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Abstract

Structured Tensors and the Geometry of Data

by

Anna Leah Seigal

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

We analyze data to build a quantitative understanding of the world. Linear algebra
is the foundation to algorithms, dating back one hundred years, for extracting structure
from data. Modern technologies provide an abundance of multi-dimensional data, in which
multiple variables or factors can be compared simultaneously. To organize and analyze
such datasets we can use a tensor, the higher order analogue of a matrix. However, many
theoretical and practical challenges arise in extending linear algebra to the setting of tensors.

In the first part of this thesis, I study and develop the algebraic theory of tensors. Tensors
of low real rank, as well as singular vectors and singular values of tensors, parametrize semi-
algebraic sets, defined by polynomial equations and inequalities. I give exact algebraic
characterizations of sets of tensors of interest, using real algebraic geometry, polyhedral
geometry and computer algebra. I obtain a membership test for the set of real rank two
tensors, I describe the variety of singular vectors of orthogonally decomposable tensors, and
I obtain inequalities relating the singular values of the flattenings of a tensor. I show that
rank and symmetric rank coincide for tensors of low symmetric rank, bounded by seven.
I conclude by describing tensor hypernetworks, a flexible framework for decomposing and
approximating tensors in application-specific contexts. Throughout these results, an in-
depth study of small tensors is used to set up the general theory. The theoretical results
explain pitfalls of existing tensor algorithms, and also suggest new approaches for finding
structure in a tensor.

In the second part of this thesis, I present three algorithms for tensor data. The algo-
rithms use algebraic and geometric structure to give guarantees of optimality. Tensors have
a close connection to multivariate distributions in statistics. I obtain the first non-trivial
instance of an exact maximum likelihood estimate for a model with hidden variables. I
give a numerical algorithm to recover paths from their third order signature tensors, an in-
verse problem from stochastic analysis. I also give an algorithm to cluster multi-dimensional
data, with structured clusters encoded via algebraic constraints in a tensor. The structure
facilitates the interpretation of clusters in a dataset of cancer cell lines.
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Chapter 1

From matrices to tensors

In this chapter, I describe key ingredients in extending the theory of linear algebra to the
multi-dimensional setting of tensors. I describe the importance of matrices with a focus
on the singular value decomposition, arguably the central result in linear algebra, and I
give proofs of results in linear algebra, which give a preview to the tensor methods of later
chapters. I describe similarities and differences between matrices and tensors, and highlight
the algebraic structure of small tensors as a case study to motivate the general theory.

But first, I would like to welcome you to my thesis. Whether you are a mathematician
or not, a practitioner in the study of multi-dimensional data or just looking for a statement
of new results, thank you for being here. Please see below for an introduction to this thesis
that might be catered to your interest.

Figure 1.1: Scalar, vector, matrix, tensor.

For everyone: The matrix is a two-dimensional grid of numbers, and linear algebra is the
theory of matrices. Matrix data allows the comparison of two changing variables or factors:
one for the rows and one for the columns. Humans are quite good at understanding the
relationship between two variables: be it correlation, causation, independence, or something
else. But modern datasets can compare multiple variables simultaneously, and this presents
the opportunity to build an understanding of complex systems. Such data can be organized
into a tensor, a grid of numbers with a larger number of dimensions. It is more difficult to
make sense of the relationship between three or more variables simultaneously, i.e. to extract
interpretable structure from tensors of data. The linear algebra theory that was foundational
to the study of matrix data cannot be directly applied in the higher dimensional setting of
tensors. This hinders design of tensor algorithms, and consequently limits our ability to
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detect higher-order structure in data. In this thesis, I study the theory of tensors, and use
it to design algorithms for finding structure in tensor data.

For a mathematician: This thesis is in applied algebra. I study the structure of
tensors, using tools from real algebraic geometry, polyhedral geometry and computer algebra.
I discuss how linear algebra extends to the multi-linear (i.e. non-linear) setting of tensors,
with a focus on the exact algebraic characterization of sets of tensors of interest. I apply
my theoretical results to tensors of data, via exact and numerical algorithms. To place
this thesis in the context of the theory of tensors, I describe the three main textbooks in
the area. The first, [105] from 2012, focuses on using methods from algebraic geometry
and representation theory to find the rank of a tensor with complex entries, and discusses
applications to complexity theory. The textbook [77], also from 2012, outlines the functional
analysis of tensors and gives a numerical treatment of hierarchical tensor decompositions,
with applications to solving partial differential equations. The more recent textbook [145],
from 2017, studies the spectral theory of tensors, with a focus on eigenvectors and eigenvalues,
with applications to hypergraph theory, and discusses notions of positivity for tensors.

For a practitioner: There is a range of algorithms in data analysis that are based around
the tensor. There are specialized numerical toolboxes for tensors, such as the MATLAB
Tensor Toolbox [15] and Tensorlab [182]. Moreover, the machine learning software library
TensorFlow organizes its data structures around tensors [180]. Tensor methods have been
successfully applied to applications in computer science, statistics, physics, and biology, as
we will see in this thesis. However, tensor algorithms suffer from a lack of interpretability
and most are not guaranteed to find the global optimal solution to an optimization problem.
In this thesis, we will see how the algebraic and geometric structure of tensors can be used to
find interpretable signals in tensor data, and to understand and overcome practical challenges
in tensor algorithms. We will see examples of tensor algorithms with guarantees, and apply
them to real and simulated data.

For a list of new results: A statement of the contributions made in this thesis, with
references to published articles, is given in Section 1.6.

1.1 What is a tensor?

In this section, I give two definitions of a tensor and discuss why they are equivalent. I define
the multiplication of tensors and the rank of a tensor. I give examples of tensors arising in
various contexts that I return to later in this thesis.

A tensor is a grid of numbers organized by multiple indices. Each entry of the tensor is
specified by fixing values for the indices. In this thesis, a tensor will usually be denoted by
the letter X. The tensor has entries xi1···id that are numbers, specified by fixing a value for
each index i1, . . . , id.
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The order of a tensor is the number of indices. For example, a vector with entries xi is
a tensor of order one. A matrix with entries xij is a tensor of order two. An order three
tensor has entries xijk given by three indices. See Figure 1.1 for a cartoon of an order zero,
one, two, and three tensor: each small cube in the figure represents one entry of the tensor.

The format of a tensor is a product of numbers, giving the range of values that each
index can take. For example, the tensor X has format 4 × 4 × 4 if its entries are xijk for
i, j, k ∈ {1, 2, 3, 4}, see the right of Figure 1.1. A general tensor X, with entries xi1,...,id , has
format n1 × · · · × nd if the index ij lies in the set {1, . . . , nj} for all indices j ∈ {1, . . . , d}.

Tensors are not just grids of numbers. Like matrices, they are algebraic objects. We can
multiply tensors by vectors, matrices, and other tensors of compatible formats. For example,
we can multiply a tensor X of format n1 × n2 × n3 by a tuple of matrices (A(1), A(2), A(3)),

where the matrix A(i) has format mi × ni and (j, k) entry denoted by a
(i)
jk . We obtain a new

tensor of format m1 ×m2 ×m3 which I denote by [[X;A(1), A(2), A(3)]]. See Figure 1.2 for a
cartoon of this tensor matrix multiplication. The (i, j, k) entry of the new tensor is

n3∑
γ=1

n2∑
β=1

n1∑
α=1

xαβγa
(1)
iα a

(2)
jβ a

(3)
kγ . (1.1)

Figure 1.2: Multiplying a tensor by a tuple of matrices.

Important structure of a tensor is often unchanged under multiplication by a certain
class of matrices. For example, in Chapter 2 we study the real rank of a tensor, unchanged
under multiplication by real invertible matrices. In Chapter 4, we study singular values of
tensors, unchanged under multiplication by orthogonal matrices. In Chapter 8 we study how
to recover the matrix A from the tensor [[X;A,A,A]].

The tensor matrix multiplication in Equation (1.1) can be extended to multiplication
along other combinations of indices. We can represent a large tensor of interest by multiplying
together an interrelated collection of smaller tensors. This leads to tensor hypernetworks,
which represent tensors based on the adjacency of hypergraphs, discussed in Chapter 6.

Tensors can also be defined as elements of a tensor product space.



CHAPTER 1. FROM MATRICES TO TENSORS 4

Definition 1.1 (The tensor product). Let Vi be vector spaces over a field K. The tensor
product V1 ⊗ · · · ⊗ Vd consists of the linear span over K of all elements

v(1) ⊗ · · · ⊗ v(d), where v(i) ∈ Vi.

The tensor product notation ⊗ denotes the quotient of ordered tuples (v(1), . . . , v(d)), by re-
lations

(λv(1))⊗ v(2) ⊗ · · · ⊗ v(d) = λ(v(1) ⊗ v(2) ⊗ · · · ⊗ v(d)) (1.2)

and

(v(1) + w(1))⊗ v(2) ⊗ · · · ⊗ v(d) = v(1) ⊗ v(2) ⊗ · · · ⊗ v(d) + w(1) ⊗ v(2) ⊗ · · · ⊗ v(d) (1.3)

where the vector v(i) ∈ Vi, the vector w(1) ∈ V1, and the scalar λ ∈ K. The analogous
equations on the other vector space V2, . . . , Vd, also hold.

The tensor product in Definition 1.1 relates to the definition of a tensor as a grid of
numbers by fixing a basis. Combining bases {e(ij)} for each vector space Vj gives a basis of
V1⊗· · ·⊗Vd. Denote the coefficient of X with respect to the basis vector e(i1)⊗· · ·⊗ e(id) by
xi1...id . If the vector space Vj has dimension nj, then the index ij runs over the set {1, . . . , nj}
and we obtain a grid of numbers of format n1 × · · · × nd. Equation (1.2) means that scaling
each row of an tensor by λ has the effect of scaling the entire tensor by λ. Equation (1.3)
considers two tensors whose slices, obtained by fixing one index, are scalar multiplies of
each other. The sum of the two tensors is a new tensor, obtained by summing the scalar
multiples. The relations in Equations (1.2) and (1.3) hold for grids of numbers. Conversely,
these conditions are all that distinguishes a tensor from an abstract sum of tuples of vectors.

Definition 1.2 (Rank). A tensor in V1 ⊗ · · · ⊗ Vd has rank one if it can be written as

v(1) ⊗ · · · ⊗ v(d), where v(j) ∈ Vj.

A general tensor X is a sum of rank one tensors

X =
r∑
i=1

v
(1)
i ⊗ · · · ⊗ v

(d)
i , where v

(j)
i ∈ Vj.

The smallest number of rank one tensors that sum to X is called the rank of X.

Definition 1.2 specializes to the usual matrix rank in the case d = 2. Tensors, and tensor
products, arise in many contexts across mathematics. Definition 1.1 can be extended to
tensor products of structures other than vector spaces.

I now give three examples of tensors arising in the study of multi-dimensional data, which
I will return to in the second part of this thesis. I also describe how a familiar function in
mathematics – a polynomial – can be viewed as a tensor.
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Example 1.3 (A tensor of probabilities). In April 2017 there was a workshop on Algebraic
Statistics at the Mathematisches Forschungsinstitut Oberwolfach (MFO). I wrote an article
for the Oberwolfach Snapshot series, in which I analyzed survey data from the participants
of the workshop using algebraic statistical methods [162].

At the workshop, the weather started off cold with intermittent rain showers. The middle
of the week saw snow and hail, and there were two sunny days at the end. Fifty out of the
52 participants at the workshop responded to a survey, detailing if they liked the weather, if
it was their first time visiting Oberwolfach, and if they played a game during their stay (the
favorite games were Carom Billiards, Hanabi, and Resistance). Here were the responses as
proportions.

First time at MFO Visited MFO before

Games Liked weather 0.24 0.1
Disliked weather 0.1 0.08

No games Liked weather 0.14 0.18
Disliked weather 0.06 0.1

There are eight entries in the table, the joint probability distribution (or probability mass
function) of three binary random variables

X =

{
0 liked weather,

1 disliked weather,

Y =

{
0 not visited MFO before,

1 visited MFO before,

Z =

{
0 played a game,

1 played no game.

For example, a workshop participant selected uniformly at random was at MFO for the first
time, played a game, and enjoyed the weather with probability 0.24. A random participant
liked the weather with probability 0.24 + 0.1 + 0.14 + 0.18 = 0.66.

We can represent the probability distribution by a 2× 2× 2 tensor

P =

[
p000 p010 p001 p011
p100 p110 p101 p111

]
=

[
0.24 0.1 0.14 0.18
0.1 0.08 0.06 0.1

]
,

where the entry pijk of the tensor P represents the probability P (X = i, Y = j, Z = k).
Properties of the tensor P , such as its non-negative rank, translate to statistical properties
of the distribution. I will return to algebraic methods to analyze probability distributions in
Chapter 7. See also [162, 163].

Example 1.4 (A tensor of biological data). Modern biological experiments seek to under-
stand the relation between multiple changing variables or factors. For example, the data set
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depicted in Figure 1.3, and introduced in [131], describes the response of breast cancer cell
lines to different ligands. The measurements of the experiment are the temporal phospho-
rylation levels of two proteins that are involved in cellular decisions and fates. One goal of
studying data such as this is drug discovery. The ligands can be thought of as experimental
conditions, or stand-ins for possible drugs, and the cell lines can be thought of as patients
for whom the drug may be suitable.

Figure 1.3: A tensor of biological experiments measuring the response of breast cancer cell
lines to ligands.

The dataset is a tensor of order 5 and format 36×14×2×4×2, corresponding to the 36
cell lines, 14 ligands, 2 doses, 4 time points, and 2 proteins. Properties of the tensor reflect
structure in the data, which we hope to interpret biologically. I will return to this data set in
Chapter 9. See also [166].

Example 1.5 (A tensor of integrals). Consider the ‘skyline path’, a piecewise linear path
in R2 with steps given by the columns of the matrix

A =

[
1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 −1 0 2 0 −2 0 1 0 −1 0

]
.

A path can be encoded by its signature [115], an infinite series of tensors whose entries
are iterated integrals in the coordinates of the path. For example, the third order signature
tensor X has entries

xijk =

∫ 1

0

(∫ t3

0

(∫ t2

0

dψi(t1)

)
dψj(t2)

)
dψk(t3) for 1 ≤ i, j, k ≤ 2.

Evaluating these integrals for the skyline path gives the 2× 2× 2 tensor

1

6

[
343 0 −84 18
84 18 −36 0

]
.

Many other paths will have the same third order signature tensor as the skyline path. Some
examples are shown in Figure 1.4. The shortest path is approximated by taking a length-
constrained piecewise linear path with a large number of steps.
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Figure 1.4: Three paths with the same third order signature tensor as the skyline path
(black), a path with three steps (left), the shortest path (middle), and a polynomial path of
degree three (right).

The first order signature tensor encodes the increment of the path, the endpoint minus the
start-point. The second order signature tensor encodes the signed area between the path and
the segment connecting the endpoints. A direct geometric interpretation for the higher order
signature tensors is not known, although they can be thought of as certain iterated areas [60].
Nonetheless, there is a well-understood equivalence class of tensors whose infinite series of
signature tensors are the same [47, 79]. In Chapter 8, I describe identifiability properties and
recovery algorithms for learning a path from its third order signature tensor. See also [141].

There are many other contexts and applications in which tensors arise that we will see
throughout this thesis. I conclude this section by showing that polynomials can be viewed
as symmetric tensors. But first, I describe the notation I use in this thesis.

Tensors are denoted by capital letters, usually X, and their entries are lowercase letters
xi1,...,id . Indices are usually denoted with the letters i and j, with the boldface i to denote
a tuple of indices (i1, . . . , id). When possible, I will denote the indices by single letters, e.g.
(i, j, k) instead of (i1, i2, i3). Otherwise the indices themselves have subscripts, and a tower
of multiple indices

can make formulae more difficult to read. I say that a tensor X has format

n× · · · × n (d times) as a simpler notation for d factors that are all of dimension n,

n× · · · × n︸ ︷︷ ︸
d times

,

i.e. X ∈ V ⊗d, where V is a vector space of dimension n (usually Cn or Rn). Matrices are
also denoted by capital letters, usually M , and their entries are mij. Vectors are denoted by
lowercase letters, e.g. v with entries vi. Scalars are also lowercase letters, usually from the
Greek alphabet. For a collection of vectors that range across an indexing set, I will use the
notation v(i), i ∈ {1, . . . , n}. If two indexes are required, e.g. in a tensor decomposition, I

will use v
(j)
i . For X ∈ V1 ⊗ · · · ⊗ Vd, I call d the order of the tensor and not the dimension,
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to distinguish it from the dimension of the vector spaces Vi. When Vi = Kni I abbreviate
the tensor product space to Kn1×···×nd . When displaying the entries of a tensor, the double
line ‖ denotes the separation between the slices.

The multiplication of the tensor X by the vector v(j) along the jth index for all j ∈
{1, . . . , d} is denoted by [[X; v(1), . . . , v(d)]], and similarly for multiplication by matrices, fol-
lowing the notation in [93]. Multiplication is sometimes carried out in some indices but not
in others. Indices in which no multiplication occurs are denoted by a “·” in that location,
e.g. [[X; ·, . . . , ·, v]] denotes the multiplication of the tensor X by the vector v along the dth
index. Calligraphic letters X ,M etc. are for algebraic objects such as semi-algebraic sets
and varieties.

Definition 1.6 (Symmetric tensors). A tensor X of format n×· · ·×n (d times) is symmetric
if its entries are unchanged under permuting the indices, i.e. xi = xσ(i) for permutations σ
of the tuple of indices i = (i1, . . . , id).

For example, a matrix M ∈ Kn×n is symmetric if M = MT, or mij = mji for all
i, j ∈ {1, . . . , n}. An order three tensor X ∈ Kn×n×n with entries xijk is symmetric if

xijk = xjik = xkji = xikj = xjki = xkij, for all i, j, k ∈ {1, . . . , n}. (1.4)

Example 1.7 (Polynomials are symmetric tensors). A polynomial in n variables is a finite
sum of monomials,

f(z1, . . . , zd) =
∑
j1,...,jd

cj1,...,jdz
j1
1 · · · z

jd
d .

Like a tensor, a polynomial has multi-indexed structure.
A symmetric matrix M ∈ Kn×n encodes a quadratic form, a polynomial of degree two.

The quadratic form is obtained from the matrix by M 7→ zTMz, where z is the vector of
variables (z1, . . . , zn). Similarly, symmetric tensors of format n×n×· · ·×n (d times) are in
bijection with homogeneous polynomials of degree d in n variables. The bijection is obtained
by multiplying the tensor on each side by the vector of variables z,

X ↔ f(z1, . . . , zn) = [[X; z, . . . , z]] =
n∑

i1...,id=1

xi1...idzi1 · · · zid . (1.5)

The entries of the tensor combine to make the coefficients of the polynomial. Since the tensor
is symmetric, this process can be inverted to recover the tensor from the polynomial. Under
the correspondence between symmetric tensors and polynomials, we can use tensors as a lens
through which to study questions from classical algebraic geometry, see Chapter 5.

1.2 The singular value decomposition

Linear algebra gives decomposition theorems for matrices that allow structure to be ex-
tracted from matrix data. A complicated matrix can be approximated by a simpler one
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that captures the most important information. In this section, I discuss the singular value
decomposition (SVD), the eigen-decomposition, and principal component analysis (PCA).
This sets the scene for studying methods to extract structure from tensors in later chapters.
I give a proof of the existence of the SVD of a matrix and the Eckart-Young theorem on
low rank approximation. I prove these results using Lagrange multipliers, which reduce the
optimization problem to a system of polynomial equations. This algebraic formulation is a
preview to the algebraic approaches to tensor optimization that I describe in later chapters.
I also discuss how polynomials, such as the characteristic polynomial, give an algebraic en-
coding of the structure of a matrix, a preview to the algebraic approaches to tensor structure
that I describe in later chapters.

The SVD is a central result from linear algebra, the key to practical methods to find low
rank structure in matrices. The matrices (and tensors) that arise in data applications often
have real entries. I begin this section by recalling the existence of the SVD for a real matrix.

Theorem 1.8 (The singular value decomposition). A real matrix M of format n1 × n2 can
be written in the form M = UΣV T or, in tensor product notation,

M =
n∑
i=1

σiu
(i) ⊗ v(i), (1.6)

where the matrix U is orthogonal of format n1× n1 with ith column equal to u(i), the matrix
V is orthogonal of format n2×n2 with ith column equal to v(i), and the matrix Σ is diagonal
of format n1 × n2 with non-negative diagonal entries σ1 ≥ . . . ≥ σn, where n = min{n1, n2}.

The vectors u(i) and v(i) are called the ith left and right singular vectors ofM , respectively,
and the scalar σi is the ith singular value. Equation (1.6) implies the following equations for
a matrix and its singular vectors and singular values:

Mv(i) = σiu
(i) and MTu(i) = σiv

(i). (1.7)

This is an alternative definition of the singular vectors and singular values of a matrix M :
the vectors u and v are left and right singular vectors with singular value σ if

Mv = σu and MTu = σv. (1.8)

A third way to define the singular vectors and singular values of a matrix is via rank one
approximation. A rank one matrix has the form σu⊗ v where u and v are vectors of norm
one, ‖u‖2 =

∑n
i=1 u

2
i = 1, and σ is a scalar which can be chosen to be non-negative. Consider

the closest rank one matrix to a given matrix M , with respect to the Euclidean norm. The
best rank one approximation can be found by maximizing the inner product 〈M,u⊗ v〉 over
vectors u and v of norm one. The scalar multiple σ is the inner product 〈M,u⊗ v〉. Hence
the best rank one approximation is the global maximum of the optimization problem

maximize u,v〈M,u⊗ v〉 subject to
1

2
(1− ‖u‖2) = 0 and

1

2
(1− ‖v‖2) = 0. (1.9)
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In particular, the best rank one approximation is one of the critical points of this optimization
problem, where the partial derivatives with respect to all variables vanish. We can find the
critical points using Lagrange multipliers. We introduce auxiliary variables λ1 and λ2, and
define the functional

L(u, v, λ1, λ2) =
∑
i,j

Mijuivj +
λ1
2

(
1−

∑
i

u2i

)
+
λ2
2

(
1−

∑
i

v2i

)
.

The critical points occur when the partial derivatives of L with respect to the variables
u, v, λ1, λ2 vanish. The vanishing of the partial derivatives gives the system of equations∑

jMijvj = λ1ui

(∑
j v

2
j

)
= λ1ui,

∑
iMijui = λ2vj (

∑
i u

2
i ) = λ2vj.

Hence we have the conditions Mv = λ1u and MTu = λ2v. Since λ1 = uTMv = vTMTu = λ2,
the two auxiliary variables λi are equal, and we obtain the condition from Equation (1.8) for
(u, v) to be a singular vector pair. The best rank one approximation is obtained by choosing
the critical point whose inner product 〈M,u⊗ v〉 is largest.

We can use the critical points of the distance to the rank one matrices to give a proof of
the SVD, as follows. We assume for convenience that the matrix M is generic and square.

Proof of Theorem 1.8. Construct the critical points of the optimization function in Equa-
tion (1.9). There are finitely many critical points, given by vectors (u(i), v(i)). Fix the signs
of vectors u(i) and v(i) such that the inner product σi := 〈M,u(i) ⊗ v(i)〉 is non-negative.
Concatenate the vectors u(i) to form the columns of the matrix U , concatenate the vectors
v(i) to form the columns of V , and set σi to be the diagonal entries of Σ. Since Equation (1.7)
holds for all tuples (u(i), v(i), σi), we have

MV = UΣ, MTU = V Σ.

The vector u(i) is an eigenvector of MMT with eigenvalue σ2
i . Since M is generic, the

eigenvalues are distinct and strictly positive, so the vectors u(i) are linearly independent, and
hence U is invertible. Rearranging MTU = V Σ gives M = U−1ΣV T and hence V V T = I.
Then MV = UΣ implies that M = UΣV T.

If two or more singular values of a matrix take the same value, say σi = σi+1 = · · · = σj,
the SVD still exists but is not unique. There are infinitely many singular vector pairs,
given by the choices of orthogonal bases for the vector spaces 〈u(i), u(i+1), . . . , u(j)〉 and
〈v(i), v(i+1), . . . , v(j)〉.

The uses of the SVD are extensive, as we will see later in this section. The decomposition
possesses several useful properties. The rank of a matrix M can be read directly from the
SVD: it is the number of non-vanishing singular values. A matrix of higher rank can be
approximated by one of lower rank using the SVD, as follows.
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Theorem 1.9 (The Eckart-Young theorem [63]). The best rank r approximation to a matrix
is given by truncating its SVD to the top r singular values.

The Eckart-Young theorem is hugely important for computing low rank approximations
of matrices. The theorem implies that the best rank rank r approximation of a matrix can
be found by solving r successive best rank one approximation problems, and this is helpful
in practice. For a numerical treatment of matrices and linear algebra, see [58]. For more
historical details on the singular value decomposition, see [176]. The Eckart-Young Theorem
does not hold in general for tensors, as we will see later in this chapter. This is one reason
behind problems to compute low rank decompositions or approximations of a tensor: while
efficient algorithms exist for rank one approximation, see [44], they cannot be extended to
give optimal approximations of higher rank.

Proof of Theorem 1.9. We seek a rank r approximation of a matrix M . A matrix of rank r
possesses an SVD, and the set of matrices of rank at most r is closed. This means the best
rank r approximation will be a critical point of the functional

‖M −
r∑
i=1

γia
(i) ⊗ b(i)‖2 +

r∑
i=1

αi
(
‖a(i)‖2 − 1

)
+

r∑
i=1

βi
(
‖b(i)‖2 − 1

)
,

where we can assume that the vectors a(i) satisfy 〈a(i), a(j)〉 = δij, the b(i) satisfy 〈b(i), b(j)〉 =
δij, and the γi are non-negative. The orthogonality condition means when we take the partial
derivatives of the functional, we obtain the condition that the pairs of vectors (a(i), b(i))
are singular vectors of M . Hence the critical points are given by linear combinations of r
tensor products of singular vectors. From among the critical points, choosing the singular
vectors corresponding to the r largest singular values minimizes the distance to the original
matrix.

In light of the useful properties of the SVD, and of the prevalence of tensor data coming
from applications, it is a topic of major interest to extend the SVD to tensors. It is arguably
even more crucial to find a low rank approximation of a tensor than it is for a matrix:
the higher order makes tensors in their original form especially computationally intractable.
However, there are theoretical and practical challenges associated with extending the SVD
to tensors.

1. The set of low rank tensors may be not be closed. This means the best low rank
approximation of a tensor may not exist. If we consider the closest tensor in the
closure of the low rank tensors, we can obtain a tensor of higher rank. Such situations
are not boundary cases, but can occur with positive probability. I explore the geometry
of the low real rank approximation problem for tensors in Chapter 2.

2. Not all tensors are orthogonally decomposable. The SVD writes a matrix as a sum of
rank one matrices σiu

(i)⊗ v(i) such that the vectors u(i) are orthogonal and the vectors
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v(i) are orthogonal. General tensors do not have a decomposition into rank one terms
of orthogonal vectors. Tensors that can be written in this form are called orthogonally
decomposable. I investigate the singular vectors of orthogonally decomposable tensors
in Chapter 3.

3. The best way to define the singular value of a tensor is not clear. For the most practical
definition, it is not known how to construct a tensor with prescribed singular values,
see Chapter 4.

I now describe how the SVD can be specialized to symmetric matrices.

The eigen-decomposition

Recall that a real matrix M of format n × n is symmetric if M = MT. If a matrix is
symmetric, a decomposition into symmetric rank one terms can be found,

M = V ΛV T =
n∑
i=1

λiv
(i) ⊗ v(i),

where V is an n×n orthogonal matrix with ith column equal to v(i), and the λi are real scalars.
This is called the eigen-decomposition. The coefficient λi is the eigenvalue corresponding to
eigenvector v(i).

The Lagrange multiplier construction of the best rank one approximation of a matrix can
be applied to show that the best rank one approximation of a symmetric matrix is λ1v

(1)⊗v(1),
where λ1 is the eigenvalue of largest magnitude and v(1) its eigenvector. Since the best rank r
decomposition can be found by successively finding the best rank one approximation, the
best rank r approximation is given by truncating the eigen-decomposition to the singular
vectors corresponding to the r eigenvalues of largest magnitude.

The eigen-decomposition shows that the best rank r approximation of a symmetric matrix
can be chosen to be symmetric, and that a decomposition of a rank r symmetric matrix can
be chosen to be a sum of symmetric rank one terms. I study the analogous problem for
tensors in Chapter 5.

Principal component analysis

Given a collection of n data points x(i) in Rp, we can construct the n × p matrix X whose
ith row is the vector x(i). The entries of x(i) are measurements with respect to p different
sensors. Finding a low rank approximation of the data matrix X gives us information about
the structure that is present in the data. For example, a rank one approximation gives the
uncoupling of the data points from the sensors that best approximates the data. The best
rank r approximation gives the most accurate approximation of the data that decomposes
it into r uncoupled terms.
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Often, a low rank approximation is not sought of the matrix X directly, but rather of
the p × p matrix XTX. If the rows of X are mean-centered, then XTX is proportional to
the empirical covariance matrix of the data. The eigenvectors of XTX are directions (called
principal components) which are important for the data: the eigenvectors corresponding to
large eigenvalues are directions along which a large proportion of the variation between the
sensors is exhibited.

Principal component analysis (PCA) finds a low rank approximation of XTX. The rank
one terms are linear combinations of sensors that capture the variation in the data. PCA is
based on the idea that we seek a sensor that discriminates between data points: the method
combines existing sensors to obtain new coordinates, with respect to which there is large
variability in the data.

The matrix XTX is symmetric and positive semi-definite, so the eigen-decomposition
exists and the eigenvalues are non-negative. The eigenvector v(i) corresponding to the ith
largest eigenvalue is called the ith principal component.

The idea of projecting data to its largest principal components is widespread, appearing
in applications ranging from biological data analysis to political advertising to movie pref-
erences. For example, the algorithm used by a search engine to measure the importance of
webpages uses a principal component, and there are estimated to be over 70,000 internet
searches completed each second [88, 87].

On a personal level, my first encounter with PCA was the paper [134] from 2008. The
authors plot the top two principal components of genetic data from individuals of European
ancestry. The principal components are seen to be a close fit to a geographic map of Europe.
That is, the linear combinations of genetic information that maximize variance are, in this
setting, a good proxy for the spacial coordinates of a person’s ancestry.

Matrix structure via polynomials

We can compute polynomials in the entries of a matrix, such as det(M) = m00m11−m01m10

for a matrix M of format 2 × 2. These polynomials encode the algebraic structure of the
matrix. A matrix is rank deficient if and only if its determinant vanishes. A matrix has rank
at most r − 1 if and only if all r × r minors vanish. The characteristic polynomial of the
Gram matrix MTM is

p(t) = det(MTM − tI).

Another exact rank test for a matrix, rather than checking all minors of given size, is obtained
from the coefficients of p(t) considered as a univariate polynomial in t. The matrix M has
rank at most r if and only if the coefficients of tn−r, . . . , t, 1 all vanish.

Recall that the rank of a matrix is also the number of non-zero singular values. The
singular values of a matrix are orthogonal invariants, unchanged by orthogonal transforma-
tions. A basis of polynomial orthogonal invariants of M is given as follows. The coefficients
of p(t) are polynomial expressions in the entries of M . For example, the constant term is
det(MTM) = det(M)2. The polynomial p(t) can also be factorized, using the singular values
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of M , as

p(t) =
n∏
i=1

(t− σ2
i ).

From this factorization, we see that the coefficients of p(t) are the elementary symmetric
polynomials evaluated at the squares of the singular values. For example, the constant term
is
∏n

i=1 σ
2
i = det(M)2. Hence the coefficients of p(t) are orthogonal invariants, and they are

polynomials in the entries of M .

1.3 Similarities between matrices and tensors

From their definitions, matrices and tensors are similar: a matrix is an array of numbers in
which each entry is described by two indices, while a tensor is an array of numbers in which
each entry is described by any number of indices. It is unsurprising, then, that there are
other similarities between them.

In this section, I discuss the main similarities between matrices and tensors: settings in
which tensor structure can be studied using linear algebra. I begin by comparing change
of basis operations for matrices and tensors, and discussing ways to consider a tensor as a
multi-linear map, just like a matrix is a linear map. Then I study a tensor via its flattenings,
the ways to reshape its entries into a matrix. It turns out that matrices and tensors can be
studied similarly with regard to finding rank one structure. I prove the well-known extension
of the Eckart-Young theorem for finding the best rank one approximation of a tensor. The
theoretical and numerical properties of tensors differ from matrices at higher ranks, as I
describe in Section 1.4.

Change of basis

For both matrices and tensors, it is helpful to apply a change of basis operation. For a matrix
M ∈ V1⊗V2 we change basis by applying a linear transformation to the vector spaces Vi. In

coordinates, we apply the transformation M 7→ [[M ;A(1), A(2)]] = A(1)TMA(2). For an order
three tensor X we change basis by applying a transformation X 7→ [[X;A(1), A(2), A(3)]] as in
Equation (1.1). Similarly, we can extend change of basis operations to higher order tensors,
X 7→ [[X;A(1), . . . , A(d)]].

Given a matrix M ∈ V1 ⊗ V2, we can find subspaces Wi ⊆ Vi of minimal dimension such
that M ∈ W1 ⊗W2. In bases, this translates to finding invertible matrices A(i) such that

A(1)TMA(2) has a block of non-zero entries of format dim(W1) × dim(W2), and all other
entries zero. Similarly, the subspace representation writes a tensor as an array of smallest
possible format. This is important for compressing the tensor.

Definition 1.10 (Tensor subspace representation, see [77, Chapter 8]). Given a tensor X ∈
V1⊗· · ·⊗Vd, the subspace representation writes X as an element of the tensor product space
W1⊗· · ·⊗Wd, where the vector subspaces Wi ⊆ Vi are of minimal dimension. Consider a basis
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for Vi consisting of a basis for Wi plus a basis for its orthogonal complement. With respect to
this basis, the tensor X has a block of non-zero entries of format dim(W1)× · · · × dim(Wd),
and all other entries zero.

Multi-linear maps

A matrix can be viewed as a linear or bilinear map. Consider the matrix M ∈ V1⊗V2, where
the vector spaces Vi are over a field K. The matrix M represents a linear map V ∗2 → V1, or
a linear map V ∗1 → V2, or a bilinear map V ∗1 ⊗ V ∗2 → K, where V ∗i denotes the vector space
dual to Vi. Similarly, a tensor X ∈ V1⊗ · · · ⊗ Vd represents various multi-linear maps on the
vector spaces Vi and their duals, such as the linear map

V ∗d → V1 ⊗ · · · ⊗ Vd−1
v 7→ [[X; ·, . . . , ·, v]] =

∑
j xi1,...,id−1,jvj.

or the linear map

V ∗2 × · · · × V ∗d → V1
(v(2), . . . , v(d)) 7→ [[X; ·, v(2), . . . , v(d)]] =

∑
j2,...,jd

xi,j2,...,jdv
(2)
j2
· · · v(d)jd

.

We study such maps in the context of singular vectors of tensors in Chapter 3. Interpolating
between these examples, we see that a tensor can be viewed as many other multi-linear maps.
If the number of possible values taken by an index of a tensor agrees with the length of a
vector, we can multiply the tensor and the vector together, summing over that index.

Flattenings

The flattenings of a tensor are matrices, obtained by reshaping the tensor by reindexing. We
can study some of the structure of a tensor via the linear algebra of its flattenings. I will
first describe what it means to flatten a tensor into a matrix, with the aid of pictures, and I
will then describe decompositions of tensors based on flattenings.

Recall that a matrix can be vectorized, or reshaped into a vector, as in Figure 1.5. We can
choose to concatenate the rows of the matrix into a vector, or to concatenate the columns,
and this gives two possible vectorizations of the matrix.

→

Figure 1.5: A matrix can be flattened into a vector.
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A tensor has many possible flattenings. One way to flatten a tensor into a matrix is
shown in Figure 1.6. Consider the tensor X with entries xi1,...,id and format n1 × · · · × nd.
Each flattenings is given by a non-empty subset S ( {1, . . . , d}, as follows. We define two
multi-indices i = (ik : k ∈ S) and j = (ik : k /∈ S). We let the multi-indices i label the rows
of the matrix, and the multi-indices j label the columns, and we obtain a matrix of format∏

k∈S nk ×
∏

k/∈S nk. All entries of the original tensor X appear in the flattening: the (i, j)
entry of the matrix is xi1,...,id . For more details, see [77, Section 5.2].

→

Figure 1.6: A tensor can be flattened into a matrix.

A tensor contains more information than any of its flattenings. For example, some pairs
of rows of the flattening matrix are more similar than others, depending on the similarity of
the multi-indices i = (i1, . . . , id) and i′ = (i′1, . . . , i

′
d) that label them. The two multi-indices

could differ only at the dth index but be the same at all other indices. However, applying
any linear algebra method to the matrix does not see the finer structure in the multi-indices.
One approach to get around this problem is to consider several flattening matrices at once,
which considers a tensor as an interrelated collection of matrices.

A popular choice of flattenings are called the principal flattenings. For a tensor of format
n1×· · ·×nd, the principal flattenings are d matrices, each of format ni×

∏
j 6=i nj, which use

a single index for the rows, and combine all other indices to form the columns. Setting ri to
be the rank of the ith principal flattening, we can write a tensor in the form

X = [[C;A(1), . . . , A(d)]] =

r1∑
j1=1

· · ·
rd∑
jd=1

cj1,...,jda
(1)
j1i1
· · · a(d)jdid , (1.10)

where C is a core tensor of format r1×· · ·×rd. Equation (1.10) is the Tucker decomposition
of X, see [77, Chapter 8]. Note the similarity with the subspace representation from Defi-
nition 1.10. The Tucker decomposition of a tensor represents it via the adjacency structure
of a graph. In the order three case, the graph is shown in Figure 1.7. The central vertex
corresponds to the core tensor, of format m1 ×m2 ×m3. As the values of the mi increase,
more tensors can be represented by this tensor network. When mi = ni, all tensors factor
according to the tensor network. For small values of mi, we get a subvariety of tensors. For
more on tensor networks, see Chapter 6.

A special choice of Tucker decomposition can be chosen, which imposes orthogonality
on the matrices A(i). In this case the core tensor C has properties akin to matrix singular
values, as I now describe.
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Figure 1.7: The Tucker decomposition, as a tensor network, for an order three tensor.

Definition 1.11 (The higher-order singular values [106]). A tensor X ∈ Rn1×···×nd has d
principal flattenings. Denote the ith flattening by X(i). It is a matrix of format ni×

∏
j 6=i nj.

The higher-order singular values of X are a list of vectors {σ(1), . . . , σ(d)}, where σ(i) is the
vector of singular values of X(i), a vector of length ni.

Theorem 1.12 (The higher-order singular value decomposition [106, Theorem 2]). A tensor
X ∈ Rn1×···×nd can be written in the form

X =

n1∑
j1=1

· · ·
nd∑
jd=1

cj1,...,jda
(1)
j1i1
· · · a(d)jdid ,

where each A(i) is an orthogonal ni × ni matrix. Denote the ith principal flattening of the
core tensor C ∈ Rn1×···×nd by C(i). Then each Gram matrix C(i)(C(i))T is diagonal, with
diagonal entries the squared singular values of the principal flattening X(i).

Definition 1.11 extends the notion of singular values from a matrix to a tensor. The
higher-order singular values generalize many useful properties of the usual matrix singular
values, see [106]. On the practical side, since the principal flattenings are matrices, the
higher-order singular values can be computed using methods from linear algebra. However,
the higher-order singular values also have some drawbacks.

The higher-order singular value decomposition does not give an optimal approximation
of a tensor. If we keep only the top ri singular values of the ith flattening, setting the others
to zero, we obtain an approximation to a subspace representation of format r1 × · · · × rd.
The error introduced by this approximation can be given in terms of sums of squares of
higher-order singular values, as in the matrix case. However, unlike for matrices, a subspace
approximation of a tensor given by truncating its higher-order singular values is not optimal,
see [106, Example 5]. Moreover, the higher-order singular value decomposition is a high rank
decomposition of a tensor in general. It expresses a tensor as a sum of

∏d
i=1 ri rank one terms,

where ri is the rank of the ith principal flattening. In general, this will be much higher than
the rank of the tensor.
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Many algorithms for tensors are based around its flattenings. For example, the algorithm
in [112], referred to as a multilinear principal component analysis algorithm, finds projections
of a tensor in its different flattenings.

When we view a tensor as an interrelated collection of matrices, several questions of
theoretical and practical interest arise. What is the best collection of flattening matrices
to use? To what extent does the structure of the tensor appear in its flattenings? How
is the structure of the different flattenings interrelated? These questions are algebraic and
geometric. For example, in [78] the authors posed the following question.

Problem 1.13 ([78, Problem 1.4]). What are the feasible numbers that can arise as the
singular values in the principal flattenings of a tensor?

The set of feasible singular values of the principal flattenings of a tensor is a semi-algebraic
set, defined by polynomial equations and inequalities. This set remains ill-understood. We
study it, and describe it in some cases, in Chapter 4.

The singular values of a flattening of a tensor are unchanged under orthogonal changes of
basis, like the singular values of a matrix. However, unlike for matrices, the singular values of
all the flattenings do not specify a tensor up to orthogonal equivalence. There exist tensors
with the same singular values in each flattening, but without an orthogonal change of basis
that maps one to the other. This can be seen by a dimension counting argument. A first
example of this phenomenon was given in [78]. In Chapter 4, we see how in one setting a
full set of orthogonal invariants for a tensor can be obtained by taking the singular values of
flattenings in combination with the hyperdeterminant polynomial, which is invariant under
changes of coordinates via the special linear group.

There are many ways to represent a tensor using its flattenings. The Tucker decompo-
sition from Equation (1.10) is just one example. One popular approach is to associate a
tensor decomposition to a graph. This is called a tensor network. Weights are attached to
the edges, and each edge determines an index that is summed over in the decomposition of
the tensor. Trees (graphs without cycles) give tensor networks known as hierarchical tensor
decompositions [77, Chapter 11], which recursively divide the total set of indices {i1, . . . , id}
into subsets, until we reach sets consisting of a single index. The set of tensors that factor
according to a given tensor network, with fixed weights on the edges of the graph, give ten-
sor network ranks, studied in [190]. I will return to tensor networks in Chapter 6, where I
introduce a broad framework, tensor hypernetworks, to study sets of tensors with notions of
low rank that can be specialized to those arising in an application. Usual tensor networks,
as well as the usual tensor rank, occur as special cases in this framework. See [77] for a
numerical treatment of tensor networks.
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Rank one approximation

Recall that the tensor X ∈ V1 ⊗ · · · ⊗ Vd is rank one if X = v(1) ⊗ · · · ⊗ v(d), where v(i) ∈ Vi.
In coordinates, the tensor X is rank one if

xi1,...,id = v
(1)
i1
· · · v(d)id

.

A rank one tensor has the interpretation that the different factors, or indices, are de-coupled
from one another. A general tensor is a sum of rank one terms, as described in Definition 1.2.
The best rank one approximation of a tensor is the closest tensor of the form v(1)⊗· · ·⊗v(d),
measured with respect to a metric such as the Euclidean distance. In this subsection, I
describe the best rank one approximation problem for tensors. As we saw in Theorem 1.9,
the best rank one approximation of a matrix is given by a singular vector pair. The best
rank one approximation of a tensor is given by a singular vector tuple.

Definition 1.14 (Singular vector tuple). A singular vector tuple of a tensor X ∈ Rn1×···×nd

is a d-tuple of nonzero vectors (v(1), . . . , v(d)) ∈ Cn1 × · · · × Cnd such that

[[X; v(1), . . . , v(k−1), ·, v(k+1), . . . , v(d)]] is parallel to v(k), for all k = 1, . . . , d. (1.11)

The left side of Equation (1.11) is the vector with ith coordinate

nd∑
jd=1

· · ·
nk+1∑
jk+1=1

nk−1∑
jk−1=1

· · ·
n1∑
j1=1

xj1,...,jk−1,i,jk+1,...,jdv
(1)
j1
· · · v(k−1)jk−1

v
(k+1)
jk+1

· · · v(d)jd
.

Definition 1.15 (Singular value of a tensor). Consider a singular vector tuple of norm one
vectors (v(1), . . . , v(d)). The singular value of the tuple is the scalar σ obtained by multiplying
the tensor X by the vector v(j) in the jth direction for all j,

σ := [[X; v(1), . . . , v(d)]].

Definitions 1.14 and 1.15 specialize to the usual singular vectors and singular values of
a matrix when d = 2. Any singular vector tuple can be rescaled to make the vectors norm
one. For a tensor, if we do not fix the norm of the vectors v(j) the singular value is not
well-defined. Unlike for matrices, the condition in Equation (1.11) is not homogeneous in
the entries of the vectors v(j), so rescaling the tuple of vectors will change the singular value.
In some settings, the condition in Equation (1.11) is homogenized by taking the (d − 1)th
power of each entry of the vector v(k), in order to have singular values that are unchanged
by rescaling the vector, see e.g. [44], but the disadvantage is that such singular values are
not orthogonal invariants, see [145]. Note that for a general tensor the singular values are
not the same as the higher-order singular values from Definition 1.11.

The notion of a singular vector tuple allows us to extend the Eckart-Young theorem from
matrices to tensors, for best rank one approximation.
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Theorem 1.16 (Rank one approximation of tensors). The best rank one approximation of
a tensor is given by the singular vector tuple corresponding to the largest singular value.

This result appears as [67, Lemma 4] and [145, Theorem 2.19], see also further references
in [145]. I include a proof here using Lagrange multipliers. For notational simplicity, I work
with an order three tensor, though the proof extends directly to tensors of higher order.

Proof of Theorem 1.16. The best rank one approximation of a tensor X of order three is
given by σu⊗ v⊗w where, without loss of generality, we can assume the vectors have norm
one, and that σ is non-negative. As for the matrix case in Equation (1.9), we obtain the
best rank one approximation by maximizing the inner product 〈X, u⊗ v⊗w〉 subject to the
conditions

1

2
(1− ‖u‖2) = 0,

1

2
(1− ‖v‖2) = 0, and

1

2
(1− ‖w‖2) = 0.

We use Lagrange multipliers to formulate the optimization problem as the solution to a
system of polynomial equations. Unlike the matrix case, these are non-linear equations. The
critical points of the functional

∑
i,j,k

xijkuivjwk +
λ1
2

(
1−

∑
i

u2i

)
+
λ2
2

(
1−

∑
i

v2i

)
+
λ3
2

(
1−

∑
i

w2
i

)

occur when∑
j,k

xijkvjwk = λ1ui,
∑
i,k

xijkuiwk = λ2vj,
∑
i,j

xijkuivj = λ3wk.

Multiplying each of these expressions by the vector on the right hand side, we see that
σ := λ1 = λ2 = λ3, and we obtain the condition for the triple (u, v, w) to be a singular
vector tuple of X with singular value σ. The best rank one approximation is the critical
point whose singular value σ is largest.

The higher rank version of Theorem 1.16 does not hold: we cannot use singular vector
tuples to give a low rank approximation of a tensor in general. In this sense, the spectral
theory of tensors and the theory of low rank approximations diverge from one another for
ranks exceeding one. For more details on singular vectors of tensors as an optimization
problem, see [109].

1.4 Differences between matrices and tensors

The first thing that sets tensors apart from matrices is that they facilitate the comparison
of multiple variables, or factors, simultaneously. Their properties, both theoretical and
numerical, also differ substantially from those of matrices. Decompositions such as the SVD
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Matrix M ∈ Rn1×n2 Tensor X ∈ Rn1×···×nd See

Real rank equals complex rank real and complex ranks
may differ; multiple real
ranks can occur generically

Example 1.27,
Chapter 2

Border rank the set of matrices of
rank ≤ r is closed

limits of tensors can have
higher rank than the ranks
in the sequence

Example 1.24,
Chapters 2, 5

Symmetric rank equals non-symmetric
rank by
eigen-decomposition

symmetric and
non-symmetric ranks may
differ

Chapter 5,
[168]

Generic rank same as maximum
rank, min(n1, n2)

can be less than maximum
rank

Example 1.24,
Chapter 5

Computing rank use e.g. SVD, minors no test in general, can use
flattenings for rank 1

Chapters 2, 5

Best low rank
approximation

truncate the SVD use singular vectors for
rank one, but not
necessarily for higher ranks

Theorems 1.9
and 1.16,
Chapter 3

Table 1.1: Summary of differences between matrices and tensors.

do not exist for general tensors. In this section, I describe the various notions of rank, and
how to compute the rank, for a tensor. We see significant differences compared to the case
of matrices, see Table 1.1.

Definition 1.17 (Complex rank, real rank, symmetric rank, border rank). Let X be a tensor
in Kn1×···×nd, where K = R or C.

1. Complex rank: the smallest r such that there exists a decomposition into r rank one
terms, X =

∑r
i=1 v

(1)
i ⊗· · ·⊗ v

(d)
i , where the vectors in the decomposition have complex

entries, v
(j)
i ∈ Cnj .

2. Real rank: the smallest r such that there exists a decomposition X =
∑r

i=1 v
(1)
i ⊗ · · · ⊗

v
(d)
i , where v

(j)
i ∈ Rnj .

3. Symmetric rank: the smallest r such that there exists a decomposition X =
∑r

i=1 v
⊗d
i

where vi ∈ Cn (or Rn for real symmetric rank).

4. Border rank: the smallest r such that X = limε→0Xε where each Xε has rank r. Each
notion of rank has a corresponding notion of border rank, the smallest r such that X
lies in the closure of the rank r tensors.
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I give some well-known examples of tensors for which the different ranks differ, in Sec-
tion 1.5. The examples involve the smallest higher order tensors, those of format 2× 2× 2.
Real rank applies to tensors with real entries, similarly symmetric rank applies to tensors
with symmetric entries. The set of tensors of rank ≤ r may not be closed when it is a proper
subset of the space of tensors and r > 1. The same holds for the space of symmetric tensors
of symmetric rank ≤ r, see [50]. In these situations, there exist tensors whose rank and
border rank differ. The notions of rank in Definition 1.17 can specialized to matrices, where
they all give the usual rank of a matrix.

Another key difference between matrices and tensors is the uniqueness properties of a
decomposition. A matrix always has infinitely many decompositions into rank one terms,
but in some cases a tensor has a unique such decomposition, and this can be very useful
in practice, see [93, Section 3.2] and [98]. I discuss the identifiability of tensors under
congruence action in Chapter 8.

I now come to a comparison of the rank and symmetric rank of a tensor. A conjecture
from [50] says the following.

Conjecture 1.18 (Comon’s conjecture). The rank and symmetric rank of a symmetric
tensor agree.

The conjecture is true in some special cases: for matrices (by the eigen-decomposition),
when the symmetric rank of a tensor is at most two [50], when the rank is less than or equal to
the order [193], and when the rank is at most the flattening rank plus one [68]. Furthermore,
the conjecture has been proved to generically hold in certain families of tensors [17]. However,
in [168], it was shown that the conjecture is false: the author constructs a tensor whose
symmetric and non-symmetric ranks differ. It is a large tensor of format 800× 800× 800. I
refer the reader to [168] to read more about the example.

Many aspects of Conjecture 1.18 remain unknown. It is not known whether rank and
symmetric rank are the same generically, i.e. whether for practical purposes in the study
of tensor data they can be considered the same. Moreover, there are no known counter-
examples over the real numbers, and an example in which the border rank and symmetric
border rank differ has not yet been obtained. I will discuss rank and symmetric rank further
in Chapter 5, where I prove that the rank and symmetric rank coincide for all tensors of
symmetric rank at most seven, improving on previous best lower bounds from [68]. This
gives a partial explanation for why counter-examples to Conjecture 1.18 seem hard to find:
there are very few tools for computing the rank of a tensor whose rank is high (i.e. exceeding
seven), as I now describe.

Recall that the rank of a matrix can be read directly from the singular value decomposi-
tion, see Section 1.2. The rank of a matrix M can also be computed algebraically, as we saw
in the discussion of matrix structure via polynomials on Page 13. Computing the rank of a
tensor is much more difficult. We can test if a tensor has rank one using the flattenings. If all
the flattenings of a tensor have rank one, then the tensor has rank one. If all the flattenings
of a tensor have rank two, then the tensor has border rank two [101]. This does not extend
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to higher ranks: the ranks of the flattenings will only give a lower bound on the rank of the
tensor.

Many algorithms have been developed to compute tensor rank and tensor decompositions.
Roughly speaking, the algorithms fall into two categories. Algebraic methods give exact
solutions, but are not tractable for large tensors. Numerical methods are more scalable,
but with fewer guarantees of finding the optimal solution. Numerical algebraic geometry
algorithms, see e.g. [83], interpolate between the two in terms of scalability and guarantees.

For a general tensor, there is no known way to compute its rank. The problem of
computing the rank is algebraic, as I now describe. I begin by considering the symmetric
rank of a tensor, and how it relates to a question of classical interest in algebraic geometry.
Then I discuss the complex rank, and its connection to secant varieties, and finally I discuss
real rank and its connection to semi-algebraic sets.

Symmetric rank

Recall that a tensor of format n× · · · × n (d times) corresponds to a homogeneous polynomial
of degree d in n variables, see Example 1.7. Under this correspondence, a symmetric rank one
tensor v⊗d corresponds to a power of a linear form ld. The vector v ∈ Kn lists the coefficients
of the linear form l. Hence a decomposition of X into a sum of rank one symmetric terms is
a decomposition of the corresponding polynomial into a sum of powers of linear forms,

X =
r∑
i=1

λiv
⊗d
i ↔ f =

r∑
i=1

λil
d
i , (1.12)

where each vi ∈ Kn is the vector of coefficients of the linear form li and the λi are scalars.
The minimal number of summands in such a decomposition is called the symmetric rank
of X, or the Waring rank of f , over K. We have the following classical result about cubic
surfaces.

Theorem 1.19 (Sylvester’s Pentahedral Theorem (1851), see [159, §84]). A generic cubic
surface f can be decomposed uniquely as the sum of five cubes f = l31 + l32 + l33 + l34 + l35, where
each li ∈ C[x1, x2, x3, x4] is a linear form.

The theorem says that a generic 4× 4× 4 symmetric tensor has complex rank five. Or,
the complex border rank of a symmetric 4 × 4 × 4 tensor is at most five. We will see more
about ranks of cubic surfaces in Chapter 5.

Perhaps the first example of an algorithm to compute the rank of a symmetric tensor is
Sylvester’s algorithm from 1886 for binary forms, see [37] and references therein. Approaches
for larger tensors involve algebraic tools such as the apolarity lemma, which relates the
existence of a decomposition to the structure of the apolar ideal. In principle, the rank of
a tensor can be computed directly from solving an elimination problem: by eliminating the
variables vi from the decomposition on the left in Equation (1.12), where the entries of X
are set to the tensor of interest. However, such eliminations do not terminate in practice.
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Another close connection between tensor rank and algebraic tools begins with the following
definition.

Definition 1.20 (Varieties of symmetric rank r tensors). The set of symmetric tensors of
format n × · · · × n (d times) of complex rank one, considered up to scale, is the Veronese
variety νd(Pn−1). The set of tensors whose complex symmetric border rank is at most r,
considered up to scale, is the rth secant variety of the Veronese, denoted by σr(νd(Pn−1)).

The following theorem justifies calling this set an algebraic variety. It is the specialization
of a classical result from algebraic geometry to the setting of tensors, and it holds in the case
of both symmetric and non-symmetric tensors.

Theorem 1.21. The set of tensors of complex (symmetric) border rank at most r is an
algebraic variety.

Proof. The Zariski closure of a set S is the smallest set containing S that is defined by the
vanishing of polynomials. A locally closed set is one that is Zariski open in its Zariski closure,
and a constructible set is the finite union of locally closed sets.

The set of tensors of complex (symmetric) rank at most r is a constructible set, by
Chevalley’s Theorem [181, p. 7.4.2], since it is the image of the vectors occurring in a rank r
(symmetric) decomposition. Hence the set of tensors of complex rank r is a finite union of
sets that are open in their Zariski closures. Taking the Euclidean closure of each set gives
the Euclidean closure of the complex rank r tensors. Since each set is locally closed, the
Euclidean closure equals the Zariski closure. In fact, since secants varieties of irreducible
varieties are irreducible [191], it is enough to take the closure of the largest locally closed
set.

Computing the border rank of a symmetric tensor means testing the vanishing of the
defining equations of a certain secant variety, i.e. we need to compute finitely many poly-
nomials in the entries of the tensor. However, these equations are known in very few cases.
Since the rank of a tensor is invariant under general linear changes of coordinates in each
factor, the defining equations will be modules of the general linear group, which we make
use of in Chapter 5. See [105, Chapter 6].

Although the symmetric rank of a given tensor cannot be found in general, the rank of a
generic tensor can be computed. For tensors of fixed format there is one complex rank that
occurs generically, and it is called the generic rank [105]. The value of the generic rank follows
from the dimensions of the secant varieties. The secant varieties of the Veronese variety
have an expected dimension, given by counting parameters. The Alexander-Hirschowitz
Theorem [4], see also [105, Theorem 3.2.2.4], says that the true dimension of the secant
variety is given by the expected dimension, in all but a few exceptional cases.
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Complex rank

Consider the set of tensors of complex border rank at most r, i.e. the set of tensors that can
be written as a limit X = limε→0Xε, where each tensor Xε has complex rank r. As in the
symmetric case, we have the following definition.

Definition 1.22 (Varieties of rank r tensors). The set of tensors of format n1 × · · · × nd of
rank one, considered up to scale, is the Segre variety Seg(Pn1−1 × · · · × Pnd−1). The set of
tensors of complex border rank at most r, considered up to scale, is the rth secant variety of
the Segre, denoted σr(Seg(Pn1−1 × · · · × Pnd−1)).

As in the symmetric case, in principle we can test if a tensor has complex border rank
at most r by testing the vanishing of the defining equations for the secant variety. The
generic rank is the smallest r such that the rth secant variety fills the space of tensors. It
is conjectured that the secant varieties of the Segre variety have the expected dimension,
except in a few exceptional cases [1]. However, unlike for the symmetric case, to date a full
characterization remains unproved.

Real rank

A basic semi-algebraic set is a set of points upon which a finite list of polynomials vanishes
and a finite list of polynomials is strictly positive. A semi-algebraic set is the union of
finitely many basic semi-algebraic sets. Real algebraic geometry is based around the study
of semi-algebraic sets, and the following theorem is central.

Theorem 1.23 (The Tarski-Seidenberg theorem/quantifier elimination [32, Chapter 5]).
The projection of a semi-algebraic set is semi-algebraic.

A decomposition of a tensor X as a sum of r real rank one terms has the form X =∑r
i=1 v

(1)
i ⊗ · · · ⊗ v

(d)
i , where v

(j)
i ∈ Rnj . Consider the set of all tensors which can be written

in the above form, as the vectors v
(j)
i range over Rnj . This is a semi-algebraic set in the

entries of the tensor X and the entries of all the vectors v
(j)
i . Projecting this set to the entries

of X gives the set of tensors X for which there exists a real rank ≤ r decomposition. The
Tarski-Seidenberg theorem says that this projected set is semi-algebraic, i.e. it is a finite
union of sets each of which is given by the signs of certain polynomials in the entries of the
tensor. In principle, this gives a membership test for the tensors of real rank ≤ r. We can
test if a tensor has real rank r by evaluating the list of polynomials and seeing if they have
one of the required sign patterns. We can repeat the test for different ranks r to find the
rank of a tensor.

Although Theorem 1.23 gives the existence of a semi-algebraic membership test for the
set of tensors of fixed real rank, it is a different question to actually obtain the equations
and inequalities. The problem of finding a membership test for the real rank ≤ r tensors
quickly becomes computationally intractable as the size of the tensor increases, as quantifier
elimination is doubly-exponential in the number of variables [55].
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I give the equations for the real rank membership problem for real rank two tensors in
Chapter 2. The set of tensors of fixed non-negative rank is also a semi-algebraic set, see the
discussion of non-negative rank on Page 30. See Chapter 7 for more about membership tests
for non-negative rank r tensors.

Unlike in the complex case, the real rank of a tensor does not take a single value gener-
ically. When sampling uniformly in the space of real tensors of fixed format, multiple real
ranks occur with positive probability. These are called the typical ranks, see [28]. The typical
ranks of a given tensor format are not known in general.

1.5 Small data

The smallest higher order tensors have format 2× 2× 2 and consist of eight entries xijk, for
0 ≤ i, j, k ≤ 1. The entries can be arranged at the vertices of a three-dimensional cube, see
Figure 1.8. In this section, I describe some known results, and also some new contributions,
in the setting of 2 × 2 × 2 tensors. The results are a preview of the contributions of later
chapters. I begin by discussing the flattenings, then I give exact algebraic algorithms to
compute the complex, real, and non-negative rank. Algorithms to compute the real and
complex ranks in this setting are well-known, but there was previously no exact method to
compute the non-negative rank.

Figure 1.8: Tensors of format 2× 2× 2 consist of eight entries arranged at the vertices of a
three-dimensional cube.

Flattenings

A tensor X of format 2× 2× 2 has three flattenings, each of format 2× 4:[
x000 x001 x010 x011
x100 x101 x110 x111

]
,

[
x000 x001 x100 x101
x010 x011 x110 x111

]
,

[
x000 x010 x100 x110
x001 x011 x101 x111

]
. (1.13)

In the ith flattening, the ith index labels the rows of the matrix. For each flattening M , we
can compute the 2× 2 matrix MMT and then take its determinant, det(MMT). I call this
the ith Gram determinant of X, and denote it by gi.
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By the Cauchy-Binet formula, each of the three Gram determinants is the sum of squares
of the six minors from a flattening. For example,

g1 =
(x000x101 − x001x100)2 + (x000x110 − x010x100)2 + (x000x111 − x011x100)2 +

(x001x110 − x010x101)2 + (x001x111 − x011x101)2 + (x010x111 − x011x110)2.
(1.14)

Each minor is supported on four vertices in the cube. The faces of the cube in Figure 1.8
are the support of minors which appear in two Gram determinants. They have monomials
xixj where i and j are multi-indices in {0, 1}3 that differ in two indices. The remaining six
minors, supported on the shaded squares in Figure 1.9, are unique to a single flattening.
They have monomials xixj where i and j differ in all three coordinates.

Figure 1.9: The minors unique to flattenings one, two, and three, respectively.

The following inequalities between the Gram determinants hold:

g1 ≤ g2 + g3,
g2 ≤ g1 + g3,
g3 ≤ g1 + g2.

I prove these inequalities by finding a sum of squares certificate for g2 + g3 − g1 in Ex-
ample 4.3. The inequalities satisfied by the Gram determinants result in relations between
the higher-order singular values. I find relations between the Gram determinants of larger
tensors, and use them to make conclusions about the higher-order singular values, in Chap-
ter 4.

Complex rank

The complex rank of a 2×2×2 tensor X is the smallest number r such that it can be written

X =
r∑
l=1

al ⊗ bl ⊗ cl, for some al, bl, cl ∈ C2.

The possible complex ranks of a 2× 2× 2 tensor are {1, 2, 3}.
Consider a 2× 2× 2 tensor up to scale as a point in projective space P7. The rank one

tensors parametrize the Segre variety, Seg(P1 × P1 × P1). The closure of the complex rank
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two tensors is the secant variety to the Segre, denoted σ2(Seg(P1 × P1 × P1)). The secant
variety fills the space P7. This means that a generic 2× 2× 2 tensor has complex rank two,
and that any 2× 2× 2 tensor can be arbitrarily well-approximated by one of complex rank
two, i.e. the complex border rank of a 2× 2× 2 tensor is at most two.

The complex rank three tensors parametrize a subvariety of P7, given by the vanishing
of the hyperdeterminant [42]

x2000x
2
111 + x2001x

2
110 + x2010x

2
101 + x2011x

2
100 + 4x000x011x101x110 + 4x001x010x100x111

−2x000x001x110x111 − 2x000x010x101x111 − 2x000x011x100x111
−2x001x010x101x110 − 2x001x011x100x110 − 2x010x011x100x101.

(1.15)

The hyperdeterminant is the only polynomial (up to scale) in the entries of a 2×2×2 tensor
that is invariant under change of basis by the group SL2×SL2×SL2. The hyperdeterminant
arises here because the rank of a tensor is also an invariant with respect to this group action.

Example 1.24 (Border rank vs. rank). The tensor

X =

[
0 1 1 0
1 0 0 0

]
(1.16)

can be arbitrarily well-approximated by a sum of two rank one tensors,

X = lim
ε→0

1

2ε

([
1 ε ε ε2

ε ε2 ε2 ε3

]
+

[
−1 ε ε −ε2
ε −ε2 −ε2 ε3

])
.

However, to express X exactly as a sum of rank one tensors, three terms are required. The
tensor X has rank three and border rank two, and its hyperdeterminant is zero.

Example 1.25 (Generic rank vs. maximum rank). The rank of a generic 2× 2× 2 tensor
is two, hence the tensor in Equation (1.16) is an example of a tensor whose rank exceeds the
generic rank.

We will also see the role of the hyperdeterminant in computing the real rank of a tensor.
A cartoon of the different possibilities for the real rank and complex rank of a 2 × 2 × 2
tensor is given in Figure 1.10.

In summary, we have the following algebraic recipe to find the complex rank of a 2×2×2
tensor.

Algorithm 1.26 (Find the complex rank of a 2×2×2 tensor). First, test if all 2×2 minors
of flattenings vanish, see Equation (1.13). If all minors all vanish, the tensor has rank one.
Otherwise, test if the hyperdeterminant vanishes, see Equation (1.15). If it vanishes, the
tensor has complex rank three. Otherwise the complex rank is two.
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Figure 1.10: The hyperdeterminant divides the 2×2×2 tensors according to their real rank.

Real rank

The real rank of a 2× 2× 2 tensor is the smallest number r such that it can be written

X =
r∑
l=1

al ⊗ bl ⊗ cl, for some al, bl, cl ∈ R2.

A 2× 2× 2 tensor X has real rank one if X = a⊗ b⊗ c, for some real vectors a, b, c of length
two. If X is real, and rank one, then the vectors a, b, c in such an expression can always be
chosen to be real. Hence a tensor is real rank one if and only if it is a real point in the cone
over the Segre variety Seg(P1 × P1 × P1). For higher ranks, a tensor with real entries can
have real rank strictly larger than its complex rank, as the following example shows.

Example 1.27 (Complex rank vs. real rank). Let X be the complex rank two tensor z ⊗
z ⊗ z + z ⊗ z ⊗ z where z =

[
1 i

]T
and z =

[
1 −i

]T
is its complex conjugate. The tensor

X has real entries

X =

[
2 0 0 −2
0 −2 −2 0

]
. (1.17)

However, its real rank exceeds two. We can show that there no way to write X as a sum
of two real rank one terms, using Macaulay2 [76]. The following code constructs the ideal I
consisting of all equations obtained by setting the sum of two rank one tensors to be equal to
the tensor X in Equation (1.17).

R = QQ[a_(0,0)..a_(1,1),b_(0,0)..b_(1,1),c_(0,0)..c_(1,1)];

for i to 1 do ( for j to 1 do ( for k to 1 do (

x_(i,j,k) = a_(i,0)*b_(j,0)*c_(k,0) + a_(i,1)*b_(j,1)*c_(k,1); )));

X_(0,0,0) = 2; X_(0,0,1) = 0; X_(0,1,0) = 0; X_(1,0,0) = 0;

X_(0,1,1) = -2; X_(1,0,1) = -2; X_(1,1,0) = -2; X_(1,1,1) = 0;
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I = ideal();

for i to 1 do ( for j to 1 do ( for k to 1 do (

I = I + ideal(X_(i,j,k) - x_(i,j,k)) )));

decompose I

The output of this computation shows that the ideal I contains terms

a201 + a211 a200 + a210.

Over R, these are zero only if a00 = a01 = a10 = a11 = 0. But if all entries aij are zero, the
overall decomposition would be a tensor of zeros, which is not equal to X. Hence X has no
real rank two decomposition.

The matrix analogue of the above example is the rank two matrix z⊗z+z⊗z, which can
be decomposed into real rank one terms using elementary basis vectors. Why is rank equal
to complex rank for a matrix? One way to see this is via the singular value decomposition:
each left and right singular vector pair is the best rank one approximation to a real matrix,
and hence is real.

The set of tensors of fixed real rank is a semi-algebraic set. A real tensor X ∈ R2×2×2 lies
in the (topological) closure of the real rank two tensors if and only if the hyperdeterminant
from Equation (1.15) is non-negative. Multiple real ranks occur with positive probability
when sampling uniformly in the space of real 2× 2× 2 tensors. I generalize the description
of real ranks from Figure 1.10 to general tensor formats in Chapter 2.

We have the following algebraic recipe for finding the real rank of a 2× 2× 2 tensor.

Algorithm 1.28 (Find the real rank of a 2×2×2 tensor). Test if all three Gram determinants
vanish, see Equation (1.14). If so, the tensor has real rank one. Otherwise, compute the
hyperdeterminant. If it is strictly positive, the tensor has real rank two. If it is not positive,
the tensor has real rank three.

Non-negative rank

In a statistical setting, we seek tensor decompositions whose rank one terms can be given a
probabilistic interpretation, see Chapter 7. This means the entries of the rank one tensors
must be non-negative. We have the following definition.

Definition 1.29 (Non-negative rank). The non-negative rank of a non-negative tensor X is
the minimal r such that X can be written as a sum of r rank one terms with non-negative
entries,

X =
r∑
i=1

v
(1)
i ⊗ · · · ⊗ v

(d)
i , for some v

(j)
i ∈ Rnj

≥0.
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Specializing the above definition to the case d = 2 gives the non-negative rank of a
matrix, see [45]. The rank and non-negative rank of a matrix agree for 2 × 2 matrices, but
the ranks are not the same for larger matrices.

The set of tensors of fixed non-negative rank is a semi-algebraic set by Theorem 1.23,
since it is a projection of a semi-algebraic set. The possible non-negative ranks of a 2×2×2
tensor are {1, 2, 3, 4}. A membership test for the non-negative ranks was only previously
known for non-negative ranks one and two [6]. In Chapter 7, I give a membership test for the
non-negative rank three tensors of this format. The non-negative rank of a 2× 2× 2 tensor
with positive entries can therefore be determined algebraically, via the following algorithm.

Algorithm 1.30 (Find the non-negative rank of a strictly positive 2×2×2 tensor). Compute
the signs {+,−, 0} of the six binomials

x000x011 − x010x001, x000x101 − x100x001, x000x110 − x100x010,
x100x111 − x110x101, x010x111 − x110x011, x001x111 − x101x011.

(1.18)

If all six binomials vanish, the tensor has non-negative rank one. Otherwise, if the sign
pattern of the 2× 3 grid of determinants is any of

+ + +
+ + +,

+ − −
+ − −,

− + −
− + −,

− − +
− − +,

the tensor has non-negative rank two. Otherwise, if the sign pattern is any of

+ ∗ ∗
+ ∗ ∗,

− ∗ ∗
− ∗ ∗,

∗ + ∗
∗ + ∗,

∗ − ∗
∗ − ∗,

∗ ∗ +
∗ ∗ +,

∗ ∗ −
∗ ∗ −,

the tensor has non-negative rank three, where ∗ indicates that any sign is allowed. Otherwise,
the tensor has non-negative rank four.

Figure 1.11: The possible non-negative ranks and real ranks of a 2 × 2 × 2 tensor, with
percentages estimated by sampling uniformly in the space of non-negative tensors with entries
summing to one.

The algorithm be extended to test the non-negative rank of a tensor with zero entries,
by taking the closure of the semi-algebraic sets given by the sign patterns above. The set of
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non-negative tensors with entries summing to one is the probability simplex ∆7. Previous
results showed that the non-negative rank ≤ 3 tensors occupy a volume of at most 96.4%
of this set [125]. Using Algorithm 1.30, we can estimate the true volume to be 75.3%, see
Figure 1.11 and Chapter 7. The following example gives a 2×2×2 tensor with non-negative
entries, whose real and non-negative ranks differ.

Example 1.31. The following non-negative tensor has real rank 2 and non-negative rank 4.[
1 0 0 1
0 1 1 0

]
=

1

2

[
1 1 1 1
1 1 1 1

]
+

1

2

[
1 −1 −1 1
−1 1 1 −1

]
The hyperdeterminant of this tensor, from Equation (1.15), is four. The sign pattern of the

binomials from Equation (1.18) is
+ + +
− − −.

1.6 Statement of contributions

The geometry of structured tensors

In Chapter 2: Real rank geometry, I present an implicit description, or membership test,
for the set of real rank two tensors. Previously, such a description was only known in the
rank one case where it is a classical object, the real points on the Segre variety. I consider
alternative notions of rank, which use building blocks other than rank one tensors, and I use
this geometric framework to study the boundary of the real rank two tensors. This chapter
is based on joint work with Bernd Sturmfels, published in the Journal of Algebra [164].

In Chapter 3: Singular vectors, I describe the singular vectors of orthogonally decompos-
able tensors as a variety in a product of projective spaces. This chapter is based on joint
work with Elina Robeva, published in Linear and Multilinear Algebra [153].

In Chapter 4: Singular values, I study the higher-order singular values of a tensor via
polynomial orthogonal invariants, the determinants of flattenings. By finding relations be-
tween the determinants, I answer a question raised in [78] concerning the tensors whose
higher-order singular values take extremal values. This chapter is based on a single-authored
project, published in Linear Algebra and its Applications [160].

In Chapter 5: Rank vs. symmetric rank, I introduce a test for high rank tensors via
discriminant loci, and use it to study questions from classical algebraic geometry. I prove
that cubic surfaces with finitely many singular points are a sum of at most six cubic powers of
linear forms, generalizing a classical result from [159]. It is known that rank and symmetric
rank need not agree for symmetric tensors [168], but in many practical situations equivalence
of rank and symmetric rank seems to hold. I use the discriminant characterization of high
rank tensors to prove that rank and symmetric rank coincide for all tensors of symmetric
rank at most seven, improving on previous best lower bounds from [68]. This chapter is
based on a single-authored project, available as a preprint [161].
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In Chapter 6: Tensor hypernetworks, I study the generalization of tensor networks from
graphs to hypergraphs. The generalization enables usual tensor rank to be realized in the
context of tensor network ranks, and connections to be made to statistics. I show that
tensor hypernetworks are dual to graphical models, multivariate statistical models on based
on graphs. One consequence is the equivalence of two algorithms: the belief propagation
algorithm for marginalizing probability distributions, and an algorithm for tensor network
contraction from quantum physics. This chapter is based on joint work with Elina Robeva,
published in Information and Inference: A Journal of the IMA [152].

Algorithms for tensor data

In Chapter 7: Semi-algebraic statistics, I obtain the semi-algebraic description of two statis-
tical models, a mixture model and a restricted Boltzmann machine. I use this description to
give a closed-form formula for the maximum likelihood estimate to the model. For models
with hidden variables, maximum likelihood estimates are usually found using local optimiza-
tion methods with no guarantee of global convergence. The algebraic approach gives the first
non-trivial instance of an exact maximum likelihood solution for a model with hidden vari-
ables. This chapter is based on joint work with Guido Montúfar, published in the Journal
of Algebraic Statistics.

In Chapter 8, Learning paths from signature tensors, I study the extension of matrix
congruence to the setting of tensors. Given a tensor in the orbit of another tensor, I seek
the matrix that transforms one to the other. I give identifiability results, both exact and
numerical, for this recovery problem. The motivation is an inverse problem from stochastic
analysis: the recovery of paths from their third order signature tensors. I give a numerical
optimization algorithm for path recovery from inexact data and an algorithm to approximate
the shortest path with a given signature tensor. This chapter is based on joint work with
Max Pfeffer and Bernd Sturmfels, published in the SIAM Journal on Matrix Analysis and
Applications [141].

In Chapter 9: Tensor clustering with algebraic constraints, I study the problem of cluster-
ing, i.e. partitioning data into subsets related in ways that are not directly measured. I give
a structured clustering algorithm for multi-dimensional data. The algorithm encodes alge-
braic constraints in a tensor, and then partitions the data using integer optimization, finding
the globally optimal partition of the data with respect to an objective function. I apply the
algorithm to cluster a dataset of breast cancer cell lines, to find similarities consistent with a
mechanism for signal transduction in two pathways that are known to dysfunction in cancer.
This chapter is based on joint work with Mariano Beguerisse-Dı́az, Birgit Schoeberl, Mario
Niepel and Heather Harrington, published in the Journal of the Royal Society Interface [166].
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Part I

The geometry of structured tensors
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Chapter 2

Real rank geometry

The governing idea behind matrix methods, such as principal component analysis and the
singular value decomposition, is that much of the useful information in a matrix can be
captured by a relatively small number of rank one components. In a similar way, low rank
approximation of tensors is central to extracting structure from multi-dimensional data.
The approximation compresses the information in the original tensor. In each of the rank
one components, the variables have been de-coupled from one another, and this facilitates
interpretation in the context of an application: the data is a mixture of rank one signals.
Despite the importance of low rank approximations for compression and interpretation of
tensor data, many theoretical results about tensor rank and low rank approximation of
tensors remain unknown [93, 170].

The best rank r approximation of a matrix is given by truncating the singular value
decomposition to the largest r singular values, as we saw in Section 1.2. In particular, a
low rank decomposition of a matrix can be found by computing successive best rank one
approximations. Moreover there are algebraic tests for a matrix to have rank at most r, given
by evaluating polynomials in the entries of the matrix. For tensors, no exact test to compute
the rank of a tensor is known in general, as we saw in Section 1.4. On the numerical side,
while numerical linear algebra is well-established [58], and numerical multi-linear algebra
is a fast-growing area [77], numerical algorithms to compute low rank approximations of
tensors have drawbacks and challenges [85, 93, 170]. Computing a low rank approximation
of a tensor can lead to counter-intuitive pitfalls. For example, subtracting a best rank one
approximation from a tensor may increase the rank [174].

The real and complex rank of a real tensor may differ, as we saw in Example 1.27.
The distinction between real and complex rank is important because, for a real tensor, a
decomposition involving real numbers may be required in order to interpret the rank one
terms in the context of an application. For example, the rank of the tensor encoding a linear
operator is the number of multiplications it requires [105, 177], and the real rank gives the
number of multiplication over the real numbers. In functional magnetic resonance imaging
(fMRI) the tensor consists of spacial and temporal axes. The rank is used to count the
signals [3], and the entries of the tensor are relative levels of blood oxygenation, which are
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real-valued. In signal processing, the measurement is the amplitude of a real (e.g. sound)
signal [169].

Challenges associated with low rank approximation of real tensors become clearer after
understanding the geometry of sets of low rank tensors. The space of all tensors of a given
format, say n1 × · · · × nd, is a high-dimensional vector space Kn1×···×nd . The tensors that
possess a certain property form a subset of this space. Often we consider tensors up to scale
as points in projective space PN−1 where N = n1 · · ·nd. For example, the rank one tensors
up to scale parametrize the Segre variety Seg(Pn1−1 × · · · × Pnd−1), the zero set of the 2× 2
minors of the flattenings. The rank one tensors themselves parametrize the affine cone over
the Segre variety. The rank one tensors are an algebraic variety: they are defined by the
vanishing of certain polynomials.

Other sets of structured tensors are the zero-set of some polynomials in the entries of
the tensor. This underlies methods to study tensors and tensor rank via algebraic geometry,
see [105]. Tensors of complex rank r are the rth secant variety of the Segre variety, up to
closure, see Definitions 1.20 and 1.22. Methods to obtain defining equations of these secant
varieties are discussed in [105]. Less is known about the tensors of fixed real rank. The set
of tensors of real rank at most r is a semi-algebraic set in Rn1×···×nd , defined by polynomial
equations and inequalities, see Theorem 1.23. The real and complex situations are similar for
rank one: the real rank one tensors are the real points on the Segre variety. For higher ranks,
it is not true that the real rank of a tensor can be determined by computing its complex
rank and checking whether the entries are real. The semi-algebraic set of real rank r tensors
is full-dimensional, but not full volume, in the set of real tensors of complex rank r. The
equations and inequalities for the set of tensors of real rank at most r give a membership
test for a tensor to lie in the set.

In this chapter, I give a membership test for the set of real rank two tensors, based on
evaluating polynomial equations and inequalities. I give a description of the boundary of the
set, which I use to shed light on numerical issues arising in low rank tensor approximation. I
also give a method to lower bound the real rank of a tensor. Some situations require building
blocks other than rank one terms. I describe the geometric framework of ranks with respect
to other building blocks, and focus on real rank with respect to a curve in three-dimensional
space. This chapter is based on joint work with Bernd Sturmfels, published in the Journal
of Algebra [164]. Section 2.2 is from my preprint [161].

2.1 Real rank two tensors

In this section, I give a semi-algebraic description of the real rank two tensors. It is given
by the signs of some polynomials in the entries of the tensors.

Definition 2.1 (The real rank r locus). The real rank r locus is the topological closure of
the set of real rank r tensors, i.e. the set of tensors of real border rank at most r. It consists
of all tensors that can be written as a limit limε→0Xε → X where each Xε has real rank r.
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A membership test for a 2 × 2 × 2 tensor to lie in the real rank two locus is given on
Page 29. The main result of this section is a membership test for the real rank two locus
for tensors of arbitrary format. The statement of the theorem requires a generalization of
the hyperdeterminant from Equation (1.15) to a tensor X of general format n1 × · · · × nd.
A 2 × 2 × 2 sub-tensor of X is obtained by choosing pairs for three indices and fixing the
remaining d − 3 indices. I call the hyperdeterminants of these sub-tensors the 2 × 2 × 2
sub-hyperdeterminants of X. The number of sub-hyperdeterminants is

1

8
· n1n2n3 · · ·nd ·

∑
1≤i<j<k≤d

(ni − 1)(nj − 1)(nk − 1). (2.1)

Note that the sub-hyperdeterminants of X differ from its hyperdeterminant [135].

Theorem 2.2. A real tensor is in the real rank two locus if and only if its flattenings all
have rank ≤ 2 and its 2× 2× 2 sub-hyperdeterminants are all non-negative.

Proof. We begin by assuming X has real border rank ≤ 2. Then every 2× 2× 2 sub-tensor
X ′ also has real border rank ≤ 2. We can approximate X ′ by a sequence of tensors X ′′ that
have real rank two. The entries x′′ijk of any tensor in the approximating sequence can be
written as x′′ijk = aibjck + diejfk, where the parameters are real. The hyperdeterminant of
X ′′ can be written in terms of this decomposition. It is

(a1d2 − a2d1)2(b1e2 − b2e1)2(c1f2 − c2f1)2.

This expression is non-negative since all parameters are real. By continuity, we conclude
that all 2× 2× 2 sub-hyperdeterminants of the original tensor X are non-negative.

Conversely, suppose that X is a real tensor whose 2 × 2 × 2 sub-hyperdeterminants are
all non-negative. The complex rank of X is either 1, 2 or ≥ 3. If it is 1 then X is in the real
Segre variety, and in particular it is in the real rank two locus. If X has complex rank ≥ 3
then it is in the closure of the rank two tensors, but not rank two. Hence it must lie on a
tangent line to the Segre variety. The tangent line can be chosen to be real, as follows. A
real tensor on a tangent line can be decomposed as a sum

y(1) ⊗ x(2) ⊗ · · · ⊗ x(d) + x(1) ⊗ y(2) ⊗ x(3) ⊗ · · · ⊗ x(d) + · · ·+ x(1) ⊗ · · · ⊗ x(d−1) ⊗ y(d),

where the vectors x(i) and y(j) are real. This expression lies on the limit of secant lines
spanned by (x(1) + εy(1))⊗ · · · ⊗ (x(d) + εy(d)) and x(1) ⊗ · · · ⊗ x(d) as ε→ 0. Hence a tensor
of this form lies in the real rank two locus.

It remains to consider the case when X has complex rank two and real rank ≥ 3. The
tensor X lies on a real secant line, spanned by a pair of complex conjugate points on the
Segre variety. Consider any 2 × 2 × 2 sub-tensor X ′ of X. We can write the entries x′ijk of
X ′ as

x′ijk = (ai +Ai
√
−1)(bj +Bj

√
−1)(ck +Ck

√
−1) + (ai−Ai

√
−1)(bj−Bj

√
−1)(ck−Ck

√
−1),
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where the parameters a, b, c, A,B,C are real. The hyperdeterminant of X ′ evaluates to

−(a1A2 − a2A1)
2 · (b1B2 − b2B1)

2 · (c1C2 − c2C1)
2 · 43. (2.2)

This expression is non-positive since all parameters are real. Our hypothesis that all 2×2×2
sub-hyperdeterminants are non-negative means they must all be zero.

The rank two representation of X involves pairs of vectors {a,A} ⊂ Rn1 , {b, B} ⊂ Rn2 ,
{c, C} ⊂ Rn3 , . . . Every 2 × 2 × 2 sub-hyperdeterminant of X has the form in Equa-
tion (2.2) and equates to zero. From this we conclude that, for all but two of the pairs
{a,A}, {b, B}, {c, C}, etc., the vectors in the pair are linearly dependent. If not, we could
construct a non-vanishing sub-hyperdeterminant by choosing indices (i, j) from each vector
pair for which the expression aiAj − ajAi does not vanish. Hence X is the tensor product of
a matrix with d− 2 vectors. This has real rank two, a contradiction.

Example 2.3. Consider a 2 × 2 × 2 × 2 tensor with complex rank two and real rank ≥ 3.
Its entries xijkl have the parametric representation

xijkl = (ai + Ai
√
−1)(bj +Bj

√
−1)(ck + Ck

√
−1)(dl +Dl

√
−1)

+ (ai − Ai
√
−1)(bj −Bj

√
−1)(ck − Ck

√
−1)(dl −Dl

√
−1).

I now describe the last part of the proof of Theorem 2.2 for this tensor. Suppose that the
eight 2× 2× 2 sub-hyperdeterminants of T are all non-negative. They are

−(a20 + A2
0)

2(b0B1 − b1B0)
2(c0C1 − c1C0)

2(d0D1 − d1D0)
243,

−(a21 + A2
1)

2(b0B1 − b1B0)
2(c0C1 − c1C0)

2(d0D1 − d1D0)
243,

−(b20 +B2
0)2(a0A1 − a1A0)

2(c0C1 − c1C0)
2(d0D1 − d1D0)

243,
−(b21 +B2

1)2(a0A1 − a1A0)
2(c0C1 − c1C0)

2(d0D1 − d1D0)
243,

−(c20 + C2
0)2(a0A1 − a1A0)

2(b0B1 − b1B0)
2(d0D1 − d1D0)

243,
−(c21 + C2

1)2(a0A1 − a1A0)
2(b0B1 − b1B0)

2(d0D1 − d1D0)
243,

−(d20 +D2
0)

2(a0A1 − a1A0)
2(b0B1 − b1B0)

2(c0C1 − c1C0)
243,

−(d21 +D2
1)

2(a0A1 − a1A0)
2(b0B1 − b1B0)

2(c0C1 − c1C0)
243.

(2.3)

Note that the first factor does not appear in Equation (2.2) because the fixed indices were
subsumed into the expressions for one of the parameter pairs {a,A}, {b, B}, {c, C}.

It cannot be that a0, A0, a1, A1 are all zero, and similarly for the other letters. Hence

(a0A1 − a1A0)(b0B1 − b1B0)(c0C1 − c1C0) = (a0A1 − a1A0)(b0B1 − b1B0)(d0D1 − d1D0) =
(a0A1 − a1A0)(c0C1 − c1C0)(d0D1 − d1D0) = (b0B1 − b1B0)(c0C1 − c1C0)(d0D1 − d1D0) = 0.

Two of the four factors are zero. There are six cases. Up to relabeling, a0A1 − a1A0 =
b0B1 − b1B0 = 0. This implies that T = (a0, a1) ⊗ (b0, b1) ⊗ U , where U is a 2 × 2-matrix.
Clearly U has real rank ≤ 2. This shows that T has real rank ≤ 2, the necessary contradiction.
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Example 2.4. Consider symmetric tensors of format 2× 2× 2. Under the correspondence
from Example 1.7, they are binary cubics, which can be parametrized by

f(s, t) = x0s
3 + 3x1s

2t+ 3x2st
2 + x3t

3.

The set of symmetric rank one tensors, considered up to scale, is the twisted cubic curve in P3,
the Veronese variety ν3(P1). A membership test for the real rank two tenors is obtained by
specializing the 2×2×2 hyperdeterminant from Equation (1.15) to symmetric tensors. We
obtain the condition D ≥ 0, where

D = x20x
2
3 − 6x0x1x2x3 − 3x21x

2
2 + 4x31x3 + 4x0x

3
2 = det


x0 2x1 x2 0
0 x0 2x1 x2
x1 2x2 x3 0
0 x1 2x2 x3

 . (2.4)

The polynomial D is the discriminant of the binary cubic. We will see more about the
connection between polynomials and symmetric tensors in Chapter 5.

We now have a membership test to test if a tensor is in the real rank two locus, but it
relies on the evaluation of many polynomials. The number of sub-hyperdeterminants, see
Equation (2.1), grows quickly in the format of the tensor. A tensor of format n × · · · × n
has 1

8

(
d
3

)
nd(n − 1)3 sub-hyperdeterminants. There are several possibilities for minimizing

the number of polynomials that must be tested to certify membership in the real rank two
locus. If the tensor is symmetric then some sub-hyperdeterminants are the same polynomial,
and do not need to be checked twice. The number of distinct sub-hyperdeterminants of a
symmetric n× · · · × n (d times) tensor is(

n+ d− 4

n− 1

)((n
2

)
+ 2

3

)
,

because the fixed indices contribute a polynomial of degree d − 3 in n variables and each
hyperdeterminant is given by a polynomial of degree three in

(
n
2

)
variables. Among these,

it is enough to check the hyperdeterminants whose expansion as in Equation (2.3) is a sixth
power like (a0A1 − a1A0)

6 times an extraneous factor
∏

i(a
2
i + A2

i )
2, which further reduces

the number to (
n+ d− 4

n− 1

)(
n

2

)
.

Each of these symmetric hyperdeterminants is a quartic polynomial, like Equation (2.4).
If a tensor X of format n1×· · ·×nd is in the real rank two locus, there exists a change of

basis operation in SLn1×· · ·×SLnd
, the product of special linear groups, or in On1×· · ·×Ond

,
the product of orthogonal groups, such that the only non-zero entries of X with respect to
the new basis are in a 2× · · · × 2 block, denoted X̃. We can test whether X is real rank two
by studying the smaller tensor X̃. Symmetry properties of X can be preserved in X̃. This
construction is the subspace representation from Definition 1.10.
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In conclusion, we can test if a tensor X has real rank two as follows. First, compute
the third largest singular values of the flattenings, and see if they are within some threshold
of zero. Next, compute the subspace representation and check the non-negativity of the
hyperdeterminants of the resulting 2 × · · · × 2 tensor, to within some threshold. There are(
d
d−3

)
· 2d−3 sub-hyperdeterminants to test.

2.2 Lower bounds on real rank

The previous section describes how to test if a tensor lies in the real rank two locus. But
what about higher ranks? There are very few tools for finding the exact complex rank of a
tensor. The main tool is the substitution method, which gives a lower bound on the rank
of a tensor be reducing it to a tensor of smaller format. There are even fewer methods to
compute the exact real rank of a tensor. In this section I generalize the substitution method
to give lower bounds on the real rank of a tensor, using sums of squares certificates. The
complex substitution method is the following.

Theorem 2.5 (The substitution method, e.g. [103, §5.3.1]). Let X ∈ Cn1×n2×n3 be a tensor
of rank r. We write X =

∑n1

i=1 ei ⊗Mi, where {ei : 1 ≤ i ≤ n1} are the elementary basis
vectors, and the Mi are n2 × n3 matrices, known as the slices of the tensor. Reordering
indices to ensure that Mn1 6= 0, there exist constants λ1, . . . , λn1−1 such that the following
(n1 − 1)× n2 × n3 tensor has rank at most r − 1:

n1−1∑
i=1

ei ⊗ (Mi − λiMn1).

If Mn1 has rank one, then for this choice of λi the tensor above has rank exactly r − 1.

The following is the analogue for real ranks.

Theorem 2.6 (The substitution method over R). Let X ∈ Rn1×n2×n3 be a tensor of real
rank r. We can write X in terms of its slices as X =

∑n1

i=1 ei ⊗Mi, where {ei : 1 ≤ i ≤ n1}
are the elementary basis vectors, and the Mi are n2×n3 real matrices. Reordering indices such
that Mn1 6= 0, there exist real constants λ1, . . . , λn1−1 such that the following (n1−1)×n2×n3

real tensor has real rank at most r − 1:

n1−1∑
i=1

ei ⊗ (Mi − λiMn1).

If Mn1 has rank one, then for this choice of λi the real tensor above has real rank exactly
r − 1.

Proof. Assume X has real rank r, with real rank decomposition X = X1 + · · · + Xr. We
can express each rank one tensor in the decomposition as Xk =

∑n1

i=1 µkiei ⊗ Lk where the
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µki are real scalars and Lk is a rank one real matrix. The slices of X can then be expressed
as Mi =

∑r
k=1 µkiLk. By the assumption that Mn1 is non-zero, we can reorder the terms in

the decomposition such that µrn1 6= 0. Setting λi = µri, the tensor
∑n1−1

i=1 ei⊗ (Mi− λiMn1)
has all slices expressible as a linear combination of L1, . . . , Lr−1, and hence it has real rank
at most r− 1. The last sentence follows from the fact that if Mn1 has rank one, subtracting
multiples of it can change the real rank by at most one.

We saw in Example 1.7 that symmetric tensors are in correspondence with homogeneous
polynomials. We illustrate Theorem 2.6 on the cubic surface (or symmetric 4× 4× 4 tensor)
f = z1(z

2
1− z22− z23− z24). Since the real and complex ranks differ [41], the usual substitution

method in Theorem 2.5 does not give a tight lower bound on the real rank. We use the
real substitution method to bound the real rank below by seven. We consider ranks of cubic
surfaces further in Chapter 5.

Proposition 2.7. The cubic surface f = z1(z
2
1 − z22 − z23 − z24) has real rank at least seven.

Proof. We use Theorem 2.6 to lower bound the rank of f . For computational convenience
we scale the cubic, leaving the rank unchanged, to z1(z

2
1 − 3z22 − 3z23 − 3z24) or, as a tensor,

1 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 −1
0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0

 .
We subtract off an arbitrary multiple of the slices of the tensor to give a 4× 4× 2, 4× 2× 2,
and finally a 2 × 2 × 2 tensor. We show that there do not exist real multiples that can be
subtracted to give a tensor of zeros. If the pairs of slices we subtract are linearly independent,
Theorem 2.6 then implies that the real non-symmetric rank of f is at least 1 + 2 + 2 + 2 = 7.

Subtracting off three pairs of slices of f in multiples si, ti, ui, vi, wi, xi, where i = 1, 2
denotes which of the two slices we subtract from, gives the 2× 2× 2 tensor[

s1u1 + t1v1 + t1x1 − v1x1 + 1 s2u1 + t2v1 + t2x1 − w1 t1x2 − v1x2 + s1 − u1 t2x2 + s2 − w2

s1u2 + t1v2 − v2x1 − w1 s2u2 + t2v2 − 1 −v2x2 − u2 − w2 0

]
.

We show that the ideal generated by the eight entries does not contain any real points.
Eliminating w1, w2, x1, x2, t1, t2 gives the hypersurface (s2u1+s1u2)

2+(s1−u1)2+(s2+u2)
2+

(s2v1 + u2v1 + s1v2 − u1v2)2 = 0. Over the reals, this is zero if and only if the individual
squares in the sum vanish, hence s1 = u1 and s2 = −u2. The ideal obtained by eliminating
w1, w2, x1, x2, v2 then has equation (t2u1 + t1u2)

2 + (u1u2 − t2v1)2 + t21 + t22 + u21 + u22 = −1,
which has no real solutions. This concludes the main case.

It remains to consider the case when some pairs of slices of the tensor are linearly de-
pendent. The first and second pairs of slices we subtract are always linearly independent,
taking us to a 4 × 2 × 2 tensor whose real rank is four less than that of f . The third pair
of slices are dependent only if t1 = v1 and t2 = −v2. The result then follows as above, by
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choosing a different pair of slices to subtract, unless s1 = u1 and s2 = −u2. In this case, the
4× 2× 2 tensor has four slices spanned by

M1 =

[
s1u1 + t1v1 + 1 s2u1 + t2v1
s1u2 + t1v2 s2u2 + t2v2 − 1

]
and M2 =

[
0 1
1 0

]
,

with first slice a scalar multiple of M1, and the remaining three slices scalar multiples of M2.
There does not exist a real multiple of M2 that can be subtracted from M1 to give a rank
one matrix, because det(M1 − w1M2) = −(u2v1 − u1v2)2 − u21 − u22 − v21 − v22 − w2

1 − 1 = 0
has no solutions over the reals. By Theorem 2.6, the real rank of the 4× 2× 2 tensor is at
least three. Hence we obtain an overall lower bound of 3 + 2 + 2 = 7 on the real rank.

2.3 Alternative ranks

Why are low rank decompositions and approximations useful? The central idea is that rank
one terms can be readily interpreted, and this allows us to think of a tensor of data as a
mixture of signals. The rank one tensors are building blocks in which the variables have been
de-coupled from one another. But un-coupling variables is not the only interpretable signal.
There are other building blocks that give the right notion of interpretability for different
contexts. This requires us to generalize rank to sums of terms of a different kind.

In this section I generalize the study of real ranks of tensors to decompositions involving
other building blocks, via a geometric framework also studied in [31]. In the next section, I
apply this geometric framework to give a description of the boundary of the real rank two
tensors.

Let X be an irreducible variety in CN , a cone over a projective variety in PN−1, whose
real points are Zariski dense in the complex variety. The X -rank of a point X ∈ CN+1 is
the smallest r such that X can be written as a sum of r terms X = X1 + · · · + Xr, where
X1, . . . , Xr ∈ X . If X is real then its real X -rank is the smallest r such that there exists a
decomposition in which all the Xi are real points on X . The loci of X -rank ≤ r and real
X -rank ≤ r may not be closed. We define the (real) X -border rank of X to be the smallest
r such that a vector can be written as a limit of vectors of (real) X -rank r.

The secant variety σ(X ) is the set of points of X -border rank ≤ 2. Geometrically, it
is the closure of the set of points in CN that lie on a line spanned by two points in X .
The tangential variety τ(X ) is the closure of the set of points in CN that lie on a tangent
line to X at a smooth point. See Figure 2.1 for a picture of a point X on a secant line
and a tangent line. Tangent lines can be obtained from secant lines by taking limits, hence
the tangential variety is a subvariety of the secant varieties. For the secant and tangential
varieties above, the Euclidean closure and Zariski closure coincide, by Theorem 1.21. If the
inclusion τ(X ) ⊂ σ(X ) is strict then, by [191, Theorem 1.4], both varieties have the expected
dimensions:

dim(σ(X )) = 2 · dim(X ) and dim(τ(X )) = 2 · dim(X )− 1,
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and the variety X is called non-defective. Conversely, if τ(X ) = σ(X ) then X is called
defective.

Figure 2.1: A point on a secant line (left) and a tangent line (right).

The main object of interest in this section is the real rank two locus of X , denoted by
ρ(X ), which consists of points that can be written as limits of sums X1 + X2 where the Xi

are real points on X . Geometrically, ρ(X ) is the Euclidean closure of the set of points that
lie on a line spanned by two points real points in X . The denseness of real points on X
ensures that ρ(X ) is Zariski dense in σ(X ). The inclusion of the closed set ρ(X ) into the
real points on the secant variety can be strict, as we saw for tensors in Section 2.1. The
difference between the real points on σ(X ) and ρ(X ) consists of points of X -rank two whose
real X -rank exceeds two. The picture to have in mind is Figure 2.2.

Figure 2.2: The real rank two locus ρ(X ) can be a strict subset of the real points on the
secant variety σ(X )R.

The real rank two boundary, denoted by ∂(ρ(X )) is the set ρ(X ) minus its relative interior,
where relative refers to σ(X )R being the ambient topological space. The Zariski closure of
the set ∂(ρ(X )) in CN , denoted ∂alg(ρ(X )), is called the algebraic real rank two boundary
of X .

We need one more definition. Let p and q be distinct smooth points on X whose corre-
sponding tangent spaces Tp(X ) and Tq(X ) intersect non-trivially. The secant line spanned
by such p and q is called an edge of X , see Figure 2.3. The Euclidean closure of the union of
all edges of X is a Zariski closed subset in CN called the edge variety ε(X ).

We can specialize this framework to study real ranks of tensors, by taking the projective
variety X to be the Segre variety of rank one tensors, or the Veronese variety of symmetric
rank one tensors. In this case the variety X is defined by the vanishing of the 2×2 minors of
all flattenings of a tensor, and the variety σ(X ) is given by the vanishing of the 3× 3 minors
of all flattenings.
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Figure 2.3: A point on an edge, a line shared by two tangent spaces.

In Section 2.1 we saw the importance of binary tensors, those of format 2 × · · · × 2, in
the study of the real rank two locus. I give the defining equation of the above tangential
and secant varieties for the case of symmetric binary tensors, or binary forms,

f(s, t) =
d∑
i=0

xi

(
d

i

)
sd−iti.

We construct a matrix of format 3× (d− 1).

H =

x0 x1 x2 · · · xd−2
x1 x2 x3 · · · xd−1
x2 x3 x4 · · · xd

 . (2.5)

The matrix H is Hankel because the entries on each anti-diagonal are the same. The three
varieties X ⊂ τ(X ) ⊂ σ(X ) are given by the conditions

• X = {rank(H) ≤ 1} = {`d} = the cone over the rational normal curve in Pd;

• τ(X ) = {`d−11 `2} = closure of points on tangent lines of X ;

• σ(X ) = {rank(H) ≤ 2} = {`d1 + `d2} = closure of points on secant lines of X .

These affine varieties have dimensions 2, 3 and 4. Their defining equations are as follows.

Corollary 2.8. The prime ideals of X and σ(X ) are generated, respectively, by the 2 × 2-
minors and the 3× 3-minors of the Hankel matrix H in Equation (2.5). The prime ideal of
the tangential variety τ(X ) is minimally generated by the quartic D from Equation (2.4) if
d = 3, by the cubic det(H) and the quadric Q = x0x4 − 4x1x3 + 3x22 if d = 4, and by

(
d−2
2

)
linearly independent quadrics if d ≥ 5.

Proof. The equations for X and σ(X ) are classical, see e.g. [105]. The ideal of τ(X ) is derived
from [136, 146].

The real rank two locus ρ(X ) is a 3-dimensional semi-algebraic set. It consists of binary
forms `d1 + `d2 where `1, `2 are real. More generally, we have the following theorem.
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Theorem 2.9. Let X be a non-defective variety in CN , a cone over a projective variety in
PN−1, whose real points are Zariski dense. If the algebraic real rank two boundary of X is
non-empty then it is a variety of pure codimension one inside the secant variety σ(X ). Its
irreducible components arise from the tangential variety and the edge variety. In symbols,
we have the equi-dimensional inclusion

∂alg(ρ(X )) ⊆ τ(X ) ∪ ε(X ).

The hypothesis that X is non-defective is essential for the theorem to hold. The Segre
and Veronese varieties are non-defective provided that we are in the setting of tensors of
order ≥ 3. The case of matrices is excluded from Theorem 2.9 because the varieties of rank
one matrices are defective. A plane curve X is also defective. In [31, §3], the authors show
that ∂alg(ρ(X )) is a union of flex lines, provided it is non-empty. Such flex lines are not
covered by Theorem 2.9.

Proof. The fact that ∂alg(ρ(X )) is pure of dimension one can be derived from the general
result in [172, Lemma 4.2]: if a semi-algebraic set S ⊂ Rk is nonempty and contained in the
closure of its interior and the same is true for Rk\S, then the algebraic boundary of S is a
variety of pure codimension one. Since the property is local, we can here replace Rk by XR.
The argument below will show that these hypotheses hold here.

For a general real point u on the secant variety σ(X ), there are only finitely many pairs
{v1, w1}, . . . , {vk, wk} of points on X such that the line spanned by vi and wi contains u.
The 2k non-singular points of X can be expressed locally as algebraic functions of u, by the
Implicit Function Theorem. The point u ∈ σ(X )R lies in ρ(X ) if at least one of these pairs
{vi, wi} consists of two real points, and it lies outside ρ(X ) if none of the pairs {vi, wi} are
real. By our assumption that the algebraic real rank two boundary is non-empty, both cases
occur.

Consider a general real curve that passes through the boundary ∂(ρ(X )) at a point u∗,
and follow the k point pairs along that curve. This uses the Curve Selection Lemma in real
algebraic geometry. Precisely one of two scenarios will happen at the transition point.

Case 1: A pair {vi, wi} of real points merges into a single point on X and then transitions
to a pair of conjugate complex points. As that transition occurs, the secant line degenerates
to a tangent line. Hence the corresponding point u∗ lies in the tangential variety τ(X ).

Case 2: Two real pairs {vi, wi} and {vj, wj} come together, in the sense that vi and
vj converge to a point v ∈ X while wi and wj converge to another point w ∈ X . If this
happens then the tangent spaces Tv(X ) and Tw(X ) meet non-transversally, by the following
argument. The secant lines through u arising from the two pairs {vi, wi} and {vj, wj} span
a plane that contains the line from vi to vj and the line from wi to wj. In the limit as
vi, vj → v, wi, wj → w and u → u∗, a line in Tv(X ) will be co-planar to a line in Tw(X ).
The meeting point of the two lines is their non-transverse intersection. Hence the secant line
spanned by v and w must be an edge. We conclude that u∗ lies in the edge variety ε(X ).
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The argument above shows that a generic path through ∂(ρ(X )) meets the boundary at
either τ(X ) or ε(X ). Since the set ρ(X ) does not have lower-dimensional components, the
Zariski closure of such boundary points is the algebraic real rank two boundary ∂alg(ρ(X )).
Since the two sets τ(X ) and ε(X ) are Zariski-closed, it follows that ∂alg(ρ(X )) is contained
in their union τ(X ) ∪ ε(X ).

The motivation for understanding the geometry of the real rank two locus is to approx-
imation a point X ∈ RN by its best approximation of the form X∗ = X1 + X2 where Xi

are real points on the variety X . However, since the set of real X -rank two points is not
closed, we must optimize over its closure, the real rank two locus ρ(X ). The above analysis
of this set indicates that there are several possible forms for the best approximation X∗

and, importantly, not all of them are of the form X1 + X2. A priori, there are five possible
scenarios:

(a) X∗ is the point in σ(X )R that is closest to X, and it is a smooth point of σ(X ).

(b) X∗ is the point in XR that is closest to X.

(c) X∗ is the point in the singular locus of σ(X )R that is closest to X, but it is not in X .

(d) X∗ is the point in τ(X )R that is closest to X.

(e) X∗ is the point in ε(X )R that is closest to X.

The following theorem shows that case (b) cannot happen. This was proven for tensors
in [175, Lemma 3.4]. The following theorem generalize the result to arbitrary varieties.

Theorem 2.10. Suppose that X ⊆ RN is an affine variety, a cone over a projective variety
in Pn−1 which does not lie on a hyperplane. Let X ∈ RN be a data point of real X -border
rank greater than r. Let X∗ be its best approximation of real X -border rank at most r. Then
the real X -border rank of X∗ is exactly r, not smaller.

The best approximation is taken with respect to a weighted Euclidean distance on RN

where all weights are strictly positive.

Proof. We begin with the case r = 1. Then X /∈ X and we wish to show that its best border
rank one approximation X∗ is non-zero. By assumption, there exists a non-zero vector U in
X that is not in the hyperplane perpendicular to X. This means that 〈X,U〉 6= 0, where

the inner product comes from our choice of norm. The point 〈X,U〉〈U,U〉U also lies in X , and its
squared distance to the given data point u is∥∥∥∥〈X,U〉〈U,U〉

U −X
∥∥∥∥2 =

〈
〈X,U〉
〈U,U〉

U −X, 〈X,U〉
〈U,U〉

U −X
〉

=

(
〈X,U〉
〈U,U〉

)2

〈U,U〉 − 2
〈X,U〉
〈U,U〉

〈X,U〉+ 〈X,X〉 = 〈X,X〉 − 〈X,U〉
2

〈U,U〉
.
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This is strictly smaller than ‖X − 0‖2 = 〈X,X〉, so the closest point to X on X is non-zero.
We now suppose that r ≥ 2 and let X∗ be the best approximation to X among points of

real X -border rank at most r. We first suppose for contradiction that X∗ has real X -border
rank at most r − 1. We then construct a strictly better border rank r approximation of X
by combining X∗ with a best rank one approximation for X −X∗.

The point V = X −X∗ is non-zero. Its best real X -rank one approximation V ∗ is also
non-zero. When V /∈ X , we use the first paragraph of the proof to see this; otherwise
V ∗ = V 6= 0. The point X∗ + V ∗ still has real X -border rank at most r, and it is closer to
X than X∗, since

‖X − (X∗ + V ∗)‖ = ‖V − V ∗‖ < ‖V − 0‖ = ‖V ‖ = ‖X −X∗‖.

Hence the best approximation to X cannot have real X -border rank strictly less than r.

The fact that case (b), above, cannot occur for best approximation by ρ(X ) is Theo-
rem 2.10 for r = 2. The other four cases (a), (c), (d) and (e) are possible in general. Case
(a) is the usual best real rank two approximation. Cases (d) and (e) are especially important
to understand because the solutions X∗ are not critical for the distance function on σ(X ),
so different optimization methods must be used to find such points. We will see how these
cases impact real rank two tensor approximation in the next section.

2.4 The real rank two boundary

In practice, a tensor of two real signals arising in an application will not be exactly real rank
two due to the presence of noise. In order to recover the two real rank one signals, we seek
its best real rank two approximation. This is a projection to the boundary of the real rank
two locus. The real rank two locus is denoted ρ(X ) and its boundary is ∂(ρ(X )). Here X is
the cone over the Segre variety, the set of rank one tensors.

At first, we might think that our description of the real rank two locus from Theorem 2.2,
in terms of equations and inequalities, immediately gives a description of the boundary, by
setting the inequalities to zero. However points on the strict interior of the set can also have
all sub-hyperdeterminants vanishing, as the following proposition shows.

Proposition 2.11. When d ≥ 4 there exist tensors with all sub-hyperdeterminants vanishing
on the interior of ρ(X ).

Proof. Let X be the affine cone over Seg(P1 × P1 × P1 × P1). Let {e1, e2} be the standard
basis of R2. The rank two tensor

X = e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ⊗ e2

is in the relative interior of the real rank two locus ρ(X ). All eight 2×2×2 sub-tensors have
rank one, so the eight hyperdeterminants vanish. This tensor can now be embedded into all
larger formats, and we get the conclusion for d ≥ 4.
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We have the following characterization of the algebraic real rank two boundary for tensors.

Theorem 2.12. Let X be the Segre variety (resp. the Veronese variety) whose points are
d-dimensional tensors (resp. symmetric tensors) up to scale, and of rank one, where d ≥ 3.
The algebraic real rank two boundary of X is equal to the tangential variety of X . In symbols,

∂alg(ρ(X )) = τ(X ).

Proof. The secant variety σ(X ) is identifiable, since Kruskal’s Theorem [93] holds generically
for rank two tensors. Therefore ε(X ) does not exist, since points on ε(X ) are limits of
tensors lying on at least two distinct secant lines. To prove the theorem, we must exclude
the possibility ∂alg(ρ(X )) is empty. By taking sums of complex conjugate pairs of points
in X , we can create many tensors that lie in σ(X )R but not in ρ(X ). Hence the rank two
locus ρ(X ) has a non-empty boundary inside σ(X )R, and the algebraic boundary ∂alg(ρ(X ))
is a non-empty hypersurface in σ(X ). That hypersurface is contained in the irreducible
hypersurface τ(X ), by Theorem 2.9. This implies that they are equal.

Theorem 2.12 shows that, for real rank two tensor approximation, we do not need to
consider the possibility that the best approximation lies on the edge variety. However, we
do need to consider the case where it lies on the tangential variety. The presence of such
points gives the geometric reason behind numerical issues in low rank tensor approximation
such as [174].

The best real rank two approximation can also lie in the singular locus of the variety
σ(X ). This indicates that it has special structure, as seen in the following example.

Example 2.13. Consider the space of 3× 3× 3 tensors. The variety of rank one tensors X
is the affine cone over Seg(P2 × P2 × P2). The singular locus of σ(X ) has three irreducible
components, given by P2×σ(Seg(P2×P2)) and its permutations, see [123, Cor. 7.17]. These
parametrize tensors v ⊗M , where v ∈ R3 and M is a 3 × 3-matrix of rank two. Consider
the tensor X = v ⊗M ′ where M ′ is a general real 3× 3-matrix. Let M be the best rank two
approximation of M ′. The entries of v⊗M are three copies of M , multiplied by coefficients
v1, v2 and v3. The tensor X∗ = v⊗M gives the unique best approximation to X in all three
slices, hence X∗ is the best approximation to X in ρ(X ).

2.5 Space curve rank

In this section I examine the geometry of computing rank with respect to a curve in real
projective space P3. We seek to express a point in the form X1 +X2, where the Xi are real
points on a fixed curve X . This section builds on [31, §3], in which the authors characterize
the real rank two locus ρ(X ) for a curve X in the plane P2. We assume that the curve X
does not lie in a plane and that its real points are Zariski dense in X .

The boundary of the real rank two locus of a variety X , can consist of the tangential
variety τ(X ) or the edge variety ε(X ), see Theorem 2.9. The following result shows that all
possible combinations of the two varieties can occur.
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Proposition 2.14. There exist rational varieties X1,X2,X3 and X4, cones over curves in
P3, such that

∂alg(X1) = τ(X1), ∂alg(X2) = ε(X2) ∪ τ(X2), ∂alg(X3) = ∅, and ∂alg(X4) = ε(X4).

Proof. By Theorem 2.12, the twisted cubic curve in Example 2.4 is an example for X1. The
quartic curve in [164, Example 3.4] is an example of X2. For X3 we take the Morton curve
from [147, Example 4.4]. This is rational of degree six and forms a trefoil knot, see [147,
Figure 3].

Rational curves X4 in P3
R with ∂alg(X4) = ε(X4) are a bit harder to find. A piecewise-linear

connected example, resembling a 3D Peano curve, can be constructed in two steps. First,
we make a curve from six edges of the unit cube. Starting from (0, 0, 0), the curve travels
to (1, 1, 1) via intermediate vertices (1, 0, 0) and (1, 1, 0), and then loops back to (0, 0, 0) via
intermediate vertices (0, 1, 1) and (0, 0, 1). In the middle third of each line segment we insert
a piecewise linear detour of height 1

2
in the direction of the next segment. Four views of

this space curve are shown in Figure 2.4. There are relatively few viewpoints from which
the curve has no crossings. From such positions, crossings are always gained in pairs, via
transitions along the edge variety.

The existence of a rational algebraic curve X4 with the same property can be concluded
from the Weierstrass Approximation Theorem. To exclude the possibility that the algebraic
boundary is strictly contained in the edge variety, it suffices to show the existence of an
approximating curve whose edge variety is irreducible. This can be ensured using [148,
Equation (3.6)], since the rational curve X4 can be parametrized by sufficiently generic
polynomials.

Figure 2.4: A space curve whose algebraic real rank two boundary consists only of the edge
variety, seen from four angles.

Real space curve rank admits a visual interpretation. Consider a point X ∈ P3
R, and the

plane curve in P2 obtained by projecting X from the center X. If the projected curve has a
node, then the point X is real rank two, because the node is the projection of a line spanned
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by two real points on X that passes through X. The existence of such a line is exactly the
geometric condition of being real rank two. Conversely, if the projection does not have any
crossings, the point X has real X -border rank at least three. If the curve is a knot or link,
then every planar projection has a crossing and all points are in the real rank two locus.

We can also visualize the transition between real ranks two and three. As X moves
through space and transitions from real X -rank two to real X -rank three, all ordinary real
double points disappear from the projected curve. If the transition occurs via τ(X ) then the
intermediate singularity of the projected curve is a cusp. If it occurs via ε(X ) then that sin-
gularity is known classically as a tacnode. Figure 2.5 shows the two possible transitions. The
transitions are two of the three classical Reidemeister moves from knot theory. Transitions
via the third Reidemeister move do not cause a change in real X-rank.

Figure 2.5: The transitions between real space curve ranks two and three via the tangential
surface (left) and the edge surface (right). The arrows indicate the direction of change in
viewpoint.
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Chapter 3

Singular vectors

Singular vectors of matrices are central to low rank approximation and visualization of matrix
data, as we saw in Section 1.2. A singular vector pair (u, v) is characterized by the property
that Mv is parallel to u, and MTu is parallel to v. Singular vectors can also be defined
for a tensor. A tensor has a singular vector tuple, one vector for each index of the tensor.
Multiplying an order d tensor by (d− 1) vectors contracts all but one of the indices to give a
vector. In the matrix (order two tensor) case, multiplying the matrix by one vector gives a
vector. Extending the singular vector condition from order two to general order d, we have
the following definition, see Definition 1.14.

A singular vector tuple (v(1), . . . , v(d)) of an order d tensor X is a tuple of d vectors,
such that every subset of (d − 1) vectors in the tuple gives a contracted tensor parallel to
the remaining vector. That is, the singular vector tuple of an order d tensor must satisfy d
conditions:

[[X; v(1) , v(2) , . . . , . . . , v(d−2) , v(d−1) , · ]] is parallel to v(d)

[[X; v(1) , v(2) , . . . , . . . , v(d−2) , · , v(d) ]] is parallel to v(d−1)

...
[[X; v(1) , . . . , v(j−1) , · , v(j+1) , . . . , v(d) ]] is parallel to v(j)

...
[[X; v(1) , · , v(3) , . . . , . . . , v(d−1) , v(d) ]] is parallel to v(2)

[[X; · , v(2) , v(3) , . . . , . . . , v(d−1) , v(d) ]] is parallel to v(1).

A general tensor has finitely many singular vector tuples. The number of singular vector
tuples is the coefficient of a particular polynomial, given in [70]. Eigenvectors of tensors can
be defined similarly. A vector v is an eigenvector of a tensor of format n× · · · × n (d times)
if it satisfies the above equations, with v = v(j) for all j ∈ {1, . . . , d}. For a study of the
configurations of vectors that can arise as the eigenvectors of a tensor, see [2].

Once we fix a scaling of the vectors, the singular vector tuples of a tensor can also be
defined using a variational approach, see [109]. If we impose that all the vectors in the
tuple have norm one, then the singular vector tuples of a tensor are the critical points of the
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optimization problem

maximize [[X; v(1), . . . , v(d)]]

subject to ‖v(1)‖ = · · · = ‖v(d)‖ = 1.

Remark 3.1 (Nomenclature warning). Several different names can be given to singular vec-
tors and singular values of tensors, see [44, 145]. The names depend on if the singular value
is real, or if the equation is homogenized (cf. the discussion of singular values on Page 20).
In this thesis, I only distinguish between two types of singular vectors and values. I consider
singular vector tuples of a tensor, as above, with a singular value as in Definition 1.15. I also
study the higher-order singular values, obtained from flattenings of a tensor, see Section 1.3
and Chapter 4.

The singular value decomposition expresses a matrix as a sum of rank one matrices
of orthogonal vectors. Not all tensors possess a decomposition into rank one tensors of
orthogonal vectors, for the following reason. There are at most nj orthonormal vectors in Rnj .
Hence a decomposition of a tensor of format n1×· · ·×nd into rank one tensors of orthogonal
vectors has rank at most min(n1, . . . , nd). However, the rank of a general tensor of this format
is higher. The number of parameters in the secant variety σr(Seg(Pn1−1×· · ·×Pnd−1)) upper
bounds the dimension of the set of rank r tensors, and is equal to r(

∑d
i=1(ni− 1)) + (r− 1).

The generic rank is the smallest r such that the secant variety fills the space of tensors up
to scale, which has dimension n1 · · ·nd − 1.

The tensors that have a decomposition into rank one terms of orthogonal vectors are called
orthogonally decomposable tensors. Orthogonally decomposable tensors were first introduced
in [192]. They have been applied to parameter estimation in latent variable models [8] and
image reconstruction [139]. Finding the decomposition of a general tensor is NP-hard [85],
however finding the decomposition of an orthogonally decomposable tensor can be done
efficiently via iterative rank one updates [192]. Orthogonally decomposable tensors have
also been explored in [92]. The variety of orthogonally decomposable tensors was studied
in [33], and the eigenvectors of symmetric orthogonally decomposable tensors were studied
in [151].

The best rank one approximation of a tensor is given by the singular vector tuple cor-
responding to the largest singular value, as we saw in Theorem 1.16. For higher ranks, low
rank approximations does not generally involve singular vectors. However, for orthogonally
decomposable tensors, low-rank approximation is given by a truncation of singular vector
tuples. This always holds for matrices, which are always orthogonally decomposable.

In this chapter, I characterize the singular vector tuples of orthogonally decomposable
tensors as a variety in a product of projective spaces. Orthogonally decomposable tensors
have infinitely many singular vector tuples. For some examples, I describe how the positive-
dimensional spaces of singular vectors adopt generic behavior under a small perturbation.
This chapter is based on joint work with Elina Robeva, published in Linear and Multilinear
Algebra [153].
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3.1 Orthogonally decomposable tensors

Definition 3.2. A tensor X ∈ Rn1×···×nd is orthogonally decomposable if it can be written

X =
n∑
i=1

σiv
(1)
i ⊗ · · · ⊗ v

(d)
i , (3.1)

where n = min(n1, . . . , nd), the scalars σi are real, and the vectors v
(j)
1 , . . . , v

(j)
n ∈ Rnj are

orthonormal for every fixed j ∈ {1, . . . , d}.

The decomposition in Equation (3.1) will in general be unique up to re-ordering the
summands. Some singular vector tuples of an orthogonally decomposable tensor can be seen
directly from the decomposition. The tuples (v

(1)
i , . . . , v

(d)
i ) occurring as rank one terms in

the decomposition are singular vector tuples. This is because, when we multiply the tensor
X by the vector v

(j)
i , the orthogonality of the vectors v

(j)
1 , . . . , v

(j)
n means we are left with a

single rank one term. For generic matrices M ∈ Rn1×n2 , the rank-one terms in the singular
value decomposition constitute all of the singular vector pairs. In contrast, orthogonally
decomposable tensors have additional singular vector tuples that do not appear as terms in
the decomposition.

The definition of a singular vector tuple depends on vectors being parallel, so it is un-
changed by scaling the vectors. Hence we can consider the singular vector tuple to lie in the
product of projective spaces Pn1−1 × · · · × Pnd−1.

Remark 3.3. I make a distinction between the cases

[[X; v(1), . . . , v(d)]] 6= 0 and [[X; v(1), . . . , v(d)]] = 0.

In the former case, the singular vector tuple is a fixed point of the map of projective space
Pn1−1 × · · · × Pnj−1−1 × Pnj+1−1 × · · · × Pnd−1 → Pnj−1 induced by X. In the latter case the
singular vector tuple is a base point of the map.

The main theorem of this chapter is the following description of the singular vector tuples
of an orthogonally decomposable tensor.

Theorem 3.4. The projective variety of singular vector tuples of an orthogonally decompos-
able tensor X ∈ Rn1×···×nd, with d ≥ 3, consists of

(2d−1(d− 2) + 1)
n − 1

2d−1(d− 2)

fixed points, of which (2d−1+1)
n−1

2d−1 are real, and
(
d
2

)n − c(d − 1)n +
(
c
2

)
positive-dimensional

components of base points, each a product of linear spaces of dimension
∑d

j=1(nj − 1)− 2n.
Here, n = min(n1, . . . , nd) and c = #{j : nj = n}.



CHAPTER 3. SINGULAR VECTORS 54

Note that taking the limit of the fixed point count as d → 2 using e.g. L’Hôpital’s
rule recovers n, the number of singular vectors of a matrix. The formula for the number
of positive-dimensional components equals zero in this case, which is true for a generic
matrix. Theorem 3.4 implies that for all but a few small cases the singular vector tuples
of an orthogonally decomposable tensor comprise a positive-dimensional variety. This is in
contrast to the variety of eigenvectors of a symmetric orthogonally decomposable tensor,
which is zero-dimensional [151].

The rest of this chapter is organized as follows. In Section 3.2, I use the theory of binomial
ideals [65] to describe the singular vector tuples of an orthogonally decomposable tensor. I
describe the positive dimensional components of the variety of singular vector tuples, and
then give the proof of Theorem 3.4. In Section 4, I explore the combinatorial structure of
the positive dimensional components.

3.2 Singular vector tuples

In this section I give a formula for the singular vector tuples of an orthogonally decomposable
tensor. I start by considering a diagonal orthogonally decomposable tensor, in which the
orthogonal vectors are the elementary basis vectors. A general orthogonally decomposable
tensor can be obtained from a diagonal one by applying an orthogonal change of coordinates.

Lemma 3.5. Let S ∈ Rn1×···×nd be the tensor

S =
n∑
i=1

σie
(1)
i ⊗ · · · ⊗ e

(d)
i ,

where d ≥ 3, the scalars σ1, . . . , σn 6= 0, the vector e
(j)
i is the ith basis vector in Rnj , and

n = min{n1, . . . , nd}. The singular vector tuples of S are as follows.
Type I:

σ
− 1

d−2

τ(1)

(
e
(1)
τ(1), e

(2)
τ(1), . . . , e

(d)
τ(1)

)
+

m∑
i=1

ηiσ
− 1

d−2

τ(i)

(
e
(1)
τ(i), χ

(2)
i e

(2)
τ(i), . . . , χ

(d)
i e

(d)
τ(i)

)
(3.2)

where 1 ≤ m ≤ n, the scalars χ
(j)
i ∈ {±1} are such that

∏d
j=2 χ

(j)
i = 1 for every i = 1, ...,m,

τ is any permutation on {1, . . . , n}, and each scalar ηi is a (2d − 4)-th root of unity. The
tuples with real coordinates are those for which ηi ∈ {±1}.

Type II: All tuples (v(1), . . . , v(d)) such that the n × d matrix V = (v
(j)
i ) has at least two

zeros in each row and no column equal to zero.

Before proving Lemma 3.5, I illustrate it with the following example.
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Example 3.6. The orthogonally decomposable tensor S = e
(1)
1 ⊗e

(2)
1 ⊗e

(3)
1 +e

(1)
2 ⊗e

(2)
2 ⊗e

(3)
2 ∈

R2×3×3 has six Type I singular vector tuples(
e
(1)
1 , e

(2)
1 , e

(3)
1

)
,
(
e
(1)
2 , e

(2)
2 , e

(3)
2

)
(
e
(1)
1 + e

(1)
2 , e

(2)
1 + e

(2)
2 , e

(3)
1 + e

(3)
2

)
,
(
e
(1)
1 + e

(1)
2 , e

(2)
1 − e

(2)
2 , e

(3)
1 − e

(3)
2

)
,(

e
(1)
1 − e

(1)
2 , e

(2)
1 + e

(2)
2 , e

(3)
1 − e

(3)
2

)
,
(
e
(1)
1 − e

(1)
2 , e

(2)
1 − e

(2)
2 , e

(3)
1 + e

(3)
2

)
.

The Type II singular vectors are five copies of P1(
�e(1)1 + �e(1)2 , e

(2)
3 , e

(3)
3

)
,
(
e
(1)
1 ,�e(2)2 + �e(2)3 , e

(3)
3

)
,
(
e
(1)
1 , e

(2)
3 ,�e(3)2 + �e(3)3

)
,(

e
(1)
1 ,�e(2)1 + �e(2)3 , e

(3)
3

)
,
(
e
(1)
2 , e

(2)
3 ,�e(3)1 + �e(3)3

)
,

where two �’s in a vector indicate a copy of P1 on those two coordinates. The five copies of
P1 intersect in two triple intersections, see Figure 3.1.

Figure 3.1: An orthogonally decomposable 2× 3× 3 tensor has singular vectors that are five
copies of P1 meeting at two triple intersection points (left), depicted as a polyhedral complex
(right).

The generic number of singular vector tuples of a 2× 3× 3 tensor is 15, by [70], so the
five copies of P1 degenerate from nine points. For example, consider the family of perturbed
tensors

Sε = S + εX,

where X is the 2× 3× 3 tensor 0 40 10 7 1 1
100 3 3 8 0 2
3 2 6 2 2 3

 .
For ε on the order of 10−6 we obtain nine points: one point near each copy of P1, and two
points of multiplicity 2 near each triple intersection.
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I will return this example in Section 3.3.

Proof of Lemma 3.5. By definition, (v(1), . . . , v(d)) is a singular vector tuple of S if and only
if for each j = 1, . . . , d the following matrix has rank at most one:

MS,j =
[
[[S; v(1), . . . , v(j−1), ·, v(j+1), . . . , v(d)]] v(j)

]
=

σ1v
(1)
1 · · · v̂

(j)
1 · · · v

(d)
1 v

(j)
1

...
...

σnv
(1)
n · · · v̂(j)n · · · v(d)n v

(j)
n


where v

(j)
i is the ith entry of the vector v(j), and v̂

(j)
i denotes the omission of v

(j)
i from the

product. There are three cases to consider.

Case 1: exactly one of the entries v
(1)
i , . . . , v

(d)
i vanishes, for some i ∈ {1, . . . , n}.

Suppose that v
(j)
i is the vanishing entry. Then the ith row of the matrix MS,j has first

entry non-zero and second entry zero. In order for the matrix to have rank one, we need the
whole second column to be zero. Since the contraction [[S; v(1), . . . , v(j−1), ·, v(j+1), . . . , v(d)]]

lies in the span of e
(j)
1 , . . . , e

(j)
n , in order for it to be parallel to v(j) it has to be 0. In particular,

its i-th entry σiv
(1)
i . . . v̂

(j)
i . . . v

(d)
i has to be zero, a contradiction. Hence it cannot be the

case that exactly one of the entries v
(1)
i , . . . , v

(d)
i is zero for some i.

Case 2: at least two of v
(1)
i , . . . , v

(d)
i (but not all of them) vanish, for some i ∈ {1, . . . , n}.

Assume v
(j)
i 6= 0. The entry in the ith row and the first column of MS,j is zero, but

the entry in the second column is non-zero. In order for the matrix to be rank one,
the whole first column must be zero. Therefore, for every k, at least one of the entries
v
(1)
k , . . . , v

(j−1)
k , v

(j+1)
k , . . . , v

(d)
k is zero. Then by Case 1 at least two v

(1)
k , . . . , v

(d)
k are zero for

every k. Conversely, if for every k at least two of the entries v
(1)
k , . . . , v

(d)
k are equal to 0, in

such a way that v(j) ∈ Pnj−1, then (v(1), . . . , v(d)) is a singular vector tuple of S. This gives
the singular vector tuples of Type II.

Case 3: for every i ∈ {1, . . . , n}, either v
(1)
i = . . . = v

(d)
i = 0 or

∏d
j=1 v

(j)
i 6= 0.

After reordering the indices i, we can assume that v
(1)
i , . . . , v

(d)
i 6= 0 for i ∈ {1, . . . ,m}

and v
(1)
i = . . . = v

(d)
i = 0 for i ∈ {m + 1, . . . , n}, for some m. Then (v(1), . . . , v(d)) is a

singular vector tuple if and only if it satisfies the equations

σiv
(1)
i . . . v̂

(j)
i . . . v

(d)
i v

(j)
l = σlv

(1)
l . . . v̂

(j)
l . . . v

(d)
l v

(j)
i for all

j ∈ {1, . . . d}
i, l ∈ {1, . . . ,m}. (3.3)

We solve this system of equations by viewing it in the Laurent polynomial ring generated
by the entries v

(j)
i and their inverses, using the theory of binomial ideal decomposition [65].



CHAPTER 3. SINGULAR VECTORS 57

We first construct the lattice corresponding to the binomial ideal. Let Lρ ⊆ Zd×m be the
lattice generated by

d∑
k=1

(e
(k)
i − e

(k)
l )− 2(e

(j)
i − e

(j)
l ) for all

j ∈ {1, . . . d}
i, l ∈ {1, . . . ,m}

where e
(a)
b is the elementary basis vector in Zd×m with a 1 in coordinate (a, b). Let ρ : Lρ → C∗

be the partial character

ρ

(
d∑

k=1

(e
(k)
i − e

(k)
l )− 2(e

(j)
i − e

(j)
l )

)
=
σl
σi

for all
j ∈ {1, . . . d}

i, l ∈ {1, . . . ,m} (3.4)

Then the lattice ideal I(ρ) = 〈vx − ρ(x) : x ∈ Lρ〉 is the system of equations from Equa-

tion (3.3), where vx denotes taking the variables v
(j)
i in the ring to the powers indicated by

the lattice element x.
We have the inclusion Lρ ⊆ L = 〈e(j)i − e

(j)
l : 1 ≤ j ≤ d, 1 ≤ i, l ≤ m〉. Therefore by [65,

Theorem 2.1], the ideal of I(ρ) is the intersection of ideals of partial characters that extend ρ
to L, i.e.

I(ρ) =
⋂

ρ′ extends ρ to L

I(ρ′).

We find the ideal I(ρ) from the I(ρ′), as follows. Summing Equation (3.4) over 1 ≤ j ≤ d
gives

ρ

(
d∑
j=1

(
d∑

k=1

(e
(k)
i − e

(k)
l )− 2(e

(j)
i − e

(j)
l )

))
= ρ

(
(d− 2)

d∑
k=1

(e
(k)
i − e

(k)
l )

)
=

(
σl
σi

)d

Therefore, any ρ′ extending ρ satisfies ρ′
(∑d

k=1(e
(k)
i − e

(k)
l )
)

= φil

(
σl
σi

) d
d−2

, where φil is a

(d− 2)-th root of unity. By rearranging Equation (3.4), we furthermore see that any such ρ′

must satisfy ρ′
(

2(e
(j)
i − e

(j)
l )
)

= ρ′
(∑d

k=1(e
(k)
i − e

(k)
l )
)(

σi
σl

)
. Combining these yields

ρ′
(
e
(j)
i − e

(j)
l

)
= φ

(j)
il

(
σl
σi

) 1
d−2

(3.5)

where the φ
(j)
il are 2(d − 2)-th roots of unity such that (φ

(j)
il )2 = φil for all j ∈ {1, . . . , d}.

It remains to find the relations that hold for the φ
(j)
il as the indices i, l, j vary, so that

Equation (3.4) holds. Substituting our expression for ρ′ from Equation (3.5) into Equation
(3.4) yields

d∏
k=1

(
φ
(k)
il

(
σl
σi

) 1
d−2

)
φ−1il

(
σl
σi

)− 2
d−2

=
σl
σi

=⇒
d∏

k=1

φ
(k)
il = φil.
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We can satisfy these conditions by expressing the roots of unity in the following way.
Denote the (2d−4)-th root of unity φ

(1)
il by ηil. Since η2il = φil = (φ

(j)
il )2 for all j ∈ {1, . . . , d},

each φ
(j)
il can be written in terms of ηil as φ

(j)
il = ηilχ

(j)
il , where χ

(j)
il ∈ {±1}. We now have

the condition

ηdil

d∏
j=2

χ
(j)
il = φil = η2il =⇒ ηd−2il =

d∏
j=2

χ
(j)
il .

Since ηil is a (2d − 4)-th root of unity ηd−2il is in {±1}. Finally, since (e
(j)
i − e

(j)
l ) + (e

(j)
l −

e
(j)
h ) + (e

(j)
h − e

(j)
i ) = 0, applying ρ gives χ

(j)
il ηil

(
σl
σi

) 1
d−2
χ
(j)
lh ηlh

(
σh
σl

) 1
d−2
χ
(j)
hi ηhi

(
σi
σh

) 1
d−2

= 1. We

now have all the relations required to find the ideals I(ρ′):

I(ρ′) =

〈
v
(j)
i − χ

(j)
i1 ηi1

(
σ1
σi

) 1
d−2

v
(j)
1 : 1 ≤ i ≤ m, 1 ≤ j ≤ d

〉

where χ
(j)
i1 ∈ {±1} are such that χ

(1)
i1 = 1,

∏d
j=2 χ

(j)
i1 = 1 and the ηi1 are (2d− 4)-th roots of

unity. Setting χ
(j)
i = χ

(j)
i1 and ηi = ηi1, and taking I to be the intersection of the I(ρ′), we

obtain the required form of the singular vector tuples:

I =
⋂
η,χ

〈
v
(j)
i − χ

(j)
i ηi

(
σ1
σi

) 1
d−2

v
(j)
1 : 1 ≤ i ≤ m, 1 ≤ j ≤ d

〉
.

The zeros of this ideal are the singular vector tuples of Type I.

The description of the singular vector tuples of a general orthogonally decomposable
tensor is as follows.

Proposition 3.7. Let X =
∑n

i=1 σiv
(1)
i ⊗ · · · ⊗ v

(d)
i ∈ Rn1×···×nd be an orthogonally decom-

posable tensor, with d ≥ 3 and the v
(j)
i ∈ Rnj orthonormal vectors. Let V (j) ∈ Rnj×nj be any

orthogonal matrix whose first n columns are v
(j)
1 , . . . , v

(j)
n . Then, the singular vector tuples

of X are as follows.
Type I: Tuples

(
V (1)x(1), . . . , V (d)x(d)

)
where (x(1), . . . , xd)) is a Type I singular vector of

the diagonal orthogonally decomposable tensor in Equation (3.2).

Type II: Tuples
(
V (1)x(1), . . . , V (d)x(d)

)
, where the matrix with (i, j) entry x

(j)
i has at least

two zeros in each row and no vector x(j) is identically zero.

Proof. Assume that (y(1), . . . , y(d)) is a singular vector tuple of X. This means for all j ∈
{1, . . . , d} the vector [[X; y(1), . . . , y(j−1), ·, y(j+1), . . . , y(d)]] is parallel to y(j). Applying this
definition to the decomposition of X, we obtain

[[X; y(1), . . . , y(j−1), ·, y(j+1), . . . , y(d)]] = V (j)[[S;x(1), . . . , x(j−1), ·, x(j+1), . . . , x(d)]],
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where S =
∑n

i=1 σie
(1)
i ⊗ · · · ⊗ e

(d)
i is the diagonal orthogonally decomposable tensor and

y(j) = V (j)x(j). Since V (j) is orthogonal, [[X; y(1), . . . , y(j−1), ·, y(j+1), . . . , y(d)]] is parallel to y(j)

if and only if [[S;x(1), . . . , x(j−1), ·, x(j+1), . . . , x(d)]] is parallel to x(j). Therefore, (x(1), . . . , x(d))
is a singular vector tuple of S, and the solutions for all such (x(1), . . . , x(d)) are given in
Lemma 3.5.

We can now prove the main result, which enumerates the singular vector tuples.

Proof of Theorem 3.4. The Type I singular vectors are enumerated from the description in
Proposition 3.7. We have one singular vector tuple for every choice of m ∈ {1, . . . , n},
a subset of {1, . . . , n} of size m, scalars ηi which are (2d − 4)-th roots of unity (where

i ∈ {2, . . . ,m}), and χ
(j)
i ∈ {±1} such that

∏d
j=2 χ

(j)
i = 1 (where i ∈ {2, . . . ,m} and

j ∈ {2, . . . , d}). Therefore, the total number of singular vector tuples of Type I is

n∑
m=1

(
n

m

)
(2d− 4)m−12(m−1)(d−2) =

(2d−1(d− 2) + 1)n − 1

2d−1(d− 2)
.

If we impose that the singular vector tuples be real, we have only two values for the choice

of each ηi rather than (2d− 4) which yields the real count of (2d−1+1)
n−1

2d−1 .
It remains to count the Type II singular vector tuples. We first study the case in which

all dimensions are equal, n1 = · · · = nd = n. Here, the tuple (x(1), . . . , x(d)) is a Type II

singular vector tuple if and only if the matrix with (i, j) entry x
(j)
i has at least two zeros in

every row and none of the vectors x(j) is identically zero. This configuration is a subvariety
of Pn−1 × · · · × Pn−1. Its ideal is given by

n∑
i=1

〈x(1)i · · · x̂
(j)
i · · ·x

(d)
i : j = 1, . . . , d〉 =

n∑
i=1

⋂
1≤j<k≤d

〈x(j)i , x
(k)
i 〉. (3.6)

We count the number of components in this subvariety by looking at the Chow ring
of Pn−1 × · · · × Pn−1, which is Z[t1, . . . , td]/〈tn1 , . . . , tnd〉. Each tj represents the class of a
hyperplane in Pnj−1, the jth projective space in the product. The equivalence class of the

variety V
(
〈x(j)i , x

(k)
i 〉
)

is given by tjtk. We consider the variety

V

( ⋂
1≤j<k≤d

〈x(j)i , x
(k)
i 〉

)
=

⋃
1≤j<k≤d

V
(
〈x(j)i , x

(k)
i 〉
)

which yields our variety of interest when we intersect over i. Its equivalence class is given
by
∑

1≤j<k≤d tjtk. From this, we see that the equivalence class in the Chow ring of the total
configuration is given by

p(t1, . . . , td) =

( ∑
1≤j<k≤d

tjtk

)n

. (3.7)
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To count the number of linear spaces in the configuration of Type II singular vector tuples,
we count the number of monomials of the polynomial in Equation (3.7) as an element of the
Chow ring. Equivalently we count the terms in the expansion of Equation (3.7) that are not
divisible by tdj for any j. A monomial is produced by multiplying one of the

(
d
2

)
terms in

each of the n factors. This produces the first term,
(
d
2

)n
, in the expression for the number

of components in the base locus. We must now subtract those terms that are divisible by tdj
for some fixed j. These are formed by selecting the terms tjtk1 , . . . , tjtkn from consecutive
factors. There are d− 1 choices for each ks, and d choices for the fixed j, yielding d(d− 1)n

terms of this format. However, we have double-counted those terms of the form tnj t
n
k for

fixed j and k, of which there are
(
d
2

)
. Combining these terms gives(

d

2

)n
− d(d− 1)n +

(
d

2

)
. (3.8)

The codimension of the ideal in Equation (3.6) is 2n, so the linear spaces have dimension
d(n− 1)− 2n.

The case of non-equal dimensions follows similarly: to count the number of maximal-
dimensional linear spaces, we consider the same polynomial from Equation (3.7), and we
count the terms that are not divisible by t

nj

j for any j = 1, . . . , d. A term cannot be divisible

by t
nj

j for any nj > n. Equation (3.8) therefore generalizes to(
d

2

)n
− c(d− 1)n +

(
c

2

)
,

where c = #{j : nj = n}, and the dimension of each components is
∑d

j=1(nj − 1)− 2n.

3.3 Visualizing the singular vectors

In this section I study the Type II singular vector tuples of the diagonal orthogonally decom-
posable tensor. The singular vector tuples of a general orthogonally decomposable tensor
can be obtained by applying an orthogonal transformation.

We can identify each projective space Pnj−1 with the simplex ∆nj−1 and consider the
linear spaces as polyhedral complexes. They are prodsimplicial complexes, in the boundary
of the product of simplices ∆n1−1 × . . .×∆nd−1. The number of components in the variety
of Type II singular vector tuples is the number of facets in this complex.

In the case of 2 × 3 × 3 tensors, from Example 3.6, we have six Type I singular vector
tuples, and the Type II singular vector tuples give five copies of P1. The polyhedral complex
of Type II singular vector tuples, in ∆1 × ∆2 × ∆2, is given in Figure 3.1 (right). Moti-
vated by this example, I investigate the shape of the Type II singular vector tuples of other
orthogonally decomposable tensors.

We can stratify orthogonally decomposable tensors according to the dimension of their
Type II singular vectors.
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Proposition 3.8. For each dimension k, the orthogonally decomposable tensors whose Type II
singular vector tuples have dimension k have a finite list of possible formats n1 × · · · × nd,
where d ≥ 3.

Proof. By Theorem 3.4, an orthogonally decomposable tensor of format n1 × · · · × nd has
Type II singular vector tuples consisting of a product of linear spaces of dimension k, where

d∑
j=1

(nj − 1)− 2n = k (3.9)

and n = min(n1, . . . , nd). Without loss of generality, we can assume that n = n1 ≤ . . . ≤ nd.
Let the constant α be such that n2 = n+α. Rearranging Equation (3.9) gives

∑d
j=3(nj−1) =

k + 2 − α. This has finitely many solutions, since the non-negativity of the left hand side
means there will be solutions for only finitely many values of α, and each summand on the
left hand side has strictly positive integer size.

The orthogonally decomposable tensors with finitely many singular vector tuples are
those with format 2× 2× 2, 3× 3× 3, or 2× 2× 2× 2. In this case, the count agrees with
the number of singular vector tuples of a generic tensor, given in [70, Theorem 1].

Tensor format Type I count Type II count Generic count
2× 2× 2 6 0 6
3× 3× 3 31 6 37
2× 2× 2× 2 18 6 24

Table 3.1: Orthogonally decomposable tensors with finitely many singular vectors attain the
generic count.

For larger tensor formats, an orthogonally decomposable tensor has infinitely many sin-
gular vector tuples. The tensor formats whose singular vector tuples make a one-dimensional
variety are given in Table 3.2. For such tensors, each intersection of copies of P1 is a triple
intersection. Under a small perturbation, each copy of P1 contributes one singular vector
tuple, and two arise from each triple intersection. We observe in Table 3.2 that summing
the Type I count, the number of copies of P1, and twice the number of triple intersections
yields the generic count. The 2×3×3 case is Example 3.6. In the 3×3×4 and 2×2×2×3
cases the simplicial complexes of the Type II singular vector tuples are the same shape: 12
copies of P1 meeting at six triple intersections. In format 2× 2× 2× 2× 2 we have 30 copies
of P1 that meet at 20 triple intersection points. In format 4× 4× 4 there are 36 copies of P1

meeting at 24 triple intersection. See Figure 3.2.
I conclude this chapter with an orthogonally decomposable tensor whose singular vector

tuples make a two-dimensional projective variety, format 2 × 2 × 3 × 3. The number of
components in the Type II configuration is 19. There are four copies of the projective
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Tensor format Type I count #P1s #Triple intersections Generic count
2× 3× 3 6 5 2 15
2× 2× 4 6 2 0 8
3× 3× 4 31 12 6 55
4× 4× 4 156 36 24 240
2× 2× 2× 3 18 12 6 42
2× 2× 2× 2× 2 50 30 20 120

Table 3.2: Orthogonally decomposable tensors with a one-dimensional locus of singular
vectors.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The singular vectors of an orthogonally decomposable 3× 3× 4 or 2× 2× 2× 3
tensor (left), 2× 2× 2× 2× 2 tensor (middle), and 4× 4× 4 tensor (right).

plane P2 and 15 copies of P1× P1, shown in Figure 3.3. They are arranged around a central
orange square. Each edge is a copy of P1 and its colour represents the factor in which it
occurs, in the order: red, yellow, blue, green. For example, green edges refer to copies of P1

of the form P0×P0×P0×P1. The configuration is not realizable in three-dimensional space:
in this depiction the diagonally opposite blue and green triangles intersect. The generic
count for the number of singular vector tuples of a tensor of this format is 98, by [70], and
the Type I singular vector tuples contribute 18 points. Therefore, the surface accounts for
80 points, which re-appear under a general perturbation of an orthogonally decomposable
tensor of this format.

Figure 3.3: The singular vector tuples of an orthogonally decomposable 2× 2× 3× 3 tensor.
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Chapter 4

Singular values

The singular values of a matrix characterize it up to orthogonal changes of coordinates.
The singular values quantify the importance of the principal directions of the matrix. The
number of strictly positive singular values is the rank of the matrix, and the number of
‘large’ singular values gives the number of ‘large’ rank one signals. There are various ways to
define a singular values of a tensor: there does not exist a single notion of singular value that
generalizes all of these properties to the multi-dimensional setting. What properties should
a good definition of a singular value of a tensor have? A singular value should summarize
some of the structure in a tensor, and it should be unchanged under transformations of a
tensor that do not affect this structure.

Recall from the previous chapter that a singular vector tuple of a tensor is a tuple of
vectors (v(1), . . . , v(d)) such that contracting the tensor X by all choices of (d − 1) vectors
from the tuple gives a vector parallel to the remaining vector. We can define the singular
value of the singular vector tuple as the scalar σ such that

[[X; v(1), . . . , v(d−1), ·]] = σv(d). (4.1)

However, the singular value depends on the choice of scaling of the tuple, as we saw in the
discussion after Definition 1.14. If we apply the scaling (v(1), . . . , v(d)) 7→ (λv(1), . . . , λv(d))
to the condition in Equation (4.1), the left hand side is multiplied by λd−1 and the right
hand side is multiplied by λ. Hence the singular value changes, σ 7→ λd−2σ and this leaves
the singular value unchanged only if d = 2, i.e. in the setting of matrices. The lack of
invariance under scaling a direction is not a good property for a singular value to have. Each
direction should have a well-defined value that measures its importance. There are two ways
to get around this problem. The first is to impose a norm condition on the vectors v(i).
Once the norm is fixed, the singular value is also fixed, but the choice of scaling may be
considered unnatural in practice, especially when it comes to the comparison of singular
values of multiple tensors. The alternative is to homogenize Equation (4.1) in the entries of
the vectors v(i), by replacing the vector v(d) on the right hand side by a new vector whose
entries are the (d−1)th entrywise powers of the entries of v(d). This makes the singular value
unchanged under a re-scaling of the vector tuple, but it is no longer an orthogonal invariant,
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since applying an orthogonal transformation to a general v(d) results in a non-orthogonal
transformation of its (d− 1)th entrywise power.

Another possible definition for the singular values of a tensor are the higher-order singular
values from Definition 1.11. Recall that a higher-order singular value of a tensor is a singular
value of one of its principal flattenings, the ways to reshape its n1 · · ·nd entries into a
matrix of format ni ×

∏
j 6=i nj. A singular value of a flattening is an orthogonal invariant

of the tensor, since an orthogonal change of coordinates on the original tensor results in
an orthogonal transformation of its flattenings. The higher-order singular values also have
practical advantages. Each flattening is a matrix, hence the higher-order singular values
can be obtained using linear algebra methods. This makes them computationally feasible
to compute for large tensors, and they can be used to compress large multi-dimensional
datasets [11].

However, it is difficult to ascribe meaning to the higher-order singular values. Each
higher-order singular value is associated to a principal direction of a matrix, not of the
original tensor. Capturing the structure of the tensor necessitates understanding how the
singular values of the different flattenings relate to one another, see Problem 1.13. The
singular values of a matrix can take any non-negative values. In contrast, a tensor has
relations between the higher-order singular values, i.e. relations between its orthogonal
invariants.

Moreover, while the higher-order singular values are some of the orthogonal invariants
of a tensor, they are not a basis of orthogonal invariants. The following is an open problem.

Problem 4.1. Give a basis of invariants for a tensor of format n1×· · ·×nd up to orthogonal
changes of coordinates.

The first fundamental theorem of invariant theory is, given a group and a space on which
it acts, the task of finding generators for the ring of invariants. The second fundamental
theorem is to give relations between the generators. Problem 4.1 is the first fundamental
theorem for a product of orthogonal groups acting on a space of real tensors. For the case
d = 2, i.e. the action of the product of orthogonal groups On1 × On2 on matrices of format
n1 × n2, the solution was described in the discussion of matrix structure via polynomials
on Page 13. Further aspects of Problem 4.1 have been studied before. In [187], the author
finds the invariants that are of degree at most min(n1, . . . , nd). In [75], the first fundamental
theorem for the action of a single orthogonal group On acting on the space of tensors of format
n× · · · × n is given. In [158, 62], the authors characterize the tensors of format n× · · · × n
that are invariant under certain subgroups of On. Applications of orthogonal invariants of
tensors include analysis of magnetic resonance imaging (MRI) data and cryogenic electron
microscopy (cryo-EM) data [66, 19].

In this chapter, I study the higher-order singular values of a tensor via polynomial or-
thogonal invariants, the determinants of flattenings. I focus on the case of 2×· · ·×2 tensors.
By finding relations between the determinants, I answer a question raised in [78] concerning
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the tensors whose higher-order singular values take extremal values. We see that it is pos-
sible for a tensor to have extremal higher-order singular values without this property being
visible from looking at a single flattening of the tensor. I also give, for a first tensor format,
a solution to Problem 4.1. This chapter is based on my paper [160], published in Linear
Algebra and its Applications.

There have been a number of other papers studying feasibility of higher-order singular
values. The question of studying the feasibility was originally posed in [78]. In [61], the
authors find necessary inequalities that hold between the top higher-order singular values
of the different flattenings. Other flattenings may also be considered. In [96], the author
studies relations between singular values of the flattenings of a tensor that arise in the tensor
train format. There are close connections to the Horn conjecture on eigenvalues of sums of
Hermitian matrices [90] and the quantum marginal problem. For more on different choices
of flattenings of a tensor, see Chapter 6.

4.1 Orthogonal invariants of tensors

A tensor X ∈ Rn1×···×nd has many possible flattenings, or ways to reshape its entries into a
matrix, as we saw in the subsection on flattenings on Page 15. For each flattening M we can
form the Gram matrix MMT. The coefficients of the characteristic polynomial of MMT are
some of the orthogonal invariants of X.

A binary tensor X is a tensor of format 2× · · · × 2. There are d ways it can be flattened
into a matrix of format 2 × 2d−1. Each choice of flattening is given by a choice of index to
label the rows. Denoting the rows by vectors v and w, the Gram matrix of a flattening is

[
← v →
← w →

]
·

↑ ↑v w
↓ ↓

 =

[
‖v‖2 〈v, w〉
〈v, w〉 ‖w‖2

]
.

The characteristic polynomial of the Gram matrix has two coefficients: the trace and the
determinant. The trace is ‖v‖2 + ‖w‖2, the squared Frobenius norm ‖X‖2 of the original
tensor X. This invariant does not depend on the choice of flattening. The determinant
det(MMT) is given by the Cauchy-Schwarz expression ‖v‖2‖w‖2 − 〈v, w〉2. I call the deter-
minant of the Gram matrix of the ith flattening the ith Gram determinant of X, and denote
it by gi. By the Cauchy-Binet formula, the Gram determinant gi is the sum of squares of
the 2× 2 minors of the ith flattening matrix.

The Gram determinants give the higher-order singular values of a binary tensor, as fol-
lows. The higher-order singular values of X are the non-negative square roots of the eigen-
values of the n Gram matrices. Thus the higher-order singular values from the ith flattening
are the non-negative solutions to the univariate polynomial in t

t4 − αt2 + gi,
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where α = ‖X‖2. Therefore, the map that sends a binary tensor to its higher-order singular
values is obtained from the Gram determinants by

gi 7→

√α +
√
α2 − 4gi
2

,

√
α−

√
α2 − 4gi
2

 .

I use algebraic relations between the Gram determinants to find relations between the higher-
order singular values, giving a partial solution to Problem 1.13.

The main result in this section is the following relations between the Gram determinants
of a binary tensor.

Theorem 4.2. Consider a tensor of format 2× · · · × 2 (d times). Then each Gram deter-
minant is bounded above by the sum of the others,

gi ≤
∑
j 6=i

gj, 1 ≤ i ≤ d. (4.2)

I will prove Theorem 4.2 by constructing a sum of squares certificate for the difference
(
∑

j 6=i gj) − gi. Observe that scaling a tensor by a number λ scales each of the Gram

determinants by λ4. Hence, since Equation (4.2) is homogeneous in the gi, it suffices to
prove that it holds for tensors of norm one. Note that Theorem 4.2 is also true in the case of
matrices, when d = 2. In this case the inequalities simplify to g1 = g2, and it is well known
that the two Gram determinants are equal, det(MMT) = det(MTM).

In the discussion of flattenings of 2 × 2 × 2 tensors on Page 26, I describe the Gram
determinants of tensors of format 2 × 2 × 2. We can show that the inequality g1 ≤ g2 + g3
holds between the three Gram determinants, by finding a sum of squares certificate for
g2 + g3 − g1. I now describe the construction of the sum of squares certificate in a way that
will enable generalization to larger tensors. Each determinant gi is given by a sum of squares
expression, and I describe how to absorb the subtraction of g1 into the expressions for g2
and g3.

Example 4.3 (2× 2× 2 Gram determinants). Define the quantity g2 + g3 − g1 to be

D(3) = D
(3)
2 +D

(3)
3 ,

where D
(3)
m consists of minors whose monomials differ in m indices. I find a sum of squares

certificate for the two pieces D
(3)
2 and D

(3)
3 individually. All terms in D

(3)
2 that appear in g1

also appear in either g2 or g3, and hence they cancel out in D
(3)
2 , see Figure 1.9. Therefore

D
(3)
2 is a sum of squares polynomial consisting of all squared minors in g2 or g3 but not in

g1:
D

(3)
2 = 2(x000x011 − x010x001)2 + 2(x100x111 − x110x101)2.

The remaining terms can be expressed as a perfect square:

D
(3)
3 = (x010x101 + x001x110 − x011x100 − x000x111)2.
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Summing these gives a sum of squares expression for D(3),

g2 + g3 − g1 = 2(x000x011 − x010x001)2 + 2(x100x111 − x110x101)2

+ (x010x101 + x001x110 − x011x100 − x000x111)2.
(4.3)

We can depict the information from the polynomial D(3) as follows. The monomial con-
taining the term x0ij is determined by i and j, hence it can be labeled by aij. So it is
represented by a vertex in Figure 4.1, and the edges connect monomials that appear in the
same minor.

Figure 4.1: Edges represent minors unique to one flattening. The vertical and horizontal
edges are from flattenings two or three, the red diagonal edges are from flattening one.

Equation (4.3) gives the proof of Theorem 4.2 in the case of 2 × 2 × 2 tensors. Before
proving the theorem in general, I work through the next case too, that of 2 × 2 × 2 × 2
tensors.

Example 4.4 (2× 2× 2× 2 Gram determinants). Define D(4) := g2 + g3 + g4− g1. We have

D(4) = D
(4)
2 +D

(4)
3 +D

(4)
4

where, as above, D
(4)
m consists of those minors whose monomials xixj have i and j differing

in m indices. D
(4)
2 is already in sum of squares form:

2(x0000x0011 − x0001x0010)
2

+ 2(x0000x0101 − x0100x0001)
2

+ 2(x0000x0110 − x0010x0100)
2

+

2(x1000x1011 − x1001x1010)
2

+ 2(x1000x1101 − x1100x1001)
2

+ 2(x1000x1110 − x1010x1100)
2

+

2(x0100x0111 − x0101x0110)
2

+ 2(x0010x0111 − x0110x0011)
2

+ 2(x0001x0111 − x0011x0101)
2

+

2(x1100x1111 − x1101x1110)
2

+ 2(x1010x1111 − x1110x1011)
2

+ 2(x1001x1111 − x1011x1101)
2
.

The piece D
(4)
3 has sum of squares certificate

(x0100x1010 + x0010x1100 − x0110x1000 − x0000x1110)
2

+ (x0101x1011 + x0011x1101 − x0111x1001 − x0001x1111)
2

+

(x0010x1001 + x0001x1010 − x0011x1000 − x0000x1011)
2

+ (x0110x1101 + x0101x1110 − x0111x1100 − x0100x1111)
2

+

(x0100x1001 + x0001x1100 − x0101x1000 − x0000x1101)
2

+ (x0110x1011 + x0011x1110 − x0111x1010 − x0010x1111)
2

+

(x0000x0111 − x0001x0110)
2

+ (x0000x0111 − x0010x0101)
2

+ (x0000x0111 − x0100x0011)
2

+

(x1000x1111 − x1001x1110)
2

+ (x1000x1111 − x1010x1101)
2

+ (x1000x1111 − x1100x1011)
2

+

(x0001x0110 − x0011x0100)
2

+ (x0001x0110 − x0101x0010)
2

+ (x0010x0101 − x0100x0011)
2

+

(x1001x1110 − x1011x1100)
2

+ (x1001x1110 − x1101x1010)
2

+ (x1010x1101 − x1100x1011)
2
.
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The final piece D
(4)
4 has sum of squares certificate

(x0010x1101 + x0111x1000 − x0011x1100 − x0110x1001)
2

+ (x0000x1111 − x0001x1110 − x0100x1011 + x0101x1010)
2

+

(x0000x1111 + x0111x1000 − x0010x1101 − x0101x1010)
2

+ (x0100x1011 + x0011x1100 − x0001x1110 − x0110x1001)
2
,

which we obtain as follows. The monomials in D
(4)
4 are of the form xixj where i and j differ

in all four indices. We can label the monomial containing the factor x0ijk by aijk, since
the other term in the monomial is fixed by the first one. In the cube aijk, we draw an edge
between two vertices if those two monomials appear in a minor. The minors coming from
g1 are the red diagonal edges, and the minors from g2 and g3 are the black edges of the cube
on the left in Figure 4.2. The polynomial represented by this picture has a sum of squares
certificate. We can write it as the sum of four pieces, on the right in Figure 4.2, where a
black edge is present with weight one and a red edge with weight −1. Each piece is a relabeled
copy of D

(3)
3 from Figure 4.1, hence the summands are perfect squares.

=

Figure 4.2: The sum of squares certificate for the difference of Gram determinants of a
2× 2× 2× 2 tensor.

Proof of Theorem 4.2. We aim to show that the Gram determinants gi of a real binary tensor
satisfy the inequality

D(d) := g2 + g3 + · · ·+ gd − g1 ≥ 0.

Each Gram determinant gi of a tensor X is the sum of squares of the 2× 2 minors of the ith
flattening of X. That is, each gi is given by a sum of squares expression. The polynomial D(d)

is degree four in the entries of the original tensor, and we seek a sum of squares certificate
for it. The set-up is symmetric in the different gi, so this certificate can be re-labeled to give
the other inequalities.

We first split up the polynomial D(d) into manageable pieces, and find a sum of squares
certificate for each piece. The first Gram determinant can be written

g1 =
∑

(x0ix1j − x1ix0j)2

where the sum is taken over all i, j ⊂ {0, 1}d−1 with i 6= j. Similarly, the kth determinant
is expressible in this form, where the kth index instead of the first index is swapped in each
term. The polynomial D(d) can thus be written in terms of degree two monomials xixj, where
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i, j ∈ {0, 1}d, and the multi-indices i and j differ in at least 2 locations. For a monomial

xixj, let m count the number of locations where i and j differ (so 2 ≤ m ≤ d). Let D
(d)
m

denote the terms of D(d) with fixed value of m. We seek a sum of squares certificate for each
summand D

(d)
m .

The rest of the proof proceeds as follows. We first find the sum of squares certificate for
the piece D

(d)
2 . Then we show that the polynomial D

(d)
m , with m < d, is equal to a sum of

polynomials, each equal to D
(m)
m up to relabeling indices. Finally we relate the structure of

D
(m)
m to D

(m−1)
m−1 , and hence we can conclude the proof by induction.

Terms in D
(d)
2 that come from g1 are of the form (x0ix1j − x1ix0j)2, where i and j differ

in exactly one location. Without loss of generality, we can assume they differ in their first
location, and that i = (0, . . .). We can therefore re-write the term as

(x00kx11k − x10kx01k)2, k ∈ {0, 1}d−2.

We observe that this term also appears in d2. Relabeling the above example, we see that
all D

(d)
2 terms in g1 also appear in some other gk, and hence they do not appear in D

(d)
2 .

Therefore D
(d)
2 is a sum of squares polynomial: it consists of all squared minors that appear

in some gk, 2 ≤ k ≤ d, but not in g1.
Next we relate D

(d)
m to D

(m)
m . Consider some term in D

(d)
m coming from g1. It is of the

form
(x0ix1j − x1ix0j)2, i, j ∈ {0, 1}d−1,

where i and j differ in exactly m − 1 locations. Without loss of generality, we can assume
that i and j differ in their first m− 1 locations. Forgetting the remaining d−m indices gives
a projection onto D

(m)
m . Repeating for all subsets of m indices gives

(
d
m

)
copies of D

(m)
m . We

can obtain a sum of squares certificate for D
(d)
m from one for D

(m)
m by re-labeling

(
d
m

)
times

and summing.
The rest of the proof is by induction, with the base case D

(3)
3 from Example 4.3. For the

induction step, we relate D
(m)
m , where m ≥ 3, to D

(m−1)
m−1 and D

(3)
3 . We saw above that the

polynomial D(m) consists of monomials xixj with multi-indices i, j ∈ {0, 1}m. Those in D
(m)
m

have i different from j in all m locations. For example, the monomial x00...0x11...1 appears in
D

(m)
m . For such monomials, the second variable is uniquely determined by the first.

We label the monomials in D
(m)
m by {0, 1}m−1 according to the m− 1 indices that appear

after the 0 in the term that starts with a 0. These are the 2m−1 vertices of the following
graph. We build an edge between two vertices labeled by i and j if x0i and x0j appear in the

same term in some gk, 1 ≤ k ≤ d. Thus each edge of the graph is a summand in D
(m)
m . The

edges are weighted by the coefficient with which the term appears in D
(m)
m . Those coming

from g1 have weight −1, while all others have weight +1. The positively-weighted edges
make the (m− 1)-dimensional cube. The negatively-weighted edges are the diagonals of this
cube. For example, the summand (x000...0x111...1 − x100...0x011...1)2 contains both x000...0 and
x011...1, hence corresponds to the edge between (0, 0, . . . , 0) and (1, 1, . . . , 1).
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There are 2m−2 diagonals in the (m − 1)-dimensional cube. We group them into 2m−3

pairs, where the two diagonals in a pair differ in their first index. We extract 2m−3 sub-graphs
by considering the edges contained in the four vertices of the two diagonals. We build part
of the sum of squares certificate from each of the sub-graphs, and then a certificate from the
remaining edges. Each sub-graph looks like Figure 4.3.

Figure 4.3: The inductive step to construct the sum of squares certificate for the difference
of Gram determinants of a general binary tensor.

The vertical edges in Figure 4.3 are positively-weighted in the original graph. The red
edges are negatively-weighted in the original graph. The horizontal edges were not in the
original graph, but we include them in each sub-graph, at the expense of including them with
negative weight among the remaining edges (this ensures they are present with overall weight

zero). This graph is the 2-cube with negatively-weighted diagonals. Hence it encodes D
(3)
3 ,

and thus the polynomial obtained from these sub-graphs has a sum of squares certificate.
It remains to consider the structure of the remaining positively and negatively-weighted

edges. We have disconnected vertices according to the value of their first index. So we have
two cubes of dimension m−2. The new negatively-weighted edges are the diagonals of these
two smaller cubes. Hence we have two copies of D

(m−1)
m−1 . By our induction hypothesis, these

both have a sum of squares certificate. This concludes the proof.

The following example shows that the above inequalities in the Gram determinants do
not always hold for tensors of format n1 × · · · × nd with some ni > 2.

Example 4.5. Consider the 2× 2× 3 tensor X with entries

x111 =
1√
2
, x213 =

1√
2
, xijk = 0 otherwise.

A computation shows that g1 = 1
4

while g2 = g3 = 0.

4.2 Extremal singular values

We seek tensors whose higher-order singular values are extremal, in that a small perturbation
of the singular values results in a collection of numbers that are not the higher-order singular
values of a tensor. These tensors lie on the boundary of the feasible set from Problem 1.13.
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In [78, §1], the authors conjecture that a tensor whose singular values lie on the boundary
of the feasible set must have two singular values the same in some flattening. That is,
the authors conjecture that tensors with strictly decreasing and positive singular values
in each flattening lie in the interior of the feasible set. The main result in this section
is Example 4.11, a counter-example to this conjecture. It is obtained by giving an exact
description of the feasible higher-order singular values in the case of 2× 2× 2 tensors. The
fact that the conjecture is false means that a tensor can have extremal singular values without
this property being visible in a single flattening matrix.

Recall that one orthogonal invariant of a tensor is its norm. Once the norm is fixed, the
feasible combinations of the Gram determinants gi give a closed bounded semi-algebraic set.
In the following definition, I focus on the set of feasible Gram determinants for tensors of
norm at most one. The relations between Gram determinants of tensors of any norm can be
obtained by re-scaling, since the Gram determinants are homogeneous polynomials. Scaling
a tensor X 7→ λX changes the Gram determinants by gi 7→ λ4gi.

Definition 4.6 (The Gram locus). Consider real binary tensors of format 2 × · · · × 2 (d
times). The map G sends a real binary tensor X to its tuple of Gram determinants:

G : R2×···×2 → Rd

X 7→ (g1, . . . , gd).

The Gram locus is the image G (B), where B is the unit ball of tensors,

B =

{
X ∈ R2×···×2 : ‖X‖2 =

∑
ij...k

x2ij...k ≤ 1

}
.

Points in the Gram locus are Gram determinants of some tensor of norm at most one.
The Gram locus is not convex. A natural outer approximation is its convex hull.

Theorem 4.7. Consider a tensor of format 2 × · · · × 2 (d times). The boundary of the
convex hull of the Gram locus is described by the following linear inequalities:

gi ≤
∑
j 6=i

gj, 0 ≤ gi ≤
1

4
, 1 ≤ i ≤ d.

This is a convex polytope with 2d−d vertices: the point (0, . . . , 0) and all points (1
4
, . . . , 1

4
, 0, . . . , 0)

consisting of any i ≥ 2 coordinates 1
4
, and the remaining coordinates zero.

Proof. Theorem 4.2 shows that the inequalities gi ≤
∑

j 6=i gj are necessary. We write a
flattening as [

← v →
← w →

]
.

The trace of the Gram matrix is ‖v‖2 + ‖w‖2 and the determinant is ‖v‖2‖w‖2 − 〈v, w〉2.
The Cauchy-Schwarz inequality shows that the lower bound for the determinant is 0. The
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upper bound is 1
4
, since this is the maximum value taken by the product of two numbers

that sum to one. Thus the image is contained in the cube [0, 1
4
]d. This shows that the true

convex hull is contained in the one in the statement of the theorem.
To conclude, I show that the vertices of the polytope in the statement of the theorem

are in the Gram locus. The determinant tuple (0, 0, . . . , 0) is obtained from any rank one
tensor. Consider the tensor X with entries

x00...0 =
1√
2
, x110...0 =

1√
2
, xij...k = 0, otherwise.

The first two flattenings have one non-zero entry in each of v and w, with the two vectors
v and w orthogonal. Hence the determinants of the corresponding Gram matrices both
evaluate to 1

4
. For all other flattenings, w is the zero vector and the Gram determinant is

zero. Permuting indices, we see that all points with two coordinates 1
4
, and all others equal

to zero, are in the image. Modifying the above example, so that the second non-vanishing
entry is at x1,1,...,1,0,0,...,0, with i indices equal to 1, shows similarly that vertices with i > 2
coordinates at 1

4
are in the image G (B).

The true Gram locus is a semi-algebraic subset of the convex hull. I now take steps
towards its description, giving an exact formula in the case d = 3 and a conjecture for d ≥ 4.
The exact description of the Gram locus requires two polynomials. The first is the product
of the linear conditions above:

Q1 =
d∏
i=1

(∑
j 6=i

gj − gi

)
.

Inside the positive orthant, the non-negativity of Q1 is equivalent to the non-negativity of
each of its linear factors. The second polynomial is given by the following product of linear
factors in the

√
gi:

Q2 =
1

2
×

∏
i,j,...,k∈{±1}

(i
√
g1 + j

√
g2 + · · ·+ k

√
gd).

This is a product of 2d terms, yielding a polynomial of degree 2d−1 in the gi. Each term
appears twice in the product, up to global sign change. Hence Q2 is a perfect square.

Theorem 4.8. Let d = 3. The Gram locus is described, inside the cube 0 ≤ gi ≤ 1
4
, by the

union of the following two semi-algebraic sets:

1. The region Q1 ≥ Q2

2. The region Q1 ≤ Q2 and (gi − gj)2 + 1
2
(gi + gj) ≤ 3

16
for all {i, j} ⊂ {1, 2, 3}.

Conjecture 4.9. Let d ≥ 4. The Gram locus is given by Q1 ≥ Q2 and 0 ≤ gi ≤ 1
4

for
i = 1, . . . , d.
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Theorem 4.2 says the convex hull of G (B) is given, inside the cube [0, 1
4
]
d
, by Q1 ≥ 0. The

region Q1 ≥ Q2 is contained in the convex hull, since the polynomial Q2 is a square. The
reason for the discrepancy between Conjecture 4.2 and the d = 3 case can be understood by
evaluating Q1 −Q2 when all gi = 1

4
. We obtain

Q1

(
1

4
, . . . ,

1

4

)
=

(
d− 2

4

)d
, Q2

(
1

4
, . . . ,

1

4

)
=

1

22d+1

d∏
k=0

(d− 2k)(
d
k).

The value of Q2 is 0 for all even d. Among odd d, the difference Q1 − Q2 grows in d, and
is positive for d ≥ 5. Hence the connected component of the complement of V(Q1 − Q2)
containing the point (1

4
− ε, 1

4
− ε, 1

4
− ε), for some small ε > 0, is the same as the piece

Q1−Q2 ≥ 0 for all d ≥ 4. The condition Q1 ≥ Q2 has been tested for one million randomly
generated tensors with d ∈ {4, . . . , 7}. Random tensors were generated with entries uniformly
distribution on the interval [0, 1], as well as normally distributed entries with mean zero and
standard deviation one.

Proof of Theorem 4.8. We first find the Zariski closure of the boundary of the Gram locus.
Following the approach in [100], this is contained in the branch locus of the map G and that
of its restriction to the boundary ∂B = {X ∈ R2×2×2 : ‖X‖ = 1}. These branch loci are p
and q respectively, obtained by direct computation (using the code on Page 74):

p = g1g2g3(g1 − g2)(g1 − g3)(g2 − g3),
q =

∏
i<j(gi − gj)×

∏
i

(
gi − 1

4

)
×Q,

where

Q =
∏3

i=1

(∑
j 6=i gj − gi

)
− 1

2
×
∏

(i,j,k)∈{±1}3(i
√
g1 + j

√
g2 + k

√
g3)

= Q1 −Q2

= (g1 + g2 − g3)(g1 − g2 + g3)(−g1 + g2 + g3)− 1
2
(g21 + g22 + g23 − 2(g1g2 + g1g3 + g2g3))

2
.

The polynomial Q is the non-linear part of the boundary of the Gram locus, depicted in
Figure 4.4. The Zariski closure of the boundary of G (B) is contained in V(pq), the vanishing
locus of the polynomial pq.

The Gram locus is the closure of the union of some connected components in R3\V(pq):
each connected component is either contained in the image, or disjoint from it. It suffices to
consider components contained inside the convex hull of the Gram locus. Figure 4.4 shows
that [0, 1

4
]3\V(Q) has five connected components. The connected component containing

(1
4
− ε, ε, ε), for ε > 0 sufficiently small, intersects the set g1 > g2 + g3, hence by Theorem 4.2

it is not contained in the image. There are three such components by symmetry. The interior
of the surface V(Q) is contained in the convex hull of the image. Likewise for the component
containing the point (1

4
− ε, 1

4
− ε, 1

4
− ε), for ε > 0 sufficiently small. A direct computation

finds tensors that map to each connected component of [0, 1
4
]3\V(pq) in these two last pieces,

hence they are the Gram locus. It remains to find the semi-algebraic description. The
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Figure 4.4: The relations between the Gram determinants of a 2× 2× 2 tensor.

interior of the surface V(Q) is given by Q ≥ 0. The surface Q = Q1 − Q2 meets the plane
g1 = 1

4
along the planar curve (g2 − g3)2 + 1

2
(g2 + g3) − 3

16
with multiplicity two. Imposing

that all three such polynomials, obtained by relabeling, be positive yields the component of
[0, 1

4
]3\V(Q) containing the point (1

4
− ε, 1

4
− ε, 1

4
− ε).

Polynomials p and q from the proof of Theorem 4.8 are computed in Macaulay2 [76]
as follows. Computational speed-ups are obtained by changing coordinates from the xijk,
the eight entries of the array, to coordinates yijk that are invariant under the orthogonal
group O2 ×O2 ×O2. The variables gi refer to the determinants, while a is the trace of any
flattening. First, make two ideals using the yijk coordinates

C1 = minors(3,jacobian(ideal(g1,g2,g3)));

C2 = minors(4,jacobian(ideal(g1,g2,g3,a)))+ideal(1-a);

Saturate with respect to the known ramification locus:

c = ideal((g1 - g2)*(g1 - g3)*(g2 - g3));

C1 = C1:c; C2 = C2:c;

Project C1 and C2 to the ring Q[g1, g2, g3] to obtain p and q respectively. The computation
takes 5 minutes, on a computer with a CPU clock speed of 2.6GHz.

A sufficient condition for a tensor to have extremal higher-order singular values is for it
to lie on the boundary of the convex hull of the Gram locus. I describe such tensors in the
following result.
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Corollary 4.10. The Gram determinants of a real binary tensor satisfy g1 = g2 + · · · + gd
if and only if they have at most two determinants non-zero: g1 and one other. Such tensors
are given by the tensor product of a 2 × 2 matrix, M , with d − 2 vectors, v(j), according to
the formula:

xi1...id = Mi1ijv
(2)
i2
· · · v̂(j)ij · · · v

(d)
id
,

where v̂
(j)
ij

denotes the omission of the jth term from the product.

Proof. The hypothesis that D(d) = g2 + · · · + gd − g1 = 0 means all terms in the sum of
squares certificate for D(d) vanish. Without loss of generality, assume that the first and
second determinants, g1 and g2, are non-zero. It suffices to show that the third determinant
vanishes.

Write out the second flattening of the tensor, denoted X(2), arranging the columns in
two blocks according to the value of the first index

X(2) =

[
← x00∗ → ← x10∗ →
← x01∗ → ← x11∗ →

]
.

All 2× 2 minors for which the first index is constant appear as terms in the sum of squares
certificate for D(d) (see the proof of Theorem 4.2). Therefore the left and right hand halves
of X(2) are two rank one matrices. Say they are given by multiples of vectors x and y
respectively, of length 2d−2. We write

X(2) =

[
t0x s0y
t1x s1y

]
.

We now write the third flattening in terms of vectors x and y. We write x =
[
x(0) x(1)

]
,

where the entries of x are arranged according to the value of the third index: x(0) are those
entries of the tensor with a 0 in their third index, and x(1) are those with a 1 in their third
index. Similarly for y. We can then write the third flattening as

X(3) =

[
t0x

(0) t1x
(0) s0y

(0) s1y
(0)

t0x
(1) t1x

(1) s0y
(1) s1y

(1)

]
.

Just as for the second flattening, we have organized the columns of the third flattening
according to the value of the first index. So the matrix is formed of two rank one matrices
concatenated side-by-side. This implies that there exists vectors x′ and y′ such that

X(3) =

[
α0t0x

′ α0t1x
′ β0s0y

′ β0s1y
′

α1t0x
′ α1t1x

′ β1s0y
′ β1s1y

′

]
. (4.4)

The term
(x01jx10i + x00ix11j − x01ix10j − x00jx11i)2
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appears in a sum of squares certificate for D(d), for all i and j, as follows. Let m be such
that i and j differ in m− 2 indices. Projecting to the m indices consisting of these and the
first two, we obtain one of the combinations of six minors from D

(m)
m depicted in Figure 4.3.

Hence it must be zero. Substituting in our expression in Equation (4.4) for the entries of
the tensor yields the equation

(α1β2s1t2 + α2β1t1s2 − α2β1s1t2 − α1β2s2t1)x
′
iy
′
j = 0, for all i and j,

where the entry of x′ corresponding to multi-index i is denoted x′i, and likewise for y′. Hence
one of x′ and y′ must be zero, which contradicts X(2) being full rank, or (α2β1−α1β2)(s2t1−
s1t2) = 0 which shows that X(3) is rank one, and hence g3 = 0, as required.

The true boundary of the Gram locus contains parts of all the hyperplanes gi = 1
4
. If

a tensor of norm one lies on the hyperplane gi = 1
4
, its singular values in the ith flattening

are both 1√
2

and, in particular, the two singular values are the same. However, the following
example shows that not all tensors on the boundary of the Gram locus have two singular
values the same in some flattening. This disproves the conjecture from [78, §1].

Example 4.11. Consider the tensor

x000 =
1
4
√

2
, x101 = x011 =

√
1

2
− 1

2
√

2
, xijk = 0, otherwise .

Its tuple of Gram determinants,

(g1, g2, g3) =

(
1

8
,
1

8
,

√
2− 1

2

)
,

lies on the part of V(Q) that contributes to the boundary of G (B). The higher-order singular

values are: the square roots of 1+
√
2

2
√
2

and 1
2
− 1

2
√
2
, for flattenings one and two, and the square

roots of 1√
2

and 1 − 1√
2

in the third flattening. It is labeled in Figure 4.5 by a black dot on
the boundary hypersurface.

A non-linear change of coordinates converts the Gram determinants into the higher-order
singular values, see Section 4.1. In [78], the authors work in the three-dimensional space of
the highest singular values from each flattening. The image of the nonlinear part of the
boundary of the Gram locus in these coordinates is depicted in Figure 4.5. The point of the
star near (1, 1, 1) is the true algebraic description for the experiments with random tensors
in [78, Figure 3.1].

4.3 Orthogonal equivalence of tensors

Fixing the singular values of a matrix determines it up to orthogonal changes of coordinates.
The same is not true for tensors. There exist tensors with the same higher-order singular
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Figure 4.5: The feasible higher-order singular values of a 2 × 2 × 2 tensor are the tuples
inside this surface.

values that are not related by an orthogonal change of coordinates. In general, a complete
list of orthogonal invariants of a tensor is not known, see Problem 4.1. In this section I give
a solution to the first case of this problem.

After fixing the norm, the tensors with the same higher-order singular values are given
by the fibers of the Gram determinant map, G −1(g1, . . . , gd) ⊆ R2×···×2. Each fiber is defined
by d non-homogeneous quartics in the space of binary tensors. It is a union of orbits under
the orthogonal equivalence action for binary tensors, O2 × · · · × O2 [78, Proposition 2.2].
Dimension counting reveals that the quotient

G −1(g1, . . . , gd)/ (O2 × · · · ×O2)

has dimension exponential in d: there are many tensors with the same higher-order singular
values that do not differ by an orthogonal change of coordinates. To characterize tensors up
to orthogonal changes of coordinates, we need to distinguish between distinct orbits inside
the fiber. A computation proves the following for the case d = 3.

Theorem 4.12. A 2×2×2 tensor is defined up to orthogonal equivalence by its higher-order
singular values and its hyperdeterminant.

The hyperdeterminant, given in Equation (1.15), is the unique invariant up to scaling
under the product of special linear groups SL2×SL2×SL2. Hence Theorem 4.12 says that if
two tensors are related by a change of basis and have the same higher-order singular values,
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they are related by an orthogonal change of basis. That is, the fibers of the map

(g1, g2, g3, α, hyperdet) : R2×2×2 → R5,

are the equivalence classes of tensors under orthogonal change of basis, where α is the norm of
a tensor. The result extends to tensors of multilinear rank (2, 2, 2) by applying the subspace
representation from Definition 1.10.

Consider the map that sends a tensor X of general format n1 × · · · × nd to its higher-
order singular values. The tensors Y in the same fiber as X are those whose ith principal
flattening is orthogonally equivalent to the ith principal flattening of X, for all 1 ≤ i ≤ d. In
particular, the first flattening is orthogonally equivalent to the first flattening of X, hence Y
is in the orbit (On1 × On2···nd

) ·X. Repeating for all 1 ≤ i ≤ d, we obtain that the fiber is
exactly those tensors in the intersection of orbits⋂

i

(Oni
×On1···n̂i···nd

·X).

However, the element of the group Oni
×On1···n̂i···nd

will be different for each i. Tensors in the
same fiber that differ by the same matrices in each flattening are orthogonally equivalent,
since ⋂

i

(Oni
×On1...n̂i...nd

) = On1 × · · · ×Ond
.

We can only express the fiber as the above intersection of d orbits, not as a single orbit. It is
an open problem, see Problem 4.1 to extend Theorem 4.12 to larger tensor formats: to give
the invariants describing tensors up to orthogonal equivalence.



79

Chapter 5

Rank vs. symmetric rank

Recall that a symmetric matrix is one that is unchanged under taking the transpose. A
decomposition of a symmetric matrix into rank one terms can be chosen to be symmetric,
by the eigen-decomposition. That is, the rank one terms in a decomposition can be chosen
to be of the form λv⊗ v, where v is a vector and λ is a scalar. This is useful for interpreting
the rank one signals present in symmetric matrix data: each rank one term is given by a
direction, the vector v, and a magnitude, the scalar λ, which measures the importance of
that direction. For example, in principal component analysis the principal components of
a data matrix M are the rank one matrices with largest coefficients λ in a decomposition
of MMT. See the discussion of the eigen-decomposition and PCA starting on Page 12. A
non-symmetric decomposition of MMT would have principal components of the form λu⊗v,
with direction represented by a pair of vectors (u, v). The component would correspond to
a pair of directions in the data matrix M , rather than a single direction, and this is harder
to interpret. As a general principle, if a data set has some symmetry, we would like the
symmetry to also be present in its decomposition.

Symmetric tensors X have entries xi1,...,id that only depend on the multi-set of indices
{i1, . . . , id}, not on the order of the indices, see Definition 1.6. An order three tensor X with
entries xijk is symmetric if and only if it satisfies xijk = xikj = xjik = xjki = xkij = xkji, see
Equation (1.4). A symmetric decomposition of a symmetric tensor X ∈ Kn×···×n (d times)
into rank one terms has the form

X =
r∑
i=1

λiv
⊗d
i ,

for vectors vi ∈ Kn and scalars λi. As in the matrix case, each rank one term is given by
a vector direction vi and a scalar λi measuring the importance of that direction. The rank
and symmetric rank of a tensor may not agree, by a result of Shitov [168], although it was
previously conjectured that they were the same, see Conjecture 1.18. Studying the rank and
symmetric rank of tensors in general is a topic of ongoing study. It is an open problem to
characterize which tensors have the same rank and symmetric rank, for different notions of
rank.
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The study of symmetric tensors connects to questions from classical algebraic geometry.
Symmetric tensors of format n× · · · × n (d times) are in bijection with homogeneous poly-
nomials of degree d in n variables, as we saw in Example 1.7. A symmetric decomposition
of a symmetric tensor translates to a decomposition of the corresponding polynomial into a
sum of powers of linear forms, see Equation (1.12).

In this chapter, I study the smallest tensor format for which the agreement of rank and
symmetric rank was not known: symmetric 4×4×4 tensors, or cubic surfaces (homogeneous
polynomials of degree 3 in four variables). I show that rank and symmetric rank agree for
cubic surfaces. A generic matrix has the highest possible rank, but the same is not true for
tensors, see Example 1.25. I introduce a test for certain high rank tensors via discriminant
loci. I use it to prove that cubic surfaces with finitely many singular points are a sum of at
most six cubic powers of linear forms, generalizing a classical result from [159]. These results
extend to order three tensors of all formats, implying the equality of rank and symmetric
rank of all tensors whose symmetric rank is at most seven.

The corresponding algebraic problem concerns border ranks. The non-equality of border
rank and symmetric border rank is not yet known, see the discussion after Conjecture 1.18.
I show that the non-symmetric border rank coincides with the symmetric border rank for
cubic surfaces. As part of my analysis, I obtain minimal ideal generators for the symmetric
analogue to the secant variety from the salmon conjecture [23, 69]. This analysis implies the
equality of border rank and symmetric border rank when the symmetric border rank is at
most five. This chapter is based on my preprint [161].

5.1 Ranks of cubic surfaces

A cubic surface is the zero set in projective space P3 of a homogeneous cubic polynomial in
four variables,

f = c3000z
3
1 + c2100z

2
1z2 + c1200z1z

2
2 + c0300z

3
2 + c2010z

2
1z3 + · · ·+ c0003z

3
4 . (5.1)

Such a polynomial has 20 coefficients, so the space of cubic surfaces is 19-dimensional.
Cubic surfaces are a central topic of study in classical algebraic geometry, and a motivating
example for more modern topics in algebraic geometry too. Most prominently, the discovery
of the 27 lines on the cubic surface in 1849 is celebrated as the beginning of modern algebraic
geometry [159, 181]. A modern project to understand the computational algebraic properties
of cubic surfaces can be found in the online collaboration [86]. Cubic surfaces correspond to
symmetric 4× 4× 4 tensors, via the correspondence

f(z1, z2, z3, z4) =
4∑

i,j,k=1

xijkzizjzk,



CHAPTER 5. RANK VS. SYMMETRIC RANK 81

a special case of Equation (1.5). A symmetric tensor of format 4× 4× 4 has entries xijk for
1 ≤ i, j, k ≤ 4 that satisfy the symmetry relations xijk = xikj = xjik = xjki = xkij = xkji,
hence there are 20 distinct entries. The main results in this chapter are the following.

Theorem 5.1. The rank and symmetric rank agree for cubic surfaces.

The conclusion extends to symmetric tensors of format n × n × n, by giving a range of
ranks among which all tensors have agreement of rank and symmetric rank.

Corollary 5.2. The rank and symmetric rank of a cubic polynomial in n variables (order
three symmetric tensor) are the same, whenever the symmetric rank is at most seven.

I also consider ranks over the real numbers, and show that real rank and symmetric real
rank agree for generic cubic surfaces. I make the following contributions for border ranks
over the complex numbers.

Theorem 5.3. The border rank and symmetric border rank agree for cubic surfaces.

Corollary 5.4. The border rank and symmetric border rank of a cubic polynomial are the
same whenever the symmetric border rank is at most five.

The example of a tensor whose rank and symmetric rank disagree, the counter‘example
to Conjecture 1.18 given in [168], is a large tensor, both in format and rank. In contrast, the
above results imply the agreement of rank and symmetric rank for small tensors and those
of low rank. This suggests the following two open problems.

Problem 5.5. (a) Find a symmetric tensor of format n× n× n, with n minimal, whose
rank and symmetric rank differ.

(b) Find a tensor of symmetric rank r, with r minimal, whose rank and symmetric rank
differ.

This problem is relevant in determining whether rank and symmetric rank agree for the
formats and ranks of tensors occurring in a particular application. The results in this chapter
show that the n in Problem 5.5(a) satisfies n ≥ 5 while [168] shows that n ≤ 800, and further
reductions can be made via flattening ranks. For Problem 5.5(b), the results in this chapter
imply that r ≥ 8 while [168] implies that r ≤ 906.

In the rest of this section, I prove that the rank and symmetric rank coincide for a cubic
surface. Each subsection proves the equality of rank and symmetric rank for the family of
cubic surfaces in the title. Together the subsections prove Theorem 5.1.
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Cones over cubic curves

The flattenings of a tensor are the reshapings of its entries into a matrix, see Page 15. A
4 × 4 × 4 symmetric tensor has only one distinct flattening, a matrix of format 4 × 16.
Cones over cubic curves have a natural characterization in terms of tensors: they are the
symmetric tensors whose flattening matrix has rank ≤ 3. Such tensors parametrize the
subspace variety [105, §7.1] defined by the vanishing of the 4 × 4 minors of the flattening.
We change coordinates by an element M of the general linear group GL4, with entries mij,
to obtain a tensor X ′ with non-zero entries only in its upper-left 3× 3× 3 block. Its entries
are expressed in terms of X and M as

x′ijk =
4∑

a,b,c=1

xabcmaimbjmck.

Rank is invariant under general linear group action, hence X ′ has the same rank as X. Given
an expression for X ′ as a sum of rank one tensors, setting the fourth entry of all vectors that
appear in the decomposition to zero gives a valid expression with the same number of terms.

Hence, to study ranks of cones over cubic curves it suffices to study ranks of plane cubic
curves or symmetric 3× 3× 3 tensors. It is known that the rank and symmetric rank agree
for cubic curves of sub-generic flattening rank (2× 2× 2 tensors and rank one tensors) e.g.
via their normal forms. Note that there does not exist a finite list of normal forms in the
case of cubic surfaces, because the dimension of the projective general linear group PGL4

is 15, whereas the space of cubic surfaces is 19-dimensional. For the 3× 3× 3 case, I use the
following result from [68].

Theorem 5.6 ([68, Theorem 1.1]). Let K be a field with at least three elements. Consider
a symmetric tensor T ∈ (Kn)⊗d whose rank is bounded above by its flattening rank plus one.
Then the rank and symmetric rank of T defined over K coincide.

It follows from Theorem 5.6 that, if the symmetric rank is bounded above by the flattening
rank plus two, then the rank and symmetric rank coincide: the alternative is that the rank is
strictly less than the symmetric rank, which means it satisfies the hypothesis of the theorem.
Cubic curves have a generic flattening rank of three. Therefore Theorem 5.6 says that
the rank and symmetric rank coincide provided the symmetric rank is at most five. The
classification of cubic curves in [159, §96] shows that five is the maximum possible symmetric
rank. This concludes the proof of Theorem 5.1 for cones over cubic curves.

Non-singular cubic surfaces

Based on the previous subsection, it remains to consider cubic surfaces with flattening rank
four. When the rank is at most five, Theorem 5.6 implies that the rank and symmetric
rank coincide. This leaves the cubic surfaces that are not expressible as a sum of five linear
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powers, those for which Theorem 1.19 fails to give a decomposition. There are two such
families of non-singular cubic surfaces, see [159, §94], with equations

(z31 + z32 + z33) + z24(λ1z1 + λ2z2 + λ3x3 + λ4z4),
µ1z

3
1 + z32 + z33 − 3z1(µ2z1z2 + z1z3 + z24).

(5.2)

The parameters λi, µj are arbitrary subject to maintaining non-singularity. The failure
of Sylvester’s Pentahedral Theorem for these surfaces is due to the non-genericity of their
Hessian quartic surface, which has fewer than 10 distinct singular points. These cubics have
symmetric rank six [159, §97]. The non-symmetric rank cannot be five or less by Theorem 5.6.

Cubic surfaces with infinitely many singular points

I begin with the reducible cubic surfaces, followed by the irreducible cubic surfaces with
infinitely many singular points. The three normal forms of reducible cubic surfaces are given
in [41]. They are z1(z

2
1 + z22 + z23 + z24), z1(z

2
2 + z23 + z24), and z1(z1z2 + z23 + z24). The first two

have symmetric rank six [41], hence by Theorem 5.6 they also have rank six. The third has
symmetric rank seven [159]. I show that the rank of this normal form is seven, and hence
that its rank and symmetric rank agree.

Proposition 5.7. The cubic surface f = z1(z1z2 + z23 + z24) has non-symmetric rank seven.

Proof. The polynomial f can be written up to scale as the symmetric 4× 4× 4 tensor
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

 .
Apply the substitution method, from Theorem 2.5, iteratively to the second, third, and
fourth slices of f . The slices are linearly independent 4× 4 matrices. No linear combination
of them can be subtracted from the first slice to give a vanishing determinant. These two
observations imply that the rank of f is bounded from below by 4 + 3 = 7. Since the
symmetric rank is seven, the non-symmetric rank cannot exceed seven.

There are two normal forms of irreducible cubic surfaces with infinitely many singular
points [159, §97], with representatives z1z

2
2 + z3z

2
4 , which has symmetric rank six, and z21z2 +

z1z3z4 + z33 with symmetric rank at most seven. In the former case the non-symmetric rank
is also six, using Theorem 5.6. In the latter case we follow an approach as in Proposition 5.7.

Proposition 5.8. The cubic surface f = z21z2 + z1z3z4 + z33 has non-symmetric rank seven.
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Proof. The polynomial f is the symmetric 4× 4× 4 tensor
0 1

3
0 0 1

3
0 0 0 0 0 0 1

6
0 0 1

6
0

1
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

6
0 0 0 0 0 0 1 0 1

6
0 0 0

0 0 1
6

0 0 0 0 0 1
6

0 0 0 0 0 0 0

 .
The second, third, and fourth slices are linearly independent. No linear combination of them
can be subtracted from the first slice to give a vanishing determinant. Hence the rank is at
least 4 + 3 = 7. The symmetric rank is at most seven hence both ranks are seven.

Cubic surfaces with finitely many singular points

I introduce a test to show that a cubic surface f has symmetric rank at most five. The test
checks that f does not lie on two discriminant loci that contain the tensors of higher rank.
I use it to prove Theorem 5.1 for cubic surfaces with finitely many singular points.

The singular cubic surfaces lie on the discriminant hypersurface [74, Introduction II].
Non-singular cubic surfaces, on the complement of the hypersurface, have symmetric rank at
most five unless they are of the form in Equation (5.2). The surfaces in Equation (5.2) are
contained in a second discriminant locus. The test is the following: if neither discriminant
vanishes at f , it has symmetric rank at most five.

I now explain how to construct the second discriminant. The determinant of a 4 ×
4 symmetric matrix of indeterminates defines a hypersurface in P9 with a degree 10 and
codimension three locus of singular points, where the 3 × 3 minors of the matrix vanish.
Setting the entries of the 4×4 matrix to be linear forms in four variables gives a codimension
six linear space in the space of symmetric matrices of indeterminates. The determinant is
now a hypersurface in P3 and, for a generic choice of linear forms, the singular locus consists
of 10 points. The Hurwitz form of a variety is a hypersurface in the Grassmannian consisting
of linear spaces that intersect the variety in a sub-generic number of points [178]. The linear
forms whose determinant hypersurfaces have fewer than 10 singular points are the Hurwitz
form of the variety of rank two 4×4 symmetric matrices, a hypersurface in the Grassmannian
of codimension six linear spaces. Applying [178, Theorem 1.1] shows that the Hurwitz form
in this setting is an irreducible hypersurface of degree 30 in the Plücker coordinates of the
Grassmannian, since the sectional genus is six. The Hurwitz form has degree 120 in the
coordinates of the indeterminates, since each Plücker coordinate has degree four.

The Hessian matrix of a cubic surface is a 4 × 4 symmetric matrix of linear forms in
four indeterminates, the second order partial derivatives. The determinant of the matrix
is the defining equation of the Hessian surface, which generically has 10 singular points at
which the 3 × 3 minors of the matrix vanish. The cubic surfaces in Equation (5.2) are
special in that their Hessian surfaces have fewer than 10 distinct singular points. Hence they
lie on the specialization of the Hurwitz form above to Hessian matrices of cubic surfaces.
This is a discriminant hypersurface in the space of cubic surfaces, which I call the Hessian
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discriminant. It divides the specialization of the Hurwitz form. The above paragraph implies
the following.

Proposition 5.9. The Hessian discriminant is a hypersurface of degree at most 120 in the
20 coefficients of the cubic surfaces.

We obtain a test for a cubic surface having symmetric rank at most six as follows. If
there exists a linear form l such that f + l3 has symmetric rank at most five, then f has
symmetric rank at most six. To check that f has symmetric rank at most six, it suffices to
check that neither discriminant vanishes identically on the set of cubic surfaces of the form
f + l3, as l ranges over the linear forms. I first prove this for the discriminant of singular
cubics via the following result, which is stated without proof in [159, §97].

Lemma 5.10. Let f ∈ C[z1, z2, z3, z4] be a cubic surface with finitely many singular points.
Then for a generic linear form l ∈ C[z1, z2, z3, z4] the cubic surface f + l3 is non-singular.

Proof. A generic l satisfies l(p) 6= 0 at all singular points p of f , since the plane perpendicular
to the coefficients of l needs to avoid finitely many points. A singular point of g = f + l3

at which l(p) 6= 0 must satisfy g(p) = 0, and
(
∂f
∂z1
|p : ∂f

∂z2
|p : ∂f

∂z3
|p : ∂f

∂z4
|p
)

= (l1 : l2 : l3 : l4).

The partial derivatives of f as p varies over g = 0 parametrize a subset of P3 of dimension
at most two. Hence for generic l this equation will not hold at any p on the surface g.

Remark 5.11. Lemma 5.10 can fail for surfaces with infinitely many singular points, such as
z1(z1z2 + z23 + z24) from Proposition 5.7. It is singular at (z1 : z2 : z3 : z4) = (0 : t1 : t2 : ±it2)
for (t1 : t2) ∈ P1. Every linear form l vanishes at a non-zero singular point of f and at that
point f + l3 is also singular.

I now prove the following result concerning the Hessian discriminant, which uses compu-
tations in the computer algebra systems Macaulay2, Magma and Maple [76, 35, 117].

Lemma 5.12. For all cubic surfaces with finitely many singular points, except those of
singularity type E6, there exists a linear form l such that f + l3 does not lie on the Hessian
discriminant.

Proof. I refer to the classification of cubic surfaces with finitely many singular points in [39,
156, 171]. There are infinitely many normal forms, which fall into 20 classes according to
the structure of the singularities. Thirteen classes have a single normal form representative.
For these, we compute in Macaulay2 the ideal of singular points of the Hessian of f + l3 for
random linear form l. For 12 classes, all except for the singularity type named E6 in [39], this
computation gives an ideal of degree 10 and f + l3 does not lie on the Hessian discriminant.

It remains to consider the seven classes from [156, Theorem 2] which are given in terms of
parameters, f = f(ρ). We sample linear forms li and compute the discriminant of f(ρ) + l3i .
This gives a polynomial condition in the parameters which vanishes when f(ρ)+l3i lies on the
Hessian discriminant. We consider sufficiently many linear forms, in order that there does
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not exist a choice of parameters such that the Hessian discriminant vanishes at f(ρ) + l3i for
all linear forms in the sample. We choose linear forms for which the computation to form the
discriminant is not prohibitively slow. We construct the discriminant using Macaulay2 or
Maple, and check that no parameters satisfy all discriminants using Macaulay2 or Magma.

Often a good choice of linear form is l = 0; if the Hessian discriminant does not vanish
at f then it also does not vanish at f + l3 when l has sufficiently small coefficients. In some
cases we consider enough linear forms such that the Hessian discriminant only vanishes at
all f(ρ)+ l3i for a finite number of parameters ρ, and then we check the remaining parameter
values one by one in the same way as for the single normal form representatives.

It remains to consider the singularity type E6, with normal form z21z4 + z1z
2
3 + z32 . Here

we can see that the symmetric rank is at most six directly, since the normal form can be
re-written as a sum of six linear powers,

1

6
z34 +

1

6
(2z1 + z4)

3 − 1

3
(z1 + z4)

3 + z32 −
1

2
(z1 +

i√
3
z3)

3 − 1

2
(z1 −

i√
3
z3)

3.

Hence we have proved the following.

Theorem 5.13. Cubic surfaces with finitely many singular points have symmetric rank at
most six.

When the symmetric rank is at most six, the equality of rank and symmetric rank follows
from Theorem 5.6, hence this concludes the proof of Theorem 5.1. To conclude the section
I prove Corollary 5.2.

Proof of Corollary 5.2. By Theorem 5.1, it remains to consider tensors of flattening rank five
or more. By Theorem 5.6, the rank and symmetric rank agree when the rank is at most the
flattening rank plus one. Hence they agree up to rank six, and symmetric rank seven.

5.2 Border rank vs. symmetric border rank

The set of rank one n× n× n tensors and the set of rank one n× n× n symmetric tensors,
up to scale, are respectively the Segre and Veronese varieties in complex projective space,
see Definitions 1.20 and 1.22. In this section I denote them by

Sn := Seg(Pn−1 × Pn−1 × Pn−1) and Vn := ν3(Pn−1).

Recall that the rth secant variety σr(Sn) consists of all tensors of non-symmetric border rank
at most r. Likewise σr(Vn) consists of all tensors of symmetric border rank at most r. I
denote the linear subspace of symmetric tensors up to scale inside Pn3−1 by Ln.

The statement that border rank and symmetric border rank agree for cubic surfaces, in
Theorem 5.3, is equivalently the statement that σr(V4) and σr(S4) ∩ L4 are equal for all r.
Corollary 5.4, that the border rank and symmetric border rank agree up to symmetric border
rank five, is the statement that σr(Vn) = σr(Sn) ∩ Ln for all n, whenever r ≤ 4.
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Border ranks of cones over cubic curves

As for the rank result, we can apply a symmetric change of basis to such cubic surfaces
to ensure that only the top-left 3 × 3 × 3 block contains non-zero entries. The tensors in
any approximating sequence can always be chosen to have this property, hence it suffices to
consider cubic curves. The space of cubic curves is 10-dimensional. The secant varieties of the
Veronese variety V3 = ν3(P2) are not defective, by the Alexander-Hirschowitz Theorem [4].
The dimensions are

dim(V3) = 2, dim(σ2(V3)) = 5 dim(σ3(V3)) = 8, dim(σ4(V3)) = 10.

Since the fourth secant variety fills the space S3(C3), cubic curves have border rank ≤ 4.

Lemma 5.14. The border rank and symmetric border rank of cubic curves coincide.

Proof. We compare the equations defining the secant variety σr(V3) with the symmetric
restriction of the equations defining the non-symmetric secant σr(S3), for 1 ≤ r ≤ 4. The
equations defining the Segre variety S3 are the 2×2 minors of all flattenings. Restricting these
equations to symmetric tensors gives the equations defining V3, the 2× 2 minors of the most
symmetric catalecticant. Similarly σ2(S3) is given by the vanishing of the 3×3 minors of the
flattenings. Restricting to symmetric tensors, we get the equations for σ2(V3), the 3×3 minors
of the most symmetric catalecticant. The equations defining σ3(S3) are Strassen’s commuting
conditions. Restricting these to symmetric tensors recovers the Aronhold invariant which
defines σ3(V3), see [105, Exercise 3.10.1.2].

Cubic curves outside σ3(V3) have non-symmetric border rank at least four, as they do not
lie in the symmetric restriction of σ3(S3). Their non-symmetric border rank cannot exceed
their symmetric border rank, so the non-symmetric border rank must be exactly four.

Symmetric salmon equations

Finding ideal generators for the secant variety σ4(S4) is the salmon conjecture, posed by
Allman in 2007. In [23, 69], set-theoretic equations for the variety are found, although ideal-
theoretic equations are not known. Here we obtain the prime ideal for σ4(V4), a ‘symmetric
salmon’ result.

The description for the set σ4(S4) consists of equations in degrees five, six and nine.
There are 1728 degree five equations. Restricting the equations to symmetric tensors yields
36 linearly independent quintics that vanish on the set σ4(V4). Here is one of the quintics,
in the coefficients of the cubic surface from Equation (5.1).
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16c21002c0201c
2
0120 − 8c21002c0210c0120c0111 − 12c1011c1002c0201c0120c0111 + 4c1011c1002c0210c20111 + c21011c0201c

2
0111

+4c1020c1002c0201c20111 + 4c1101c1002c0120c20111 − c1101c1011c30111 − 2c1110c1002c30111 + c2001c40111
+8c1011c1002c0210c0120c0102 + 4c21011c0201c0120c0102 − 16c1101c1002c20120c0102 − 4c21011c0210c0111c0102

−8c1020c1002c0210c0111c0102 − 4c1020c1011c0201c0111c0102 + 4c1101c1011c0120c0111c0102 + 8c1110c1002c0120c0111c0102
+2c1110c1011c20111c0102 − 8c2001c0120c20111c0102 + 8c1020c1011c0210c20102 − 8c1110c1011c0120c20102 + 16c2001c20120c

2
0102

+16c21002c
2
0210c0021 + 8c1011c1002c0210c0201c0021 − 4c21011c

2
0201c0021 − 16c1020c1002c20201c0021 + 8c1101c1002c0201c0120c0021

−12c1101c1002c0210c0111c0021 + 4c1101c1011c0201c0111c0021 + 8c1110c1002c0201c0111c0021 + c21101c
2
0111c0021

+4c1200c1002c20111c0021 − 8c2001c0201c20111c0021 − 4c1101c1011c0210c0102c0021 − 16c1110c1002c0210c0102c0021
+8c1101c1020c0201c0102c0021 + 16c1200c1002c0120c0102c0021 − 16c2001c0201c0120c0102c0021
−4c1110c1101c0111c0102c0021 − 4c1200c1011c0111c0102c0021 + 24c2001c0210c0111c0102c0021

+4c21110c
2
0102c0021 − 16c1200c1020c20102c0021 − 4c21101c0201c

2
0021 − 16c1200c1002c0201c20021 + 16c2001c20201c

2
0021

+8c1200c1101c0102c20021 − 16c1011c1002c20210c0012 + 16c1020c1002c0210c0201c0012 + 8c1020c1011c20201c0012
+8c1101c1002c0210c0120c0012 − 4c1101c1011c0201c0120c0012 − 16c1110c1002c0201c0120c0012 + 4c1101c1011c0210c0111c0012

+8c1110c1002c0210c0111c0012 − 4c1101c1020c0201c0111c0012 − 4c1110c1011c0201c0111c0012 − 4c21101c0120c0111c0012
−8c1200c1002c0120c0111c0012 + 24c2001c0201c0120c0111c0012 + 2c1110c1101c20111c0012 − 8c2001c0210c20111c0012

−8c1101c1020c0210c0102c0012 + 8c1110c1011c0210c0102c0012 + 8c1110c1101c0120c0102c0012 − 8c1200c1011c0120c0102c0012
−16c2001c0210c0120c0102c0012 − 4c21110c0111c0102c0012 + 16c1200c1020c0111c0102c0012 + 4c21101c0210c0021c0012

+8c1200c1011c0201c0021c0012 − 16c2001c0210c0201c0021c0012 − 4c1200c1101c0111c0021c0012
−8c1110c1101c0210c20012 + 16c2001c20210c

2
0012 + 4c21110c0201c

2
0012 − 16c1200c1020c0201c20012 + 8c1200c1101c0120c20012.

The above polynomial is one of the quintics in the following result.

Proposition 5.15. The prime ideal of σ4(V4) is generated by 36 quintics.

Proof. The 36 quintics are obtained by restricting the degree five salmon equations to sym-
metric tensors. Using symbolic computations in Macaulay2, they are shown to generate an
ideal of degree at most 105 and codimension 4. Their ideal is Gorenstein, with symmetric
minimal free resolution

R1 ← R36 ← R70 ← R36 ← R1 ← 0,

whereR = C[c3000, . . . , c0003]. Using the numerical algebraic geometry methods of Bertini [24],
the highest dimensional component of the variety defined by the 36 quintics is shown to be
irreducible, and to have degree 105. The Gorenstein property means the unmixedness theo-
rem [64, Corollary 18.14] applies: there cannot be lower-dimensional components. The zero
set of the 36 quintics contains the codimension four set σ4(V4) of symmetric border rank
four tensors, and hence since the codimensions agree, and the former set is irreducible, they
are equal as sets. Furthermore, the ideal generated by the 36 quintics is prime, hence they
generate the ideal of σ4(V4).

Proposition 5.16. The 36 quintics defining σ4(V4) are the irreducible module S5,4,4,2(C4).

Proof. Proposition 5.15 shows that σ4(V4) is generated by 36 quintics. Since σ4(V4) is in-
variant under GL4 action, the quintics are a GL4 module in the 42504-dimensional space
of quintic polynomials in the coefficients of cubic surfaces, S5(S3C4). The GL4 modules
in S5(S3C4) are a subset of those from (C4)⊗15. The irreducible modules of the latter are
indexed by Young diagrams with 15 boxes and no more than four rows [105]. We compute
in SAGE [154] which GL4-modules from (C4)⊗15 occur in the decomposition of S5(S3C4),
by evaluating
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s = SymmetricFunctions(QQ).schur(); s[5].plethysm(s[3])

and then selecting modules whose diagrams have at most four parts. We obtain

S5,4,4,2 ⊕ S6,4,4,1 ⊕ S6,5,2,2 ⊕ S6,6,3 ⊕ S7,4,2,2 ⊕ S7,4,3,1 ⊕ S7,4,4 ⊕ S7,5,2,1

⊕S7,6,2 ⊕ S8,3,2,2 ⊕ S8,4,2,1 ⊕ S8,4,3 ⊕ S8,5,2 ⊕ S8,6,1 ⊕ S9,2,2,2 ⊕ 2S9,4,2

⊕S9,6 ⊕ S10,3,2 ⊕ S10,4,1 ⊕ S10,5 ⊕ S11,2,2 ⊕ S11,4 ⊕ S12,3 ⊕ S13,2 ⊕ S15.

The numbers labeling each module are the length of the rows of the Young diagram. A highest
weight vector analysis shows that the quintics are the 36-dimensional module S5,4,4,2C4.
Alternatively, this is the only combination of irreducible modules of dimension 36.

Proof of border rank results

Proposition 5.17. If the border rank and symmetric border rank agree for r× r× r tensors
of border rank r, then they agree for n× n× n tensors of border rank r, for all n ≥ r.

Proof. The containment σr(Vn) ⊆ σr(Sn)∩Ln always holds. It remains to prove the reverse
containment. We can use the technique of inheritance (see [105, Example 5.7.3.8 and §7.4]).
Equations for σr(Sn) consist of (r+1)× (r+1) minors of flattenings, and copies of equations
for σr(Sr) obtained by choosing a basis of size r in each factor Cn. The (r + 1) × (r + 1)
minors intersect with Ln to give the minors of the symmetric flattenings, while the equations
for σr(Sr) intersect with Ln to give σr(Vr) by the hypothesis of the proposition. We can then
compare with the equations for σr(Vn) given in [105, Corollary 7.4.2.3]. The equations are
the (r + 1)× (r + 1) minors of the symmetric flattenings, as well as copies of equations for
σr(Vr) given by choosing the same basis of size r in each factor Cn. All such choices of basis
are covered by the non-symmetric choices in the equations for σr(Sn), hence this proves the
reverse containment.

Proof of Theorem 5.3. By the Alexander-Hirschowitz theorem [4], the secant variety σ5(V4)
fills the space of symmetric 4× 4× 4 tensors. As in Lemma 5.14, we compare the equations
defining the secant variety σr(V4) with the symmetric restriction of the equations defin-
ing the non-symmetric secant σr(S4), for 1 ≤ r ≤ 5. The result for r = 1, 2, 3 follows
from Lemma 5.14 combined with Proposition 5.17. When r = 4 the result follows from
Proposition 5.15. Finally, all tensors outside of σ4(V4) have symmetric complex border rank
five. Proposition 5.15 implies that they must also have non-symmetric complex border rank
five.

Proof of Corollary 5.4. Theorem 5.3 combined with Proposition 5.17 shows that all tensors
of border rank r also have symmetric border rank r, for 1 ≤ r ≤ 4. Consider a tensor of
symmetric border rank five. Its border rank cannot be four by Theorem 5.3. Hence the
border rank is also five.
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5.3 Real rank vs. symmetric real rank

I first prove the following, by combining results from the literature.

Proposition 5.18. Real rank and real symmetric rank coincide for generic real cubic sur-
faces.

Proof. A generic real cubic surface has complex rank five, f = l31 + l32 + l33 + l34 + l35. The
linear forms li define five planes in P3 that comprise Sylvester’s pentahedron. The triple
intersections of the planes are the singular points of the Hessian surface. Since f has real
coefficients, so does its Hessian surface, and the singular points of the Hessian occur in
complex conjugate pairs. Hence the complex linear forms appearing in the decomposition
of f also occur in complex conjugate pairs. There can be zero, one, or two complex conjugate
pairs in the decomposition. A cubic l3 + l3, where l is complex and l its complex conjugate,
has real symmetric rank three. Hence in the first two cases the real symmetric rank is
bounded above by six. In [28], the authors show that the symmetric rank of the third case is
also at most six, and therefore that a generic real cubic surface has real symmetric rank five
or six. Generic cubic surfaces have flattening rank four, hence we can apply Theorem 5.6,
which also holds over the field R, to conclude that the real symmetric and non-symmetric
ranks coincide up to rank five, and hence up to symmetric rank six.

We consider special cubic surfaces in more detail, starting with cones over cubic curves.

Proposition 5.19. Real rank and real symmetric rank coincide for cones over cubic curves.

Proof. Such surfaces have flattening rank at most three. We apply a general linear group
transformation to obtain a real symmetric tensor with non-zero entries only in its top-left
3× 3× 3 block, and we study the cone as a cubic curve. Using Theorem 5.6, equality of real
rank and real symmetric rank holds whenever the real symmetric rank is at most two more
than the flattening rank. To conclude the proof, we check that all real cubic curves have this
property [18, Table 1].

It remains to consider cubic surfaces of maximal flattening rank and, by Theorem 5.6,
those of real symmetric rank at least seven. One example is given in Proposition 2.7. We
saw above that every real cubic surface is arbitrarily close to one of real symmetric rank
five or six. The real rank five locus is separated from the real rank six locus by a degree 40
hypersurface [122]. We are interested in the real analogue of Theorem 5.3: to show that the
real border rank and real symmetric border rank agree. Generic tensors have the same real
rank as real border rank, hence their real border rank and real symmetric border rank agree
by Proposition 5.18. To conclude the chapter, I prove the following result.

Proposition 5.20. Real border rank and real symmetric border rank coincide for all cubic
surfaces of sub-generic real symmetric border rank.
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Proof. The set of real rank one tensors is closed, so I begin by considering a cubic surface of
real border rank two. Such cubic surfaces lie in the real rank two locus, which is defined by
the non-negativity of the hyperdeterminant of all 2×2×2 blocks, by Theorem 2.2. The locus
of real symmetric border rank two tensors is contained in this set, being described by the
non-negativity of the diagonal (symmetric) 2×2×2 blocks [164]. All diagonal combinations
occur among the non-symmetric inequalities, hence the two sets are equal.

I now consider real border rank three cubic surfaces. Since the flattening rank is bounded
above by the border rank, the flattening rank is at most three and we can change coordinates,
as in the previous sections, to consider f as a plane cubic curve. From Theorem 5.3, it suffices
to consider the orbits in [18, Table 1-2] of cubic curves whose complex (symmetric) border
rank is strictly less than their real symmetric border rank. This applies to only one orbit,
which has border rank two, hence it is covered by the first paragraph. Finally, assume f is
a cubic surface with real symmetric border rank four. The real non-symmetric border rank
cannot be strictly less than four by the above cases.

The results in this section constitute progress towards the real rank analogues of Theo-
rem 5.1 and Theorem 5.3. Completing the real rank version of Theorem 5.1 requires proving
the equality of real rank and real symmetric rank for singular irreducible cubic surfaces,
and non-singular cubic surfaces for which Theorem 1.19 fails to give a decomposition. To
prove Theorem 5.3 for real border rank, it remains to consider cubic surfaces whose rank
and border rank differ, having real border rank five or six.
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Chapter 6

Tensor hypernetworks

We have seen the importance of low rank structure in the study of matrices and tensors.
Tensor networks are a flexible framework of different notions of rank for a tensor. A tensor
network is a family of tensors that factor according to the adjacency structure of the graph,
as I describe shortly. Tensor networks are widely used, in contexts ranging from numerical
analysis [77, 138] to theoretical physics [29, 104, 137] to function approximation [12, 14].

In this chapter, I describe tensor hypernetworks: the set of tensors which can be factored
according to the adjacency structure of a hypergraph. This is a broader framework than
tensor networks, encompassing both tensor networks as well as the usual tensor rank. More-
over, it has close connections to statistics. I describe how tensor hypernetworks are dual to
graphical models, multivariate statistical models based on graphs. In this chapter I usually
denote a tensor by T to avoid confusion with random variables, which are denoted by the
letter X. This chapter is based on joint work with Elina Robeva, published in Information
and Inference: A Journal of the IMA [152].

I begin by considering a familiar example of a tensor network: the set of low rank matrices.

Example 6.1 (Matrix rank). Recall that a matrix M of format n1×n2 is rank r if and only
if it can be written as the product of an n1 × r matrix A and an n2 × r matrix B, via

M = ABT or, in coordinates, mij =
r∑

k=1

aikbkj. (6.1)

Figure 6.1: Matrix rank as a tensor network.
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Rank r matrices factor according to the weighted graph in Figure 6.1. The vertices of the
graph are labeled by the matrices A and B. The graph has two kinds of edges.

• Dangling edges: The edges labeled i and j are only connected to one vertex, and are
not summed over in the decomposition of M .

• Full edges: The edge between A and B is labeled by the an index k that is summed over
in Equation (6.1). This edge has weight r, because the index k is summed from 1 to r.

As the weight r is increased, more matrices factor according to this tensor network. When
r = min(n1, n2), all matrices can be decomposed as in Equation (6.1).

A general tensor network is formed by taking building blocks of the form in Example 6.1.
For a general graph, each dangling edge is labeled by an index of the original tensor, and each
full edge is labeled by an index that is summed over in the decomposition. The edges are
given weights that tell us how many values the index can take. The weights of the dangling
edges give the format of tensors that the tensor network represents. The weights of the full
edges give the tensor network ranks [190], which quantify the restrictiveness of the tensor
network: the higher the weights, the more tensors can be represented by the tensor network.

A widely-studied tensor network arises from the Tucker decomposition. In the Tucker
decomposition, we write a tensor as the product of a smaller core tensor C with a tuple of
matrices A(i), via

X = [[C;A(1), . . . , A(d)]], where C ∈ Km1×···×md and A(i) ∈ Kn1×mi . (6.2)

See Equation (1.10) for the coordinate description. The singular values arising from such
a decomposition were the focus of Chapter 4. Fixing the formats of the tensors involved
gives us a tensor network. For example, we can consider the set of tensors X of format
n1×n2×n3 that have a factorization as in Equation (6.2), for some core tensor C of format
m1×m2×m3. The matrices A(i) that relate C to X have formats ni×mi. The set of tensors
which have such a decomposition parametrize the tensor network in Figure 1.7.

If we decompose a general tensor with respect to a tensor network, the edges will have
large weights, and there will be poor reduction in the complexity of the set-up. The idea
behind tensor networks is that the tensors of interest in an application can be accurately
approximated by a well-chosen tensor network with fairly low edge weights. For example, in
a Tucker approximation the format of the core tensor m1 ×m2 ×m3 is a tradeoff between
accuracy and conciseness. For the tensor network to exactly represent a tensor X, the mi

would need to be at least as large as the ranks of the principal flattenings of the tensor.
For an approximate decomposition, the ranks mi need to be at least the number of ‘large’
singular values in the flattenings.

If a flattening of a tensor has low rank, it indicates that the indices in the rows are approx-
imately uncoupled from the indices in the columns. A tensor network uses this information,
across various flattenings, to decompose the tensor. The choice of graph is important, the
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idea is to use a graph whose adjacency structure reflects the application at hand. In [190],
the authors study how tensors with a low-complexity description with respect to one graph,
can have high weights with respect to a different graph.

The computational properties of a tensor network are important for decomposing or
approximating a tensor stably and accurately by a tensor network. In [77], the author
describes the numerical stability properties of hierarchical tensor networks, those whose
underlying graph is a tree. In [102], the authors show that the set of tensors in a tensor
network may not be closed if the underlying graph contains a cycle.

The following example highlights a central motivating application of tensor networks.

Example 6.2 (Matrix Product States/Tensor Trains). The quantum state of a d particle
system is given by a tensor of order d. For a system of qubits, we obtain a binary tensor,
of format 2 × · · · × 2. More generally, we have d particles which can take two or more
possible states. wave functionThe tensor entry at the index (i1, . . . , id) is the value of the
wave function at that tuple of states. A long-standing intuition in physics is that tensors
arising from many body quantum systems have a special structure: particles further away
are less entangled than the neighbouring particles. This means the wave function can be
accurately approximated by a tensor network with underlying graph given by the following
picture, for the example of four particles on a one-dimensional lattice.

In the study of quantum many-body systems, such tensor networks are called matrix product
states, and in numerical analysis they are called tensor trains [138].

The notion that quantum states are well-approximated by matrix product states can be
formalized as an area law for one-dimensional quantum systems, first proved in [81] and
strengthened in [10]. Such an approximation is important because it allows efficient compu-
tations with the wave function. I return to matrix product states in Section 6.2.

In Example 6.1, we saw that matrix rank gives a tensor network. It is natural to wonder
whether tensor rank can also be thought of as a tensor network. This would allow a unified
treatment of flattening ranks, tensor network ranks, and usual ranks, when deciding the
best way to represent a tensor of interest. Recall that an order three tensor X of format
n1 × n2 × n3 has rank r if it can be written

X =
r∑
l=1

al ⊗ bl ⊗ cl, or, in coordinates, xijk =
r∑
l=1

alibljclk,

where ali is the ith entry of the vector al. We arrange the vectors al to form a matrix A
of format n1 × r, and likewise we form the matrices B and C. The three indices (i, j, k)
are not summed over, and the index l is summed over. However, the index l appears three
times in the decomposition, so it cannot be thought of as a contraction of an index along
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an edge. Instead, it is a contraction along a hyperedge connecting the vertices A, B and
C. The set of tensors of rank at most r is parametrized by a tensor hypernetwork, a tensor
network based on hyperedges. This representation does not require special structure (such
as diagonal structure) on the matrices A,B,C appearing at the vertices, unlike ways to
represent tensor rank via a usual tensor network.

Example 6.3 (Tensor rank as a tensor hypernetwork). Consider the following hypergraph.

There is one dangling edge for each vertex. There is one more hyperedge, of weight r (repre-
sented by a shaded triangle) that connects the three vertices. The arrays at the vertices are
matrices of formats n1 × r, n2 × r, and n3 × r.

The set of tensors which factor according to this tensor are exactly the tensors of format
n1 × n2 × n3 and rank ≤ r. Extending this to d vertices, with a hyperedge of weight r, gives
tensors of format n1 × · · · × nd, and rank at most r.

I now give the general definition of a tensor hypernetwork, by first recalling the definition
of a hypergraph.

Definition 6.4. A hypergraph G = (V,E) consists of a set of vertices V , and a set of
hyperedges E. A hyperedge e ∈ E is any subset of the vertices.

Note that a graph is a hypergraph in which all hyperedges are subsets of size two. A
hypergraph can be constructed from a matrix M of format |V | × |E| with entries in {0, 1}.
Let the rows index the vertices and the columns index the hyperedges. The non-vanishing
entries in each column give the vertices that appear in a hyperedge,

mve =

{
1 v ∈ e
0 otherwise.

(6.3)

The matrix M is the incidence matrix of the hypergraph. We allow nested or repeated
hyperedges, as well as edges containing one or no vertices, so there are no restrictions on M .
Alternatively, we can construct the hypergraph with incidence matrix MT. This is the dual
hypergraph to the one with incidence matrix M , see [27, Section 1.1].

We now add extra data to the matrix M . We attach positive integers n1, . . . , nd to each
row. We assign tensors to each column of M whose format is the product of the ni as i
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ranges over the non-vanishing entries in the column. For example, the tensor associated to
the column (1, 1, 0, 1, 0, . . . , 0)T would have format n1× n2× n4. Filling in the entries of the
tensors gives a tensor network state in a tensor hypernetwork, as I now describe.

Definition 6.5. Consider a hypergraph G = (V,E). To each hyperedge e ∈ E we associate a
positive integer ne, called the size of the hyperedge. To each vertex v ∈ V we assign a tensor
Tv ∈

⊗
e3vKne, where K is usually R or C. The tensor hypernetwork state is obtained

from
⊗

v∈V Tv by contracting (summing over) the indices of all hyperedges in the graph that
contain two or more vertices. We call hyperedges containing only one vertex dangling edges.

The data of a tensor hypernetwork (up to global scaling constant) is its hypergraph
along with the tensor at each vertex of the hypergraph. This is the tensor network before
contracting the hyperedges. The distinction between the contracted and un-contracted tensor
network generalizes the fact that a rank r matrix M of format n1 × n2 can be represented
either by its entries, or by two matrices A and B of formats n1× r and n2× r whose product
is M , see Example 6.1.

Tensor hypernetworks were also introduced in the papers [16, 20]. Restricting the def-
inition of a tensor hypernetwork to hyperedges with at most two vertices gives the usual
definition of a tensor network. Tensor networks are sometimes assumed to have exactly one
dangling edge per vertex, but I will not make that assumption here.

6.1 Duality to graphical models

The joint probability distribution of several finite random variables X1, . . . , Xd can be nat-
urally organized into a tensor, whose entry at the index (i1, . . . , id) is the probability

P (X1 = i1, . . . , Xd = id).

Statistical models are families of probability distributions that share some structure. Graphi-
cal models consist of distributions that factor according to the adjacency structure of a graph,
see [30, 107]. Hence both graphical models and tensor networks are ways to represent fam-
ilies of tensors that factorize according to a graph structure.

The relationship between particular graphical models and tensor networks has been stud-
ied in the past. In [51], the authors reparametrize a hidden markov model to make a matrix
product state tensor network. In [46], a map is constructed that sends a restricted Boltz-
mann machine graphical model to a matrix product state. In [140], an example of a directed
graphical model is given with a related tensor network on the same graph, to highlight com-
putational advantages of the graphical model in that setting. In [99, 111], the incidence
matrix M from Equation (6.3) is considered as the biadjacency matrix of a bipartite graph,
to obtain a factor graph construction.

The main results in this section is a duality between tensor hypernetworks and undirected
graphical models on finite random variables. This close connection is a reminder of the
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compatibility of graphical models and tensor networks as practical multi-dimensional tools,
and as research areas. Before stating the duality correspondence, I define graphical models
in terms of hypergraphs.

Definition 6.6. Consider a hypergraph H = (U,C ). An undirected graphical model with
respect to H is the set of probability distributions on the random variables {Xu, u ∈ U} which
factor according to the hyperedges in C :

P (x1, . . . , xd) =
1

Z

∏
C∈C

ψC(xC).

Here, the random variable Xu takes values xu ∈ Xu, the subset xC equals {xu : u ∈ C}, and
the function ψC is a clique potential with domain

∏
u∈C Xu and range R≥0. The normalizing

constant Z ensures that the probabilities sum to one.

If we fix the values in the clique potentials, we obtain a particular distribution in the
graphical model. We recover the description of the graphical model by a graph instead of
a hypergraph by connecting pairs of vertices by an edge if they lie in the same hyperedge.
When all random variables have finitely many states, the joint probabilities form a tensor of
format ×u∈U |Xu| and the clique potentials are tensors of format ×u∈C |Xu| with all entries in
R≥0. Graphical models are sometimes required to factorize according to the maximal cliques
of a graph. We see later how our set-up specializes to this case. Models with cliques that
are not necessarily maximal can be called hierarchical models [179].

The tensor hypernetwork on a hypergraph exactly corresponds to the graphical model
given by the dual hypergraph.

Theorem 6.7. A distribution in a discrete graphical model associated to a hypergraph
H = (U,C ) with clique potentials ψC :

∏
u∈C Xu → K is the same as the data of a ten-

sor hypernetwork associated to its dual hypergraph H∗ with tensors TC = ψC at each vertex
of H∗.

Proof. Consider a joint distribution (or tensor) P in the graphical model defined by the
hypergraph H. As described above, the incidence matrix M of H has rows corresponding
to the variables u ∈ U and columns corresponding to the cliques C ∈ C . The data of the
distribution P also contains a potential function ψC :

∏
u∈C Xu → K for each clique C ∈ C ,

which is equivalently a tensor of format ×u∈C |Xu|.
The dual hypergraph H∗ has incidence matrix MT. It is a hypergraph with vertices

{vC : C ∈ C } and hyperedges {eu : u ∈ U}. By definition of the dual hypergraph, u ∈ C
is equivalent to vC ∈ eu. Associating the tensors TC = ψC ∈

⊗
eu3vC K|Xu| to each vertex

vC of H∗ gives a tensor hypernetwork for H∗. Moreover, up to scaling by the normalization
constant Z, the joint probability tensor P is given by

P (xu : u ∈ U) · Z =
∏
C∈C

ψC(xC) =
∏
C∈C

(TC)xC .

The last expression is the tensor hypernetwork state before contracting the hyperedges.
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Denote the set of distributions on X =
∏

u∈U Xu that are in the graphical model defined by
the hypergraph H = (U, F ) by G (H,X). These are the distributions which factor according
to the hypergraph H, whose factor have formats determined by {|Xu| : u ∈ U}, and for which
the entries of the factors can vary. Denote the set of non-contracted tensor hypernetwork
states from a hypergraph G = (V,E) with weights n = {ne : e ∈ E} by T (G,n). Since
(MT)T = M , we obtain the following one-to-one correspondence.

Corollary 6.8. There is a one-to-one correspondence between the graphical models G (H,X)
and the tensor hypernetwork states T (H∗, {|Xu| : u ∈ U}) up to global scaling constant.

In Corollary 6.8, we can impose that the tensors in both the graphical model and the
tensor hypernetwork states have non-negative entries, to be in the setting of probabilities.
We can also consider the tensors on both sides to have entries in a general field K, since the
definition and factorization of graphical models carries over to this case.

In the rest of this section I illustrate the duality results by showing the duals to some
familiar examples of tensor network states and graphical models. I consider those tensor
networks, or graphical models, which factor according to the hypergraphs shown, without
fixing the formats of the factors or the entries of the tensors.

Example 6.9 (Matrix Product States/Tensor Trains). See Example 6.2. The MPS network
on the left is dual to the graphical model on the right. The top row of edges in the tensor
network is contracted. We see later that this corresponds to the top row of variables in the
graphical model being hidden.

Example 6.10 (No three-way interaction model). This graphical model consists of all prob-
ability distributions that factor as pijk = aijbikcjk, for clique potential matrices A,B,C. It is
represented by a hypergraph in which all hyperedges have two vertices. The incidence matrix
of the hypergraph is

A B C( )i 1 1 0
j 1 0 1
k 0 1 1

This matrix is symmetric. Hence the tensor network corresponding to this graphical model is
given by the same triangle graph. We note that, up to dangling edges, this is also the shape
of the tensor network that represents the matrix multiplication operator [104].
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Example 6.11 (The Ising Model). This graphical model is defined by cliques which are the
edges of a two-dimensional lattice such as the grid on the right. It is dual to the hypergraph
on the left.

Example 6.12 (Projected Entangled Pair States). This tensor network is a two-dimensional
analogue of a Matrix Product State. It depicts two-dimensional quantum spin systems. Its
hypergraph is depicted on the left, with its dual graphical model on the right. Note the
similarity with Example 6.11.

Example 6.13 (The Multi-scale Entanglement Renormalization Ansatz (MERA)). This
tensor network is popular in the quantum community, due to its favorable abilities to represent
relevant tensors and compute efficiently with them. It is on the left, with its dual graphical
model on the right.

Properties and operations for graphical models and tensor hypernetworks relate under
the duality map.
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Restricting to graphs

Graphs are hypergraphs in which every hyperedge contains two vertices, also known as 2-
uniform hypergraphs. Each column of the incidence matrix of such a hypergraph sums to
two. The dual of a graph is a hypergraph in which every vertex has degree two, also known
as a 2-regular hypergraph [27]. We call a hypergraph at-most-2-regular if every vertex has
degree at most 2.

Proposition 6.14. Tensor networks are dual to at-most-2-regular graphical models. Graph
models (graphical models whose cliques are the edges of a graph) are dual to 2-regular tensor
hypernetworks.

Graphical models defined by the maximal cliques of a graph correspond to hypergraphs
in which we introduce a hyperedge for each maximal clique. Their dual tensor hypernetworks
have the following property.

Proposition 6.15. Graphical models defined by the maximal cliques of a graph correspond to
tensor hypernetworks whose hypergraphs have the property that whenever a set of hyperedges
meet pairwise, the intersection of all of them is non-empty.

Proof. Let E ′ ⊆ E be a set of hyperedges of the hypergraph of the tensor hypernetwork
that meet pairwise. Then, for all e1, e2 ∈ E ′, the corresponding vertices ue1 , ue2 in the dual
hypergraph (i.e. in the graphical model) are connected by an edge. Thus, the vertices
{ue : e ∈ E ′} form a clique in the graphical model, so there exists a maximal clique C in
which this clique is contained. Thus, all hyperedges in E ′ contain the vertex corresponding
to C.

Trees

In this subsection I show that trees are preserved under the duality correspondence. The
homotopy type of a hypergraph is the homotopy type of the simplicial complex whose maximal
simplices are the maximal hyperedges. For topological purposes, we associate hypergraphs
with their simplicial complexes. We see that the homotopy type of a hypergraph and its
dual agree.

Definition 6.16 (see [82]). Consider an open cover V = {Vi : i ∈ I} of a topological space.
The nerve N(V) of the cover is a simplicial complex with one vertex for each open set. A
subset {Vj : j ∈ J} spans a simplex in the nerve whenever ∩j∈JVj 6= ∅.

Theorem 6.17 (The Nerve Lemma [34]). The homotopy type of a space equals the homotopy
type of the nerve of an open cover of the space, provided that all intersections ∩j∈JVj of sets
in the open cover are contractible.
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I consider the open cover of the simplicial complex in which open sets are ε-neighbourhoods
of the maximal simplices. For ε sufficiently small, such an open cover has contractible in-
tersections, since they are homotopy equivalent to intersections of simplices. Hence the
homotopy type of the hypergraph is equal to that of its nerve. The following proposition
relates the nerve to the dual hypergraph.

Proposition 6.18. The nerve of the above open cover of the simplicial complex of a hyper-
graph is the simplicial complex of its dual hypergraph.

Proof. Consider a hypergraph H with vertex set U and hyperedge set C . We now construct
the dual hypergraph. The edges are represented by rows in the original incidence matrix.
A subset {Cj : j ∈ J} ⊆ C is contained in a hyperedge if there exists a vertex u ∈ U that
is in all hyperedges Cj in the subset. Hence the simplices that arise in the dual simplicial
complex are given by subsets of hyperedges for which the intersection ∩j∈JCj is non-empty.
This is exactly the definition of the nerve.

From this, the Nerve Lemma implies the following.

Theorem 6.19. The hypergraph of a tensor hypernetwork and the hypergraph of its dual
graphical model have the same homotopy type.

A hypergraph cycle (see [27, Chapter 5]) is a sequence (x1, e1, x2, . . . , xk, ek, x1), where
the ei are distinct hyperedges and the xj are distinct vertices, such that {xi, xi+1} ⊆ ei for
all i = 1, . . . , k− 1, and {x1, xk} ⊆ ek. A tree is a hypergraph with no cycles. Theorem 6.19
implies that trees are preserved under the duality correspondence.

Marginalization and contraction

The interpretations of marginalization and contraction are similar. The variables of a graph-
ical model that are marginalized are often considered to be hidden, and the contracted
edges of a tensor network represent entanglement, or unseen interaction. In the following
proposition I give the mathematical relation between these two operations.

Let H = (U,C ) be a hypergraph and H∗ its dual. Let P be a distribution in the graphical
model on H with clique potentials ψC :

∏
u∈C [nu] → K. The dual tensor hypernetwork has

tensors TC = ψC ∈
⊗

u∈C Knu at the vertices of H∗.

Proposition 6.20 (Marginalization Equals Contraction). Let W ⊆ U be a subset of the
vertices of the graph H. Then, the marginal distribution of {Xu}u∈W equals

P (xW ) =
∑

xu∈[nu]:
u6∈W

∏
C∈C

(TC){xC :u∈C},

which is the contracted tensor hypernetwork along the hyperedges corresponding to W c.
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Proof. The proof follows from the chain of equalities:

P (xW ) =
∑

xu∈[nu]:
u6∈W

P (x) =
∑

xu∈[nu]:
u6∈W

∏
C∈C

ψC(xC) =
∑

xu∈[nu]:
u6∈W

∏
C∈C

(TC){xC :u∈C}.

In words, summing over the values of all variables in W c is the same as contracting the
tensor hypernetwork along all hyperedges in W c.

The correspondence described in Proposition 6.20 allows us to translate algorithms for
marginalization in graphical models to algorithms for contraction in tensor networks, see
Section 6.2. Without care to order indices, marginalization and contraction involve summing
exponentially many terms, but in many cases more efficient methods are possible.

Conditional distributions

Consider a probability distribution given by a fully observed graphical model. Conditioning
a variable Xu to only take values in a given set Yu ⊆ Xu means restricting the probability
tensor P to the slices Yu ×

∏
b∈U\{u}Xb that contains only the values Yu for the variable

Xu. This corresponds to restricting each of the potentials for hyperedges C containing u to
the subset of elements Yu×

∏
b∈C\{u}Xb. On the tensor networks side, we restrict the tensor

corresponding to the given clique potential to the slice Yu ×
∏

b∈C\{u}Xb.
The equivalence of conditioning and restriction to slices of the probability tensor is due

to the fact that the basis in which we view the probability tensor is fixed. The basis is
given by the states of the random variables: graphical models are not basis invariant. On
the other hand, basis invariance is a key property of tensor networks that crops up in many
applications, e.g. often a basis, or gauge, is selected to make the computations efficient [137].

Entropy

Given a tensor network state represented by a tensor X, the entanglement entropy [137]
equals

−trace(X logX),

where X logX is a tensor, the same format as X, whose entry indexed by i is xi log xi. On
the other hand, if X represents the corresponding marginal distribution of the graphical
model, the Shannon entropy [184] of X is defined as

H(X) = −
∑
i

xi log xi,

where i indexes all entries of X. Expanding out the formula −trace(X log T ) shows that
these two notions of entropy are the same.



CHAPTER 6. TENSOR HYPERNETWORKS 103

6.2 Algorithms to contract tensor networks

Marginalization in graphical models is equivalent to contraction in tensor hypernetworks,
see Proposition 6.20. This means we can contract tensor networks and hypernetworks using
methods for marginalization of graphical models, which is widely studied [184]. I describe
how this can be used to systematically find efficient ways to compute the expectation values
of a tensor network, something that is usually addressed on a case-by-case basis depending
on the structure of the tensor network.

The belief propagation (or sum-product) algorithm is a dynamic programming method
for computing marginals of a distribution [184]. The junction tree algorithm [184] applies
it to compute the marginals of a graphical model, defined with respect to a graphs with
cycles. Expectation values of tensor hypernetwork states are obtained by contracting a tensor
hypernetwork along all edges [137], while contracted tensor hypernetwork states contract
along all full edges. In this section, I apply the junction tree algorithm to contract the
matrix product state tensor networks from Example 6.9. I first recall the algorithm.

The junction tree algorithm

Input: A graphical model defined by a hypergraph H with clique potentials ψC(xC).
Output: The marginals at each hyperedge, P (xC) =

∑
xu:u/∈C P (x).

The junction tree of a graph is a tree whose nodes are the maximal cliques of the graph.
It has the running intersection property: the subset of cliques containing a given vertex forms
a connected subtree. The junction tree algorithm works as follows. First, we construct the
graph G associated to the hypergraph H by adding edge (i, j) whenever vertices i and j
belong to the same hyperedge. If G is not chordal (or triangulated) we add edges until G is
chordal. Then we form a junction tree of the graph G, noting that there are often multiple
ways to construct a junction tree of a given graph G.

To each maximal clique C in G we associate a clique potential which equals the product
of the potentials of the hyperedges contained in C. If a hyperedge is contained in more than
one maximal clique, its clique potential is assigned to one of them. Each edge of the junction
tree connects two cliques C1, C2 ∈ C in G. We associate to such an edge the separator set
S = C1 ∩ C2. We also assign a separator potential ψS(xS) to each S. It is initialized to the
constant value 1. A basic message passing operation from C1 to a neighbouring C2 updates
the potential functions at clique C2 and separator S = C1 ∩ C2

ψ̃S(xS)←
∑
xC1\S

ψC1(xC1),

ψ̃C2(xC2)←
ψ̃S(xS)

ψS(xS)
ψC2(xC2).

The algorithm chooses a root of the junction tree, and orients all edges to point from the
root outwards. It then applies basic message passing operations step-by-step from the root
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to the leaves until every node has received a message. Then we reverse the orientation of
all edges, and update the clique and separator potentials from the leaves back to the root
obeying the partial order given by the new orientations of the edges. After all messages have
been passed, the final clique potentials equal the marginals, ψ̃C(xC) =

∑
xu /∈C

∏
B∈C ψB(xB),

and likewise for the final separator potentials.
The complexity of the junction tree algorithm depends on the triangulation. It is ex-

ponential in the size of the largest clique of the chosen triangulation. Thus, at best, it is
exponential in the treewidth of the graph, which is one less than the smallest size of the
largest clique over all possible triangulations [184, Chapter 2].

Contracting tensor networks

A contracted tensor network state is formed by contracting all full edges. Consider the dual
graphical model to the tensor hypernetwork. We make a new clique in the graphical model
consisting of all vertices corresponding to the dangling edges of the tensor hypernetwork.
The tensor hypernetwork state is the marginal distribution of that clique. Hence algorithms
for marginalization of a graphical model can now be applied.

When the junction tree algorithm is used for probability distributions the clique potential
functions are positive, but it works in the same way for complex valued functions. In this
section I describe how to use the junction-tree algorithm to contract a tensor network.

Consider a Projected Entangled Pair States tensor network, as in Example 6.12, on four
particles. The tensor network consists of four arrays

Ta ∈ Cn1×n2×n5 , Tb ∈ Cn2×n3×n6 , Tc ∈ Cn3×n4×n7 , Td ∈ Cn1×n4×n8 ,

where n1, n2, . . . , n8 are the dimensions of the vector spaces at the eight edges. Contracting
the tensor network gives T ∈ Cn5×n6×n7×n8 with entries:

ti5,i6,i7,i8 =
∑

i1,i2,i3,i4

(ta)i1,i2,i5(tb)i2,i3,i6(tc)i3,i4,i7(td)i4,i1,i8 .

The junction tree algorithm gives a fast way to compute this sum. If the entanglement edge
dimensions are n1 = n2 = n3 = n4 = r, and the dangling edge dimensions are n5 = n6 =
n7 = n8 = n, we can compute the contracted tensor in time and space O(n3r2 + n2r4),
whereas summing term-by-term is O(n4r4). First, we find the junction tree of the tensor
network. This process is illustrated in Figure 6.2. Then we assign clique potentials to each
of the cliques and separators of the junction tree as follows:

ψ12458(i1, i2, i4, i5, i8) = (ta)i1,i2,i5(td)i4,i1,i8 , ψ2458 = ψ245678 = ψ2467 = 1,

ψ23467(i2, i3, i4, i6, i7) = (tb)i2,i3,i6(tc)i3,i4,i7 .

Next, we carry out the junction-tree algorithm. We choose the left vertex of the junction
tree, i.e. 12458, as the root and proceed from left to right.

ψ̃2458(i2, i4, i5, i8) =
∑
i1

ψ12458(i1, i2, i4, i5, i8),
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Figure 6.2: Steps to compute the junction tree of the projected pair entangled states tensor
network on four particles.

ψ̃245678(i2, i4, i5, i6, i7, i8) =
ψ̃2458(i2, i4, i5, i8)

ψ2458(i2, i4, i5, i8)
ψ245678(i2, i4, i5, i6, i7, i8),

ψ̃2467(i2, i4, i6, i7) =
∑
i5,i8

ψ̃245678(i2, i4, i5, i6, i7, i8),

ψ̃23467(i2, i3, i4, i6, i7) =
ψ̃2467(i2, i4, i6, i7)

ψ2467(i2, i4, i6, i7)
ψ23467(i2, i3, i4, i6, i7);

Then, we repeat the process going back to the root 12458. The first two steps of the updates,
returning to the root, are as follows.

˜̃ψ2467(i2, i4, i6, i7) =
∑
i3

ψ̃23467(i2, i3, i4, i6, i7),

˜̃ψ245678(i2, i4, i5, i6, i7, i8) =
˜̃ψ2467(i2, i4, i6, i7)

ψ̃2467(i2, i4, i6, i7)
ψ̃245678(i2, i4, i5, i6, i7, i8).

The desired marginal over 5, 6, 7, 8 equals
∑

i2,i4

˜̃ψ245678(i2, i4, i5, i6, i7, i8).
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Note that for this particular graph, the complexity O(n3r2 + n2r4) of the junction tree
algorithm can also be achieved by factorizing T as

ti5,i6,i7,i8 =
∑
i2,i4

(∑
i1

(ta)i1,i2,i5(td)i4,i1,i8

)(∑
i3

(tb)i2,i3,i6(tc)i3,i4,i7

)
.

For more general graphs, finding a way to factor the contracted tensor network in order to
match the performance of the junction tree algorithm is more difficult.

Expectation values for matrix product states

I now explain how to compute expectation values of matrix product state (MPS) tensor
networks (see Figure 6.3) using the junction tree algorithm. The junction tree determines
the order in which to contract the indices of the tensor network. Using Theorem 6.7, we
contract the tensor network by applying the junction tree algorithm to the dual graphical
model. I show that the junction tree algorithm used to marginalize the dual graphical model
corresponds to the bubbling algorithms that are used to compute expectation values of a
MPS [137].

In quantum applications a tensor network state is denoted |ψ〉. Its expectation value
is the inner product 〈ψ|A|ψ〉 for some operator A. We consider the case that A is block
diagonal, which means A transforms a tensor network state |ψ〉 by a linear transformation
in each of its vector spaces of observable indices. The method we describe can be extended
to operators of interest that are not block diagonal.

The expectation value of a MPS is computed by contracting the tensor network on the left
in Figure 6.3, where the middle row of vertices correspond to the blocks of A. Equivalently, it
is computed by marginalizing all variables of the graphical model on the right in Figure 6.3.
The matrix product state is drawn with four observable indices, but repeating the pattern
gives the results in the general case. The first step of the algorithm is to triangulate the
graph of the graphical model, and to form the junction tree, see Figure 6.4.

Figure 6.3: The matrix product state tensor network on four states contracted with itself
(left) and its dual graphical model (right).

We choose the root of the tree to be the left-most vertex in the junction tree in Figure 6.4.
We orient all edges to point away from the root, i.e. from left to right, and we perform
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Figure 6.4: Triangulating the graphical model dual to a matrix product state (top). Its
junction tree (bottom) where the cliques are in ovals and the separators are boxed.

basic message passing operations along the directed edges until every vertex has received a
message from its parent. The function recorded at the clique {12, 13, 14} is the marginal at
that clique. In order to compute the total sum, we can simply sum over the three vertices
12, 13, and 14. In this special case, we do not need to run the second step of the junction
tree algorithm that passes messages back to the root.

I now translate the junction tree algorithm to the language of tensor networks. At each
step we sum over just one vertex of the dual graphical model (due to the structure of the
junction tree in this case). This means we contract one edge at a time from the tensor
network. The order of contractions is shown in Figure 6.5. For example, in the first message
passing operation we have C1 = {1, 2, 3}, C2 = {2, 3, 4}, S = {2, 3}. We sum over the values
of vertex 1, since it is the only variable in C1\S. This corresponds to contracting the tensor
along the edge corresponding to vertex 1 of the graphical model.
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Figure 6.5: Order of contraction of indices in the matrix product state tensor network, to
compute its expectation value using the junction tree algorithm.

The triangulated graph of the dual graph of MPS has a treewidth of size four, since we
can continue the triangulation given in Figure 6.4 to an arbitrary number of steps. We can
compute the complexity of the junction tree algorithm to be O(|V |(nr3 + n2r2)) where |V |
is the number of vertices in the MPS, n is the weight of the dangling edges, and r is the
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weight of the entanglement edges. It turns out that contracting the tensor in this way is
what is usually done by the tensor networks community as well, a method sometimes called
bubbling [137]. Similar algorithms are used in the case of MPS with periodic boundary
conditions, e.g. the algorithm in [143] which runs in O(|V |nr5). A numerical algorithm for
an infinitely long MPS chain which runs in O(nr3) is given in [157].

I conclude this chapter with a brief discussion of projected entangled pair states, the
two-dimensional generalization of MPS. Projected entangled pair states (PEPS), see Exam-
ple 6.12, have a two-dimensional lattice of entanglement interactions. Computing expec-
tation values for the PEPS network takes exponential time in the number of states of the
network [137]. On the graphical models side, it is possible in principle to find expectation
values of a PEPS state using the junction tree algorithm. Since the triangulated graph of
the dual hypergraph of PEPS has a tree-width that grows in the size of the network, the
junction tree algorithm is exponential time.

In [118], the authors show that algorithms for computing expectation values are expo-
nential in the treewidth of the tensor network. On the other hand, we have seen that the
junction tree algorithm is exponential time in the treewidth of the dual graphical model. This
indicates a similarity between the treewidth of a hypergraph and of its dual. A comparison
of the treewidths of planar graphs and of their graph duals can be found in [150].

To avoid exponential running times, numerical approximations are used [132, 137, 189].
For graphical models, these are termed loopy belief propagation, see [184, Chapter 4] and
references therein. A natural question is whether the algorithms for loopy belief propaga-
tion translate to known algorithms in the tensor networks community, e.g. for computing
expectation values of PEPS, or whether they provide a new family of algorithms.

In this chapter we saw the connection between multivariate statistics and algorithms
for contracting tensors. This brings me to the second part of my thesis, in which I study
algorithms for tensor data.
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Part II

Algorithms for tensor data
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Chapter 7

Semi-algebraic statistics

The joint probabilities of several finite random variables X1, . . . , Xd can be organized into a
tensor P with entries

pi1...id = P (X1 = i1, . . . , Xd = id).

If the random variable Xj has nj possible states, we obtain a tensor of format n1× · · · × nd.
In this chapter I usually denote a tensor by the letter P to emphasize that its entries pi1i2...id
represent probabilities, and to avoid confusion with random variables which are denoted by
the letter X. The purpose of representing a distribution as a tensor is that the structure of
the tensor P can be given statistical interpretation.

Example 7.1 (Rank one = full independence). A tensor is rank one if it can be written
in the form v(1) ⊗ · · · ⊗ v(d). If the entries of P are non-negative and sum to one, then the
vectors v(j) can also be chosen to be non-negative with entries summing to one. The full
independence model on d random variables X1, . . . , Xd is the set of distributions whose joint
probabilities factor as

P (X1 = i1, . . . , Xd = id) = P (X1 = i1) · · ·P (Xd = id).

Hence, setting v
(j)
ij

= P (Xj = ij), we see that the full independence model is equal to the set
of rank one non-negative tensors with entries summing to one. The model is given implicitly
as the intersection of the probability simplex ∆n1···nd−1 with the cone over the Segre variety
Seg(Pn1−1 × · · · × Pnd−1).

More generally, a statistical model on the random variables Xj is a subset of the probabil-
ity simplex. What might we want to know about a statistical model? Whether an empirical
distribution of interest lies in, or close to, the model indicates whether the model is a suitable
way to represent the empirical distribution. We could be interested in a membership test
for the model, or in the representational power of the statistical model in general. We could
also be interested in the distributions that the model represents poorly, those furthest away
from the model. The maximum likelihood estimate of our empirical distribution with respect
to the model gives the point in the model that is most likely to give rise to the empirical
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data. This is the point on the model that minimizes the Kullback-Leibler divergence from
the empirical distribution to the model.

Many statistical models can be parametrized by polynomials. For such statistical models,
we can approach the above questions using algebraic tools. The use of algebraic methods in
statistics is algebraic statistics. A statistical model that is parametrized by polynomials has
a semi-algebraic parametric description. By Theorem 1.23, the set of distributions which lie
in the model is a semi-algebraic subset of the probability simplex.

If we can find the semi-algebraic description of a statistical model, it offers the possibility
of answering statistical questions for the model. The semi-algebraic description, also known
as an implicit description, gives a membership test for the model, allows the computation of
divergence to the model, and can suggest model-specific algorithms for parameter estimation.
Methods from algebraic statistics often ignore the inequalities defining a semi-algebraic set of
interest, focusing only on the equations. This gives an outer-approximation to the statistical
model, and certain properties (such as the dimension) are preserved by this relaxation. Here,
I seek a semi-algebraic description for statistical models, inequalities included. Statistical
models with hidden variables offer better models of real-world settings but, for models with
hidden variables, the semi-algebraic description is difficult to find. For more on algebraic
statistics, see [179], and for semi-algebraic statistics in the context of phylogenetic models,
see [194].

In this chapter, I present a case study in which semi-algebraic methods are used to de-
scribe two statistical models. One is a mixture model and the other is a product of mixtures
model called a restricted Boltzmann machine, both on three binary random variables. Al-
though the two models look different from their parametrizations, I show that they represent
the same set of distributions on the interior of the probability simplex, and are equal up to
closure, resolving a conjecture due to Montúfar and Morton [125]. I give a semi-algebraic
description of the model in terms of six binomial inequalities. Exact maximum likelihood
estimates could previously only be found for models with no hidden variables. For these
models with hidden variables, we can also use the implicit description to give an exact de-
scription of the projection to the boundary strata of the model, and this leads to a closed
form expression for the maximum likelihood estimate. This case study could be used for
methods to find implicit descriptions of larger statistical models, and I briefly discuss such
extensions. This chapter is joint work with Guido Montúfar, published in the Journal of
Algebraic Statistics [163].

7.1 Mixture models and restricted Boltzmann

machines

The joint probabilities of a multivariate probability distribution can be organized into a
tensor, and the structure of the tensor encodes statistical information about the distribution.
As we saw above in Example 7.1, a distribution is in the full independence model if and only
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if its tensor has rank one. Extending this to higher ranks, we have the following.

Example 7.2 (Non-negative rank = mixture model). Consider a tensor P , of non-negative
rank r, with entries summing to one. Then P has a decomposition

P =
r∑
i=1

λiw
(1)
i ⊗ · · · ⊗ w

(d)
i ,

where w
(j)
i ∈ Rnj is a vector of non-negative entries summing to one, and the λi are non-

negative scalars with
∑r

i=1 λi = 1. Non-negative rank was introduced in Definition 1.29.
This re-writing of the decomposition to have vector summing to one allows us to interpret
the weights λi of the rank one terms as the probabilities of a hidden variable, and the entries
of the vectors w

(d)
i as conditional distributions, which are independent conditional on the

value of the hidden variable. The distribution P is a mixture of independent distributions,
with a single hidden variable that has r states,

pi1,...,id = P (X1 = i1, . . . , Xd = id) =
r∑
j=1

P (X1 = i1|Y = j) · · ·P (Xd = id|Y = j)P (Y = j).

The non-negative rank is the smallest possible number of states of the hidden variable. As
we will see, fitting a distribution to this model, with a small number of hidden states, can be
viewed as finding a low non-negative rank approximation of the tensor, see [110]. This model
is called the Naive Bayes model. For three observed variables, X1, X2, X3, the statistical
model can be drawn as in Figure 7.1.

Figure 7.1: A mixture model on three observed (unshaded) variables that are independent,
conditioned on the state of the hidden (shaded) variable.

Other arrangements of observed and hidden variables can be used to represent multivari-
ate probability distributions. These are given by graphs of shaded and unshaded variables
such as Figure 7.1. Such distributions are called graphical models; they are specified in terms
of conditional independence relations between the variables. For fully observed graphical
model (with no hidden variables) the implicit description encodes the conditional indepen-
dence relations that hold for the model, see [73]. We saw in Chapter 6 that graphical models
are dual to tensor hypernetworks.

Any probability distribution can be modeled by a graphical model, for instance a complete
undirected graph imposes no constraints on the distribution. However, certain graphs involve
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many more parameters than others to represent specific distributions. In the interest of
concisely representing data and reducing computational costs, one would like to understand
which graphs best represent which kinds of data. For example, deep architectures, with
several layers of hidden variables, have become increasingly important in machine learning,
see [26] and references therein. Following [125], I focus on two building blocks to such
multi-layer architectures. I study these in the case where all random variables are binary.

1. One hidden variable with r states, connected to d observed variables. This is the
mixture of products model, denoted Md,r, see Example 7.2. Up to scaling, it consists
of 2× · · · × 2 (d times) tensors of non-negative rank at most r,

P =
r∑
i=1

v
(1)
i ⊗ · · · ⊗ v

(d)
i , v

(j)
i ∈ R2

≥0. (7.1)

2. A layer of m hidden binary variables, each connected to d observed variables. This is
the restricted Boltzmann machine (RBM) model RBMd,m. Up to scale, it consists of
2×· · ·×2 (d times) tensors that are the Hadamard product of m tensors of non-negative
rank at most two,

P =
m∏
i=1

(v
(1)
i ⊗ · · · ⊗ v

(d)
i + w

(1)
i ⊗ · · · ⊗ w

(d)
i ), v

(j)
i , w

(j)
i ∈ R2

≥0. (7.2)

Note thatMd,1 is the independence model, andMd,2 = RBMd,1, since both have a single
hidden variable with two states. In [6] the description ofMd,2 is found. The authors describe
the ‘formidable obstacles’ to extending their results to hidden variables with more than two
states.

Remark 7.3 (Marginals of exponential families). The mixture of products model and RBM
model are are often defined as marginals of exponential families, instead of in the polynomial
parametrization above. The mixture model is parametrized by

p(x) =
1

Z(W, b, c)

∑
y∈{ej : j=1,...,r}

exp(y>Wx+ c>y + b>x)

and the RBM model is parametrized by

p(x) =
1

Z(W, b, c)

∑
y∈{0,1}m

exp(y>Wx+ c>y + b>x),

where the variable x ranges over {0, 1}d and Z(W, b, c) normalizes the entries to sum to
one. In contrast to the exponential parametrization, the polynomial parametrization allows
zeros in the decomposition, while requiring that the entries sum to one. The polynomial and
exponential definitions are equivalent up to closure, see for example [125, Proposition 2.3].
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The descriptions of the mixture model and RBM model in Equations (7.1) and (7.2) are
parametric. Each value of the parameters gives a distribution that lies in the model. How-
ever, these descriptions do not allow us to test if an empirical distribution of interest lies in
the model. For this, we seek the implicit description. In most previous work on the represen-
tational power of RBMs, membership in the model is determined by constructing parameters
that realize certain probability distributions. In contrast, the implicit descriptions discussed
here fully characterize distributions that are in the model.

7.2 Implicit descriptions of statistical models

In this section, I consider the restricted Boltzmann machine RBM3,2 and the mixture model
M3,3. Both are models on three binary random variables, so they are sets of 2×2×2 tensors
P with entries pijk for 0 ≤ i, j, k ≤ 1 that lie in the probability simplex ∆23−1 = ∆7. Both
models are over-parametrized in ∆7, since they have 11 parameters. In [125], it is shown
that M3,3 does not fill the simplex. The authors state ‘we believe that M3,3 and RBM3,2

are very similar, if not equal.’
In this section, I give a implicit description of both models RBM3,2 and M3,3, and I

show that the two models describe, up to closure, the same distributions in the probability
simplex. The main theorems are the following.

Theorem 7.4. The statistical model RBM3,2 is described on the interior of the simplex ∆7

by the union of six basic semi-algebraic sets:

{p000p011 ≥ p001p010, p100p111 ≥ p101p110}
{p000p011 ≤ p001p010, p100p111 ≤ p101p110}
{p000p101 ≥ p001p100, p010p111 ≥ p011p110}
{p000p101 ≤ p001p100, p010p111 ≤ p011p110}
{p000p110 ≥ p100p010, p001p111 ≥ p101p011}
{p000p110 ≤ p100p010, p001p111 ≤ p101p011}.

These binomial inequalities correspond to determinants of slices of the tensor P . They
record conditional correlations in the distribution.

Theorem 7.5. We have the equality M3,3 = RBM3,2. Equality M3,3 = RBM3,2 holds on
the interior of the simplex.

The notation RBM3,2 refers to the topological closure of RBM3,2. The mixture model
M3,3 and the RBM model RBM3,2 look quite different in their parametrization, but this
result shows that they turn out to parametrize the same probability distributions (up to
closure). The parametrization of RBM3,2 in Equation (7.2) does not describe a closed set
on the boundary of the simplex. We describe RBM3,2 on the boundary of the simplex in
Proposition 7.8. On the other hand, M3,3 is closed (see Proposition 7.10) and we have the
following corollary.
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Figure 7.2: Theorem 7.5 gives the equality of these two graphical models. The label of a
variable is its number of states; the shaded nodes are hidden.

Corollary 7.6. The model M3,3 is described on ∆7 by the inequalities in Theorem 7.4.

Previous results showed that M3,3 has relative volume at most 96.4%, and RBM3,2 has
relative volume at most 99.2% inside the simplex ∆7 [125]. Simulations using Theorem 7.4
and Corollary 7.6 estimate the true volume of both of these models to be 75.3%.

We use Theorem 7.4 to prove a conjecture from [125, Section 3.5.1]:

Corollary 7.7. No distribution in RBM3,2 has four modes.

For a discrete distribution, a mode is a state with larger probability than any of its Ham-
ming neighbor states. Corollary 7.7 is stated as a conjecture RBM3,2 ∩G3 = ∅ in [125], where
G3 denotes distributions on {0, 1}3 with four modes (the maximum possible number). Note
that the modelsM3,4 and RBM3,3 fill the interior of the simplex ∆7 [126, 127]. Corollary 7.7
also follows from Theorem 7.5, since no P ∈M3,3 has four modes [125, Proposition 3.10]. I
now prove Theorem 7.4.

The implicit description of RBM3,2

The semi-algebraic description of the non-negative rank at most two model M3,2 is given
in [6]. The model is described in ∆7 by the union of four basic semi-algebraic sets. On the
interior of the simplex, one of the sets is given by the inequalities

p000p011 ≥ p010p001, p000p101 ≥ p100p001, p000p110 ≥ p100p010,
p100p111 ≥ p110p101, p010p111 ≥ p110p011, p001p111 ≥ p101p011.

(7.3)

The other three sets are obtained by reversing the signs of the inequalities in two out of the
three columns of Equation (7.3). For example:

p000p011 ≥ p010p001, p000p101 ≤ p100p001, p000p110 ≤ p100p010,
p100p111 ≥ p110p101, p010p111 ≤ p110p011, p001p111 ≤ p101p011.

(7.4)

One way to get a distribution in RBM3,2 is to take the Hadamard product of a distribution
satisfying Equation (7.3) with one satisfying Equation (7.4). We find the semi-algebraic
description for all distributions expressible as such a Hadamard product. From this, swapping
indices gives the full semi-algebraic description of the restricted Boltzmann machine RBM3,2

on the interior of the simplex. Note that the independence model M3,1 is obtained on the
interior of ∆7 by setting the inequalities in Equation (7.3) or Equation (7.4) to equalities.
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On the interior of the simplex

The binomial inequalities above translate to linear inequalities in the log-probabilities. The
inequalities are independent of scaling and we can work with unnormalized distributions.
For a strictly positive distribution P , we take the log distribution lijk = log(pijk). Taking
the logarithm of the inequalities in Equation (7.3) gives the polyhedron

X =


l000 + l011 − l001 − l010 ≥ 0, l100 + l111 − l101 − l110 ≥ 0
l000 + l101 − l001 − l100 ≥ 0, l010 + l111 − l011 − l110 ≥ 0
l000 + l110 − l010 − l100 ≥ 0, l001 + l111 − l011 − l101 ≥ 0

 .

Similarly, we define Y to be the log-probabilities satisfying the logarithms of Equation (7.4),

Y =


l000 + l011 − l001 − l010 ≥ 0, l100 + l111 − l101 − l110 ≥ 0
l000 + l101 − l001 − l100 ≤ 0, l010 + l111 − l011 − l110 ≤ 0
l000 + l110 − l010 − l100 ≤ 0, l001 + l111 − l011 − l101 ≤ 0

 .

Taking the Hadamard product in probability space is the same as taking the sum in log-
probability space. Therefore, showing Theorem 7.4 is equivalent to proving that the Minkowski
sum X + Y = {x+ y : x ∈ X , y ∈ Y} is

W = {l000 + l011 − l001 − l010 ≥ 0, l100 + l111 − l101 − l110 ≥ 0}.

The two polyhedra X and Y are eight-dimensional in R8. The lineality spaces of a poly-
hedron is the space obtained by setting all the inequalities in their descriptions to equalities.
For both X and Y , the lineality space is the set of tensors (lijk) for which the tensor (exp(lijk))
is rank one. It is spanned by the rows of the matrix

l000 l100 l010 l001 l110 l101 l011 l111


1 1 1 1 1 1 1 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

.

The polyhedron W is also eight-dimensional. It has a six-dimensional lineality space that is
spanned degenerately by the rows of the matrix

l000 l100 l010 l001 l110 l101 l011 l111



1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0

. (7.5)
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Using the software polymake [72], we can find a description for the quotient of X or Y by
its lineality space. They are both triangular bipyramids.

Proof of Theorem 7.4. We aim to show that W = X + Y . We begin with the containment
X + Y ⊆ W . Summing the first equations in X and Y yields

x000 + y000 + x011 + y011 − x001 − y001 − x010 − y010 ≥ 0,

while summing the second equations from X and Y gives

x100 + y100 + x111 + y111 − x101 − y101 − x110 − y110 ≥ 0.

Translating back to the l-coordinates, we get l000 + l011− l001− l010 ≥ 0 and l100 + l111− l101−
l110 ≥ 0. Hence X + Y ⊆ W .

For the reverse containment W ⊆ X + Y we require a spanning set for W in which
every basis vector lies either in X or in Y . The first four rows of the lineality space of
W in Equation (7.5) lie in X , while the last four rows lie in Y . Hence any non-negative
combination of the lineality space lies in W . To extend to negative linear combinations we
multiply the spanning set by −1. The first four rows of the negation of Equation (7.5) lie in
Y , and the last four are in X .

It remains to find a basis for the two-dimensional polytope obtained by taking the quotient
of W by its lineality space. The quotient is spanned by non-negative combinations of any
two linearly independent vectors in W not in its lineality space. For example l000 ∈ X and
l100 ∈ Y . All non-negative combinations of these lie in X + Y .

On the boundary of the simplex

We now have a semi-algebraic description for the restricted Boltzmann machine RBM3,2 on
the interior of the simplex ∆7. However, for P in the boundary of the simplex ∂∆7, the
inequalities in Theorem 7.4 are not sufficient for membership in RBM3,2.

Proposition 7.8. The intersection RBM3,2 ∩∂∆7 is given by distributions which satisfy

If the probability of a state vanishes, so does the
probability of one of its Hamming neighbour states.

(7.6)

Proof. First we show that P ∈ RBM3,2 ∩∂∆7 satisfies Condition (7.6). Since P lies on the
boundary of ∆7, one of its entries vanishes. Assume without loss of generality p000 = 0.
Then Condition (7.6) means that p100p010p001 = 0. Since P ∈ RBM3,2, it is the product of
two distributions in M3,2. That is,

pijk = (qijk + rijk)(sijk + tijk),

where Q,R, S, T are rank one non-negative 2 × 2 × 2 tensors. Up to swapping factors the
(0, 0, 0) entry of the tensor Q + R must vanish. Hence q000 = r000 = 0. Since Q and R are
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rank one, they must vanish on a slice. Both Q and R vanish in at least one of the locations
(0, 0, 1), (0, 1, 0) and (1, 0, 0), hence so does P .

For the converse, we consider some P ∈ ∂∆7 satisfying Condition (7.6) and we aim to
show that P ∈ RBM3,2. As before, we can assume p000 = 0. Condition (7.6) implies that
one of p001, p010, p100 must also vanish. We reorder indices such that p010 vanishes. The
distribution admits the Hadamard factorization

P =

[
0 0 p001 p011
p100 p110 p101 p111

]
=

[
0 0 p001 p011
p101 p111 p101 p111

]
∗
[

0 0 1 1
p100
p101

p110
p111

1 1

]
.

If p101, p111 6= 0, both factors are non-negative rank two and the distribution lies in RBM3,2.
If p101 = 0, then p111p100p001 = 0 and if p111 = 0 then p110p101p011 = 0. In both of these cases
the distribution consists of two pairs of non-zero adjacent entries, hence lies in M3,2, which
is a subset of RBM3,2. Hence in all cases the distribution lies in RBM3,2.

Condition (7.6) is stricter than the restriction of the inequalities in Theorem 7.4 to the
boundary of the simplex. The model RBM3,2 is a semi-algebraic subset of the simplex that
is not closed. I give an example of a distribution that lies in the closure of the model, but
not in the model.

Example 7.9. Consider the distribution

pijk =

{
1
3
, (i, j, k) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

0, otherwise.

Observe that P ∈ M3,3, since P = 1
3
(e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0) has non-

negative rank three and entries summing to one. Since P does not satisfy the conditions in
Proposition 7.8, P /∈ RBM3,2. I give a sequence of distributions (Pε) ⊂ RBM3,2, such that
P = limε→0 Pε. Consider

Pε ∝
[
ε 1 1 ε
1 ε ε ε4

]
.

As ε → 0, Pε → P . The scaling factor can be subsumed to either factor in the following
decomposition.

Pε ∝
[
ε 1 ε2 ε
1 ε ε ε2

]
∗
[

1 1 ε−2 1
1 1 1 ε2

]
=

([
ε
1

]
⊗
[
1
0

]
⊗
[
1
ε

]
+

[
1
ε

]
⊗
[
0
1

]
⊗
[
1
ε

])
∗
([

1
1

]
⊗
[
1
1

]
⊗
[
1
0

]
+

[
ε−1

ε

]
⊗
[
ε−1

ε

]
⊗
[
0
1

])
This decomposition shows that Pε ∈ RBM3,2 for each ε. Hence RBM3,2 is not closed.

In the example above, the entries of one of the tensors in the decomposition are un-
bounded as ε → 0. They are multiplied by very small entries in the other term so that the
limiting tensor P is bounded. Such situations can be avoided on the interior of the simplex,
where the model RBM3,2 is closed, and can also be avoided for the mixture model M3,3.
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Proposition 7.10. The model Md,r is closed for all d and r.

Proof. Consider a convergent sequence of tensors Pn → P , where each Pn ∈Md,r. We show
that the limiting tensor P also lies in Md,r. By definition, each Pn can be written as the
sum of r non-negative rank one tensors Pn = An + Bn + · · · + Cn. Since the entries of Pn
are bounded above by 1, and the entries of An, Bn, . . . , Cn are non-negative, the entries of
An, Bn, . . . , Cn are also bounded above by 1. By the Bolzano Weierstrass Theorem, there
exists a subsequence of the An, call it Anj

, that converges. Its limit, A, is a non-negative rank
one tensor. Taking Pnj

→ P as our new convergent sequence, we repeat the argument to find
a convergent subsequence of the Bnj

which converges to a non-negative rank one tensor B.
Repeating r times we obtain a subsequence of the Pn whose limit is A+B+ · · ·+C. Hence
P = A+B+ · · ·+C ∈Md,r. The result also follows directly from topological considerations,
since Md,r is the image of the closed set (∆1)

dr ×∆r−1 under a polynomial map.

Equality of RBM3,2 and M3,3

We prove Theorem 7.5 by proving the two directions of the containment in two lemmas.
Equality on the interior of the simplex follows from equality of the model closures by the
fact that RBM3,2 is closed on the interior of the simplex.

Lemma 7.11. We have the containment of statistical models RBM3,2 ⊆M3,3.

Proof. Consider a distribution P ∈ RBM3,2. If P ∈ ∂∆7 then it satisfies Condition (7.6) and
we can assume without loss of generality p000 = p001 = 0. Then

P =

[
0 0 0 0
p100 0 p101 0

]
+

[
0 p010 0 p011
0 0 0 0

]
+

[
0 0 0 0
0 p110 0 p111

]
is an expression for P as the sum of three non-negative rank one terms, hence P ∈M3,3.

It remains to consider distributions P with no entries vanishing. We name the six de-
terminants by di,j where i ∈ {1, 2, 3} denotes which index is fixed in the determinant, and
j ∈ {0, 1} gives the value of the fixed index:

d1,0 = p000p011 − p001p010, d1,1 = p100p111 − p101p110,
d2,0 = p000p101 − p001p100, d2,1 = p010p111 − p011p110,
d3,0 = p000p110 − p010p100, d3,1 = p001p111 − p011p101.

(7.7)

As we will see in Section 7.4 and Figure 7.4, we can relabel indices such that determinants
d2,1 and d1,1 have opposite signs. We can write P as

P =

[
p000 0 p001 0

0 0 0 0

]
+

[
0 0 0 0
p100 x p101

p101
p100

x

]
+

[
0 p010 0 p011
0 y 0 p011

p010
y

]
,

where x = p100p111·d2,1
p101d2,1−p011d1,1 and y = p010p111·d1,1

p011d1,1−p101d2,1 . Since the signs of d2,1 and d1,1 are different

this expression for P is non-negative rank three, hence P ∈ M3,3. The denominator of x
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and y is non-zero, provided that d2,1 or d1,1 is non-zero. If some determinant vanishes, a
non-negative rank three decomposition is obtained from the rank one tensor of that face plus
the non-negative rank two representation of the opposite face. Note that x and y are not
both non-negative for P /∈ RBM3,2, by Figure 7.4d, there is no way to rotate or reflect the
cube such that determinants d2,1 and d2,2 have opposite sign.

Lemma 7.12. We have the containment of statistical models M3,3 ⊆ RBM3,2.

Proof. Consider a distribution P + Q ∈ M3,3 where P is non-negative rank two, Q is non-
negative rank one, and no entries of P or Q vanish. Up to swapping values 0 and 1 in
one index, P being non-negative rank two means it satisfies the six binomial inequalities in
Equation (7.3). Equivalently, its determinants di,j from Equation (7.7) have sign pattern
(+,+,+,+,+,+), meaning that di,j ≥ 0 for all i, j. We assume for contradiction that
P + Q /∈ RBM3,2. This means P + Q has three “−” in its sign pattern, di,j < 0 for these
pairs i, j. After adding tensor Q, three determinants have swapped sign: d1,h, d2,h, d3,h for
h = 0 or 1.

Take non-negative vectors a, b, c ∈ R2
≥0 such that qijk = aibjck. Assume that the determi-

nant d3,h of P+Q is negative: (p00h+a0b0ch)(p11h+a1b1ch)−(p01h+a0b1ch)(p10h+a1b0ch) < 0.
Multiplying this expression out, and using p00hp11h ≥ p01hp10h, gives

p00ha1b1 + p11ha0b0 < p10ha0b1 + p01ha1b0. (7.8)

Hence either p00hb1 < p01hb0 or p11hb0 < p10hb1 must hold, and likewise either p00ha1 < p10ha0
or p11ha0 < p01ha1 must hold. Furthermore, rearranging Equation (7.8) yields

1

p00h
(p00ha1 − p10ha0)(p00hb1 − p01hb0) +

(
p11h −

p10hp01h
p00h

)
a0b0 < 0.

Since the last term is non-negative, this implies that 1
p00h

(p00ha1−p10ha0)(p00hb1−p01hb0) < 0,

hence exactly one of p00ha1 < p10ha0 and p00hb1 < p01hb0 holds. Similarly, Equation (7.8)
yields

1

p11h
(p11ha0 − p01ha1)(p11hb0 − p10hb1) +

(
p00h −

p01hp10h
p11h

)
a1b1 < 0,

implying exactly one of p11ha0 < p01ha1 and p11hb0 < p10hb1 holds. Repeating the above for
determinants d2,h and d1,h gives the following 23 = 8 options:

I
(1)
ab = {p00hb1 < p01hb0, p11ha0 < p01ha1}, I

(2)
ab = {p11hb0 < p10hb1, p00ha1 < p10ha0},

I
(1)
ac = {p0h0a1 < p1h0a0, p1h1c0 < p1h0c1}, I

(2)
ac = {p1h1a0 < p0h1a1, p0h0c1 < p0h1c0},

I
(1)
bc = {ph00c1 < ph01c0, ph11b0 < ph01b1}, I

(2)
bc = {ph11c0 < ph10c1, ph00b1 < ph10b0}.

If either inequality from I
(1)
ab holds, the inequalities of I

(2)
ab cannot hold, and likewise for Iac

and Ibc. To conclude the proof, we derive a contradiction from these options.
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Let h = 0. Assume the inequalities in I
(1)
ab hold. Then one of the inequalities from

I
(2)
bc holds, hence I

(1)
bc cannot hold. If I

(1)
ac also holds, combining p110a0 < p010a1 from I

(1)
ab

with p000a1 < p100a0 from I
(1)
ac gives p110p000 < p010p100, contradicting the hypothesis that

P satisfies the inequalities in (7.3). If I
(2)
ac holds, combining inequalities involving c gives

p000p011 < p001p010, also a contradiction. Likewise, if I
(2)
ab holds then I

(1)
ac must hold. If I

(1)
bc

also holds, combining the inequalities involving c implies p101p000 < p100p001, a contradiction.
If I

(2)
bc holds, combining inequalities involving b gives p110p000 < p100p010, also a contradiction.

The case h = 1 follows by analogous reasoning.
This shows that an open dense subset of M3,3 is contained in RBM3,2. It remains to

consider when P or Q has some vanishing entry. Such cases are in the closure of the above,
hence they lie in the closure of RBM3,2.

Proof of Theorem 7.5. Lemma 7.11, and the fact that M3,3 is closed, implies the inclusion
of closures RBM3,2 ⊆ M3,3. Combining with the inclusion in Lemma 7.12 gives M3,3 ⊆
RBM3,2 ⊆ M3,3, hence the two models are equal up to closure. Theorem 7.4 implies that
RBM3,2 is closed on the interior of the simplex, hence we haveM3,3 = RBM3,2 on the interior
of the simplex.

7.3 Maximum likelihood estimation

In this section I give a closed-form formula for maximum likelihood estimation (MLE) to the
statistical model of consideration in this chapter,

M =M3,3 = RBM3,2.

The MLE is found by giving a description of the boundary of the model, which is a union
of exponential families. The MLE to each boundary piece can then be given in closed form,
and the MLE to the model as a whole is given by a minimization over the boundary pieces.

Consider an empirical probability distribution coming from some data. The maxi-
mum likelihood estimation problem is the distribution in a statistical model with smallest
Kullback-Leibler (KL) divergence to the data distribution. The KL divergence from P to Q is
defined as D(P‖Q) :=

∑
x px log px

qx
, where x ranges over the possible states of P and Q. This

is zero if and only if P = Q and it is set to +∞ when supp(P ) 6⊆ supp(Q). The distributions
in the closure of a model that minimize the KL divergence are called reverse information
projections [52]. In general they are not unique, but they are unique for exponential families.

The boundary of the model

We saw thatM is defined by the binomial inequalities in Theorem 7.4. Setting the inequal-
ities in Theorem 7.4 to equalities gives the Zariski closure of the boundary of the model.
This is also the Zariski closure of the boundary of the model M3,2 from [6].
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Proposition 7.13. Distributions on the boundary of M are 2× 2× 2 tensors with a 2× 2
slice of rank ≤ 1.

The following is a converse result. It implies that RBM3,2 is closed on the interior of the
simplex. Furthermore, within the simplex of probability distributions, the Zariski closure of
the boundary is contained in the closure of the model. This result (which fails for M3,2) is
useful for simplifying the study of maximum likelihood estimation for the model.

Lemma 7.14. Every distribution of three binary random variables with a rank one 2 × 2
slice, and strictly positive entries, lies in the models RBM3,2 and M3,3.

Proof. As in the proof of Lemma 7.11, if the determinant of a distribution P vanishes, a
non-negative rank three decomposition is obtained from the rank one tensor of that slice
plus the non-negative rank two representation of the opposite slice. This proves the result
for M3,3.

It remains to build a decomposition of P as (Q + R)(S + T ) where Q,R, S, T are rank
one non-negative 2 × 2 × 2 tensors, and multiplication is entry-wise, as in Equation (7.2).
Assume without loss of generality that d3,1 = 0. Let Q be the rank one tensor with slices
Q∗∗1 and P∗∗1 equal, where Q∗∗0 is set to be the smallest scalar multiple of P∗∗1 that zeros
out an entry of P∗∗0. The notation P∗∗0 refers to the slice Pij0 for i, j ∈ {0, 1}. Then P −Q
consists of at most three non-zero entries. Let R be the tensor which satisfies rijk = pijk−qijk
for two of the three entries at which P 6= Q. Since these two entries can be chosen to be
Hamming neighbors, R is rank one. And since P − Q is non-negative, R is non-negative.
There remains at most one entry where equality P = Q + R does not hold: let i, j, k be
such that pijk > qijk + rijk. Let S be the all ones tensor, and let T be the tensor with
just one non-zero entry, tijk =

pijk
qijk+rijk

− 1. Then T is also non-negative and rank one, and

P = (Q+R)(S + T ) as required.

In the log-probability coordinates, the boundary of M is the union of hyperplanes:

L1,0 = {l000 + l011 − l001 − l010 = 0}, L1,1 = {l100 + l111 − l101 − l110 = 0},
L2,0 = {l000 + l101 − l001 − l100 = 0}, L2,1 = {l010 + l111 − l011 − l110 = 0},
L3,0 = {l000 + l110 − l010 − l100 = 0}, L3,1 = {l001 + l111 − l011 − l101 = 0}.

(7.9)

The intersection poset of a hyperplane arrangement is the set of all intersections of
hyperplanes, ordered by reverse inclusion [173]. In Figure 7.3, I give the intersection poset
of the pieces of the boundary of M. The lowest node is the ambient space R8. At the first
level are the six boundary pieces. At the second level are the 15 pairwise intersections. The
enlarged nodes are intersections of the form Li,0∩Li,1. The third level contains the 11 distinct
codimension three intersections. The enlarged nodes are codimension three, despite being
intersections of four hyperplanes, which highlight the non-generic structure of the hyperplane
arrangement. The top intersection corresponds to the independence model. The nodes are
labeled with their Möbius function value.
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We can study the combinatorics of the arrangement using its characteristic polynomial
χ(t) =

∑
f µ(f)tdim(f). The summation is taken over all flats in the arrangement, where µ is

the Möbius function. Evaluating the characteristic polynomial at t = −1 gives the number
of full dimensional regions of the ambient space defined by the arrangement (see [173])

|χ(−1)| = 46.

For comparison, a generic four dimensional central arrangement of six hyperplanes defines 52
regions. Ours is a central arrangement (the origin is in all hyperplanes) hence all 46 regions
are unbounded cones. Of the 46 regions, the model M occupies 44 and the smaller model
M3,2 occupies four.

7

-3 -1 -1 -1 -1 -3 -1 -1 -1 -1 -3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

-1 -1 -1 -1 -1 -1

1

Figure 7.3: Intersection poset of the boundary pieces of the statistical model M.

Since the six boundary pieces in Equation (7.9) are linear equations in log probability
space, they define exponential families. For instance, the exponential family L1,0 consists
of all distributions whose log-probabilities have a vanishing inner product with the vector[
1 −1 −1 1 0 0 0 0

]T
. Since intersections of exponential families are exponential

families, each element in the intersection poset in Figure 7.3 is also an exponential family.

Reversed information projections

To study the maximum likelihood estimation problem for the model M, we first find the
reversed information projections (rI-projections) to each boundary piece of the model. We
only need to consider projections onto the six boundary pieces, not onto the entire inter-
section poset, by Proposition 7.13. In contrast, for the model M3,2 we have to consider
projections to the whole poset of boundary pieces, see [5]. For a distribution P ∈ ∆7\M,
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the rI-projection to each boundary piece will lie in the model, and there is at most one
projection point in each boundary piece. Taking the projection that minimizes divergence,
over the six boundary pieces, gives the rI-projection to the whole model.

Let Pi,j be the toric hypersurface in the simplex obtained by exponentiating the hy-
perplane Li,j in log-probability space and normalizing. The following proposition gives the
maximum likelihood estimation for that toric model.

Proposition 7.15. The unique rI-projection of P ∈ ∆7 onto P1,0 is found by taking the best
rank one approximation in the slice P0∗∗, and leaving the other slice unchanged. In symbols,
its entries are

P (X2|X1)P (X3|X1)P (X1), for X1 = 0 and P (X), for X1 = 1,

where X is the random variable on state space {0, 1}3 and Xi is its ith coordinate. The
divergence from P to P1,0 is

D(P‖P1,0) = P (X1 = 0) · IP (X2;X3|X1 = 0),

where IP (X2;X3|X1 = 0) = D(P (X2X3|X1 = 0)‖P (X2|X1 = 0)P (X3|X1 = 0)) is the
conditional mutual information of the two variables X2 and X3, given X1 = 0. The rI-
projections to the five other pieces follow analogously.

Proof. This follows by applying [128, Lemma 3.2] to the exponential family described in
Proposition 7.13 and using the fact that the rI-projection of a distribution to an independence
model is given by the product of its marginals.

The rI-projection to the entire model is the boundary projection with smallest divergence
value. It has divergence

D(P‖M) = min
i=1,2,3, j=0,1

D(P‖Pi,j).

The rI-projection of any P to an exponential family is unique, so there are at most six rI-
projections toM. The distributions whose rI-projections to P1,0 coincide are those with the
same values p1jk, j, k ∈ {0, 1} and fixed marginals on p0jk, j, k ∈ {0, 1}.

Remark 7.16. For theM3,3 and RBM3,2 parametrizations ofM, each rI-projection may be
realized by several distinct choices of the parameters: there are several choices of parameters
associated with each local maximizer of the likelihood function.

Divergence maximizers

The maximum divergence to a statistical model is a measure of the representational power
of that model. Here I describe the distributions with the largest divergence to the modelM.
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Proposition 7.17. The maximum divergence to M is 1
2

log 2. The maximizers are the
uniform distributions on the odd or even parity states, u+ := 1

4
(δ000 + δ011 + δ101 + δ110) and

u− := 1
4
(δ001 + δ010 + δ100 + δ111). There are six rI-projections of u+, one in each boundary

piece:

u+P1,0
=

1

8
(δ000 + δ001 + δ010 + δ011) +

1

4
(δ101 + δ110)

u+P1,1
=

1

8
(δ100 + δ101 + δ110 + δ111) +

1

4
(δ011 + δ000)

u+P2,0
=

1

8
(δ000 + δ001 + δ100 + δ101) +

1

4
(δ011 + δ110)

u+P2,1
=

1

8
(δ010 + δ011 + δ110 + δ111) +

1

4
(δ000 + δ101)

u+P3,0
=

1

8
(δ000 + δ010 + δ100 + δ110) +

1

4
(δ011 + δ101)

u+P3,1
=

1

8
(δ001 + δ011 + δ101 + δ111) +

1

4
(δ000 + δ110).

The projection points of u− are given in a similar way.

Proof. Proposition 7.15 shows that the indicated distributions are the rI-projections of u+

onto the individual boundary pieces ofM. There can be no more than six projection points
and hence we have a complete list. The fact that 1

2
log 2 is the maximum possible divergence

to M follows from upper bounds for mixtures of products and RBMs given in [129]. Both
u+ and u− attain this upper bound.

Now I show that u+ and u− are the only divergence maximizers. Assume without loss of
generality that some maximizer P has an rI-projection onto M in P1,0. Then D(P‖P1,0) =
P (X1 = 0)IP (X2;X3|X1 = 0) ≤ D(P‖P1,1) = P (X1 = 1)IP (X2;X3|X1 = 1) ≤ (1− P (X1 =
0)) log 2. The last inequality follows since, for two binary variables, the mutual information
is maximized by a uniform distribution on strings of Hamming distance two (see [13]).
The maximum value 1

2
log 2 is attained only if P (X1 = 0) = P (X1 = 1) = 1

2
and both

P (X2X3|X1 = 0) and P (X2X3|X1 = 1) are uniform on pairs of Hamming distance two.
If these two conditional distributions were equal, then P ∈ M, and P is not a divergence
maximizer. Hence the pairs are different. This shows that P is a uniform distribution on
four strings of equal parity.

Remark 7.18. Proposition 7.17 shows that the upper bound on the maximum divergence to
mixtures of products and RBMs from [129, Theorems 1 and 2] is tight in the case of M3,3

and RBM3,2. Moreover it shows that for a given data point, RBM3,2 can have up to 6 global
maximizers of the likelihood, and that generically this will be the number of local maximizers.

An interesting question is whether we can characterize the points in the probability
simplex that project to the different boundary pieces of the model. That is, to provide a
decision boundary separating the regions of the simplex that are closer to each part of the
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model, with respect to the KL divergence. In this case, these decision boundaries are neither
linear families nor exponential families.

7.4 Connection to triangulations

A positive distribution P ∈ ∆7 induces a triangulation of the three-cube. We can characterize
the statistical model M in terms of triangulations, because the implicit description for M
consists of binomial expressions that impose constraints on the associated triangulation.
Membership of a distribution P in the modelM depends on properties of the triangulation.
We use the connection between model membership and triangulations to prove Corollary 7.7.

Consider a generic, strictly positive distribution P ∈ ∆7. Its tensor of log-probabilities
lijk = log(pijk) induces a triangulation of the three-cube, as follows. Assign the height
lijk to each vertex (i, j, k) ∈ {0, 1}3. Take the upper part of the convex hull (the upper
hull) of the points (i, j, k, lijk) in four-dimensional space and project it back to the three-
dimensional cube. The facets in the upper hull project to tetrahedra that triangulate the
cube. Figure 7.4 illustrates different triangulations of the three-dimensional cube by showing
how the triangulations restrict to certain faces of the cube.

Proposition 7.19. The modelM contains distributions with triangulations as in Figure 7.4b
and 7.4c. Distributions with triangulations as in Figure 7.4a are a special case that lies in
M3,2. Distributions in Figure 7.4d lie outside of M.

a b c d

Figure 7.4: Membership in statistical models in terms of triangulations, see Theorem 7.19.

Rotating or reflecting the cubes in Figure 7.4 corresponds to relabeling indices of the
distributions, and in particular does not affect membership in any of the statistical models
we consider. Some of the 26 possible triangulations of the six faces do not come from a
triangulation of the whole cube. The empty faces in Figure 7.4 can be triangulated in either
of the two possible directions, provided that the triangulation of the faces is a restriction of
a triangulation of the whole cube.

Proof of Proposition 7.19. There are 20 linear expressions in the coordinates lijk whose signs
determine the triangulation, see [25, page 1325]. Six of these equations determine how the
triangulation restricts to the faces of the cube. These are the logarithms of the binomial
equations that define M. Hence we can see whether exp(lijk) lies in M by looking at how
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the triangulation induced by the lijk restricts to the faces of the cube. The equations that
define M3,2 and M3,1 are also of this form.

In the language of triangulations, being in M means we triangulate at least one pair of
opposite faces in the same direction, as in Figure 7.4b. The condition for being in M3,2 is
that every pair of opposite faces is triangulated in the same direction, with sign compatibility
as in Figure 7.4a. Triangulations of distributions not in RBM3,2 triangulate every pair of
opposite faces in opposing directions, as in Figure 7.4d. An alternate characterization of such
triangulations is that every pair of adjacent faces is triangulated in a continuous way. If,
conversely, a pair of adjacent faces is triangulated in a discontinuous way, as in Figure 7.4c,
the distribution lies in M.

Proof of Corollary 7.7. I show that distributions with four modes restrict to the faces of the
cube as shown in Figure 7.4d. Assume we have a distribution with four modes. Without loss
of generality, the four numbers l000, l011, l101, and l110 exceed the values of their neighbours.
Consider a face of the cube, for example the face 〈l000, l001, l010, l011〉. Since l000 ≥ l001 and
l011 ≥ l010, we have

l000 + l011 − l010 − l001 ≥ 0,

which determines how the triangulation of (lijk) restricts to the face. Repeating for the other
faces gives the triangulation of the faces shown in Figure 7.4d. Distributions on ∂∆7∩RBM3,2

have at least two adjacent entries vanishing, by Equation (7.6). This excludes the possibility
of having four modes.

Visualizing the model

In this subsection, I explain how to draw the seven-dimensional model M using a three
dimensional figure. In [162, Figure 3], a first attempt was made to visualize the model M.
I make use of the following change of basis (corresponding to the basis of characters) in the
log-probabilities:

m∅
m{3}
m{2}
m{2,3}
m{1}
m{1,3}
m{1,2}
m{1,2,3}


=



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1





l000
l001
l010
l011
l100
l101
l110
l111


.

The boundary pieces of the model can be written in terms of just four of these coordinates:

L1,0 = {m{2,3} +m{1,2,3} = 0}, L1,1 = {m{2,3} −m{1,2,3} = 0},
L2,0 = {m{1,3} +m{1,2,3} = 0}, L2,1 = {m{1,3} −m{1,2,3} = 0},
L3,0 = {m{1,2} +m{1,2,3} = 0}, L3,1 = {m{1,2} −m{1,2,3} = 0}.
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Hence it suffices to visualize the combinations of coordinates (m{1,2},m{1,3},m{2,3},m{1,2,3})
that lie in the model. Furthermore, if a vector satisfies the inequalities above, then so does
any scalar multiple, so we need only consider vectors (m{1,2},m{1,3},m{2,3},m{1,2,3}) of norm
one. The value of m{1,2,3} can be found up to sign from the other three coordinates. We can
draw the model in coordinates

(m{1,2},m{1,3},m{2,3}) =
(m{1,2},m{1,3},m{2,3})

‖(m{1,2},m{1,3},m{2,3},m{1,2,3})‖
,

where ‖ · ‖ denotes the Euclidean norm, with separate panels for the different signs of
m{1,2,3}. Figure 7.5 shows pieces L1,0 and L1,1. The set L1,0 is in dark blue, and L1,1 is in
light blue. The points enclosed by the surface correspond to distributions in the complement
of the two basic semi-algebraic sets of RBM3,2 enclosed by L1,0 and L1,1. The black line is
{m{2,3} = m{1,2,3} = 0}, along which L1,0 and L1,1 meet. The non-linearity of the surfaces is
due to the normalization. The whole model is shown in Figure 7.6. From this picture, we
also obtain a visualization of M3,2. Within each orthant, the part of the sphere outside all
three surfaces is a triangular bipyramid. Four of these bipyramids make up the modelM3,2.

Figure 7.5: Two boundary pieces of the statistical model M.

Outlook

In this chapter, I proved the rather surprising fact that a mixture of products and a product of
mixtures represent the same set of probability distributions. The semi-algebraic description
allows the computation of maximum likelihood estimates and divergence maximizers, both
of which appear quite difficult to obtain via other methods.

The natural next step is to extend the analysis to larger models. However, the description
for larger models involves complicated equality constraints. For example, in [53] the Zariski



CHAPTER 7. SEMI-ALGEBRAIC STATISTICS 129

Figure 7.6: The statistical model M is the space inside the three-sphere and outside any
of the blue, green, or yellow surfaces, the six boundary pieces of the model.

closure of the model RBM4,2 is found. It is the zero set of a single degree 110 polynomial with
at least 17,214,912 terms. The binomial inequalities we obtain here are more tractable. In
light of this, it appears natural to consider approximate descriptions of larger RBM models
in terms of inequality constraints only. A relaxation of larger statistical models, given in
terms of inequalities only, would provide lower bounds on the maximal divergence and the
minimal size of universal approximators.

In [6] the authors show that the modelMd,2 consists of supermodular distributions with
flattening rank at most two. Distributions in larger RBM models are Hadamard products of
non-negative tensors of rank at most two (products of tensors proportional to distributions
in Md,2). Ignoring the equations, we have the set of supermodular tensors, which consists
of basic semi-algebraic sets satisfying binomial quadratic inequalities as in Equation (7.3).
Hence the algebraic boundary of Hadamard products of supermodular tensors is again a
union of exponential families, for which we may hope to obtain maximum likelihood estimates
in closed form.



130

Chapter 8

Learning paths from signature tensors

In many applied contexts, tensors can be used to encode features of geometric data. The
tensors are then used as the input to algorithms aimed at classifying and understanding
the original data. The signature is collection of tensors that encodes a path. For a path
ψ : [0, 1]→ Rn, the signature is a formal series of tensors

σ(ψ) =
∞∑
d=1

σ(d)(ψ),

whose dth term is an order d tensor in Rn×···×n with entries that are iterated integrals of ψ:

(σ(d)(ψ))i1···id =

∫ 1

0

· · ·
(∫ t3

0

(∫ t2

0

dψi1(t1)

)
dψi2(t2)

)
· · · dψid(td). (8.1)

Assume that the path has coordinates that are piecewise continuous differentiable func-
tions. The first tensor in the signature is a vector in Rn. Evaluating Equation (8.1) for d = 1
shows that the first signature tensor is the increment of the path, σ(1)(ψ) = ψ(1) − ψ(0).
The second tensor in the signature is a matrix in Rn×n. Evaluating Equation (8.1) for d = 2
shows that σ(2)(ψ) = 1

2
(ψ(1)−ψ(0))⊗2 +Q, where Q is skew-symmetric. The entry qij is the

Lévy area of the projection of the path ψ onto the plane indexed by i and j, the signed area
between the planar path and the segment connecting its endpoints. The dth tensor in the
sequence gives, as d increases, a finer encoding of the path, provided that the path is not a
loop.

Signature tensors were introduced in [48] and are important in the theory of rough paths
in stochastic analysis [71, 113]. A path is determined by its infinite encoding as a signature,
up to a natural equivalence [47, 79]. There has been extensive interest in recovering a path
from its signature [114, 115]. This has applications to time series data, including temporal
medical data [60, 94, 95]. Many recovery results focus on recovery of a path from its infinite
signature. The perspective of focusing on a single tensor in the signature was introduced
in [7].
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In this chapter, I study the problem of recovering a low-complexity path from its signature
tensor of order three, the third term in the signature. I consider paths whose coordinates can
be written as linear combinations of functions in a fixed dictionary. The family of piecewise
linear paths is a main example. In the setting of a fixed dictionary, path recovery is closely
related to the study of tensors under congruence action by the special linear group. I study
conditions under which the stabilizer under congruence action is finite or trivial, which
leads to identifiability results on recovering a path from the third order signature tensor,
including a proof of part of [7, Conjecture 6.10]. I give a numerical optimization algorithm
for path recovery, which gives accurate and unique recovery of low-complexity paths, and
I also address the problem of finding the shortest path with given third signature tensor.
This chapter is based on joint work with Max Pfeffer and Bernd Sturmfels, published in the
SIAM Journal on Matrix Analysis and Applications [141].

8.1 Tensors under congruence

In this section I consider the congruence action for tensors, in which a matrix A ∈ GLn acts
on a tensor X of format n× · · · × n (d times), via

X 7→ [[X;A, . . . , A]]. (8.2)

The entries of the transformed tensor are

[[X;A, . . . , A]]i1...id =
n∑

j1,...,jd=1

xj1...jdai1j1 · · · aidjd .

I give a necessary condition for a tensor to have trivial stabilizer under congruence action, and
a Jacobian criterion that is sufficient for a tensor to have finite stabilizer under congruence.
I also discuss extensions of the congruence action to rectangular matrices, and study the
identifiability of recovering a rectangular matrix A ∈ Rn×m from the tensor matrix product
[[X;A, . . . , A]].

So far in this thesis, we have seen the change of basis action for a tensor of format
n1 × · · · × nd, in which a product of matrices (A(1), . . . , A(d)) ∈ GLn1 × · · · × GLnd

acts
on a tensor X via X 7→ [[X;A(1), . . . , A(d)]]. For symmetric tensors X, corresponding to
polynomials f via Example 1.7, we have also seen the symmetric chance of basis f(z) 7→
f(A · z), for A ∈ GLn. For tensors, while there is a literature on the above two change of
basis actions, much less is known about the congruence action. We note the relation between
the congruence action in Equation (8.2) and the Tucker decomposition from Equation (1.10).
The difference here is that the core tensor is fixed, and the tensor is multiplied on each side
by the same matrix.

The stabilizer of X under the group action is the subgroup of matrices A ∈ GLn that
satisfy [[X;A, . . . , A]] = X. It can be considered in the space of real or complex invertible
matrices. The stabilizer is defined by a system of polynomial equations of degree d in the
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entries of A. Matrices ηI with ηd = 1 are always among the solutions. It is an open problem
to characterize the tensors X of format n×· · ·×n (d times) whose stabilizer under congruence
is non-trivial, i.e. strictly contains {ηI : ηk = 1}. The stabilizer of a matrix under congruence
is always infinite, see [141, Proposition 5.1]. The stabilizer of a tensor will be important for
the identifiability of path recovery from the family of paths whose dictionary has signature
tensor X. I introduce an important notion for stabilizers under congruence.

Definition 8.1 (Symmetrically concise). A tensor X in V ⊗d is symmetrically concise if
there is no subspace W ( V such that X ∈ W⊗k. We can equivalently define symmetrically
concise in terms of flattenings. For dim(V ) = n, the tensor X has nd entries and d principal
flattenings, matrices of format n × nd−1. Concatenate the d flattening matrices to form a
single matrix of format n × dnd−1. The tensor is symmetrically concise if this matrix has
full rank n.

The reason for the name symmetrically concise comes from the definition in terms of
flattenings. A tensorX of format n×· · ·×n (d times) is called concise if it has flattening ranks
(n, . . . , n) [177]. For symmetric tensors, concise and symmetrically concise are equivalent,
because the n × dnd−1 matrix consists of d identical blocks of format n × nd−1. However,
symmetrically concise is weaker than concise for non-symmetric tensors. For example, the
3× 3× 3 basis tensor X = e1 ⊗ e2 ⊗ e3 is symmetrically concise but not concise: there exist
subspaces Wi ( K3 with X ∈ W1⊗W2⊗W3, but we cannot find the same subspace W ( K3

across all modes such that X ∈ W⊗3.
We can also define symmetrically concise from a decomposition into rank one terms.

Consider a decomposition of a tensor X of rank r as a sum of r rank one terms. This is
called a minimal decomposition, since a minimal number of rank one terms have been used.
A tensor is symmetrically concise if the dr vectors in any minimal decomposition span the
ambient space Kn.

Proposition 8.2. Let X be a tensor that is not symmetrically concise. Then the stabilizer
of X under the congruence action is non-trivial.

Proof. Let X have format n × · · · × n (d times). Since X is not symmetrically concise,
there exists a vector v ∈ Kn of norm one such that vTX(i) = 0 for all i = 1, . . . , d, where
X(i) denotes the ith principal flattening of X. Hence [[X; I+vvT, . . . , I+vvT]] = X, and the
invertible matrix I + vvT is in the stabilizer of X.

Tensors with trivial stabilizer are symmetrically concise but not always concise:

Example 8.3. Consider the rank-one tensor X = e1 ⊗ e2 ⊗ (e1 + e2). Each 2× 4 flattening
matrix of X is rank-deficient. This means that X has flattening ranks (1, 1, 1), so X is not
concise. However, the 2×12 matrix we obtain by concatenating the three flattening matrices
has full rank, hence the tensor X is symmetrically concise. The stabilizer of X is directly
computed to be trivial.
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I next derive a Jacobian criterion which gives a sufficient condition for the stabilizer
of a tensor under the congruence action to be finite. For notational simplicity I state the
criterion only for order three tensors. The Jacobian ∇f(A) ∈ Kn3×n2

of the function f(A) =
[[X;A,A,A]] has entries:

∇f(A)(i,j,k),(u,v) =
∂fijk
∂auv

=
∑
α,β

(xvαβδuiajαakβ + xαvβδujaiαakβ + xαβvδukaiαajβ),

where δij is the Kronecker delta. The entries of the Jacobian at A = I are

∇f(I)(i,j,k),(u,v) = xvjkδui + xivkδuj + xijvδuk. (8.3)

Consider the n2×n2 submatrix J1 of the Jacobian obtained by setting k = 1 in Equation (8.3).
The entry of J1 in row (i, j) and column (u, v) is the linear form

J1((i, j), (u, v)) = δuixvj1 + δujxiv1 + δu1xijv.

Proposition 8.4. Let X be a tensor whose n2 × n2 matrix J1 as above is invertible. Then
the stabilizer of X under the congruence action by GLn is finite.

Proof. The stabilizer of X under congruence is infinite when the map f : A 7→ [[X;A,A,A]]
has positive-dimensional fibers. If the matrix J1 is invertible then the Jacobian ∇f has
full rank at A = I. This implies that a connected component of the stabilizer consists of
the single matrix I. Consider another connected component of the stabilizer, containing a
matrix Z. Applying Z−1 to the component gives a connected component of the stabilizer
containing I, which therefore must be the single matrix I. Hence all connected components
are zero-dimensional, and the stabilizer is finite.

The same conclusion is obtained from any maximal minor of the Jacobian in Kn3×n2
.

Since the stabilizer of a matrix under congruence is infinite, computing the Jacobian in this
case gives a matrix of format n2 × n2 with vanishing determinant.

Multiplication by rectangular matrices

In this section, I relate the stabilizer of a tensor under congruence action to the recovery of
the matrix A from the tensor [[X;A, . . . , A]], where X ∈ Km×···×m and A ∈ Kn×m and m ≤ n.
The tensor is called identifiable if the matrix A can be recovered up to scale. The tensor is
called algebraically identifiable if A can be recovered up to a finite list of choices.

The following result compares minimal decompositions of smaller tensors with those of
larger tensors in which they appear as a block. Any decomposition of the larger tensor is
obtained from a decomposition of the smaller tensor by adding zeros.

Lemma 8.5. Let X be a tensor of format n×· · ·×n (d times), where d ≥ 3 and all non-zero
entries are in a block of format m× · · · ×m (d times) for some m ≤ n. Then any rank one
term in a minimal decomposition of X is also zero outside of the block.
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Proof. Let X =
∑r

l=1 v
(1)
l ⊗ · · · ⊗ v

(d)
l be a minimal decomposition. Assume that a rank one

term is non-zero outside of the block, i.e. the α coordinate of v
(j)
l is non-zero for some l, j,

and index α not in the block. The terms v
(1)
l ⊗ . . .⊗v

(j)
l (α)⊗· · ·⊗v(d)l sum to zero. However,

the order d− 1 tensors in a minimal decomposition, resulting from removing the jth vector
from each rank one term, are linearly independent, a contradiction.

We note that Lemma 8.5 also appears as [105, Proposition 3.1.3.1]. We use this lemma to
relate the stabilizer of a tensor X under the congruence action, to recovery of the matrix A
from [[X;A, . . . , A]].

Theorem 8.6. Fix a symmetrically concise tensor X of format m× · · · ×m (d times). Let
StabK(X) denote its stabilizer under the congruence action by matrices in GLm with entries
in K. For any matrix A ∈ Kn×m of rank m ≤ n, we have{

B ∈ Kn×m : [[X;A, . . . , A]] = [[X;B, . . . , B]]
}

=
{
AZ : Z ∈ StabK(X)

}
. (8.4)

Proof. Suppose [[X;A, . . . , A]] = [[X;B, . . . , B]]. Let X̃ be the n× · · ·×n tensor with entries

x̃i1...id =

{
xi1...id if 1 ≤ i1, . . . , id ≤ m,

0 otherwise.

Let Ã be an invertible n× n matrix whose first m columns are A, and likewise construct B̃.
Then [[X̃; Ã, . . . , Ã]] = [[X̃; B̃, . . . , B̃]]. We multiply by Ã−1 to get X̃ = [[X̃; Z̃, . . . , Z̃]] where
Z̃ = Ã−1B̃ and the top-left m×m block of Z̃, denoted Z, satisfies [[X;Z, . . . , Z]] = X.

Let X̃ =
∑r

l=1 X̃l be a minimal decomposition, where X̃l = ṽ
(1)
l ⊗ · · · ⊗ ṽ

(d)
l with ṽ

(j)
l ∈

Km × {0}n−m ⊆ Kn. We obtain another minimal decomposition of X̃, by acting with Z̃,
with rank one terms [[X̃l; Z̃, . . . , Z̃]] = (Z̃ṽl

(1)) ⊗ · · · ⊗ (Z̃ṽl
(d)). By Lemma 8.5, all minimal

decompositions of X̃ come from those of X by adjoining zeros. This means that the n−m
row vectors in the (n−m)×m lower-left block of Z̃ have dot product zero with every vector
appearing in a minimal decomposition of X. Since X is symmetrically concise, these row
vectors must be zero. The identity B̃ = ÃZ̃ now implies B = AZ.

Corollary 8.7. Let X be a symmetrically concise tensor of format m × · · · ×m (d times)
whose stabilizer under congruence by matrices in GLm with entries in K has size s. Then,
for any matrix A ∈ Kn×m of rank m, there are s matrices in Kn×m with

[[X;A, . . . , A]] = [[X;B, . . . , B]].

Proof. Let B be a matrix in Kn×m that satisfies [[X;A, . . . , A]] = [[X;B, . . . , B]]. By Theo-
rem 8.6, we have B = AZ where Z is in the stabilizer under the congruence action. If there
are n choices for Z, then there are n choices for B.

If X has trivial stabilizer under congruence, then it is already symmetrically concise by
Proposition 8.2. We can thus simplify Corollary 8.7 as follows.
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Corollary 8.8. If X of format m×· · ·×m (d times) has trivial stabilizer under congruence
then rank m matrices A ∈ Kn×m are identifiable from the tensor [[X;A, . . . , A]].

The following example illustrates why Theorem 8.6 and Corollary 8.7 fail when C is not
symmetrically concise.

Example 8.9. Fix the 2× 2× 2 tensor X = e1 ⊗ e1 ⊗ e1. Its stabilizer in GL2 is

Z =

[
1 ∗
0 ∗

]
,

where the ∗ entries can take any value in K. Setting m = 2, n = 3, I also introduce

A =

1 0
0 1
0 0

 and B =

1 ∗
0 ∗
0 ∗

 .
The left hand side of Equation (8.4) is the set of all matrices of the form B. This set strictly
contains the right hand side of Equation (8.4), because not all matrices B are expressible
as AZ for some Z. This happens because the last row of B has dot product zero with all
vectors in the minimal decomposition of X, without being zero itself, i.e. the tensor X is not
symmetrically concise.

8.2 Signature tensors

Consider a dictionary ψ = (ψ1, . . . , ψm) of piecewise differentiable functions ψi : [0, 1] → R.
In this section, I consider the signature tensors of paths whose coordinates can be written as
a linear combination of functions in a fixed dictionary. This holds for many useful families
of paths, such as piecewise linear paths with a bounded number of steps. As we will see,
once the signature of the dictionary ψ is known, integrals no longer need to be computed:
signature tensors of paths are obtained by tensor matrix multiplication.

The dictionary corresponds to a path in Rm, also denoted ψ, whose ith coordinate is ψi.
The image of the path ψ under the linear map given by A ∈ Rn×m is the path Aψ : [0, 1]→ Rn

given by

t 7→
( m∑
j=1

a1jψj(t), . . . ,
m∑
j=1

adjψj(t)

)
.

The following key lemma relates the linear transformation of a path to the induced linear
transformation of its signature tensor. The proof follows directly from the iterated integrals
in Equation (8.1), bearing in mind that integration is a linear operation.

Lemma 8.10. The signature map is equivariant under linear transformations,

σ(Aψ) = A(σ(ψ)).
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The action of the linear map A on the signature σ(ψ) is the congruence action

σ(d)(Aψ) = [[σ(d)(ψ);A, . . . , A]] for d = 1, 2, 3, . . . (8.5)

For d = 1 this is the matrix-vector product σ(1)(Aψ) = A ·σ(1)(ψ). For d = 2 the rectangular
matrix A acts on the square signature matrix via σ(2)(Aψ) = A ·σ(2)(ψ) ·AT. In this chapter,
I focus on the third order signature σ(3)(ψ), because it is the lowest order signature for which
paths can be recovered uniquely from third signatures under the assumption that they come
from a dictionary.

The third order signature tensor of the path ψ is denoted by Cψ = σ(3)(ψ) ∈ Rm×m×m.
It has entries

cijk =

∫ 1

0

(∫ t3

0

(∫ t2

0

dψi(t1)

)
dψj(t2)

)
dψk(t3) for all 1 ≤ i, j, k ≤ m. (8.6)

The first and second signature of a real path are determined by the third signature, provided
the path is not a loop, just as any lower order signature tensor can be recovered up to scale
from higher order signatures. This follows from the shuffle relations [7, Lemma 4.2]. Writing
ci and cij for the entries of the first and second signature respectively, we have the identities

cicj = cij + cji and cicjk = cijk + cjik + cjki. (8.7)

Given a n × m matrix A, the third signature of the image path Aψ in Rn is denoted
by σ(3)(A), as shorthand for σ(3)(Aψ). Following Equation (8.5), this n × n × n tensor is
[[Cψ;A,A,A]], with entries

[[Cψ;A,A,A]]αβγ =
m∑
i=1

m∑
j=1

m∑
k=1

cijkaαiaβjaγk.

I next discuss some specific dictionaries and the paths they encode, starting with two
dictionaries studied in [7]. The first dictionary is ψ(t) = (t, t2, . . . , tm). Multiplying this
dictionary by matrices A of format n × m gives all polynomial paths of degree at most m
that start at the origin in Rn. The core tensor of ψ is denoted by Cmono to indicate the
monomials ti. By [7, Example 2.2], its entries are

cijk =
j

i+ j
· k

i+ j + k
.

Our second dictionary comes from an axis path in Rm. It encodes all piecewise linear
paths with ≤ m steps. The ith entry in the dictionary is the piecewise linear basis function

ψi(t) =


0 if t ≤ i−1

m
,

mt− (i− 1) if i−1
m
< t < i

m
,

1 if t ≥ i
m
.

(8.8)
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By [7, Example 2.1], the associated core tensor Caxis is “upper-triangular”, namely

cijk =


1 if i < j < k,
1
2

if i < j = k or i = j < k,
1
6

if i = j = k,

0 otherwise.

(8.9)

The tensors Cmono and Caxis are real points in the universal variety Um,3 ⊂ (Cm)⊗3,
studied in [7]. The universal variety consists of all third order signatures of paths in Cm, or
equivalently all core tensors of dictionaries of size m. At present, we do not know whether
all real points in Um,3 are in the topological closure of the signature tensors of real paths.

Example 8.11 (Generic Dictionaries). We describe a method for sampling real points in the
universal variety Um,3, assuming [7, Conjecture 6.10]. Pick M random vectors Y1, Y2, . . . , YM
in Rm, where M exceeds 1

3
m2 + 1

2
m+ 1

6
= dim(Um,3), and take the piecewise linear path with

steps Y1, Y2, . . . , YM . By [7, Example 5.4], the resulting generic core tensor equals

Cgen =
1

6
·
M∑
i=1

Y ⊗3i +
1

2
·
∑

1≤i<j≤M

(
Y ⊗2i ⊗ Yj + Yi ⊗ Y ⊗2j

)
+

∑
1≤i<j<k≤M

Yi ⊗ Yj ⊗ Yk. (8.10)

The coefficients in Equation (8.10) match the tensor entries in Equation (8.9). By Chen’s
Formula [7, Equation (38)], the signature tensor Cgen is the degree 3 component in the tensor
series σ(ψ) = exp(Y1)⊗ · · · ⊗ exp(YM), where exp(Yi) =

∑∞
k=0

1
k!
Y ⊗ki .

An alternative method for sampling from Um,3 uses the Gröbner basis in [7, Theorem
4.10]. We write σlyndon for the vector of all signatures σi, σij and σijk whose indices are
Lyndon words. This includes all m first order signatures σi, all

(
m
2

)
second order signatures

σij with i < j, and all 1
3
(m3 − m) third order signatures σijk satisfying i < min(j, k) or

i = j < k. We pick these m+
(
m
2

)
+ 1

3
(m3 −m) signature values to be random real numbers

and substitute these numbers into the vector σlyndon. The non-Lyndon signatures σijk are
then computed by evaluating φijk(σlyndon), where φijk is the normal form polynomial in [7,
Theorem 4.10].

I now define what I mean by “learning paths” in the title of this chapter. Let C be a
fixed core tensor of format m×m×m, such as Caxis, Cmono or Cgen. The data is an n×n×n
tensor X that is the third signature of some path in Rn. Our hypothesis is that the path
can be represented by the dictionary ψ, i.e. it is the image of ψ under a linear map. We
seek an n×m matrix A such that X = σ(3)(A). In other words, given X and C, we wish to
solve the tensor equation

[[C;A,A,A]] = X,

the system of n3 cubic equations in mn unknowns aij

m∑
i=1

m∑
j=1

m∑
k=1

cijkaαiaβjaγk = xαβγ for 1 ≤ α, β, γ ≤ n. (8.11)
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The system in Equation (8.11) has a solution A if and only if the dictionary with core tensor C
admits a path with signature tensor X. For the dictionaries we consider, the solution A is
conjectured to be unique among real matrices provided m < 1

3
n2 + 1

2
n + 1

6
, and unique up

to scaling by a third root of unity if we allow complex matrices. The inequality means that
the dimension of the universal variety Un,3 exceeds the number mn of unknowns, which is
necessary for identifiability. For piecewise linear and polynomial paths, this is presented in
[7, Conjecture 6.12 and Lemma 6.16].

8.3 Tensor congruence identifiability

Exact identifiability

In this subsection I prove identifiability properties for tensors coming from dictionaries of
paths of interest. I consider generic dictionaries and piecewise linear paths. I then compare
this notion of identifiability with other uniqueness properties that are studied for tensors.

Generic dictionaries

Consider an m×m×m core tensor C that is generic in the universal variety Um,3. This is
the third signature of a dictionary ψ which is generic in the sense of Example 8.11. In the
following result, the field K can be either R or C.

Theorem 8.12. Let C be an m×m×m tensor that is a generic point in the variety Um,3.
The stabilizer of C is trivial, under congruence action by matrices in GLm with entries in K.

Proof. I show that the complex stabilizer of the real tensor C is trivial: it consists only of
the scaled identity matrices ηI, where η3 = 1. For m ≤ 3, this result is established by a
direct Gröbner basis computation in maple. For m ≥ 4 we use the following parametrization
of the universal variety Um,3. Let P be a generic vector in Cm, and let Q be a generic skew-
symmetric m ×m matrix. Following the definitions in [7, §4.1], we take L to be a generic
element in the space Lie[3](Cm) of homogeneous Lie polynomials of degree 3. Then

C =
1

6
P⊗3 +

1

2
(P ⊗Q+Q⊗ P ) + L. (8.12)

Indeed, P + Q + L is a general Lie polynomial of degree ≤ 3, and the right hand side
in Equation (8.12) is the degree 3 component in the expansion of its exponential, see [7,
Example 5.15]. The constituents P , Q and L are recovered from C by taking the logarithm
of C in the tensor algebra and extracting the homogeneous components of degree 1, 2 and
3. In particular, since these computations are equivariant with respect to the congruence
action by GLm, the stabilizer of C is contained in the stabilizer of L.

By [7, Proposition 4.7], a basis for the vector space Lie[3](Cm) consists of the bracketings
of all Lyndon words of length three on the alphabet {1, . . . ,m}. The number of these Lyndon
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triples is 1
3
(m3 − m). The group G = GLm acts irreducibly on Lie[3](Cm). By comparing

dimensions, we see that
Lie[3](Cm) ' S(2,1)(Cm). (8.13)

The right hand side is the irreducible G-module associated with the partition (2, 1) of the
integer 3; see [105]. By the Hook Length Formula, the vector space dimension of Equa-
tion (8.13) equals 1

3
(m3 − m). This exceeds the dimension m2 of the group, since m ≥ 4.

The map C 7→ L from the universal variety Um,3 to the G-module in Equation (8.13) is
surjective, since the homogeneous Lie polynomial L in Equation (8.12) can be chosen arbi-
trarily.

I now apply Popov’s classification [9, 142] of irreducible G-modules with non-trivial
generic stabilizer. A special case of these results says that the stabilizer of a generic point
L in the G-module S(2,1)(Cm) is trivial. This implies that the stabilizer of the core tensor C
under the congruence action of G is trivial.

Theorem 8.12 and Corollary 8.8 imply the following.

Corollary 8.13. Paths that are representable in a generic dictionary are identifiable from
their third order signature. That is, let m ≤ n and let C ∈ Um,3 be a generic dictionary.
Given A ∈ Rn×m of rank m, the only real solution to [[C;A,A,A]] = [[C;B,B,B]] is A = B.

Piecewise linear paths

I now prove that piecewise linear paths in Rn with m ≤ n steps are uniquely recoverable
from their third order signatures. As before, I take K to be R or C. Let Caxis ∈ Km×m×m be
the piecewise linear core tensor in Equation (8.9) and X any tensor in the orbit{

[[Caxis;A,A,A]] ∈ Kn×n×n : A ∈ Kn×m}.
I show that there is a unique matrixA, up to third root of unity, such thatX = [[Caxis;A,A,A]].
This proves Conjectures 6.10 and 6.12 in [7] for m ≤ n. In particular, if the field K is the
real numbers R, the matrix A can be uniquely recovered from X.

Lemma 8.14. Let A ∈ Km×m be in the stabilizer of Caxis under congruence. If em =
(0, . . . , 0, 1)T is an eigenvector of A then em is also an eigenvector of AT.

Proof. Any matrix A in the stabilizer of C = Caxis also stabilizes the first and second order
signatures, up to scaling by third root of unity, by Equation (8.7). The core tensor C
represents a path from (0, . . . , 0) to (1, . . . , 1), so the first order signature is b = (1, . . . , 1)T.
The matrix A satisfies Ab = ηb, where η3 = 1, so b is an eigenvector of A. By [7, Example
2.1], the signature matrix of the piecewise linear dictionary is

C2 =


1
2

1 · · · 1

0
. . . . . .

...
...

. . . 1
2

1
0 . . . 0 1

2

 .
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Since C2 differs from AC2A
T by a third root of unity, denoted η′, we have

AC2A
T = η′C2 =⇒ η′C−12 = ATC−12 A =⇒ η′C−12 b = ηATC−12 b. (8.14)

Hence v := 1
2
C−12 b = (±1,∓1, . . . ,−1, 1)T is an eigenvector of AT.

Consider the matrix obtained from C by multiplying by v along the second index, D =
[[C; ·, v, ·]] or dik =

∑
j cijkvj. The matrix D is diagonal, by the following direct computation.

If i < k, we get

dik =
m∑
j=1

(−1)m+jcijk = (−1)m
(

1

2
(−1)i +

∑
i<j<k

(−1)j +
1

2
(−1)k

)
= 0.

If i > k all entries cijk vanish hence the sum is zero. If i = k, the only non-zero entry of C
that appears in the sum is ciii and we obtain dii = 1

6
(−1)m+i. Also, by definition of D, we

find that the matrix A is in its stabilizer under congruence, up to scaling by third root of
unity, D = η′

η
ADAT.

Suppose that em is an eigenvector of A. By the same argument as in Equation (8.14) we
find that D−1em = 6em is an eigenvector of AT. Hence, em is an eigenvector of AT.

Theorem 8.15. The stabilizer of the piecewise linear core tensor C = Caxis is trivial, under
the congruence action C 7→ [[C;A,A,A]] by matrices A in GLm with entries K.

Proof. Let A be in the stabilizer of C under GLm. Evaluating C = [[C;A,A,A]] implies that
cijk equals

∑
1≤α≤m

1

6
aiαajαakα +

∑
1≤α<β≤m

1

2
aiαajαakβ +

∑
1≤α<β≤m

1

2
aiαajβakβ +

∑
1≤α<β<γ≤m

aiαajβakγ.

Here the constants in Equation (8.9) were substituted for the entries cαβγ of C. We can
express this equation as the dot product cijk = fjk ·AT

i =
∑m

α=1 fjk(α)Ai(α), where Ai is the
ith row of A and fjk denotes the row vector with α-coordinate

fjk(α) =
1

6
ajαakα +

∑
β>α

1

2
ajαakβ +

∑
β>α

1

2
ajβakβ +

∑
γ>β>α

ajβakγ.

When j > k, the entry cijk vanishes, for all 1 ≤ i ≤ m. Hence the vector fjk for j > k has
dot product zero with all rows of A. Since the rows of A span Km, we see that fjk is the
zero vector, and the last entry fjk(m) = 1

6
ajmakm vanishes for all j 6= k.

We can express the entries cijk as a different dot product. Namely, factoring out the
terms involving the jth row, we obtain cijk = gik · AT

j , where gik is the row vector with
β-coordinate

gik(β) =
1

6
aiβakβ +

∑
γ>β

1

2
aiβakγ +

∑
α<β

1

2
aiαakβ +

∑
γ>β>α

aiαakγ.
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For all i > k, the entry cijk vanishes. This means that the dot product of gik with all rows
of A is zero, hence gik is the zero vector. Its mth entry gik(m) equals

1

6
aimakm +

m−1∑
α=1

1

2
aiαakm =

akm
2

(
m∑
α=1

aiα −
2

3
aim

)
.

Since A stabilizes the first order signature, up to scaling by third root of unity η, the rows
of A sum to η, hence gik(m) = η

2
akm − 1

3
akmaim for all i > k. By the previous paragraph,

the second term vanishes and, setting i = m, we deduce that akm = 0 for all 1 ≤ k < m.
This implies that the last column of A is parallel to the mth standard basis vector em, and
hence that em is an eigenvector of A.

By Lemma 8.14, em is also an eigenvector of AT. Thus, all entries in the last row of A
vanish except the last. This means that A has the block diagonal structure

A =


∗ · · · ∗ 0
...

...
...

∗ · · · ∗ 0
0 · · · 0 1

 .
The ∗ entries represent unknowns in an (m− 1)× (m− 1) block which I call A′.

Observe that A′ stabilizes C ′, the axis core tensor in K(m−1)×(m−1)×(m−1) arising from
C by restricting to indices 1 ≤ i, j, k ≤ m−1. From C = [[C;A,A,A]] we have cijk =∑m

α,β,γ=1 cαβγaiαajβakγ. Since auv = 0 whenever u < m = v, this simplifies to

cijk =
m−1∑

α,β,γ=1

cαβγaiαajβakγ for 1 ≤ i, j, k ≤ m− 1.

Hence A′ is in the stabilizer of C ′. The proof of Theorem 8.15 is concluded by induction on
m, given that the assertion can be tested for small m by a direct computation.

We deduce the following from Theorem 8.15 and Corollary 8.8, using the fact that the
upper triangular tensor Caxis is symmetrically concise.

Corollary 8.16. Piecewise linear paths in Rn, consisting of at most n steps, can be uniquely
recovered from the third order signature. That is, let m ≤ n, let C = Caxis, and let A be
a matrix of format n × m and of rank m. The only real solution to the tensor equation
[[C;A,A,A]] = [[C;B,B,B]] is the matrix B = A.

Comparison with other notions of tensor identifiability

Identifiability for tensors is usually studied in the context of minimal decompositions, see
e.g. [98]. The following result gives conditions under which algebraic identifiability of a
minimal decomposition implies algebraic identifiability under congruence. We consider two
decompositions of a tensor to be the same if they differ by a re-ordering of the rank one
terms.
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Theorem 8.17. Let ψ be a dictionary that is not a loop. Suppose that its core tensor
C = Cψ ∈ Rm×m×m is symmetrically concise, has rank(C) = r, and the number of minimal
decompositions of C, denoted δ, is finite. Given a generic matrix A ∈ Rn×m with m ≤ n,
there are at most δ · r!

(r−m)!
matrices B ∈ Rn×m that have the same third order signature

tensor as A.

Proof. We determine the number of solutions B to the tensor equation

σ(3)(A) = [[C;A,A,A]] = [[C;B,B,B]] = σ(3)(B).

Consider a change of basis of Rm such that all standard basis vectors e1, . . . , em occur in
the minimal decomposition of C. This exists because C is symmetrically concise. Let W be
the change of basis matrix. By Theorem 8.6, it suffices to count m ×m matrices Z which
stabilize C ′ = [[C;W,W,W ]]. This is the third order signature of the path Wψ, and it also
has δ minimal decompositions.

Consider a minimal decomposition of C ′. We have at most r choices for the image of
e1 (up to scale) in this decomposition. Then, we have at most r − 1 choices for e2 up to
scale, etc. This gives at most r!

(r−m)!
choices of m×m matrices N with Z = NΛ, where Λ is

diagonal and invertible. Since ψ is not a loop, the first order signature v = ψ(1) − ψ(0) is
recoverable from the diagonal entries of the third order signature and v 6= 0 is also fixed by
Z. Hence Zv = v, so Λv = N−1v. Evaluating the right hand side allows us to find Λ.

The following example attains the bound in Theorem 8.17 non-trivially.

Example 8.18 (m = n = 2). Fix the dictionary ψ = (ψ1, ψ2) with basis functions ψ1(t) =
t− 10t2 + 10t3 and ψ2(t) = 11t− 20t2 + 10t3. By Equation (8.6), the core tensor equals

Cψ =
1

42

[
7 −8 37 −8
−8 37 −8 7

]
.

Using Macaulay2 [76], we find that this tensor is symmetrically concise and has rank two,
and a unique rank two decomposition. The stabilizer consists of two matrices:[

1 0
0 1

]
,

[
0 1
1 0

]
.

Our upper bound of δ · r!
(r−m)!

= 1 ·2 = 2 on the size of the stabilizer is attained. The stabilizer
shows that Cψ is unchanged under swapping the coordinates ψ1 and ψ2.

Numerical identifiability

In this subsection I quantify the numerical identifiability of recovering paths from third order
signatures. A path in Rn, coming from a dictionary of size m, can be recovered from its
signature tensor X ∈ Rn×n×n by solving a system of n3 equations in mn unknowns, see
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Section 8.2. This can be done in principle using Gröbner basis methods. However, such
methods are infeasible when m and n are large, or when the data X is inexact or noisy. In
such cases we instead minimize the distance between X and the set of tensors [[C;A,A,A]]
as A ranges over Rn×m. We seek the global minimum of the cost function

g : Rn×m → R, A 7→
∥∥[[C;A,A,A]]−X

∥∥2, (8.15)

where ‖ · ‖ denotes the Euclidean norm in tensor space, the Frobenius norm.
Fix a core tensor C with trivial stabilizer under congruence action. Consider the set

N (C, n) of signature tensors X for which {A ∈ Rn×m : X = [[C;A,A,A]]} has cardinality
at least two. The set N (C, n) consists of all ill-posed instances, for which path recovery is
non-identifiable. However, even if a path is identifiable from its signature tensor in the exact
sense of the previous subsection, different paths may lead to numerically indistinguishable
signatures.

Definition 8.19 (Numerical non-identifiability). The numerical non-identifiability of a pair
(C,A) is

κ(A,C) =
‖A‖3 · ‖C‖

infX∈N (C,n)‖[[C;A,A,A]]−X‖
,

where ‖ · ‖ denotes the Frobenius norm.

When the numerical non-identifiability is large, this reflects the proximity of [[C;A,A,A]]
to a non-identifiable tensor. Conversely, a small value of the numerical non-identifiability
means that all close-by tensors [[C;A,A,A]] are also identifiable. I give upper and lower
bounds on κ(A,C), in terms of the flattenings of C and the condition number of the rectan-
gular matrix A, κ(A) = ‖A‖ · ‖A+‖ where A+ denotes the pseudo-inverse.

I first remark on connections between the numerical non-identifiability and the condi-
tion number. The condition number records how much the recovered matrix can change
with small changes to the signature tensor. Following [40, Section O.2], and setting X =
[[C;B,B,B]], the condition number of our recovery problem is

cond(A,C) = lim
δ→0

sup
‖[[C;A,A,A]]−X‖≤δ

‖A−B‖
‖[[C;A,A,A]]−X]]‖

· ‖[[C;A,A,A]]‖
‖A‖

. (8.16)

When the condition number is finite, the matrix can be recovered uniquely using symbolic
computations. However, when the condition number is large, small changes in the signa-
ture induce large changes in the recovered matrix, a problem for numerical computations.
Following the approach introduced by [149] in the context of linear programming, the condi-
tion number is often determined by the inverse distance to the set of instances with infinite
condition number [40, 59]. On the set of ill-posed instances N (C, n) the condition number
is infinite, because the problem is non-identifiable. Hence the numerical non-identifiability
gives a lower bound on the inverse distance to the instances with infinite condition number.
Condition numbers for algebraic identifiability can be defined using the local set-up described
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in [38]. Proving a condition number theorem to relate Equation (8.16) to the inverse distance
would be an interesting topic for further study.

Theorem 8.20. The numerical non-identifiability of the pair (A,C), for a matrix A ∈ Rn×m

and a tensor C ∈ Rm×m×m with trivial stabilizer, satisfies the upper bound

κ(A,C) ≤ κ(A)3

(
‖C‖

max(ς
(1)
m , ς

(2)
m , ς

(3)
m )

)
, (8.17)

where ς
(i)
m denotes the smallest singular value of the ith flattening of the tensor C.

Proof. We aim to bound κ(A,C)−1, the distance of [[C;A,A,A]] to the locus of non-identifiable
tensors, from below. Since C has trivial stabilizer, Corollary 8.8 implies that all non-
identifiable tensors must be of the form [[C;B,B,B]] where B ∈ Rn×m has rank strictly less
than m. The flattenings of such tensors have rank strictly less than m, so it suffices to lower-
bound the distance of the flattenings to the much larger set {B ∈ Rn×n2

: rank(B) < m}.
We have

‖A‖3 · ‖A+‖3 · ‖C‖ · κ(A,C)−1 ≥ min
rank(B)<m

‖AC(i)(A⊗ A)T −B‖ · ‖A+‖3

= min
rank(B′)<m

‖A(C(i) −B′)(A⊗ A)T‖ · ‖A+‖3

≥ min
rank(B′)<m

‖C(i) −B′‖

= ς(i)m ,

where A ⊗ A ∈ Rn2×m2
is the Kronecker product of the matrix A with itself, B′ ∈ Rm×m2

,
and ‖ · ‖ is the Frobenius norm. The chain of inequalities holds for i = 1, 2, 3, and the claim
follows.

We quantify the suitability of a core tensor C, with trivial stabilizer under congruence,
for path recovery. We define the numerical non-identifiability of C to be the smallest number
κ(C) satisfying

κ(C) ≥ κ(A,C)

κ(A)3

for all A ∈ Rn×m of rank m and all n. From Theorem 8.20, we obtain the following.

Corollary 8.21. The numerical non-identifiability of C ∈ Rm×m×m, with trivial stabilizer
under congruence, satisfies

κ(C) ≤ ‖C‖
max(ς

(1)
m , ς

(2)
m , ς

(3)
m )

.

Proof. Divide Equation (8.17) by κ(A)3. The supremum of the left hand side, as A ranges
over Rn×m for all n, is equal to κ(C). Hence κ(C) is bounded by the right hand side.
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I now bound the numerical non-identifiability of the piecewise linear dictionary.

Corollary 8.22. The numerical non-identifiability of Caxis is at most 6‖Caxis‖.

Proof. We show that the singular values of the second flattening C(2) ∈ Rm×m2
are at least 1

6
.

The j × (i, k) entry is cijk. Since the entries of C are zero unless i ≤ j ≤ k, the flattening
has an m × m block, indexed by j × (i, i), which equals 1

6
times the identity matrix I.

Let B denote the m × (m2 − m) matrix obtained by removing these m columns. Then
C(2)(C(2))T = 1

36
I +BBT. The singular values of C(2)are the square roots of the eigenvalues

of C(2)(C(2))T. Consider an eigenvector v of BBT with eigenvalue λ. Then λ ≥ 0 because
BBT is positive semi-definite and v is an eigenvector of C(2)(C(2))T with eigenvalue 1

36
+ λ.

Hence the singular values of C(2) are bounded from below by 1
6
.

The recovery problem is ill-posed if the tensor is not symmetrically concise, by Proposi-
tion 8.2. The following is a numerical analogue to Proposition 8.2.

Proposition 8.23. Let C ∈ Rm×m×m and C(all) be the m × 3m2 matrix obtained by con-
catenating the three flattening matrices C(i). If ςm is the smallest singular value of C(all)

then

κ(C) ≥ ‖C‖
7m3/2ςm

.

Proof. We compute the distance to a tensor X in the orbit of C that is not symmetrically
concise. This gives an upper bound for the minimal distance to the set of ill-posed instances.
Consider X = [[C; I−vvT, I−vvT, I−vvT]], where v is the left singular vector corresponding
to the singular value ςm of C(all). Then v is in the kernel of all three flattenings of X, which
means that X is not symmetrically concise.

We have vTC(all) = ςmw
T where w is the right singular vector of length 3m2, corresponding

to singular value ςm. We define wi such that w is the stacking of w1, w2, w3 with each wi of
length m2. Then vTC(i) = ςmw

T
i hence ‖vTC(i)‖ = ςm‖wi‖ ≤ ςm‖w‖ ≤ ςm. We use this to

upper bound the distance from C to X, as follows:

‖C −X‖ = ‖[[C; vvT, I, I]] + [[C; I, vvT, I]] + [[C; I, I, vvT]]− [[C; vvT, vvT, I]]

− [[C; I, vvT, vvT]]− [[C; vvT, I, vvT]] + [[C; vvT, vvT, vvT]]‖

≤
( 3∑
i=1

‖vTC(i)‖+ ‖vTC(i)‖‖vvT‖
)

+ ‖vTC(1)‖‖vvT‖2 ≤ 7ςm.

We have κ(C) ≥ κ(A,C)
κ(A)3

for all matrices A of rank m. In particular, κ(C) ≥ κ(I,C)
κ(I)3

. By
definition of the numerical non-identifiability

κ(I, C) =
‖I‖3‖C‖

infX̃∈N (C,m) ‖C − X̃‖
≥ m3/2‖C‖
‖C −X‖

≥ m3/2‖C‖
7ςm

,

since ‖I‖ =
√
m. The condition number of I is m, so the claim follows.
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Figure 8.1: Bounds on the numerical non-identifiability of the piecewise linear core tensor
(left), the monomial core tensor (middle), and generic core tensors (right).

The condition number quantifies the numerical identifiability of path recovery for the
dictionary with core tensor C. I have derived informative upper and lower bounds on the re-
lated notion κ(C), in terms of singular values of the flattenings of C. Figure 8.1 shows these
bounds for small m. The lower bound is that in Corollary 8.21. The upper bound is that in
Proposition 8.23. We see that the numerical non-identifiability of the monomial dictionary
grows exponentially with m. We also empirically observe such a trend for other bases of poly-
nomial functions, such as the Chebyshev functions. On the other hand, the piecewise linear
dictionary is much more stable. Corollary 8.22 shows that the numerical non-identifiability

of the piecewise linear dictionary remains below 6‖Caxis‖ = 6
√

m
36

+ 1
2

(
m
2

)
+
(
m
3

)
, as seen on

the left in Figure 8.1. The numerical non-identifiability of Generic dictionaries seems to
remain below 100, independently of m. The right diagram in Figure 8.1 shows the average
for 100 generic signature tensors Cgen, created using the first method in Example 8.11.

We can conclude that for piecewise linear paths, well-conditioned matrices A have sig-
nature tensors [[Caxis;A,A,A]] that are reasonably far from the non-identifiable locus. The
same holds for paths from generic dictionaries, in a certain range of m. However, polynomial
paths send well-conditioned matrices A to tensors [[Cmono;A,A,A]] which are very close to
being non-identifiable, even for relatively small values of m. This suggests the possibility
of numerical challenges for path recovery from such tensors, as I confirm in the numerical
experiments in the next section.

8.4 Path recovery algorithms

Low-complexity paths

Given a fixed dictionary, we aim to compute a path represented by the dictionary whose
signature most closely matches an input signature. In addition to the issues of numerical
identifiability discussed in Section 8.3, numerical optimization has several well-documented



CHAPTER 8. LEARNING PATHS FROM SIGNATURE TENSORS 147

drawbacks, Since the objective function is non-convex, an abundance of local minima can be
expected. The problem of local minima is inherent in almost all optimization methods, but
there are some heuristic ways to overcome the problem. A thorough overview and application
of state-of-the-art theory is out of the scope of this article. See [133].

I now discuss computational experiments for a range of values of m and n, using piece-
wise linear, polynomial, and generic paths, which were created using the first method in
Example 8.11. For each pair (m,n), generate 100 random matrices A ∈ Rn×m with entries
aij ∼ N(0, 1) to represent the path Aψ. The tensor X = σ(3)(A) is then computed up to
machine precision, and then the function in Equation (8.15) is minimized.

I used the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm with an Armijo back-
tracking line search in Matlab 2018a. This was followed by a trust region Newton method
for improved convergence, taken from the Manopt toolbox [36] which allows for direct im-
plementation for matrix inputs. The algorithm stopped if ‖∇g(A)‖ < 10−10 or after 100
steps of the BFGS procedure and 1000 steps of the trust region algorithm, allowing 10 re-
initializations aij ∼ N(0, 1) to try to eliminate local minima and other numerical issues that
arise from the relatively high degree of the objective function. Let A∗ denote the result of
this computation. The recovery was declared successful if ‖A∗−A‖/‖A∗‖ < 10−5. Tables 8.1
and 8.2 show the percentages of successful recoveries. The success rate for piecewise linear
paths is 100% for small m but it becomes slightly worse for larger m. For paths represented
by a generic dictionary, the results are also close to 100%.

Ill-conditioning has occurred when a matrix A∗ is recovered with a large distance to the
original A, but whose signatures are very similar. I call an instance a failure due to ill-
conditioning if the relative error between the matrices ‖A∗ −A‖/‖A∗‖ exceeds 10−5 but the
relative distance between the signatures is less than 10−8. This indicates a condition number
exceeding 1000. Such failures never occurred for piecewise linear paths and generic paths,
in over 10000 experiments. The situation is dramatically worse for polynomial paths: the
subscripts in Table 8.2 count the failures due to ill-conditioning. For m ≥ 6 if a matrix with
sufficiently close signature was found then in all cases it was a failure due to ill-conditioning.
The machine precision inaccuracy in the signature leads to large differences in the recovered
matrix. The overall recovery rates for polynomial dictionaries are low. Although many of
the other failures are not counted as being due to ill-conditioning under our requirements
stated above, they often yield a relatively far away matrix with closeby signature tensor.

In conclusion, the experimental findings are consistent with the theoretical results on
the numerical identifiability in Section 8.3. Generic paths and piecewise linear dictionaries
behave best in numerical algorithms for recovering paths. The middle diagram in Fig-
ure 8.1 showed that the numerical non-identifiability of the monomial core tensor Cmono

grows rapidly with m. The experiments confirm the difficulty of path recovery from the
monomial dictionary.
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m\d 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 100 100 100 100 100 100 100 100 100 100 100 100 100 100
3 100 100 100 100 100 99 100 100 100 100 100 100 100
4 100 97 100 100 100 100 100 100 100 100 100 100
5 97 99 99 100 100 100 100 100 100 100 100
6 97 95 98 96 97 100 100 100 100 100
7 91 92 95 96 97 99 99 100 100
8 90 92 95 98 99 99 98 100
9 93 90 94 98 95 95 96
10 85 96 94 97 93 93

m\d 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 100 100 100 100 100 100 100 100 100 100 100 100 100 99
3 99 100 100 100 100 100 98 100 100 100 100 99 100
4 99 99 100 100 100 98 98 98 99 98 98 100
5 100 100 100 100 100 99 99 100 100 100 100
6 98 99 100 100 100 100 99 100 100 99
7 100 98 97 99 99 99 100 100 100
8 99 99 99 100 99 98 98 99
9 97 92 98 97 97 99 98
10 100 98 97 97 100 99

Table 8.1: Percentage of successful path recoveries for random piecewise linear paths (top)
and random paths represented by generic dictionaries (bottom).

Shortest paths

So far I have considered paths of low complexity in a space of high dimension. Such paths
are identifiable from their third signature. In this final subsection, I consider a situation
where the number of functions in the dictionary, m, is much larger than the dimension of
the space, n. The paths are represented by a dictionary ψ, but identifiability no longer holds
for the paths Aψ because there are too many parameters to recover the matrix A from its
third order signature. We can impose extra constraints to select a meaningful path among
those with the same signature. A natural constraint is the length of the path. This leads to
the problem of finding the shortest path for a given signature.

In this subsection I address the task of computing shortest paths when the third signature
tensor is fixed. Recall that the length of a path ψ : [0, 1]→ Rm equals

len(ψ) =

∫ 1

0

√
〈ψ̇(t), ψ̇(t)〉dt,
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m\d 2 3 4 5 6 7 8 9 10 11 12
2 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

3 982 991 1000 1000 1000 1000 1000 1000 1000 1000

4 8513 8713 946 919 955 982 991 991 982

5 531 1224 2030 2937 3540 4741 5338 5737

6 01 01 02 03 06 05 09

7 021 024 035 029 028 035

Table 8.2: The path recovery rate for polynomial paths is low once the condition number
becomes too big. Subscripts count the failures due to ill-conditioning.

where ψ̇(t) = dψ
dt

. This is a rather complicated function to evaluate in general. However,
things are much easier for piecewise linear paths. For the m-step path given by the dictionary
in Equation (8.8) and the matrix A, the length is given by the formula

len(A) := len(Aψ) =
m∑
j=1

√√√√ n∑
i=1

a2ij.

Note that this function is piecewise differentiable. We can therefore regularize the objective
function in Equation (8.15) with a length constraint. This leads to the new function

h(A, λ) = len(A) + λg(A),

where λ is a parameter. A necessary condition for a minimum is that both the gradient
in A and the gradient in λ equal zero. The latter requirement ensures that A yields the
required signature. A problem with this method is that critical points are usually saddle
points, which cannot be easily obtained using standard gradient-related techniques. This
holds because h is not bounded from below for λ → −∞. A trick from [133] circumvents
this problem. We fix λ0 and minimize

h(A, λ0)/λ0 = λ−10 len(A) + g(A).

Once a minimum A0 is found, we set λ1 = 2λ0 and minimize again with λ1 and A0 as a
starting point for the iteration. We repeat, setting λN = 2λN−1 until λN is sufficiently large
and the impact of the length constraint is negligible. Then, for some AN , the function g
is minimal, i.e. AN has the correct signature up to machine precision. Local minima might
occur – a guarantee that AN gives the shortest path cannot be made. However, this method
has proved to be satisfactory for the application.
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Chapter 9

Tensor clustering with algebraic
constraints

Clustering is the task of partitioning data into meaningful subsets, within which the data
share some similarity, and between which they possess some difference. A wide range of
clustering algorithms exist, such as agglomerative clustering, k-means, and spectral methods.
Most clustering methods are designed for data points x(i) that are labeled by a single index i.
There are also bi-clustering methods, which simultaneously cluster the rows and columns of
a matrix in a compatible way: a clustering of two coupled datasets, x(i) and y(j).

Multi-dimensional datasets, which compare multiple factors simultaneously, are increas-
ingly prevalent across the sciences. Analyzing them requires algorithms that preserve the
multi-dimensional structure of the data. Usual clustering algorithms can be used, but they
do not conserve the multi-dimensional structure. This flattens the insights that can be made,
and hampers the interpretability of the results. Multi-dimensional data sets are prevalent in
the biological sciences, and tensor methods have been developed to study them. For exam-
ple, in [155], the authors use a singular value decomposition for tensors to analyze ovarian
cancer survival. In [186], the authors study neuron dynamics using tensor decompositions.
In [165], the authors study a tensor of factors associated with antibiotic resistance.

In this chapter, I introduce a clustering algorithm for multi-dimensional datasets, in which
the data points x(i1,...,id) are labeled by multiple indices. The method uses multi-indexed
information to produce shape-constrained clusters that are amenable to interpretation in
the context of the application at hand. I describe the problem of clustering tensor data, and
the benefits of structured clustering. I then describe two implementations of the structured
clustering algorithm, one a standalone clustering tool, and the other for use in combination
with an existing method, to add shape constraints to pre-existing clusters. Then I describe
how the method is applied to a biological dataset from [131]. This chapter is based on joint
work with Mariano Beguerisse-Dı́az, Birgit Schoeberl, Mario Niepel and Heather Harrington,
published in the Journal of the Royal Society Interface [166].
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9.1 Tensor clustering

Consider a dataset of points x(i) ∈ Rp for i ∈ {1, . . . , n}. The p entries of the vector x(i)

are measurements with respect to p different sensors. We can organize this data into a
matrix X of format n × p, whose rows are the vectors x(i). For example, the n data points
could correspond to n different cell lines and the vector x(i) could be the measurements of a
certain kinase (a type of enzyme) across p timepoints. Clustering means dividing the data
points x(i) into subsets, i.e. partitioning the set of indices {1, . . . , n}. See the section on
principal component analysis on Page 12 for more details on extracting low-rank structure
from matrix data.

Using modern experimental techniques, it is possible to record far more than a single
output measurement. Instead of only measuring a single kinase over time, we can record
many different output measurements simultaneously. Moreover, we can repeat the experi-
ment under various experimental conditions. For each combination of independent variables,
an experiment is performed with that gives various measurements, the outputs of multiple
sensors, possibly across multiple timepoints. This leads to a multi-dimensional dataset such
as the one in Example 1.4.

Multi-dimensional data can be organized into a tensor X of format

n1 × · · · × nd × p1 × · · · × ph,
where each experiment is specified by d independent variables, and there are h output mea-
surements. Each data point x(i1,...,id) is a point in the tensor space Kp1×···×ph , where K is the
field in which the measurements take values. As for the matrix case, the data points are
combined to form the tensor X whose entry xi1...idj1...jh is the (j1, . . . , jh) entry of the data
point x(i1,...,id).

How can we extract structure from data that looks like this? One possibility is to flatten
the data to a matrix of format n × p where n =

∏d
i=1 nd and p =

∏h
j=1 pj. The rows of

the flattening matrix are labeled by multi-indices (i1, . . . , id) and the columns are labeled by
(j1, . . . , jh). Once the data has been flattened to a matrix, matrix data analysis methods
can be used. Flattening only reshapes the data into a matrix, and does not alter the data
measurements. However, it loses structure of the tensor, as we saw in Chapter 4. In order to
preserve the multi-dimensional structure of the data, we require methods that apply directly
to the tensor. For more about flattenings, see Page 15.

Clustering the data points x(i1,...,id) means partitioning the set

{(i1, . . . , id) : i1 ∈ {1, . . . , n1}, . . . , id ∈ {1, . . . , nd}} . (9.1)

A partition of this set into m clusters can be encoded in multiple ways. Here I consider two
encodings that will be useful.

1. A tensor Y of format (n1 × . . .× nd)× (n1 × . . .× nd) in which

yij =

{
0 if x(i) and x(j) are in the same cluster,

1 otherwise,
(9.2)
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where i = (i1, . . . , id) and j = (j1, . . . , jd) are multi-indices labeling the data points.
The tensor Y can be thought of as a Boolean approximation of the distances between
pairs of data points: yij = 0 if the data points x(i) and x(j) are ‘close together’ (in
the same cluster), and yij = 1 if they are ‘far apart’ (in different clusters). For the
tensor Y to encode a valid clustering of the data, the three conditions of an equivalence
relation must be met. These conditions are given by the following linear equations and
inequalities, which must hold for all multi-indices i, j, and k.

Reflexivity: yii = 0,

Symmetry: yij = yji, (9.3)

Transitivity: 0 ≤ −yik + yij + yjk ≤ 2.

2. A tensor Z of format n1 × . . .× nd ×m in which

zik =

{
1 if the data indexed by i belongs to cluster k,

0 otherwise.
(9.4)

Since each data point is assigned to exactly one cluster, the entries of the tensor Z
satisfy the equation

∑m
k=1 zik = 1.

The tensors Y and Z are related by the equation

1− yij =
m∑
k=1

zikzjk.

9.2 Structured clustering

In this section I introduce an algorithm for the structured clustering of multi-dimensional
data. I describe two implementations. First, the algorithm can be applied directly to a
dataset as a standalone clustering tool. Second, the algorithm can also be used in combi-
nation with other clustering methods to impose constraints onto pre-existing clusters. The
method to find pre-existing clusters must be chosen carefully to fit the application and should
not be viewed as merely an initialization of the algorithm.

Among the wide range of clustering methods, constrained clustering is an active field of
research [22, 43, 54, 108, 185]. The most common approaches incorporate pairwise must-link
and cannot-link constraints to indicate whether two items must or cannot be in the same
cluster [56, 183]. Here I consider the more general setting of shape-constrained clusters. I
begin by motivating structured clustering, and describing its applicability to the setting of
multi-dimensional data.

A clustering is a partition of data points. In the multi-dimensional setting, a clustering is
given by a partition of the set of indices in Equation (9.1). Not all partitions of the data will
be interpretable for the context at hand and the multi-indexed structure makes interpreting
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the clusters more subtle. For example, assume that x(1,1) is in the same cluster as x(2,2).
How can we interpret this similarity? How does our interpretation depend on the clustering
assignment of x(1,2) and x(2,1)?

I introduce a method to cluster multi-dimensional data with shape constraints on the
clusters. I focus on the following shape constraint, which I describe in the case that each
data point is labeled by two indices, x(i1,i2), i.e. that the data tensor has format n1 × n2 ×
p1×· · ·×ph. The condition can be extended to the setting of three or more labeling indices.
I focus on this case to simplify the notation and pictures, and because this is the setting
that will later be used to analyze the dataset in Section 9.3.

The shape constraint is the following rectangular condition, see Figure 9.1. Assume that
the data points labeled by (ch, li) and (ck, lj) belong to the same cluster. Then the experi-
ments labeled (ch, lj) and (ck, li) must also be in this cluster. Each data point corresponds to
a position on a two-dimensional grid. The constraint leads to clusters that are rectangular
on the grid, Such clusters are more amenable to interpretation than unconstrained clusters,
since they match a subset of one indexing set with a subset of another indexing set. The
rectangular condition can be extended to the setting of three or more indices, pairing subsets
of each index. Compared to the clustering methods outlined in [116], this method has the
strength that it does not require the clusters to be connected rectangles on the grid. An
ordering of the indexing set is artificial, and we seek clustering results that are not biased
by this choice.
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Figure 9.1: Examples of clusters that are allowed, and not allowed, with the rectangular
shape constraint.
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The interpretability constraints take the form of inequalities on the entries of the tensors
Y or Z that encode the clustering partition, as I describe in more detail later. The opti-
mal partition of the data can be obtained using integer linear optimization, by searching
over unknown tensors satisfying these constraints. Specifically, I use the branch and cut
algorithm [124] in the IBM ILOG CPLEX Optimization Studio [89].

I describe how the clustering algorithm can be applied to a biological dataset in Sec-
tion 9.3, where I also describe the biological motivation for the rectangular constraint, and
how it can be used to draw conclusions about mechanisms involved in breast cancer. I now
give details for the implementation of the algorithm.

Standalone clustering

Assume we have a data tensor of format n1× · · · × nd× p1× · · · × ph where each data point
x(i1,...,id) is in the space Rp1×···×ph . We can construct a similarity tensor S, which records the
similarity of the data points x(i) and x(j). For example, we can vectorize the two data points
to give vectors of length p =

∏h
k=1 pk, denoted by v(i) and v(j), and then compute the cosine

dissimilarity between the two vectors

1− 〈v
(i), v(j)〉

‖v(i)‖‖v(j)‖
,

where 〈·, ·〉 is the usual inner product in a real vector space and ‖ · ‖ is the Euclidean norm.
I now describe how to partition the data into rectangular clusters. The clustering as-

signments will be recorded by the tensor Y from Equation (9.2). The rectangular condition
corresponds to three types of algebraic constraint on the entries of the tensor Y . In the case
of a data tensor of format n1×n2×p1×· · ·×ph, the rectangular conditions are the following.

yi1i2j1j2 = yi1j2j1i2 ,

0 ≤ yi1i2j1j2 − yi1i2j1i2 ≤ 1, (9.5)

0 ≤ yi1i2j1j2 − yi1i2i1j2 ≤ 1.

The conditions must hold for all values i1, i2 ∈ {1, . . . , n1} and j1, j2 ∈ {1, . . . , n2}.
The clustering method works by maximizing the similarity between experiments in the

same cluster, over arrays Y that satisfy these conditions, as well as the conditions for being
a clustering from Equation (9.3). That is, we solve the integer optimization problem

max
Y

〈S, (1− Y )〉+ λ〈1, Y 〉, (9.6)

subject to bl ≤ V · vec(Y ) ≤ bu,

where the tensors Y and S are as above, and the vector vec(Y ) is the tensor Y having been
vectorized, a vector of length n2

1n
2
2. The coefficient λ is a regularization term introduced to

control the number of clusters and 1 is the tensor of ones of format n1 × n2 × n1 × n2. The
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notation 〈·, ·〉 denotes the entry-wise inner product, and · represents matrix multiplication.
The matrix V encodes the constraints on Y given in Equations (9.3) and (9.5), The kth row
of V is the kth constraint on Y : the entry is the coefficient (which can be 0, 1, or −1) with
which each entry of Y appears in the constraint. Hence at most three entries in each row
of V are non-zero. The kth entry of bl and bu (which can be 0, 1, or 2) gives the lower and
upper bounds respectively of each linear inequality.

The resulting rectangular clusters are a sparse, low-rank representation of the data. The
tensor 1 − Y of format n1 × n2 × n1 × n2 gives a binary measure of the distance between
any two experiments. This tensor has sparse block structure: it consists of m cuboids of 1s
along the diagonal, where m is the number of clusters, and has zeros everywhere else. The
tensor Y has flattening ranks bounded above by (m,m,m,m).

The following Matlab code generates the arrays in the optimization problem in Equa-
tion (9.6), for an array of format n1 × n2 × p1 × · · · × ph. First, flatten the data into a
three-dimensional array, Tensr, of format n1 × n2 × p, where p =

∏h
k=1 ph. The following

code makes the similarity tensor S with respect to cosine dissimilarity.

[n1 n2 p] = size(Tensr);

C = zeros(n1,n1,n2,n2);

for i = 1:n1; for j = 1:n1; for k = 1:n2; for l = 1:n2;

v1 = zeros(p,1); v2 = zeros(p,1);

for ii = 1:p;

v1(ii) = Tensr(i,k,ii); v2(ii) = Tensr(j,l,ii);

end

C(i,j,k,l) = 1 - dot(v1,v2)/(norm(v1,2)*norm(v2,2));

end end end end

Next we encode the constraints on the tensor Y , via the matrix V . It is constructed as
a sparse array, by specifying row and column indices Vrow and Vcol, and values Vval of all
non-zero entries. The lower and upper bounds for each linear constraints are organized into
the vectors lb and ub respectively.

t = 1;

for i = 1:n; for j = 1:n; for k = 1:m; for l = 1:m;

if (i ~= j) || (k ~= l);

W = vectorize(n,i,j,k,l);

Vrow(w) = t; Vcol(w) = W;Vval(w) = 1; w = w+1;

W = vectorize(n,j,i,l,k);

Vrow(w) = t; Vcol(w) = W; Vval(w) = -1; w = w+1;

lb(t) = 0; ub(t) = 0; t = t+1;

end

if (k ~= l);

W = vectorize(n,i,j,k,l);
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Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

W = vectorize(n,i,j,l,k);

Vrow(w) = t; Vcol(w) = W; Vval(w) = -1; w = w+1;

lb(t) = 0; ub(t) = 0; t = t+1;

% opposite diagonals must be same

end

if (i ~= j);

W = vectorize(n,i,j,k,l);

Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

W = vectorize(n,j,i,k,l);

Vrow(w) = t; Vcol(w) = W; Vval(w) = -1; w = w+1;

lb(t) = 0; ub(t) = 0; t = t+1;

end

if (k ~= l);

W = vectorize(n,i,j,k,l);

Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

W = vectorize(n,j,i,k,k);

Vrow(w) = t; Vcol(w) = W; Vval(w) = -1; w = w+1;

lb(t) = 0; ub(t) = 1; t = t+1;

% vertical conditions

end

if (i ~= j);

W = vectorize(n,i,j,k,l);

Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

W = vectorize(n,i,i,k,l);

Vrow(w) = t; Vcol(w) = W; Vval(w) = -1; w = w+1;

lb(t) = 0; ub(t) = 1; t = t+1;

% horizontal conditions

end

end end end end

for i = 1:n; for k = 1:m;

W = vectorize(n,i,i,k,k);

Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

lb(t) = 0; ub(t) = 0; t = t+1;

end end

for i1 = 1:n; for i2 = 1:n; for i3 = 1:n;

for k1 = 1:m; for k2 = 1:m; for k3 = 1:m;

if (((i1 ~= i2) || (k1 ~= k2)) && ((i2 ~= i3) || (k2 ~= k3))

&& ((i1 ~= i3) || (k1 ~= k3)));

W = vectorize(n,i1,i3,k1,k3);

Vrow(w) = t; Vcol(w) = W; Vval(w) = -1; w = w+1;

W = vectorize(n,i1,i2,k1,k2);
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Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

W = vectorize(n,i2,i3,k2,k3);

Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

lb(t) = 0; ub(t) = 2; t = t+1;

end end end end end end end

maxt = t-1;

V = sparse(Vrow,Vcol,Vval,maxt,n*n*m*m);

The function vectorize combines the multi-index into a single index:

function t = vectorize(n,m,i,j,k,l);

i1 = n*m*m*(i-1); j1 = m*m*(j-1); k1 = m*(k-1); l1 = l;

t = i1+j1+k1+l1;

Pre-existing clusters

Assume we have a partitioning of the multi-indexed data X that is not rectangular. In this
subsection, I describe how to find the nearest rectangular clusters. The input is an initial
partition of the data points into m clusters. We then modify as few clustering assignments
as possible, to reach the closest rectangular clustering of the data.

The initial clustering is encoded by a partition tensor T of format n1 × n2 × m, with
entries

tik =

{
1, i is in cluster k,

0, otherwise,

where i = (i1, i2) indexes an experiment. The new clusters are encoded by a tensor Z of the
same format, defined according to Equation (9.4). In order to have rectangular clusters, the
entries of Z must satisfy the linear inequalities

m∑
r=1

zijr = 1, (unique cluster assignment)

zikr + zjlr − zilr ≤ 1. (interpretability condition)

As before, we use the branch and cut algorithm to obtain the global optimum of the opti-
mization problem

max
Z

〈T, Z〉.

The entrywise inner product 〈·, ·〉 sums the number of clustering of assignments unchanged by
the optimization. Similarly to the tensor Y arising from the standalone clustering algorithm,
the tensor Z also has sparse and low-rank structure. The two-dimensional slices of format
n1 × n2 consist of a rectangle of 1s and all other values equal to 0.
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We generate the constraints on the tensor Z using the following Matlab code. Assume
that there are m pre-existing clusters. As before, the constraints are organized into the
matrix V and the lower and upper bounds in the constraints are the vectors bl and bu.

w = 1; t = 1;

for i = 1:n1; for j = 1:n2; or k = 1:m;

W = m*n2*(i-1) + m*(j-1) + k;

Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

end

lb(t) = 1; ub(t) = 1; t = t+1;

end end

for i = 1:n1; for j = 1:n1; for k = 1:n2; for l = 1:n2;

if (i ~= j) && (k ~= l) ;

for r = 1:m;

W = m*n2*(i-1) + m*(k-1) + r;

Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

W = m*n2*(j-1) + m*(l-1) + r;

Vrow(w) = t; Vcol(w) = W; Vval(w) = 1; w = w+1;

W = m*n2*(i-1) + m*(l-1) + r;

Vrow(w) = t; Vcol(w) = W; Vval(w) = -1; w = w+1;

lb(t) = -1; ub(t) = 1; t = t+1;

end end

end end end end

maxt = t-1;

Vnew = sparse(Vrow,Vcol,Vval,maxt,n1*n2*m);

9.3 Application to biological data

In this section, I describe how the clustering method is applied to a biological dataset in [166].
I describe the biological dataset, motivate the rectangular condition on the clusters, and give
sample output of the method.

In terms of broader applicability, the algorithm can be used to impose any shape con-
straints that take the form of linear inequalities, including the must-link and cannot-link
conditions from usual structured clustering. For example, the algorithm could be used to
construct optimal portfolios that comply with rules about their composition [121], to help
the formation of teams that maximize members’ preferences and are compliant with skill
requirements [57], or to find communities in networks with quotas. Depending on the appli-
cation, there may not be a measurement for every combination of indices, so the tensor may
be incomplete. The method can be adapted for dealing with tensors of incomplete entries,
by only optimizing over the data entries that are known.
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We examine an experimental dataset detailing the temporal phosphorylation response
of genetically diverse breast cancer cell lines to different ligands, a dataset originally intro-
duced in [131]. See Example 1.4 for an explanatory picture of the dataset. The output
measurements are the activation levels of the mitogen-activated protein kinase (MAPK)
and phosphoinositide 3-kinase (PI3K) pathways, which are involved in cellular decisions and
fates [49, 97, 119, 144], and are known to dysfunction in cancer [21, 80, 120, 167, 188]. The
dataset is complete: there is a measurement for each combination of cell line, ligand, dose,
time point, protein. It can be represented by a tensor of order 5 and format 36×14×2×4×2
whose dimensions correspond to 36 cell lines, 14 ligands, 2 doses, 4 time points, and 2 pro-
teins (ERK/MAPK or AKT/PI3K). Each experiment x(ch,li) ∈ R2×4×2 consists of adding the
ligand li to the cell line ch. It is labeled by a (cell line, ligand) pair, hence we have 36·14 = 504
experiments. Our aim is to find sets of experiments with a similar temporal response and,
specifically, to find similarities consistent with mechanisms for signal transduction.

In a clinical setting, prognosis and treatment decisions for breast cancer are guided by
tumor grade, stage and clinical subtype [130], which is based on the presence of cellular
receptors:

• HER2amp cells are characterized by amplification of the HER2 gene, leading to over-
expression of the ErbB2 receptor tyrosine kinase;

• HR+ cells are characterized by the expression of the estrogen receptor (ER) or proges-
terone receptor (PR);

• Triple negative breast cancer (TNBC) cells are negative for HER2 amplification, and
express ER and PR at low levels.

The key signaling proteins and subtype responses in breast cancer cells are known; however,
among genetically diverse cell lines the specific dysfunction mechanisms vary and are not
well understood [84, 91, 131]. A better understanding would lead to improved personalized
treatments for breast cancer.

A high similarity between experiments suggests the possibility of a common underlying
biological mechanism. But in our clustering method, high similarity alone is not enough to
cluster two experiments together. We also require that the observations are compatible with
the same mechanistic interpretation.

If a similarity between experiments (ch, li) and (ck, lj) arises for a mechanistic reason, the
cell lines must share some property (e.g. a mutation) that causes them to respond in the same
way to the ligands. If we swap the ligand, i.e., we look at the experiment (ck, li) or (ch, lj),
this experiment should share a similar temporal response. For this reason, we constrain
the clusters to match a subset of cell lines with a subset of ligands: we seek clusters which
are rectangular. See the left columns of Figure 9.1 for examples of rectangular clusters.
Conversely, if (ch, li) and (ck, lj) are clustered together but (ck, li) and (ch, lj) are not (see
the right column of Figure 9.1), it is more difficult to assign mechanistic interpretation to the
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cluster. In this way, imposing the rectangular shape constraint helps to rule out similarities
between measurements that are spurious, incompatible with a mechanistic interpretation.

I give sample output of the method, for a partition of the data into three clusters based
on pre-existing non-rectangular clusters, in Figure 9.2. The clustering is visualized by colour-
coding the grid of experiments according to their cluster assignment. Each entry of the grid
represents the cluster assignment of the tensor from that experiment. On the left hand side,
we see the pre-existing clustering of the data into non-rectangular clusters. On the right
hand side we see the output of the algorithm: the closest partition of the experiments into
rectangular clusters. The ligands have been divided into two subsets, and within one of these
subsets the cell lines have been divided into two subsets. The labels on the cell lines show
how the three clinical subtypes disperse among the clusters, while the labels on the ligands
show that the cluster of ligands consists of the ERB4 and FGFR subtypes, as well as the
HGF ligand. I refer the reader to the paper [166] for more output from the method, and
more details on the biological and mechanistic interpretation of the clustering assignments.
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Figure 9.2: A non-rectangular clustering (left) and its nearest rectangular clustering (right).
The clustering assignments are represented by yellow, green and blue squares.
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[126] G. Montúfar. “Mixture decompositions of exponential families using a decomposition
of their sample spaces”. In: Kybernetika 49.1 (2013), pp. 23–39.
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[128] G. Montúfar, J. Rauh, and N. Ay. “Expressive power and approximation errors of
restricted Boltzmann machines”. In: Advances in Neural Information Processing Sys-
tems 24. Curran Associates, Inc., 2011, pp. 415–423.
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