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IDENTICAL, PARTICLES AND PARASTATISTICSl

P. V. Landshof?> and Henry P. Stapp

Departmént of Physics and Lawrence Radiation Lahoratory
University of California, Berkeley, California

Janmary 4, 1967

ABSTRACT

ThévéimPlest parafermi model is shown to be equivalént to
a fheory with éwo'types of ordinary fermions that are dynamically
vindistingﬁishable..‘This'model exhibits cluster properties_as well
as the usual analyticity and crossing properties, and hence para-
statistics éannot be ruled ou%t cn any of these groundsf For a
complete discussion of cluster properties it is necessary to
establish what quantities are observable in systems containing
idgntical particles that are not necessarily fermions or bosons.
It is argued‘that particle permutations are observables and that
it is consistent to assume that these are the only dbservaﬁles
that depend on the ordering of variables. This theory~of
observables cévers simultaneously both the first- and second-
- quantized treatments, which are equivalent only for fermions and

bosons.
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' I.. INTRODUCTION .

-

A fundamental unresolved question is whether all particles

of nature are necessarily either fermions or bosons. Theoretical

.

investigations cof other possibilities have followed one of two

TN

1,2),formulated within the framework of

pproaches. The first. ;

firét-quantizéd quantum theory, imposes tﬁs condition that particles
‘df the same type be indistinguishable by requiring fhat all ob-
servables Q satisfy PQPil = Q, wvhere F is an& perﬁutationAon
the order of the variebles referring to the given typé of pérﬁicle,

~ The second approach. (3,4),formulated within the second-quantized

’
’

fremework, considers commutation relations more general than those
lleading to Fermi or Bose statistics.: Thesg two approaches are
»equivélent in the cases of Fermi and Bose statistics, but in general
Vthéy are nonequivalent. 1Indeed, the basic équation PQP-l = Q of
thebfirst—quantized approach is‘generally‘ill-défined in the second-
Quantizéd framework. - This is beceuse the generaiized commutation
relationé equate states with variables in different orders, and
the results of the action of P upon equated states are not
:iden£ical;.‘The origin of the difficﬁlty is that the generalized
(parastatistics) commutation relations do not commute with the P's.
‘One aim of the present work is to provide a framework for
E'the'discuséion of identicél pdrticlés that encbmpasses both
. approaches. An important point, here, is a distinction between
‘the above-mentioned place permutations P and particle permutations

" P. We shall argue that particle permutations are observables.

Indéed, the symmetry requirement PQP_l = Q of the first quantized
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apprbach is4equivalent to'the:requiremenﬁ_that éll observables

that»&istiﬁéuiéh gmong~sta£és that differ oﬁly in order of variables.

‘-f are fﬁnétions of fhe particle-permutatiohs P. .Tﬁé latter forg

- of the indistinguishability requireﬁent is equally applicéble to

the'second—quantized approach.
| We'begin, in.Section.Z,vby.feviewing é‘particulér case of

modified commutation relatiohs, namély that of ﬁaféfermi statistics

'of order two.‘:Thisvcase has been studied in perturbatioﬁ theory

by Volkov,(&),usiﬁg a'particﬁlar Hamilﬁonian. AWe show that the Volkov

model is in a certain sense frivial in that it is physically equivalent

to_a.tﬁeory'in ﬁhich there are two different types of ordinary

‘fermions that are statisfically distinct but physically indistinguishable.

An ekample of such particles would be thé neutron and the prbton in-a

" model with’anvisospin-independent interaction. As this possibilityk

does not violate an& general requirements, such aé cluéter, crossing,

dr.anaIyticity.properties, it ié'evidently impossible to use such

general principles.to fule out the possibility that there exist

particles obeying.parastatistics, The example of the Vqlkov model

suggests that all theories invol&ing particles obeying paiastatistics

.'are reducible to theories in&olving‘only fermions and bosons, but

we have not attempted.to prove this_.3

Ih Section»B the question of what‘quéntities are observable

is considered and iﬁ is argued that particle permutations are

_AobserVables; Ir Section 4 we derive the restrictions on the elastic
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matr¢x arising from the reqguirement uh&u all quans titles

of elastic-scatiering experiments be furections

[}

megsurable by mean
of place permutations. This provides & derive tloq, ;rom aeneral
s

requirements, of the particular form of § that arosé in the Volkov

.J

medel from specisl field-theoretic properties.
In Section 5 we examine vgetnef the possibility of 1 'asuic
~interactions enauiés the class of.cbservables to be extended beyond
the set of particle permutations P. We show that the answer is no,
fifst in a particﬁlar eﬁaﬁvl: cf an inelastic 1ntéraction and then

general LJ within the framework of the Veolkev model. Cluster properties

play an’ impeortant role in this analysis.
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© Parafermi statistics o

N .
operators a' and a:
8 T a + a a v 2 = B a + 8,
% B ™ : n K xn m mn K
- -? T e
atal + gl g = & gl
X' 'n m R m m
. 4 - A 4 &£
e*T aTat + atatal 0. (2.1)
XK n Tmo m n E

There are also similaf relations for the éo*re<bond1ng antiparticle
| operetors a and a’, &s well as Tor mi#tures of the particle and
antiﬁarticle_operators, In the latter case a given Kronecker 8 on
the right-hénd side occurs cr:ly when its two indices both refer .

.

elt%er +o particles or to antiparticles.
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 Volkov héélshowﬁ (g)Athat,zif thé;fermi.fieldéﬂéfitﬁe ordinary .
eiectibmdgnetic ihféfaction.g ' | R ‘ | .
Epe = (6w e
ére replacéd by‘pérafermi fields_of ordef fwé,vthenvthe S—matrik elements
'caﬁ be exéressea as a.éﬁm.éf funétioﬁé corresponding to different |
: Feynman graphs. The rule; for_computing thé function corréspondihg ﬁo
a given graph‘are identicdi tb the usual rules, except for an extra
factor of two for eaéh w-parficle élésed loop.A | |
We repreéent by g(qlqg gy | P, P, s PN>‘ the function
obtained by summing the functions corresponding to all Feynman graphs.
in which the ?arafermion line that begins at 1 ends at Q -
The éhoton vafiables are unimportant in this discussion.andvare
suppressed.‘ By virtue of the symmetry of the Feyﬁman'ruleé with
respect to the identification of the vaarafermioh lines, the

function Er_has the symmetry property

Sapy ap qPN R R CL A ay | P12 )
(2.3)
-where 'Pl’ng’ e PN -is anjipeimufafién of 'l, 2,"" N. The'general
'significanée of SQCh aréymmetry‘property in any theory of identical
particles is diécussed_in Section L. |
The S-matfix elements themselves do.not disélay the symmétry

. property (2.3). If we define
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5=

o b e Y = ate) atol) ees ato) 100,
then it follows from (2.1) that
Py Py Py P Ppy i By) = mlpy By e Py PRttt By
| (2.5)
'.by virtue of which the three states

Iy mppg) = -ley )
‘and ; ‘ ‘ o

dps ey py) = -lpy By pg) - (2.6)

: The

gpan the subspace of states corresponding to the momenta 'plpep3 .

S~matrix elements are given, according to Volkov's rules, as

(99,95 [8] pypyps) = §quqeq5 | ppops) - §?q3q2ql | py7.p,)

fl

Slaya,05 | pyoop;) - Blayaze, | oo00)) o
(2.7)

which dpxnot satiéfy (2.3).

| ‘The Volkév(mbdel is eéuivalent to a special case of a theory
“involving two disfinct but dynamically indistinguishable fermions.”
#ét' [aif} and [BiT} he two sets of ordinary fermion creation,

‘ _ . .
operators, such that ecach o' anticommutes with each 5T, ete.

Writing
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_‘.'_. A T t A
By =78 e = (2.8)

one obtains from the usual fermion anticommutation relaticns the

equations
sta + asta -5 4 + 5
Ak n m I n K kn “m mn Ak ’

 . 'Ak_BnT Ami * AmT?nT Ak' - Skn Ami ’
and v

'.A AkT Blal + AmT BnT AkT =0, , (2.9)
and élso a similarléet of eQﬁations in ﬁhiéh the A'S ard B's are
interéhanged.' The similarity of (2.9) and (2.1) is apparent. The |
relations similar o (2.9) inVélviﬁg antipartiéle'operators are

obtained by meking the further identifications

% = B - 8 = B | :
- - ' -t -7
By = A4 % = A

]

. .(2.10)

That is, if any product of parafermi operators is transcribed into
an alternating sequence of A~ and B-type operators, then the

original parafermi commutation relatlions are still maintained. This
ensures that any parafermi model of order two in which all observables o

are of even degree in the parafermi fields can be reduced to an

equivalent model involving cnly ordinary Fermions. One transcribes

the operators aiT, as; aiT and a. cccurring in the observables
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‘i“to corvespond¢ng Au or Rnuvpe one“ uors, 7'es*::m.:*t:."wply,
’:according to V“-;her uhev occrnv even or odd pon*tions, countlng
from'tbgﬁléft. Thé:same rule'is app;ied to the products of creation
opéxétors ﬁhaﬁ c&eéfé tﬁe basis‘étates, s0 that‘(z,h); :or“éxaﬁpié,

I;becomes‘. )
. S ~!_:" TNy - J_‘ C o . .
!plpe%pg,, e} = o' (py )87 (n,) aT(pj)_B'(pu) e 10y (2n

The VoJkov interaction Hpm‘ tonlan involves the parafields .

1n +he form o‘ JheAcommutator ¥, ¥] , which contains the terms

1 - 1

e Ta + a & + a_ a + & &
m n n m n mn
. , ‘ + , )
o -'- - ! T - w ¢ =
- & 8' - & g ~ & &8 - . 1
- monm n m n m B By _ (2 ?)

According to the rules this swm it transcribed into

et o
« Ya +efa’ + 3 a « &4

m n n R mn  Tmn

8,8, Cstet - s -8 By - (2.13)

Recause the interaciion Hamiltcnian involves an even number of

. operators w, one can meke the transcription'(2.12)'to (2.13) of

E{HI;T -before exp”ad 'ng the exponential in
S = Tlexpi-i J{ “INm(x) d X} JA: 

< and the reqguired alternation of A- and B-type operators will persist
after the expansion. After the franscription one may use the usual
. Permion anticcommutation relations %o reorder the o and B

operators, thereby obtaining via Wick's theorem the usual Feyrman
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rﬁleSu. The factor of tws associated with an internal closed loop
efidently ariseé ﬁeéau;e the loop can represent either an @-particle
‘or ; B-particle, and the ﬁwo possibilities contribute equally because
the inﬁeraction is symmetrical in the operators <« and 8. (Iﬁis
can be seen from (2.1%2) by using the anticommutation relations for
‘the B to reverse the order of the factors in each of the last
four terms.) This.symmetry ol HIKT under interchange of «a and
B means that these two'types of particle, though sﬁatistiéally
distinct, are dynamically indistinguishable. This is néce;sary for
the validity of the symmeiry property (2.3), since a permutation of
adjaéent particles in a state interchanges @~ .and pB-type particles.

The érdihary,fermion reactionsAthat arise from the parafermién
reactions by the transcription just déscribed appear to be special in
that the numbers of the two kinds of fermions can differ at most by
'bne. Though this restriction might apparently differentiate a
world ﬁaving two distinct indistinguishable types of fermions from
a world iﬁvolving‘parafermions, the cluster properties effectively
nullify this distinction: the particles in any localized region
could be preponderantly of one type or the other.

The fact that the two t&pes of fermions are dynamicélly
indistinguishable imposes limitations on what is obser?able_in certain
types of experiments. For example, elastic—scattering experimeﬁts
cannot distinguish between the two-particle states !plpe) ‘and Ipepl) s
even though these*states are independent. This is because (2.3)

implies that

¢
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gy slaye),

1

Ziéo:that én"elastic-écéttering expefimehf’woﬁld eﬁablefone‘to distihguish
between - }pl,pg) ‘and' ng pi)_vonly if>one had some way of distinguishing

r;bepween‘ !ql q2) énd: [q2 ql) . On the'othéf hénd, the tqustateSv
'»IPP>=‘T.==(|PP>¢IPP>>

SRR TN LD s

" are distinguishable, since the two matrix elements

Sog ap Islmy p), = (o) o5 I8l py Bp) {ay oy 8] py pp)

(2.15)

~are different, while the mat?ixrelements _;(ql a, fS'»Pl P2>t venish.
' _ :The'general question of what quantities are observable in
. systems of dentical particles is importaﬁt‘both.in its own right

and for a discussion of cluster properties.

'III.  fERMUTATIONS AS OBSERVABﬁES.
] gSingle-particie éxperiménts are expérimehts that establish
"-only‘fhét ceftain f£eéaparticle'wave fﬁnctions are occupied whereas.
.certa;n:others are nqﬁ. ‘Each frée-ﬁarticle wave-function corresponds
to a certain type_of_parﬁidle; and anvoccupiea wavevfuncfion is

" regarded as a particle df.the»éofrespondingtxype.
Let’_¢l ,_¢2 , ..“QN ‘be a set of N orthogonal

: free—particle wave functibns, all corresponding %o a'single type of
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particle, and let |f , @, *** #) be a pure state in which

these wave functions aré,ali occupied. Other wave functions may

also be occupied, but these are irrelevant to our considerations.

The wave functions ¢i,_iv¥.l; -+ N, can be gradually changed

"in such a way that (¢l; ¢2,
. where (P, P2, --

state thus obtained is |ff

as

15)

..f.¢N) becomes (5251_5

s B, ),

1 P2 PN

‘ PN) is a permutation of (1, 2, ..+ N). The
@ 5-+<@_ ) which will be abbreviated
F1 P2 . B 3 e

The various states |B) are indistinguishable by

singleéparticle experiments, since these establish only that

certainvwave functions are occupied; they do not determine the-

*poéition of the ¢i within the state vector.

_i'The subspace spanned by the ‘N! vectors

|B) will ve

denoted by /4f (¢l, ¢2, e ¢N). If the N particles are identical

fermions or bosons then the various ‘lﬁ) arevall-multiples of any

single one of them, and hence A4/ 1is one-dimensional. To encompass

more general cases we allow the |B) - to have relations of the form

P |B)
-valid for 2ll

S }§>7

B

v UPIP} o - UP = 1 (31)
, whefé  P is sdmé,pléce permutation, That is),
Plg_, 9, g_) .
Pl P2 PN
- ') R S >; (5-2) ¥
PPL PP2 PPN )
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nhere :(Pll P2 ffn PN) ié a pernutetion of‘ (l. 2,7 .+« N). The -

’ Fermi and Bose statlstlcs are 1ncluded as spec1al cases; as are
.parastatistics"[see, for example, (2.5)] and Boltzmann statistics
"b(wnlch is the case in whlch all ‘the- 1?) "ere lineérly independent)

" The various states of //f, are 1ndlst1ngulshable by single-
particle experlments, but the~quest10n arises whether any operators
| in'the space (Cj% are observable oy means of other types of
expefiments. | ' .
In order to obtain some distinetion among the states of /C%ﬂ,
ietvthe‘particleS'fi and J corresponding‘to the wave functions
 ‘1 ¢i and ¢j. be ceused'to scatter on each othe;;' For spinless
jparticles the scattered wave at center—of-mass angle n/2 contains
?only the symmetrlc part of the wave function with respect to the

operator P that 1nterchanges;partlcles i and j. Alternatively,

i3

: . N
the energies can be adjusted so that some single partial wave

dominates the scattering. This allows the syStem to be projected

i’

The operetor ﬁ'j exchanges the particles i and ~j. This

-on either eigenstate of the particle-exchange operator B,

"means that wave. functlons ¢ and ¢ representing these particles

-are interchanged. If ﬁij. acts on a superposition of states

|§), then the positions of the interchanged indices i and J
'will be different in different terms,' The particle-exchange operator
B is thus to be distinguished from a place-permutation operator

13

Pab that interchanges the occupents of positions a and b 5

regardless of their identity. 'The fact that the otservable'is a
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-me particle-permutatlonriP? and not a place-permutatlon P, is P

"fi.consequence of the fact that partlcles are experlmentally 1dent1f1edlf"'

S by thelr wave functlons, not by the p051tlons of 1nd1ces., ThlS,

;I distlnctlon 1s cruc1al to our dlscu881on : The relatlon between B
mi‘partlcle-permutatlons P and place-permutatlons P 1s.examined.‘
in an appendlx, where 1t 1s shown how the P and P play the re01procal

. 53 roles of observables and symmetry operators, respectlvely.

E  We now examlne the poss1b111ty that all the observables in g',
oo ,l} {T7ﬂ:v"f'ff<;)<fp . are functlons of the partlcle-permutatlons P. Let the -

? ':}?_subspace /C( be deccmposed 1nto the smallest subspaces such that

o _

}y_fhfii';f- _,FTJA' every P. maps each subspace into 1tself ' In other words, //f/
| 4;¥Hdecomposed so that the P' _ act 1rreduc1bly w1th1n these various

:&?:,fii{w;pf.f,_735€subspaces. The assumption that all observables are functlons of

B o z_ff}firfthe‘ P's means that the observables have no matrix elements
a ,;,connecting dlfferent subspaces.e Thus the relative phases of the

. ;'components ofAthe wave:function'lying in differentTsubspaces‘cannot

-~ be measured.

; ff' ﬂ. ST : Let the set of vectors

; PN sze,,i: )> Z IP ) c(a r,u) (33

?3 . .vbe an . orthonormal basis of the rth subspace, wherer u 1, ,,2y'r--,nr.
: , The sum over a 1s such that the vectors [P ) are linearly

| 1ndependent and span the subspace /Cfp. We assume that they are

“also. orthonormal. The applicatlon of the particle permutation P

-ﬁthat replaces the set of partlcles (l, 2, «++ N) by the set
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‘f”f(Pl, P2 PN) glves f31

Z .I?P ) el r,u), o

:.' a

[g (57]1’ ¢2’ U ¢N))U (P)
- | I S (3 b,)

: The matrlces U (P) are unltary for each r and B, ~ This follows

'.'_from the fact that for each flxed P the set of vectors lﬁﬁd) is

’;“orthonormal whenever the set of - IP ) is{" This is true because -
~..each IPP ) is plus or minus one of the lﬁ ), and no'two of . the

‘vjflPP ) can be equal to within a s1gn to a single one of the [?a).

";ThlS latter fact is a onsequence of the 1nvariance of relatlonshlps'

’,f;of the form (3. l) under the particle permutatlon P.

The set of matrices Ur(P) for each value of r is an
t‘irreducible representation of‘the group of permutations When
- there are no linear relationshlps (3 l) among the various states
“IP),V these states can be used as ba81c vectors of the regular
:'representation of the group of permutatlons ?. It follows from '
a fundamental theorem of group theory (5) that the irreducible -
":representatlons fall into classes such that the representatlons
'within a class are equlvalent and.the number of representatlons in
:‘any class 1svequal to the d1mens1on 'nr, of any one of the

'g equlvalent irreducible representations of that class The baS1c

‘UCRL-17310 -
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f7vectors'flzur) ‘can be chosen 80 that the various equlvalent
.representatlonsb U (P) are 1dent1cal Then the general functlon

 of the §>'in -/cf (¢i, ¢2, . pﬁ) takes the form

n, - ' o . -
D T PR
. p,v=l ' oL
where.the variousj Qr correspondlng to equlvalent 1rreduc1ble
“representations are identical: |

Qf = 9VS for ¢, = C_. . (3.5p)
Here C?_ is thehclass_of equivalent irreducible representations
- containingvfhe one specified‘by r.

When there is more than one equlvalent 1rreduc1ble fe-
'presentatlon w1th1n a class, the lelSlon into subspaces of the
part of ¢~ - corresponding to this class is nonunique; a new
division can be defined‘by o |

|_z“r)f = 5: '{zué)_vfr, R S (3.6)

-where the. summatlon is over the indlces '8 bwithin the class,

and V  is a unltary matrix. ' The form (3. 5) is invariant under

v a_transformatlon (3.6), and the state »fzu?)f is thus experlmentally
'indistinguishable from the-state ‘lzur). o

One way of inducing a transformatlon‘(5;6) is to apply a

© place permuatlon P to the vectors [ﬁa)‘ of (3.3). This is

discussed in the appendlx.

We iilustrate the abovevdiscussiOn'by considering three-particle

“UCRL~17310
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' ’sfa..fél.si. ' Slllppése'.first that'th}e order _of_th'e.pa:z"a.sta,’c‘isti.c's' is
é.t 1éas£ .'th-ree, so that fhére are no _lineaf felé.tions of the
 type .(.2..6) among.th’e vasic state vectors 13|¢l 552 533); The -.
orthonormal basic vv‘ectors' ]ﬁur‘) of . (Qfl v¢2 5213); may then be |

taken as:

) = 2 [We ¢3‘¢1) - g5 AEARETA P5 92) - |¢2 ¢1 ¢3>} .

1 - e gy - ) - s

+

. 2‘]9!3 72 g0 - ¢ g5 95) - 7, % _¢3>]

L aeln ) I g ¢ 15,0 8]
|£5) =%[W2%¢ﬁv?l%¢;%>F 19, 95 ) +W%9i%ﬂ

1) l\,']’hé'— [%5’273) C ) s g g s 1580

1B 19 8]

“ IZ) = [ng2¢§> + l¢2¢5¢_l> + '¢3¢1¢2> -- l52{552,252’1) )

-1
T
| - 128 - 1% 4 ¢3>].

| | (3.7)
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The firét and second subspaqes cqrre§pdnd to ﬁhe same cldss of
'equivglénﬁ_irreduéibié:represenﬁations,rand hence our divisioﬁ into
fﬁese subspaceé is not unique. Eorbexample,’if we aprlied a place
ipermutation P to every sfatg on the right-hand side.qf‘(3.7), Qe
fwould have a ne% division of ‘/3; into subtspaces, in which Iﬂi)
is generally mixed with {Ei);/.and [ﬁé) with .]22), as in (5;6).
The states of 2 given subspace are mepped gﬁﬁo one énother
by all_perﬁutations.'ﬁ, and'fhef all éorrespond to a'singlé Youné
tableau. - Since the first tﬁo subsﬁaéeé in (3.7) correspond to |
equivalent'irredﬁcible répresentétions,'they.also have the same
Young tableau, nameiy the triéngular tableau. It can be seen that
thé states ]Ei)‘ and lﬁi) are eigenstates of §l3 with eigepvalue
-1, ﬁhile the states ]zé) and Iﬁg) are eigenvalues of ‘§15
'.with eigehvalue +if 'Tﬁus the thfeefparticlelsystem can be in a
Asta@e corrgspondiﬁg to a-triangular}Young tableaw and still have a
‘definite symmetry with feSPect»to any two of its particles. Thi;
result is to be contfasted witﬁ)fhe.remarks of Steinmann. (L)
When the order of'the_parastAtistics is less than three
.(which includes thé case of ordinary statistics), the number of
basic subspaces iﬂ (3.7) is reduééd, ‘In the example of order-two
. parafermi statisticévthe relaﬁions iike>(2.6) implybthat the first
. énd fhird_subspacéé &anish. |
To coﬁcludelthis sectioh we show that any. Q of the form
(3.5) éan be expressed as a linear combination of.permutation

operators P. This follows from the well-known relation (6)



‘Liﬁ?where iCr;JCQ? are the classes to which the rth and sth “subspaces

:ibelong,,and: nr 1s the dlmension of the rth subspace : Hencé,.one

- can write -

E-:le

E: 2: §: lﬁ ’1lz Y a w ).
e ;0 o - :-:J : SR

(3 8)

7;bLA consequence of thls is that if all (Hermltian) functlons of the

-.; P are observable, then any (Hermltlan) operator Q of the form
b.(j 5) is observable v B .

f ;:fv; ELASTIC INTERACTIONS o ,

:g To dlscuss elastlc 1nteractions, we must allow the po551bllity -

.b-that the 81ngle-part1cle wave functlons lﬂ are changed Although N

not all superp031tlons of the N-partlcle states are observable,

“we suppose that single—particle wave functions can be superposed

5_with a measurable relgtive phase. Then the form (3.5) implles that -

/’;.i (l (¢1+K Wl’ ¢2+X2W2; ¢1\1+7‘1\1‘lr )’Q,z (¢ & Wl’.¢2+h2w2" +%NW ))
' ‘ o (r 743) .

.“zfof all_wavevfunctions ¢i, Wi andnnumbers'nki._ Consequently we have

(8,7 (s P By) 1ol 2,50y, vyt =0, (2 £ 9)
: R | o (k1)

UCRL-173L0 -
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If before a scatterlng an observable is. represented by the

'operator Q, then after the scatterlng it is represented by Q' =8¢ S7L | .
Alternatlvely, if after'a scatterlng an observable is represented by 'Q,
then before the scatterlng it will have been represented by Q"-; S QS
‘The condition that both Q' and Q" be observables for any observable
Q ev1dently 1mposes certaln constralnts on the operator "S. We now,
s'show that if all Hermltlan functlons of the P are observable, then
:"these.constraints can be expressed in the form:
. ' (k.22)
~and '

.. S N . ‘. :;" i . -S -‘ ' . ~ ‘ . ,

= S8, (s Foseeofy) 18] 4,7y, Ve y)) (€, =€)
(k.2v)

where Cr denotes the class of Subspaces corrésponding to the .
irreducible representations of the P equivalent to E?(ﬁ). According
to the resuit'at the’endvof the last section, @Q can be any Hermitian
operator satisfying (3.5),, We take Q to be

=) lz (v, w2, w 0 (¢, (wl, Vo). (h3)

seC - ‘ :

If we could take a 31ngle term instead of the sum in (h 3), the proof
of (h 2) would be simple. However, (3. 5b) requlres a summation

over all subspaces s that belong to the same class C of equivalent
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-can vanish, we obtain

. Here we are taking the determinant of a square matrix whose elements

" . UCRL-17310

ag-

: ifredﬁcible‘representations of the B. ‘Let C' be another such
.class'such-that_the number of subspaces in C' is atpledst equai_

to.the number of subspaces in C. Then the requirement that sqs’

be.- an observable jields, in partiéular,
Z - ‘<‘.e“r(¢l)¢2’...‘¢N) ,S, 'evs(wl,\lfzy.'f' '\I’N)> '
-seC - I ' :
o g, S, |
X (8, (Vg Vs riy) [ST] 2, Ty vy, y)) = 0
(rect, s

LeQ (b

end

e : - o
: e cord ) cou
:%‘C' uu (¢l’¢2" ¢N) ,Sl 5vé<wl)¢2; \VN)) .

X <zf(wl,wé,'“wN') st zur2(¢l,¢2,"f¢N)} =0
(r);rpeCy ) # ;2)». (4.bb)

If we write down (L.la) for as many values of r as there are subspaces

in the class C, and assume that because § contains a no-scattering

. . . s LI AN .r l ' ‘oao
part not all the matrix elements (Ev (Wl,w2, Yy [sT] Z, (Wl,wg, WN)).

aet (e () s ) 18] 8,20 00 0)) = O
(r e C'; sec). (k)

»

are labeled by r and s. Now the sum in (4.4b) can be thought

of as a product of two such matrices, and (L4.4b) says that all the off-

i
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u;aiagonalbelemenfs~of thenbfoducb maﬁfiQ”Afé ééréL lbefefofe ibs
deuerm_nant 1s equal to the product of‘lts dlagonal elements Buﬁ'
thls determinant vanlshes because one of the matrlces that form the‘
- ‘product is the matrix in (4.5).‘;Hence_au least one of the diagonal
.belemente ofvthe pboduob'matrix Vaniehes.' But (3.5b) requires that
all these"diagonal'elementsvbebequal.' Hence.we have proved (4.4b)
-also.foi. r, = rz; which implies'(h.2a), for this case that r and
s - label subspaces belonging to different classesisuch that the
number of subebaces in tbe first class ie not less‘than the number
in the second. To prove (h 2a) when the number in the first class
is less than the number in the second, we argue 31mllarly startlng
from the requlrement that STQS be an observable

Finally, we consider the case in which r and s in (k4.2a)

g belong to the same class When ry and ré are in the same'class,
r

.tbe states_i[ (gi,¢2, ..¢ﬁ))' and_blﬂu 2(¢i,gé,...¢h)) contribute

“equally to all observables by'Virtue of (5f5b). Hence a transition
to one cannot be distinguiehed from a transition to the other. ' This
means that we are ffee bo adopb thebconvention ﬁhaf transitions
between statee_of a.giVen class'do not mix different subspaces.. That
is, for r and s in'bhe same blass we'oan take'(h.Ea) to be true

by deflnltlon Then (5.5b) eneufee.(h.Eby.'(Of course in a theor&m

wbere S is calculated by sone sPec1flc rule, such as from a

Lagrangian, this special form may not come out automatlcally, tbough

it probably would in any natural theory.) Notice that once this

- definition. is made, the previous proof that no transitions take place

from one class of subspaces to another can be greatly simplified;

1
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'?The result‘(h}2), together with (5 8)h

s

'.ijthe élaétlc part of S as a llnear comblnation of the P.- To do ;it?f'
. **?ﬁ*hls we 1ntroduce operators A(W ¢£) that change a given wave ?t,;pif':ﬁ;
’fifoUnction- wi to a new: functlon ¢i . Then the part of S that |
K;-:Tcorresponds to a trans1tlon from any state correspondlng to the set
e.'iof wave.functlons ,W;.to any state'correspondlng to.the set ofv

- wave functions ¢:7can'be written}

a i:i.éilo; L

‘swhere the coefficients g pdepend'on the wave functionsé:bnt not on .

;fatheir orderlng

If N is not greater than ‘the order of the parastatistics,

80 that any change in the order of the wave functlons in the state

'.[¢l¢2...¢ﬁ) produces an orthogonal state, we have'

P P ,¢1¢2 ¢N> = ,¢1¢2" ¢N | (h-7) _

-~for any particle permutation P and any place permutation P. Hence

" the structure (h 6) for S corresponds to the property o

o 8)

»

. for any place permutation P.. ﬂv_h

‘However (h 8) does not hold when N is greater than the

1Tiorder of the parastatistlcs We illustrate thls for the case . g

UCRL-17310

allows one to express-,pip_~Lﬁ
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5 w1th order- two paraferm¢ statlstvcs, spec1a11z1ng now to the .

case where. thﬁ wave functlons *epresent momentum elgenSuabes .We

may write. - ,
' o

B lopeg) =) Rl pka | plpgp3 l Py 00, (4.9)
T ik o ,. o

‘where 1,3,k ;is'a permuation of 1,2,3 and the.function

P(p. {P3Py | Py0,D;) isunity if 1,j,k is that permutation of 1,2,3

,;.glven by P, and is iero otherwiée.~ The fﬁnctions P are invariant

under place pefmutations;ﬁ
PP rpipy | Pﬂplp2p3) - P(pipjpk I\plp2p3) ) (hflO)
But the matrix elements of'thé oﬁeraﬁof B take the form

(o, pk l B plp2p5> = P(p iP5 | plp2p3) P(pkapl | P25,
| BT | (4.11)

because of (2'6), and are not place-permuta+ioh invariant. Combining
'1_(h 9) and (h 6) we gﬂt a similar decomposition of the elastic § matrix,

which in the N~part1cle case reads

: s I plpg-.-pﬁ) f   | ;{:i | %kéiqe..qu r piPé"'PN) | ayay°-ay)
e vq.lqE.“qN | | (b“lg)
with tbe funcfidnsvlérAsatisfying
gk?Aqlqg';'gN ] P_élpe.);pﬁ) 1= ngiqg"'qN ] PlPé"‘PN)

(4.13)
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T fof all place permutations P, These<resu1ts'aie of exactly the form

obtained from the fleld-theory model of Volkov,, in whlch S represented
the function correspondlng to a sum of Feynman graphs, and property
(h;lj);was an expression of the dynamical indistinguishability(of the
parficles. |

. In the general case ofhidentical particies,-it is netural to
define d&pamicel indistiﬁguishability ae the projerty that there are
functions § fhet both satisfy (4.12) and possess the symmetry (4.13).
If the various basie vectore [qiqéo-oqN)- are not all orthonormal o
then ] is:not defined by (4.12) alone, and the S-matrix elements

themselves may ot satisfy (4.13). On the other hand, if these

. states are orthonormal, as in the first-quantized theories, then the

functions lg(q Q. *q, P.P~**°P..) are equal to the S-matrix elements,
1%27 "9y [ PPt Py l
l .

','and (k. 13) is simply the usual requlrement PSP = 8 , which is

- commonly taken as a basic expression of indistinguishability.

V. CLUSTER PROPERTIES AND INELASTIC PROCESSES
In Sections 3 and 4 we found that, as long as only elastic

scatterings are considered, it is consistent to euppose‘that pérticle

<

. permutations are the only observables that distinguish among states

~ corresponding to different orderings of the ¢i' This would mean
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'thaﬁ.nb éldéfic;geéfggfiné e¥§efiméﬁ£"cén meaéure fﬁe‘relétive
f phase of.éarts ofla-stéte veétor‘beiéhging'to différent ﬁarticle—
permufétion'sﬁbspéces._ It is natural to”éék Wheﬁher_anfinelaStiél-
‘reaction can be used tb:mgasure suéh a phaée. - In this section we
_‘exapiﬁé first a-simpie production expefimeﬁtbin the Vélkbv model anq
‘:_’Ifind that these phases remain wncbservable. It is then shown that
“this result reméing-true undér'more general conditions.
We_fifstAmdkevsome remarké cqncerning the cluster properties

of elastic—scattefing brocessgs.' Eor the theory-to be acceptable.it
i;inecesséry:that observations oﬁia set of -N particles on the-earfh
be essentially unaffected by the presence of pérticles on the moon.
| ‘That 1s, it should bé possible to describé all interactions among
some certain N ?artiéies eitherfin térms‘df'stateé that contain only
those N parﬁicles or,‘aiternatively; in tefms of stateé that contain
also the particles on>the moqﬁ."Thése'désériptions should agree.

It is evident thét obéerv351eé thét afe functions of the v? do fulfill
this .requirement; no'matfer how the.wave'functipns ¢ of the particles
on the earth are ordered relétive to the wave functions. ¥ of the
_ particies on the moon, the N-particlev pernutations P permute
thé ? in a manne; independént of the '¢{' Elaétic interactions of
the form.(ﬁ.é) also fulfill the'requiréﬁeﬁt:foi‘essentially the
' sdme‘reason; all dependénce upon'the‘pdsitiohs of.the ¢ .entérs
-oniy‘thfougﬁ the B. |

Consider now a systemvof tﬁb particieé described by wave

functions g

, and’ ¢2. Disregarding the presence of other

o Ca
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 particles on the moon, we can use elastic-scattering experiments

 to esteblish that the system is in the state

-

NN ¢%>; + .u|?é ﬁi)_ = \ﬁg" i(k + u)|¢é ¢i> + (k u) |8, ¢é)] ,

.(5-1)

where the relative magnitudes,qf' A and p"are measurable,vbut not

their relative phase. Let now a paif"(¢3, ﬁu) be produced, and
-surpose that the production takes place in a region in space far

removed from (Qi, #,), so that the particles described by Qi

. and ¢2 are not involved in the production process. To obtain the

‘new state we act on (5.1) with the appropriate term in the interaction

Hamiltonian (2.2). 'According to (2.13) this yields a multiple of

ihevstate. v _
[[EEEREE )] oo
I [I%Wﬂg ? WW&] 0 - w/Y2

mn

1R85 O WNE - By 6 w/VE

+

19,985, (x- u‘>/v’e"- léggflszfgm O+ w/NE ()

where (2. 5) is used to get the second version.

Elastic- scatterlng experlments on the three particles re-
p?esented by Qi, ¢é, apd. ¢5 allow measurements of the

three-particle permﬁtation operators ?, and an obvious questidn-
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‘is whether knowledge of the values of these_observables gives:
information on the_relative phase of A and p. Direct calculation

shows that the answer_is no.

Yet it does seem that (5.2) implies that measurements on the '

initial two-particle system can establish phase relations among
states in different three-particle subspaces. In particuiar, if
the initial state is found to correspond to A\ = 0, p=1, then

(5.2) becomes

L. [ BAgI,) + ms‘w}- ﬁszl%am - |¢5¢1¢2%;>] -
o (53)

Suppose now that the antiparticle au‘ is removed to the moon. Then
the cluster properties mentioned above imply that the description
"of the particles left on the earth is eéuivalent to that given by

-the three-particle state

19,985+ 1¢3¢1¢2>J o (51

(The two gquantities enclosed in square brackets in (5.3) do not
-1nterfere for interactions where ﬁh is removed to the moon,.51nce

" in the first bracket the remaining particles are of types Boﬁ, while
in the eecond fhey are. oRQ) . | Beafinglin mind relations of the type
(2 6), we. see that (5 h) is a superposition with deflnlte relative

phase of states from two dlfferent subspaces of (3. 7).

Specifically, it is



‘where .~
|a)

ﬂ,two-partlcle system has P

W

(I¢l¢2¢3 l¢2¢3¢1 o ¢3¢l¢2>>

<|¢1¢2¢> el¢2¢3¢l l¢3¢l¢2>) _(;.'}6')[”?{1"

- Thus 1t would appear that the relative phase of the components !A)f
vand IB) of a three-partlcle state can in certain C1rcumstances
. be measured, 1f on annlhllatlng one of the three partlcles we flnd
vthat the resultlng two—partlcle state is antlsymmetrlc, then we can

e apparently conclude that the relatlve phase was that of (5. 5)

To understand Why thls is in fact not true we must agaln

“.consider the cluster propertles The determlnatlon that the 1n1t1al

[}

lé.= -1 does not necessarlly mean that

it 1s represented by the state [¢é ¢i . The pos51ble presence of other
'Napartlcles in the unlverse allows 1t tO‘be represented also by
.states where these other partlcles are 1ntroduced in various ways.

One sees ' from (2 6) that any such state can be reduced to one of

the three.formsu g,‘fl.
_:|¢é>¢i>:"l¢wt:;;) 1 h;:r;)pd;
A e

e

"
o

(5.7) .'

1]
=
N

”;These_states differ essentially.only in whether the particles are of



: type a or B ThlS means that the lnltlal system should properly [

be descrlbed by the dens1ty matrlx

where fWi is the statlstlcal welght of the state i, aﬁd' i runs t”
Eover -,5‘a, and b. The flnal three-partlcle system is descrlbed

”,by the correspondlng den31ty matrlx »

e }: |g><g|, e

ool

" where the calculatlon of ]é‘ | and lgg) " is analogous to the

g calculation of |¢T

We have sald that, in order that the cluster propertles of

" the theory be acceptable, each state that appears in either of

" the sums.ln'(5.8) and (5.9) must give equal expectation value of

each observable.. That}is,ﬁthe values of the weight vy should

be irrelevant. This is ihdeed the case forithe'operators f.

On the other hand, the'relative_phase of the components
|A) " and [B) is not the same for all of the 2@. This means, in -

the first place,'thet if this phase were measurable; then the

cluster property would be violated. .ConVersely; in any calculaticn

,,dependiﬁg on the relative phases of A :and B, one must take

into account all of the states f.
The relative phase of A and B in the state ﬁ; is

" the phase_ (A]¢;) (ﬁ;[B), The phase is well-defined unless this

CUeRL-17300



| - UCRL-17310
—29-

 matrix element vanishes. When the various _ﬁ; are considered,
*. the average value of the matrix element becomes (Alp" By, which

is

Wi

) alg) im0  (5.10)

; are all equal.

:._if fhe W
. '.CaICulation of (5.10) gives zero; This‘implies that the
i'relafivelphase of A %nd B can bYe determined only if one knows
that the weights. w, are unequal. To know that would éntail having
' ,.knowledge of the ﬁﬁiverse as a whole. Butvthis is precluded by the
cluster property, which says, in effect, that the possible presence
of aaditional particles in the universe cannot be ruled out by
' measurements invblving any‘finite gréup of paftigles. The cluster
property is thus self-consistent. |

| This result requires sdme discussion. The Volkov model
was shown in Section 2 fo be équivalent to a theoryAwith two
dynamically indistinguishable fermions. This theory of course
has éertain.cluster propgrtiés, which are the ones appropriate to
a theory with two types of fermions. However, when one formulates
- the cluster property for péraferhioné, one requires specifically that
connections between dgservable‘quantities be independent of the
existence of unobserved particles.. It is not ciear thaf these‘
‘two cluster properties are equivalent; indeqd we ﬁaye seen that’

~the second requires a delicate cancellation among different states,

while the first does not.
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The_vanishiﬁg’of;(ﬁﬁ;o)'ié'bﬁévéf'an_ihfiﬁite number of
re%afioné of the fofm' T o
(¢, v, ulo|D, s, ) = 5es '8¥,s-b'Cf. D (5.11)
. ) , , Hv ) .
' Here C. and D‘.labelzcldséés éfvirréauqible réprésenfafion of the
ﬁ, 'rijaﬁd s"iabél,ﬁarticular répresentationévin these élasses
,of_eqﬁiValent:representationé,‘énd 1 and v label particular
' f‘basis vectors of thevreléVant subspaces. A1l of the equations
(5.11).ﬁust be valid in order that ail observables Be funétions
of tﬁe P and in order’that the pargfermi cluster property be :
valid. |
_ These equations (5.11) follow from the invariance.of o under

rotations R in the isotopic spin space of particles & and B :
RpR ™~ = p. . (5.12)

The invariance (5.12) will be assumed to apply for some original
state of the system, as 1t was in our example when we took all the

W to be equal.. Then the invariance of H under rotations. R

INT
guarantees that (5.12) also applies to the final state.

‘We begin the proof of (5.11) by casting the theory into
.the‘isotopic-spin f;amework.f The (ﬁi, ﬁg,"‘¢ﬁ) used previously
. . T 3% : , ,
is reglaced-by (¢i 1 Qg 21"'¢ﬁ-N)), where y; 1is an index
that denotes whether the particle is of type @ or pB. Thus,

. whereas originally the distinction between 0~ and B- type

particles lay in the distinction between odd and even positions'in

~
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. the stateIVector, now thls dlstlnctlon lles in the value of the N

isotopic—spin index 7. Because of the. antlcommutatlon relatlons

between the - and B~ operators,vthe various ¢i i ;n the

o T - _
state vector |¢l , ¢é , "¢ﬁ Ny anticommute. Hence to eliminate .

- redundant varlables we bring all state vectors to the form in which

A

. R
1the ¢ i appear in numerical sequence on the 1ndex i, An

important feature of this transformatlon is that particle permutations
P acting on the or1gina1 o-B statesvbecomes place-permutation

operators P acting on the corresponding isotopic-spin states.

. This is because the‘indices 1, 2,+++N that identify particles in

the a-B formalism sﬁecify the positions of the index in this

isotopic-spin framework.

The.transformations R. in (5.12) takes the form of a tensor

. product R=4A& A @ v A= & AN where A represents a

rotation in the two-dlmen51onal isotopic- spln space. The enveloping
¢

algebra (Z) of the set of R' is the commutator algebra Cﬂl'

of the algebra 621 of place permutations P. Equation (5.12) says’

' ' /B ,/}I v

that p 1lies in the commutator algebra <{  of (i ~. However,

&\, v is just.'{(‘; itself.(_8_)’ Thus any p satisfying (5.12)

-is a linear function of the P's. In the « - B formalism it is

| ~ therefore a function of the place-pefmutations B.

We conclude by sﬁmmarizing the paper with cluster properties

‘as the focal point. The parafermi commutation relations (2.1)

suggest that cluster properties may be violated in parastatistical

‘theories.. This is because the removal of the middle operators
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.ta T‘ oﬁ'ihé left¥henéxsidevie;ds to hoﬁialié reietions;“ﬁoweter,
the proved equlvalence of the paraferml theory to a theory 1nvolv1og
ronly ordlnary fermions show that certaln cluster propertles are 1n
fact maintained. = But because the partlcles assoc:Lated with even
rl.and odd pos1tlons are’nonequlvalent, it is not 1mmedrately clear
that one necessarlly has the phy51cally 51gn1f1cant cluster property ,
'that all correlatlons among observables are 1ndependent of the
',:ex1stence of p0351ble pnobserved partlcles on the moon. To examine
this questlon one must establlsh what quantltles are observable in
systems contalnlng 1dent1cal partlcles

The'usual ru;e is that every observable'commutes with every
inace permutation;.vThis requirement is not applicable in para-
-statistics,models,,since place permutetions are ill-defined owing
- to their nonCO@mutabiiity with the basio coﬁmutation relations.
Therefore We'argue direotly from physical considerations that particle
permutations are obsertaﬁles. In case oo relations such as (2.5)
inhibit the use of place permutations, the‘psual rule that all p'
-observables commute with place permﬁtations is-equivalent to the
. statement that all observables ere'fonctions of particle permutations :
»v(insofar os dependence on positions of variebles is conoernea).
‘This is shown ir the appendix. Since particle permutatioos, unlikeA‘
:place permutations,_are unaffected b& relations suoh as (2.5), it.'
" is natural to take the statement'that all observables are functions
of.particle permutations (insofar as depehdenceton positions is
'concernedy asithe generalizatidn of the usual statement-thet all

'observabies commute with‘place permutations.



| 4 B jUéRL-lfiio
‘>V-i-33?.ﬁx_ ‘ .
- The pfesuEéti&nvthaf all oﬁéervablés'are‘funcfibﬁé of _ﬂ
. particle pérmutations, and moreOQef.that éll such.fUnctions ;re |
' :observableé, impiies that the elasticfscétfering matrii is expreésibie
as-a function of th; ﬁarticle.permutations. Moreover, this
‘reéuirement on the.eiastié‘ S guarantees that only functions of
ﬁarticle bermutations are observable by méahs of elastic-
‘scattering experimenté alone; Thus this presumption;concefniné the
'lobsefvables is consistent wiﬁh’the Volkov model, insofar as only
elastic reactiohs'are considered. Withiﬁ'this frameWbrk we then
.find that the,physical cluster properties.are satisfied: correlations
: between observables are not affectéd‘by tﬁe presehce or absence of'
unobserved particles. Tﬁis result holds éléo when productibn reactions
,ére chsid¢red provided the cluster properties are invoked'tob

guarantee an "isotopie-spin" symmetry of the original density matrix.
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. APPENDIX

Place Pefmutations aﬁd.Particle Permutations

-Suppose the set of N! states
C|my = Wm g;mgm Y, ' N (A.l)

is erthonormal, where (Hi , T2 ,+-IN ) are permutations of
(1, 2,---N).  Particle permutations i? are defined by
Pm o= P =g 9 e ), (a2
P Pr2 PN .- .
where (131‘ f’é ---BN) is a permutation of (1, 2,..-N). The
effect of P 1is to replace ¢i by ¢ ¢é by ¢ S ete. It
was explalned in the text that the P are relevant because from

!
the experlmental v1ewp01nt the various partlcles are identified

" by their wave functions ¢i’ rather than by the positions in-the
state vector occupied by these wave functions.

- -Place permutations P are defined by

PlI) = Mﬂ?l. oo ...ngN) me ), . (4.3)

. vhere (Pl, P2,.--PN) is a permutation of (1,2,--N). -The effect
of P is to replace:the occupant of position 1 Dby the occupant
of position Pl, the occupant of position 2 by the occupant of

position P2, ete. According to (A.3) the product of two place

_permutations P, and P, give



N T .Ii'CRL"-iir(‘.jlo’ |

B Pl l H> é_?]ﬁ’éi PQ);:‘diif.J;i?;{ff:%gli(A;g)f;“

‘“it ie;clear thet ;11 piace.pernutetions-commuteiudth all
:partlcle permutatlons, for partlcle permutetlons act without
- regard to place, and place permutatlons act w1thout regard to the -
' ;1dent1t1es of the wave functlons. Formally, this commutablllty

1foliows from the equation
PP |m =.pfnue) = pHm. - (A)

| Not onlyldodelivﬁ‘s commute with all P s, andtuice verse,.
vibut in the space /C{ spanned by the I‘H) all operetors tnat
‘ 'commute:uith tne..P}s are llnear comblnatlons of the P's and vice
‘vversa.--This result Whlch we refer to as the rec1pr001ty,of élace
;permutatlons and partlcle permutatlons follows dlrectly from
theorem (3.4A) of reference 6. However, it is useful to give a proof
.'that exhibits the result 1n a more concrete.form
The-set-of,vectors ] H) are labelled by the set of N!
leleﬁentslof the group of>permutatlons on: ﬁ‘ obgects. These vectors
‘ _form a basis (substratum) of the regular representatlons of thls
. group. (This is the representatlon such’ that U(P) 5ﬁ P H)
'*A.fundemental result from group theory is that the_regular
‘representation ie completely reduoible,-that'everyvirreducible
representation of the group appears in this reduction, and that thev
number of times a given irreducible representetion‘appears‘in the

reduction is equal to the dimension of that representation. 'Here .



'f” equivalent 1rreduc1ble representatlons are identlfled

L ueRLALT30

BN

'7{'f? The transformatlon from the orlglnal ba31s f H} to ‘the T:l

““basis [C r, u) is glven by

\,;JC)AiQ p):'; rln§ (H[C, f’ih>f‘ f.zﬁi-; T?l, ef’i(A-G)h'

'i Here C labels the.cless of eéulhelent.lrredﬁcible Tepresentatlons,
“;.Tr labels the partlcular one of the equivalent irreduc1ble re-
1ljipresentatlons, and u' labels the partlcular ba81s vector of the

:subspace correspondlng to thls representatlon The action of P.-'

" on the [C, r, u) is given by

”bwhere the set of U (P) form the irreduclble representation

.,specifled by C

The actlon of P is glven, as we shall prove, by

i

2 e, o, u)‘=,.-'va, 5, w) vg"'(P). e

That is, the P acts within the snace a58001ated with a given class

- C and acts there as a matrlx on the indices r and s 'that label
a;ﬂ~the various equlvalent 1rreduc1ble representatlons of class C in

:the-reductlon of B. The U (P) and V (P) are matrlces of the

same dimension.

r

The result (A.8) is derived-es follows: 1initially one hes

P ¢, =, |~1>= ',D’ ISJA"). (D, s.: .V,P IC, r:ll>. . (A9) |
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- Because PP = BP; we have
L T JULC N R AR

‘f>f6r allijﬁ' Sehur s lemma then ensures that

- (D, s,q[P[C, T, A )_o for. D;lc andthat for D= C it is

a constant matrlx 1n the Greek 1nd1ces ThlS constant can depend ‘

; on 's,_r; and C however, so we obtaln (A. 8)

. The set of matrlces_dyC(P), ,for each C, form a

.renreeentation of ﬁhe_gronp,of permutations P, These.representetions'
| are irreducible, becanse if‘eny of the.sets 'XC lwere‘reducible, thendf
',tne decemnosition-of the grenp ofr P's would give more classes of
‘irredncible‘repreSentations:than the decomposition of the group

‘ndof ‘f's; >Tnis-is ndt poesibie; sinee tnese twq groups are

| ~essentially identical. The same argument shows that the ‘EC(P)

~for different values of ’C are inequivalent.

The above arguments show, in fact, that any operator A in

,Aj? that commutes with all the P's is represented by

rs

.'(C, r, u|AlD, s, v) 5 A, . From the completeness and

CD Ky

- orthogonality propert;es-of the Vé (P) one obtains

;4,'= }: a®)®, ~(aa)

,.r = R
where
- A(P) = 1%—. ,Tr_(AP'l)
o , — N | .
= %—1— L(C, r) UIA’D, S, V> (D, S, V,P [C r, “)’

(A, 12)
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- as was aifeédy'discuésédjiﬁ thé'text{”"Théﬁ{is;;any'fuhcﬁioﬁ in
J ~ that commutes with all the ffs‘. 'is & linear combination

,,6£1“Pfs.“'Thé“coﬁ?erse'is clearly true also.

i
'
:
¢
{
H
i
¢
:
e

.

t
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.~ It should be noted that'pur“fOrmulation of the ‘Volkov model
-in terms of ordinary fermion operators is different from the

" canonical formalism of Green (3).
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