulate the solute particle dynamics, a standard MD engine
with the leapfrog time integrator98 coupled to a heat bath is
used. The temperature coupling is realized with the Berend-
sen thermostat, which has been widely used in molecular
simulation community.99 Once the heat bath is specified, the
procedure of the MD/FD can be summarized into the following
steps:

1. Input and initialize system parameters for solute atoms
such as temperature, number of particles, time step, etc.
Initialize initial positions and velocities of all solute
atoms.

2. Initialize FD simulation box and grid points. Initialize
velocity and pressure of fluid elements.

3. Compute energy and forces from the potential function
of solute atoms.

4. Compute van der Waals forces and pressure between
solute atoms and fluid atoms.

5. Use the particle MD engine to update new velocities and
positions of solute atoms.

6. Use the FD engine to update new velocities and pressures
of fluid elements.

7. Update new MD/FD interface.
8. Repeat steps 3-7.

Dynamics variables, such as position, velocity, pressure, and
level set function, are periodically stored after step 7 as
requested. These can be used as input to restart the MD/FD
simulation as needed.

IV. OTHER COMPUTATIONAL DETAILS

For the FD simulations, physical parameters of water are
set as those at 300 K with viscosity µ= 8.51 × 10�4 Pa s,
density ρ= 1.00 × 103 kg/m3, and hydrophobic surface ten-
sion γ = 8.94 × 10�2 kcal/mol Å2, with the later optimized for
biomolecules given the solvent accessible molecular surface
definition in a previous work for the Amber force fields.84 The
water probe was set as 1.0 Å to set up the initial molecular
surface. In the FD simulation programs, both water viscosity
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TABLE I. Conversion factors between FD and MD units.

Variable MD unit FD unit

Time (t) 1 ps 85.1
Mass 1 kg 1.00 × 1027

Energy (E) 1 kcal/mol 9.60 × 10�2

and density are often set as 1.0 in the internal unit. Thus a
proper interface between FD and MD simulation portions of
our algorithm requires careful unit conversion. The details in
deriving these conversion factors are given in the Appendix,
and the actual conversion factors are listed in Table I.

The MD/FD multi-scale simulation engine was developed
in a revised Amber 16 release.65–67 The Amber ff14 force field
is used to generate the topology files and the TIP3P water is
used to model the water molecules. All atomic charges were set
to be zero to focus on the nonelectrostatic interactions in this
study. The simulations were conducted with bonds involving
hydrogen constrained via the SHAKE algorithm. The time step
was set to be 0.002 ps for both the fluid dynamics region and
molecule dynamics region. The temperature coupling constant
is 0.2 ps in Berendsen’s thermostat to couple the temperature
of the MD region, which is set to be 5 K to study the relaxation
of the solute-solvent interface in this study. The simulation box
is four times as large as the solute dimension.

Since the goal of the current development is to evaluate
how well the MD/FD method reproduces the solvent inter-
face, the atoms in the MD region are restrained to their ini-
tial positions with a harmonic potential of force constant of
50 kcal/mol-Å to focus on the FD simulation. The initial
solvent-solute interface was set as the solvent accessible sur-
face with a solvent probe of 1.0 Å. The small probe was used
as we anticipate that the final solvent-solute interface would
shrink to an interface similar to the solvent excluded surface.
Given that the external forces on the FD region are currently
only van der Waals force and hydrophobic force, and that they
should balance each other at equilibrium, we explored how to
both artificially increase the external force terms (by a factor
of 10) and decrease the viscosity terms (by a factor of 10)
to accelerate the relaxation towards equilibrium. It was found
that the low viscosity runs did not relax as fast as the high
force runs (data not shown). Nevertheless all alternatives will
be further explored in a future study.

A single ion (Na+), a single molecule n-methyl amine
(NMA), and four typical small molecular complexes, adenine-
thymine (AT), guanine-cytosine (GC), arginine-aspartic acid
(RD), and lysine-aspartic acid (KD), were chosen to analyze
the solute-solvent surface produced by the new method. In this
stage of our development, the electrostatic interactions were
turned off so only van der Waals and hydrophobic interac-
tions of the solute molecules were considered though water
molecules were not alternated. As a benchmark to evaluate
the quality of the new multi-scale algorithm, we conducted
all-atom molecular mechanics simulations for the four tested
dimer complexes to sample the solvent interface with explicit
TIP3P water molecules. In these simulations, all molecules
first underwent a 10 000-step energy minimization starting
with a 5000-step steepest descent followed by a 5000-step

conjugate gradient minimization. Then all solute atoms were
restrained to their initial positions with a harmonic potential
of force constant of 50 kcal/mol-Å in all subsequent heat-
ing, equilibration, and production simulations. The molecular
dynamics simulations were first heated up from 0 K to 300 K
in 20 ps. This was then followed with a 10 ns simulation at
the constant temperature of 300 K and the constant pressure of
1 bar with the Berendsen heat and pressure baths. The water
molecules sampled in the last 5 ns were used to analyze the
solute-solvent surfaces.

V. RESULTS AND DISCUSSION
A. Single atom relaxation: Reproduction
of analytical solution

We first validated the MD/FD engine with a simple system
with analytical solution: the solute-solvent interface of a single
atom, given that the balance of hydrophobic force and van der
Waals force would lead to a final equilibrium surface. The
equilibrium can be analytically solved once the solvation free
energy for a van der Waals sphere of radius R is given as

G = ρ

+∞∫
R

(
A

r12
−

B

r6

)
4πr2dr + γ4πR2

= 4πρ

(
A

9R9
−

B

3R3

)
+ 4πγR2. (34)

Starting from a given initial state, it is expected that the system
converges to its free energy minimum if there is no energy
barrier, which is the case here.

In this test, an Amber sodium ion solvated in TIP3P water
was used as an illustration. With the specified surface tension
and van der Waals parameters from the ff14 force field, the
gradient of the free energy can be expressed as

∂G
∂R
= 4πρ

(
−

A

R10
+

B

R4

)
+ 8πγR. (35)

Given the values of A = 4127 (kcal/mol)·Å12, B
= 3.570 (kcal/mol)·Å6, and γ = 8.94 × 10�2 kcal/(mol·Å2),
the numerical solution shows that there is only one root for
∂G
∂R = 0 when R is positive, which gives the radius of the sphere
to be 2.45 Å. It is also clear that ∂G

∂R < 0 when R approaches
0+ and ∂G

∂R > 0 when R approaches infinity. Given that (1)
the gradient changes from negative to positive as r changes
from 0+ to +∞ and (2) there is only one root for the gradi-
ent, it can be concluded that the gradient is negative when R
< 2.45 Å and positive when R > 2.45 Å. Thus, free energy G
is monotonically decreasing when R < 2.45 Å and monoton-
ically increasing when R > 2.45 Å. This analysis shows that
there is no energy barrier in the physically allowed range of R.

Therefore it is possible to use a simple steepest descent
minimization or a low-temperature MD relaxation to reach
the global minimum in the solvation free energy. Figure 1
plots the evolution of volume versus time for the tested low-
temperature relaxation run. It is apparent that the volume of
the solute-solvent interface quickly converges to a constant
volume, consistent with our analysis above. The numerical
volume agrees with the analytical solution with an error of



214112-7 L. Xiao and R. Luo J. Chem. Phys. 147, 214112 (2017)

FIG. 1. (a) Time evolution of volume (Å3) in the restrained MD/FD simu-
lation of sodium ion. (b) Spherical contour of solute-solvent interface when
reaching the equilibrium.

∼0.3%. Note also that the equilibrium volume is a spherical
sphere for the single ion as expected.

B. Monomer relaxation: Symmetric interface

Next, we performed the low-temperature relaxation of
n-methyl amine, a mirror-symmetrical monomer. As shown
in Fig. 2, the volume reaches the equilibrium value within
500 steps (1.0 ps). The contour plot shows that the symmetri-
cal monomer possesses a symmetrical interface at equilibrium.
VMD visualization in 3D indicates that a detailed surface con-
tour similar to that of the solvent excluded surface can be found
(see the supplementary material).

C. Dimer relaxation

Four typical small molecular complexes, adenine-
thymine, guanine-cytosine, arginine-aspartic acid, and lysine-
aspartic acid, were tested to evaluate the performance of
the MD/FD simulation method. As shown in Fig. 3, the
solute volumes reach the equilibrium values within 500 steps
(1.0 ps) for all four dimers. Figure 4 presents the time evolu-
tions of force balancing on the solute-solvent interface. It is
clear that the numerical solvent pressure and viscosity pres-
sure decrease significantly and approach zero as time goes on.
On the other hand, the hydrophobic (surface tension) pressure
and the analytical van der Waals pressure become the domi-
nant components, reaching steady values while balancing each

FIG. 2. (a) Time evolution of volume (Å3) in the restrained MD/FD simula-
tion of NMA. (b) SES-like solute-solvent interface is observed when reaching
the equilibrium.

other out. This is another evidence that the system approaches
equilibrium. Apparently the balance between hydrophobic and
van der Waals components is not perfect, due to the presence
of residual fluid flow nearby the solute. This issue will be
addressed in our future refinement of the numerical algorithm
to be discussed below.

D. Comparison with explicit solvent simulations

Finally, a key issue in the current development of the
MD/FD algorithm is to see whether the algorithm at least
qualitatively agrees with explicit solvent MD simulations.
Discrepancy is possible given that no optimization has been
attempted. Therefore, it is interesting to analyze the solute-
solvent interfaces as sampled by both the MD/FD algorithm
and the explicit solvent MD algorithm.

This analysis was conducted in the following manner. The
water molecules in explicit solvent MD simulations were sam-
pled every 5 ps over the course of a 5 ns production run for
each tested dimer with all solute atoms restrained in the initial
position. A total of 1000 snapshots were collected for visu-
alization. To facilitate visualization, water molecules beyond
3.0 Å distance from any solute atom were discarded. The water
distribution maps were used as references to assess the solute-
solvent surface sampled by the MD/FD simulation method.
Figure 5 shows the distribution of water oxygen atoms and
the MD/FD surface when viewed outside of the solute-solvent

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002746
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FIG. 3. Time evolutions of volume
(Å3) in the restrained MD/FD simu-
lations of dimers: AT, GC, RD, and
KD.

surface, and Fig. 6 shows the distribution and surface when
viewed inside of the solute-solvent surface. Overall, the
MD/FD surfaces match very well with the solute-solvent
boundaries as sampled in the explicit MD simulations for all
four tested complexes. Note also there are a few places of
discrepancies, which indicate that the parameters used in the
MD/FD algorithm need to be optimized. VMD visualization
in 3D further illustrates the agreement presented here (see the
supplementary material).

It is worth pointing out that water penetration into the
interface region is not serious when compared with explicit
solvent simulations. Switching from a full atomic model to a

continuum model is bound to lose details on molecular fluc-
tuations. The minimum in the free energy is shallow, and this
suggests that for small systems, one would expect molecular
fluctuations. Besides this, the concept of a molecular surface
being defined by a spherical probe is an idealization of a water
molecule. Thus a perfect match is probably not possible even
after further optimization.

E. Limitations of the algorithm and future directions

There are clearly limitations in the proposed MD/FD algo-
rithm. The first limitation is that we artificially make both

FIG. 4. Time evolutions of average
absolute pressure components on the
solute-solvent interface: AT, GC, RD,
and KD. (a) Numerical solvent pressure.
(b) Hydrophobic pressure. (c) Viscosity
pressure. (d) Analytical van der Waals
pressure.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-002746
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FIG. 5. MD/FD surfaces (white wireframe) and water
molecules from explicit MD simulations (yellow dots) of
four tested dimers: AT, GC, RD, and KD. Here the viewer
stands outside of the surfaces.

hydrophobic and van der Waals terms 10 times higher to
accelerate the solute-solvent interface relaxation because the
focus of the current algorithm is for equilibrium properties of
the solute, but not the physically correct solvation relaxation
process, which may be important if the MD/FD algorithm is
applied to study hydrodynamic properties due to the presence
of the large molecular solute. Nevertheless, the artificial setting
does not affect the converged solute-solvent interface because
both hydrophobic and van der Waals pressures are simultane-
ously increased and the solute still feels the original hydropho-
bic and van der Waals terms. Second, the finite-difference grid
spacing used in the FD engine is 0.5 Å, which is widely used in
biomolecular applications of a finite-difference method given
a high enough resolution of molecular surface topology can

be achieved. However, the relatively fine grid also leads to a
highly inefficient numerical procedure. To date we have not
paid special attention to the numerical efficiency of our FD
engine, and this will be a focus in our future development,
either via accelerated FD algorithms or simplified FD schemes
given that our focus is on equilibrium properties. The devel-
opment and illustrations here mainly show that the MD/FD
algorithm is sound and it does produce physically meaning-
ful observations consistent with the all-atom MD algorithm,
which is very promising.

As we pointed out in Sec. IV, the FD parameters for the
water solvation process were from a previous study to opti-
mize a related nonpolar solvent model. Apparently this is not
optimal for the current MD/FD algorithm. Our next step will

FIG. 6. MD/FD surfaces (white wireframe) and water
molecules from explicit MD simulations (yellow dots) of
four tested dimers: AT, GC, RD, and KD. Here the viewer
stands inside of the surfaces.
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be to investigate how to optimize the hydrophobic term and
van der Waals term to best reproduce the all-atom explicit
solvent model. In addition, we will also incorporate the elec-
trostatic interaction as modeled by the numerical PBE method
to build a more realistic MD/FD algorithm for biomolecular
applications.

VI. CONCLUSIONS

In this study, we explored a multi-scale algorithm for the
Poisson-Boltzmann continuum solvent model for more robust
simulations of biomolecules. This method utilizes a recently
developed fluid dynamics algorithm to simulate the contin-
uum solvent/solute interface, which is tightly coupled to the
solute molecular dynamics simulation realized with the Amber
molecular mechanics engine.65–67 A major issue in the applica-
tion of the multi-scale algorithm in atomistic simulations is the
presence of van der Waals potential, which has a large gradient
nearby the solute-solvent interface. It is virtually impossible to
treat van der Waals potentials with any reasonably fine finite-
difference method. We overcame the challenge by removing
the van der Waals potential from pressure when solving the
finite-difference fluid dynamics equations and adding back
the van der Waals potential analytically in the free-boundary
condition.

We first validated the MD/FD engine with a simple sys-
tem with analytical solution: the solute-solvent interface of
a single atom. The balance of hydrophobic force and van
der Waals force would lead to the final equilibrium surface
of a sphere. Our test shows that the volume of the solute-
solvent interface quickly converges to the analytical value
with an error ∼0.3%. Next, we performed the relaxation
of NMA, a mirror-symmetrical monomer. The contour plot
shows that the symmetrical monomer possesses a symmetrical
interface at equilibration. VMD visualization in 3D indicates
that a detailed surface contour similar to that of the solvent
excluded surface can be found. Four typical molecular com-
plexes were then tested to evaluate the performance of the
MD/FD simulation method. The solute volumes reach the
equilibrium values within 1.0 ps for all four dimers. The time
evolutions of force balancing analysis on the solute-solvent
interface show that the numerical solvent pressure and vis-
cosity pressure decrease significantly and approach zero as
simulation time goes on. On the other hand, the hydrophobic
(surface tension) pressure and the analytical van der Waals
pressure become the dominant components, reaching steady
values while balancing each other out. This strongly indicates
that the systems approach the equilibrium at the end of the
simulations.

Finally, a key issue at the current stage of the development
is to investigate whether the algorithm at least qualitatively
agrees with explicit solvent MD simulations. Therefore, it is
interesting to analyze the solute-solvent interfaces as sam-
pled by both the MD/FD method and the explicit solvent MD
method. Comparisons show that the MD/FD surfaces agree
very well with the solute-solvent boundaries as sampled in
the explicit MD simulations for all four tested dimers. Note
also that a few places of discrepancies do exist, which indi-
cates that the parameters used in the MD/FD method need to

be optimized further to achieve higher consistency with the
all-atom explicit solvent MD method.

In our next phase of the development, we will further
improve the quality of hydrophobic and van der Waals terms
of the FD procedure to best reproduce all-atom simulations.
In addition it is important to investigate the effect of incor-
porating, the electrostatic forces into the MD/FD algorithm
to evaluate its impact on both numerical stability and consis-
tency for a range of model systems. Finally it is interesting to
explore more efficient and/or simplified numerical FD engines
for routine applications to biomolecular systems.

SUPPLEMENTARY MATERIAL

See supplementary material for the 3D visualization in
VMD for monomer NMA and the four molecular dimer
complexes: adenine-thymine (AT), guanine-cytosine (GC),
arginine-aspartic acid (RD), and lysine-aspartic acid (KD).
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APPENDIX: DERIVATION OF CONVERSION FACTORS
BETWEEN MD AND FD UNITS

Since FD programs can use any arbitrary length unit, we
set 1 internal length unit as 1 Å. Given the length unit settled
and the water density (ρ = 1.00 × 103 kg/m3) set as 1 internal
density unit, the internal mass unit can be computed to be
equivalent to 1.00 × 10�27 kg. Next we can utilize viscosity to
compute the time conversion factor. Given the unit of viscosity
Pa s = kg/(m s) we can use the mass conversion factor to derive
the time conversion factor as follows:

1 internal viscosity unit = 8.509 × 10−4 kg/(m · s)

= 8.509 × 10−4 × 1.00

× 1027/(1010 × T ). (A1)

This leads to T = 8.51× 1013, which means 1 s = 8.51 × 1013

internal time unit. And thus we have 1 ps = 10�12 s = 85.1 inter-
nal time unit. The energy unit of 1 kcal/mol can be converted
as

1 kcal/mol = 6.948 × 10−21 J = 6.948 × 10−21 kg m2/s2

= 6.948 × 10−21 × 1027

× (1010)2/(8.509 × 1013)2 internal energy unit

= 9.60 × 10−2 internal energy unit. (A2)
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