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Computational Design of Synthetic Enzymes
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 Department of Bioengineering, University of California, Berkeley
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We review the standard model for  de novo computational design of enzymes, which primarily

focuses on the development of an active site geometry composed of protein functional groups in

orientations optimized to stabilize the transition state for a novel chemical reaction not found in

nature. Its emphasis is placed on the structure and energetics of the active site embedded in an

accommodating protein that serves as a physical support that shields the reaction chemistry from

solvent, which is typically improved upon using laboratory directed evolution. We also provide a

review of design strategies that move beyond the standard model, by placing more emphasis on

the designed enzyme as  a whole catalytic construct. Starting with complete  de novo enzyme

design examples, we consider additional design factors such as entropy of individual residues,

correlated  motion  between  side  chains  (mutual  information),  dynamical  correlations  of  the

enzyme motions that could aid the reaction, reorganization energy, and electric fields as a way to

exploit the entire protein scaffold to improve upon the catalytic rate, thereby providing directed

evolution with better starting sequences for increasing the biocatalytic performance.
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1. Introduction

1.1 Enzymes in biology

Enzymes  accelerate  biological  reactions  under  mild  conditions  with  efficiencies  that  remain

unrivaled to this day.1,2 Their remarkable performance is attributed to the active site, a pocket

within the protein where reactants are shielded from bulk solvent and any undesired competing

reactions.2,3 The segregation of the reactants in the active site also induces specific molecular

interactions that  promote  the  formation  of  the  reaction  transition  state,  thereby lowering the

activation energy compared to the uncatalyzed reaction in water. Although diverse in nature,

these substrate-enzyme interactions are specific, making enzymes highly selective, i.e. exhibiting

stereo-, regio- and chemoselectivity.

Quantifying  and  comparing  enzymatic  activity  is  typically  formulated  through  the

mechanistic Michaelis-Menten equation4,5:

E+S
k f

⇆
kr

E ∙S k2
→

E+P (1)

where E , S , E ∙ S  and P  is the enzyme, substrate (or reactant), enzyme ∙ substrate

complex, and product, respectively. The kinetic constants  k f  and kr  are the forward and

reverse rates associated with the formation of the  E ∙S  complex, and once formed,  k2  is

the forward rate to product and catalyst turnover. While Michaelis-Menten treated the first step

of Eq. (1) as a pre-equilibrium4, Briggs and Haldane6 proposed the steady state approximation to

derive the velocity, v0 , i.e. the rate of change of product formation with time. 

(2)v0=
k2 [ E ]0

1+
k2+kr

k f [ S ]0

=
k2 [ E ]0 [ S ]0
[ S ]0+K M
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In Eq. (2), [E ]0  and [S ]0  are the initial concentrations of enzyme and substrate, and KM

is the Michaelis constant that is defined when half of the active sites of an enzyme are filled, and

the rate of product formation is half of its maximum velocity, vmax . 

The analysis of Eq. (2) can give us different measures of the quality of an enzyme’s

performance that will be useful to consider when we evaluate synthetic enzymes. For example,

k2=vmax  is attained when the catalytic sites on the enzyme are saturated with substrate. Hence

kcat=vmax/ [E]0  is the  turnover  number, that is,  the measure of the acceleration of the true

chemical step depending on enzyme concentration. While enzymatic rate accelerations are often

quantified with respect to the uncatalyzed reaction in water,

v0∝ kcat /k uncat (3)

the ratio kcat / KM  is a measure of the catalytic efficiency

(4)

Consequently, the most perfect enzymes are ones where  kcat≫ kr , whose meaning from Eq.

(4) is that only a small fraction of available enzyme is substrate-bound, and therefore limited by

the diffusion of the reactants to the active site rather than the formation of the E ∙ S  complex. 

While in practice the performance of an enzyme also frequently depends on electron or

functional  group  carriers  which  binds  the  active  site  together  with  the  reactants,  called

coenzymes, the Michaelis-Menten equation is a useful way to compare many natural enzymes

that  span  a  wide  range  of  efficiencies.2 Superoxide  dismutase  for  example7,8,  catalyzes  the

superoxide radical to more benign products with a  kcat / KM  of  109 M−1s−1 that is close to

diffusion  controlled.  Other  enzymes  are  much  less  efficient,  like  the  digestive  enzyme

Chymotrypsin that is characterized by a  kcat / KM  of 9.3 M−1s−1.9 It is worth noting that the

v0=
kcat[ E ]0 [S]0

K M

=
k cat [ E ]0[ S]0 k f

kcat+kr

2

4



activity of natural enzymes is not always optimized for catalytic speed or efficiency, but rather

that it can be regulated to adapt to varying physiological conditions in living cells for functional

purposes. For example, product formation can sometimes slow down the reaction via a feedback

inhibition loop.10-12 Nevertheless, an average enzyme provides 108-1011 improvement in reaction

rate compared to the uncatalyzed reaction in water13 and can reach up to 1020 in the remarkable

case of arginine decarboxylase.14 

1.2 Mimicking enzymes for reactions not found in nature

The  high  level  of  efficiency  and  selectivity  of  enzymes,  as  well  as  their  mild  operating

conditions, make them relevant to the industrial world where facile high throughput catalysis is

required.15-17 Long used in  food and detergent  industries,  they are  now a  growing part  of  a

broader range of applications such as biomedicine, drug production, bioremediation of pollutants

or green chemistry.18-21 However, the use of enzymes in broader ranges of chemistry demands

that we expand the range of reactions they can catalyze17,22,  as well as requiring enzymes to

function in alternative solvents or over a wider range of temperature and pressure23. Note that the

goal  is  not  to  reproduce  the  complex architecture  and interactions  of  biomolecular  network

assemblies,  within which an enzyme is  adapted to  suit  the  homeostasis  of living organisms.

Rather, we would like to isolate, understand, and exploit the main contributors to their catalytic

performance and in particular their exceptional values of kcat  and KM . 

Theoretical estimates of the catalytic rate (of any catalyst) are typically formulated within

the framework of transition state theory (TST)3:

kcat / KM=A (T ) exp (−∆ G†
/RT )  (5)

where ∆ G†  is the rate-limiting activation free energy, and the pre-exponential term A(T) that

depends on the temperature T incorporates additional model factors such as the transmission
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coefficient (adding quantum effects by setting a non-zero probability for crossing the transition

state below the barrier height) and friction (accounting for solvent dynamics that govern the

climbing of the reaction barrier), as well as ways to incorporate the diminishment of the upper

bound rate  factor  due  to  recrossing  events  (e.g.  when  the  reaction  does  not  proceed to  the

products after crossing the transition state but rather turns back to the reactant well).24,25 

However, equation  (5) clearly states that reducing the free energy barrier has the most

impact on the reaction rate given its exponential dependence. To do that,  we would need an

atomistic picture of the E ∙S  complex and all the molecular interactions involving the reactant

and transition states that make up the relative free energy. Consequently, some researchers rely

on approaches that do not require a detailed understanding of these factors to tailor and create

novel enzymes, which is best exemplified by laboratory directed evolution.26 

1.3 Laboratory Directed Evolution

Laboratory Directed Evolution (LDE)26 makes use of the natural evolvability of proteins to create

new functional states by high-throughput screening of large libraries to tackle a diverse range of

protein function including binding selectivity,  protein stability,  and biocatalysis.15,27-29 For the

case of biocatalysis, LDE exploits the fact that, although highly selective to specific reactants,

enzymes also exhibit low levels of activity for side reactions involving non-native substrates or

product enantiomers.30 This catalytic promiscuity allows for evolutionary paths that create new

enzymes. This is illustrated in Figure 1 where a high peak in efficiency is shown for enzymes

catalyzing their native reactions (on the left in green). The important point is that this efficiency

does not  die  off  entirely as we move away from the  original  protein  sequence (via  random

mutations).  When  these  mutated  enzymes  fall  into  a  region  in  sequence  space  that  is  also

characterized by a weak efficiency for a non-native reaction (overlap region in red in Figure 1 or
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region of catalytic promiscuity), there is the possibility to preserve mutations that lead to the

enhancement of the catalytic performance for the new reaction (evolutionary trajectory). 

Figure 1: Natural evolution of enzymes. Spontaneous mutations lead to the subtle change of

sequence space within the enzyme’s region of promiscuity. An uphill evolutionary walk then

leads to a new enzyme that efficiently catalyzes a new reaction.30 From Renata et al. Angew.

Chem.  Int.  Ed.  2015,  54,  3351.  Copyright  © 2015 by  John  Wiley  Sons,  Inc.  Reprinted  by

permission of John Wiley & Sons, Inc.

While natural evolution of  spontaneous mutations occurs over  millions of years, LDE

operates on a much  shorter  timescale  that  is  achieved  by  techniques  that  accelerate  the

exploration of a gene’s sequence space31 using multiple rounds of mutagenesis to quickly create

new variants.32 In addition, since the desired new function is different from natural evolution,

methods are required to identify and isolate variants with the desired properties (i.e., functional

screening).  Taken  together,  LDE is  an  iterative  method  that  provides  a  stepwise,  and  often

substantial,  improvement  in  a  desired  targeted  property  such  as  catalysis.15,33,34 Two  recent

reviews by Renata el al.30 and Packer et al.31 extensively describe the principles and techniques of

LDE and how it has become the go-to method for refining biocatalysts. 
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One of  the  many successful  examples  of  LDE is the  tuning of  wild-type  halohydrin

dehalogenase (HHDH) to catalyze the conversion of ethyl (R)-4-cyano-3-hydroxybutyrate (HN)

for  commercial  purposes15,  to  replace  energy  inefficient  chemical  cyanation  performed  at

elevated temperatures and pH. Fox and coworkers worked from the versatility of HHDH’s active

site  and  tuned  its  activity  to  accept  the  non-natural  nucleophile  CN–.  They  combined  the

traditional hit-shuffling approach with a method based on protein sequence activity relationship

(ProSAR), which they deemed necessary to identify beneficial mutations even in variants with

reduced functionality. With ∼35 mutations,  the volumetric productivity for the desired product

was  enhanced  4000  fold,  reaching  the  necessary  commercial  levels  of  efficiency.  Another

exceptional example of LDE is the improvements made to the computationally designed Kemp

Eliminase HG335 that reached a natural enzyme efficiency after 17 rounds of directed evolution36.

1.4 Computational enzyme design

Despite LDE’s undeniable advantages,  the fact that it can  be  immune  to  understanding the

enzyme mechanics is ultimately a limitation for rational and robust enzyme design. This is not to

say that attempts to rationalize LDE have not been put forward, or that useful strategies to make

LDE more efficient have not been advanced.28,37-39 But ultimately LDE performs best when given

a  good  starting point,  which  is  a  very  difficult  task  without  the  knowledge  of  what  makes

enzymes efficient, because the quality of said starting point is unknown. However, this problem

can be addressed by state-of-the-art computational techniques that can be used to test and refine

our understanding of enzymatic activity at the molecular level.40-43

The  origin  of  enzymes’ remarkable  performance  has  been  the  subject  of  extensive

theoretical  and  computational  research  over  the  past  several  decades  to  design  synthetic

biocatalysts.  As  reviewed  by  Korendovych  and  DeGrado  in  2014,  computational  design  of
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catalytic proteins has had a boom and bust cycle, progressing from catalytic antibodies through

to design of complete protein folds with catalytic function (especially for metalloenzymes) to so-

called de novo enzyme design.41 The most recent computational design effort is exemplified by

the work of Baker and colleagues who created a series of synthetic enzymes: for the retro-aldol

reaction based on four different catalytic motifs for the catalyzed breaking of a carbon-carbon

bond44,  the  Kemp Elimination  reaction  as  a  prototype  for  catalyzed proton abstraction  from

carbon45,  the  stereoselective  Diels  Alder  reaction  involving two  substrates  forming two  new

carbon bonds46, as well as catalytic triads with nucleophilic serine for hydrolases47. Overall the

computationally designed enzymes do not perform very well, sometimes performing no better

than small molecular catalysts41, and must ultimately rely on LDE to reach respectable enzyme

activity outcomes.

However, a great deal is being learned to overcome the limitations, and the remainder of

this review covers the progress made for computational enzyme design over the last ~ 5 years.

We start  in Section 2 with enzyme design approaches that focus on active site optimization,

which  we  refer  to  as  the  Standard  Model,  in  the  spirit  of  Sauer  and  colleagues  who  have

advanced a similar computational protocol for zeolites that also strongly emphasizes the detailed

active site.48 For biocatalysts,  the Standard Model focuses on methods that allow the precise

chemical  positioning  of  the  substrate  in  the  active  site  to  promote  enzymatic  efficiency49

including desolvation effects50, ground-state destabilization51-53, side chain packing interactions,

and hydrogen bonding networks51,54,55. It is these molecular effects involving the active site that

are the most considered aspect of enzyme design, and rightfully so, given the spatial proximity to

the substrate.
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In Section 3 we consider enzyme design criteria that move beyond the Standard Model by

considering the entire enzyme as a complete catalytic construct. We begin this Section with a

brief review of complete de novo design approaches that build an artificial enzyme in its entirety.

But one of the more lively debates56 to explain natural enzyme performance, and thus which

might  be  exploitable  in  biocatalytic  design,  centers  around the  pre-organization  concept  for

transition state stabilization introduced by Warshel and colleagues57-59 vs. concerted dynamical

organization of enzyme motions that aid the reaction progress to the product state60,61. 

Since  the  mid-1980’s  the  preorganization  view has  advanced the  important  idea  that

electrostatic  interactions  that  are  unique  to  the  complete  enzyme  environment  contribute

substantially  to  the  reduction  of  the  reaction  activation  energy  relative  to  that  in  water,  by

stabilizing the  charge  distribution  of  the  substrate  in  the  transition  state.57,58 This effectively

reduces the reorganization cost associated with the charge redistribution occurring during the

enzymatic reaction, a cost that must be paid for in the uncatalyzed reaction in water. However, it

is only recent that reorganization energy minimization and electric field optimization have been

considered and developed as part of a biocatalytic design strategy.

More recently, enzyme motion that is dynamically organized to aid the catalytic step is

thought to be another and equally important factor in enzyme performance.61 In this case one

needs  to  define  what  is  meant  by  dynamics.  Most  often  it  actually  refers  to  entropic

thermodynamic forces that are manifested as the natural statistical fluctuations of a thermalized

system.62,63 By  contrast,  others  have  illustrated  how  dynamical  timescales64,  sometimes

formulated  as  time  correlation  functions  of  specific  vibrational  states65,66,  can  promote  the

reactive chemistry. Finally, a third definition is based on a chemical dynamics picture67,68, i.e. the

net reactive flux through the dividing surface at the transition state69, which also accounts for the

1
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recrossing effects not captured through a simple description based on transition state theory.70-74

Ultimately, all of these molecular forces and dynamical effects play in concert to more or less

effect on the catalytic step, but it is the current dichotomy of electrostatic preorganization and

dynamical effects that we review in this last Section, which we demonstrably show can impact

our ability to optimize synthetic enzymes.

2. The Standard Model for Enzyme Design

2.1 Design protocol for active site chemistry

We begin by describing the accepted and standard protocol  for computational  enzyme design,  which

revolves around the careful positioning of an active site chemistry into a natural scaffold. The general

standard model protocol consists of multiple steps which are illustrated in Figure 2. First, a theozyme is

constructed with high level quantum chemistry methods that resolve the structure of the transition state as

well as a few residues with functional groups assisting the chemistry of the reaction. 75 The geometry of

the system is then optimized so as to mimic enzymatic mechanics for stabilizing the transition state. 

Second, a search is carried out to place the theozyme into the predefined active site of an

existing  protein  scaffold;  a  number  of  straightforward  algorithms  used  to  achieve  this  task

include ORBIT from the Mayo group76 and Selection of Active/binding Sites for Enzyme Design

(SABER) from the Houk group77,78 which searches the Protein Data Bank (PDB) for proteins that

already have the catalytic functionality of the theozyme in place. These algorithms are based on a

statistical analysis of structural similarity79 where atomic geometries in a protein are searched to

locate specific 3D arrangements that correspond to the designed theozyme. Once a match is

found, mutations are sought to accommodate the new substrate in its transition state geometry

within the protein scaffold.  Another similar algorithmic approach is RosettaMatch80-82 where the

search  is  able  to  accommodate  both  the  new  substrate  and  the  active  site  residues  of  the

1
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theozyme. Although more mutations are necessary with RosettaMatch than with SABER (that

only incorporates the substrate of the theozyme), risking the potential to severely disrupt the

stability or the performance of the resulting enzyme, it is often seen as a superior technique for

designing  enzyme  for  non-biological  transformations  since  the  entire  theozyme  can  be

incorporated as a whole, and is more likely to catalyze the desired reaction.82 

Once a match is found for the new substrate in its transition state geometry and/or the

new residues directly involved in the chemistry of the reaction, the remainder of the active site

has  to  be  reoptimized  for  both  its  sequence  and  structure.  This  is  usually  performed  with

automated software such as RosettaDesign80-82, which is based on  a Monte-Carlo algorithm to

search for alternative rotamers for the active site residues that pack well onto the target active

site structure at room temperature and satisfying native-like hydrogen bonding.

Figure 2. Standard  Model  for  de novo enzyme design.83 The  theozyme  is  built  around  the

transition state geometry resolved by quantum chemistry methods and matched to a pre-existing

scaffold.  Final  designs  to  be  tested  experimentally  are  then  generated  by  re-optimizing  the

protein side chains to better accommodate the new active site. Not represented in this diagram is

1
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an intermediate step where the design sequences are assessed for catalytic performance prior to

experimental  validation.  Reproduced  with  permission  from  Swiderek  et  al.  Arch.  Biochem.

Biophys. 2015, 582, 68. Elsevier.

These three steps are usually performed for multiple theozymes that involve  different

motifs for the targeted catalytic reaction.44,45 For example, the Kemp Eliminases from the Baker

group are designed around  multiple  types of catalytic bases including aspartic acid, glutamic

acid,  or  a  His-Asp  dyad  for  direct  proton  abstraction  from the  5-nitroxibenzole  substrate.44

Additional theozyme features are chemical groups that can help align the substrate or support a

charged  transition  state,  which  can  be  accomplished  with  different  amino  acid  side  chain

chemistries.82 

An additional and vital final step of the design process is to computationally assess the

performance  of  these  enzymes  before  committing  experimental  resources  to  perform  the

molecular  biology  to  create  the  designed  sequence.  Ruscio  and  co-workers  used  all  atom

molecular dynamics (MD) simulations to ascertain whether the expected catalytic  activity was

possible or whether undesired water accessibility to the active site was impeding the design of de

novo retroaldolases84, as did Alexandrova et al who used QM/MM Monte Carlo with Free Energy

Perturbation  (FEP) for testing the  design  of  Kemp Eliminases85.  Although using MD to  test

synthetic enzyme performance has become more routine82,86, the computational design field still

relies on experimental testing,  screening and  LDE  to select the best performing synthetic

enzyme.

2.2. Recognized limitations and improvement strategy

Since the first artificial enzymes were proposed, a significant effort has gone into analyzing their

performance and understanding their shortcomings. Largely, the goal of a robust Standard Model
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for enzyme design – active site accuracy – was not sufficiently executed such that many of the

de  novo enzymes  failed  to  show  significant  catalytic  activity.41 Often  catalytic  activity

enhancements  are  realized  by  subjecting  them  to  LDE,  demonstrated  especially  for  the

impressive improvements for the HG3 sequence evolved to HG.17.36 But for some computational

designs,  catalytic  improvements  under  LDE rapidly  reached  a  plateau  with  additional  LDE

rounds, as seen for the KE07 and KE70 Kemp Eliminase designs.87,88 Often analysis of the LDE

sequence  trajectories  can  provide  valuable  feedback for  the  design  algorithms89,  but  lessons

drawn from poorly designed starting sequences should be viewed with caution. For example

natural enzymes nearly always exploit transition state stabilization as the means for lowering the

activation free energy barrier, but many of the Kemp Eliminases that were improved under LDE

were shown to have benefitted mostly from destabilizing the reactant state.90 

Although some of these limitations come from the fact that the active site is designed in

the absence of the surrounding scaffold, other more easily resolved issues were identified. For

example,  MD studies  of  designed  enzymes  that  failed  to  show significant  catalytic  activity

revealed  that  hydrogen  bond networks  are  not  always  maintained.35,46,82 This  has  driven  the

development of automated protocols that would include non-bonded interactions in the design

process, like Foldit91 or EDGE82,92. 

Similarly, some of the early de novo designed Kemp Eliminase enzymes45 were produced

with  earlier  versions  of  RosettaMatch  and  RosettaDesign,  both  of  which  have  evolved  to

incorporate features that were identified as necessary for enzyme performance, such as steric

packing or π−π stacking.81 Rajagopalan and co-workers found that the actual geometry of the

catalytic  triad  for  hydrolases  match  the  design  models  much better  than  their  earlier  Kemp

Eliminase  designs,  validating  the  changes  they  made  in  their  method  when  using  quantum

1
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mechanics/molecular mechanics (QM/MM) potentials for the design.47 It is also now recognized

that iterative design rounds are  more beneficial.  This means that  the rotamer sampling from

RosettaDesign for example should be performed multiple times, interspersed with minimization

of the side chains, backbone, substrate conformation and rigid body positions.82,93-96 

Another limitation that was identified from MD studies was the presence of water in the

active site that hinders the chemical reaction.97,98 This is especially important for catalysis of

reactions that depends on a carboxylate base for example, such as the Kemp Eliminase series.

The solvent-like pKa of the designed catalytic base in the native active site of HG3 led Privett et

al to shift the theozyme into a pre-existing small pocket deeper inside the beta barrel instead.35

Additionally, it has been observed that the design sequences were not dynamic enough to

accommodate  the  substrate  structural  changes  as  the  reaction  occurs.99 This  suggests  that

dynamics simulations need to be integrated within the design protocol to produce sequences that

better  model  the  true  enzyme motions.82,84,85 Significant  improvements  can  also  be  made  by

considering at least partial flexibility of the protein backbone that serves as a scaffold or the use

of non-canonical amino-acids. These flexible  models are now possible thanks to advances in

quantum chemistry methods and QM/MM in particular, which provide a more accurate potential

for enzymatic complexes.83 This also unlocks new possibilities and access to novel protein folds.

For example, the creation of a new topology, the top7 alpha/beta was attributed to the flexible

backbone minimization step in the design protocol.100,101 

2.3 Active site positioning and molecular dynamics 

A good example of a rational redesign of an active site to address the limitations discussed in

Section 2.2 is illustrated using the retroaldolase (RA) design RA22 which exhibited a  kcat /

KM  = 0.018 ± 0.006 M-1 s-1.44 The retro-aldol reaction involves two primary steps: an initial

1
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nucleophilic  attack  to  form  a  covalently  bound  complex  followed  by  proton  transfer  and

subsequent carbon-carbon cleavage using a His-Asp dyad as the catalytic base.44 Even though the

crystal structure of the same RA protein with a single point mutation showed that the RA22

enzyme satisfied the design criteria for substrate positioning, Ruscio et al determined a multitude

of problems in the active site that explained RA22’s poor performance that showed up under a

dynamical assessment.84 

The first identified issue is that the nearest attack conformation (NAC)102,103, requiring

that  lysine  ε-amino group and the  substrate  ketone  carbon are  at  a  distance  (<  3.25Å)  that

resembles the bond to be formed in the transition state (Figure 3a),  was not satisfied for the

intended design for which the substrate is -stacked in a T-shaped geometry with respect to the

his-asp dyad (Figure 3b). Instead, the substrate when dynamically sampled was found to prefer a

- stacking arrangement with the catalytic base, with participation of scaffold residue Phe211

(Figure 3c), which in fact did meet the NAC criteria for the formation of the imine.

Figure 3. The computational design of  the retro-aldol  reaction catalyzed by de novo design

enzyme RA22.84 (a) the first step is the nucleophilic attack of lysine to create the imine. (b) The

1
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original  active  site  design  by  Jiang  and  co-workers44 did  not  satisfy  the  nearest  attack

conformation (NAC) under the molecular dynamics simulation. (c) The alternative and highly

preferred active site  determined from Ruscio  et  al  using molecular  dynamics simulation did

satisfy the NAC for formation of the imine. Adapted with permission from J. Z. Ruscio et al. J.

Amer. Chem. Soc., 2009, 131, 14111-14115. Copyright 2009 American Chemical Society.

However  the  unintended  consequence  of  the  - stacking  arrangement  is  that  it  is

subsequently poorly organized for the second step, in which the geometric criteria for substrate

positioning of the original intended design44 (Figure 4a) is grossly violated84. Furthermore, the

MD revealed the excessive fragility of the hydrogen bonded networks (d1 and d2) to thermal

fluctuations in the active site, such that it failed to form the His-Asp dyad, thereby weakening the

ability of the catalytic base to perform proton abstraction from the reactant imine intermediate.

Furthermore,  a  large  empty space forms between Phe211 and the enzyme active  site,  which

results in undesired exposure to aqueous solvent. 
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Figure 4. Active  site  redesign  of  de novo enzyme RA22 using the Standard Model. (a)  The

enzyme-ligand complex for proton transfer and subsequent carbon-carbon cleavage is not well

organized due to poor chemical  positioning of the substrate, an empty cavity in the active site

filled with solvent waters that disrupt the proton transfer step, and competing hydrogen-bonding

to His 233 that destabilizes the His-Asp dyad. (b) Proposed redesign of RA22 enzyme active site

alleviating the problems identified in (a). 
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Consequently, a redesign of the RA22 enzyme would ideally aim to reach the following

goals:  (1) reorient the ligand into the T-shaped geometry through mutations that can form a

hydrogen bond with the substrate hydroxyl, (2) simultaneously improve the NAC under the T-

shaped orientation through a scaffold residue that can hydrogen bond to the substrate  amide

group, (3) introduce large and bulky side chain that can shield the active site from solvent waters,

(4)  eliminate  the  competing  hydrogen  bond  from Ser231  that  disrupts  the  hydrogen  bonds

between the ligand hydroxyl group and Asp53 with His233, and (5) the (trivial) increase in pKa

of the His-Asp dyad through creation of a more hydrophobic environment (Figure 4b). All of

these criteria are also required to remain robust to the expected protein thermal fluctuations.

Nonetheless, this redesign approach is missing conceptual factors beyond the Standard Model for

enzyme design that is further considered in Section 3.

3. Beyond the Standard Model for Enzyme Design

What makes enzymes unique relative to other man-made catalysts is that they have changed over

evolutionary  timescales  to  be  entire  catalytic  entities.  We  therefore  must  look  beyond  the

enthalpic interactions of the active site and more fully consider the greater environment, which

can play a highly non-trivial role in achieving gains in catalytic activity.104 In this Section we

look at specific additional entropic and dynamical factors and whole enzyme features that could

be used in the design of synthetic enzymes to improve their performance beyond the Standard

Model approach.

3.1 Complete de novo design

Artificial  metalloenzymes,  consisting of  a  scaffold that  hosts  a  catalytically  active transition

metal  complex19,  are  popular  synthetic  targets  for  design  given  their  industrial  importance.

Recently, Hartwig and coworkers reported performance similar to those of natural enzymes after
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the  iron  center  was replaced by an  iridium porphyrin  in  an  existing protein  scaffold for  an

artificial  metalloenzyme.105 We refer the reader to  two recent reviews for additional relevant

background on artificial metalloenzyme design.106,107

When there isn’t  a natural enzyme to start  from, new biological catalysts  have to  be

created from scratch. This requires us to address the very challenging inverse protein-folding

problem,  meaning  that  we  need  to  find  protein  sequences  that  fold  into  specified  three-

dimensional structures. To reduce the degree of complexity of this problem, researchers have

focused  on  α-helical  barrels,  with  helices  organized  around  a  central  channel  with  a  metal

center.108 The key to efficient metalloenzymes is thought to be in the design of the second co-

ordination sphere provided by the biological scaffold109,110, i.e. a requirement that considers the

greater environment beyond the active site. 

De  Grado  and  coworkers  designed  hererotetrameric  four-helix  bundles  to  probe  the

structural basis for the diversity of natural diiron proteins.111 The A2B2 sequence was designed,

starting by specifying the backbone,  with a novel computational approach that considers the

stabilization of the  desired fold as well  as the destabilization of likely alternatives.112,113 The

structure is shown in Figure 5 and exhibits approximate D2 symmetry with three orthogonal 2-

fold rotational axes. Note also that the active site binds Zn(II) and Co(II) and shows ferroxidase

activity under single turnover conditions, as in naturally occurring diiron proteins.

Figure 5.  Four-helix hererotetrameric A2B2 bundle designed as a diiron protein model  by  De

Grado  and  coworkers.111 The  designed  sequence  (a),  structure  (b)  and  active  site  (c)  is

reproduced with permission from Summa et al. J. Mol. Biol. 2002, 321, 923-938. Elsevier.111

In a later design of model diiron proteins for the phenol oxidase reaction, they turned

their  original  four-chain  heteroatomic  helical  bundle,  DFtet,  into  a  symmetric  complex with
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identical subunits.40 In this case,  the active

site  was  then  designed  to  allow  for  the

binding of the 4-aminophenol substrate. This

included reducing the steric bulk of a couple

of  residues  to  fully  accommodate  the  new

substrate  within  this  pocket.  The  catalytic

rate  of this design was found to be higher

than  previous  de  novo proteins,  with  a

kcat
/ KM

 =  1500  M−1min−1,  thereby

representing an excellent step forward in the

complete  and  whole  design  of  a  synthetic

biocatalyst. Another significant advance was made by Burton et al. who designed a fully de novo

construct for the hydrolysis of p-nitrophenyl acetate whose catalytic efficiency matches those of

redesigned hydrolysases based on natural  protein scaffolds.114 Their  strategy was to  build an

alpha  helical  barrel  with  seven  helices  arranged  around  an  accessible  channel  and  propose

mutations to polar residues within the lumen of the barrel to assist the reaction. Overall these

fully realized enzyme constructs offer an important step forward beyond the Standard Model of

enzyme design which focuses on active site chemistry only. 

3.2 Entropic effects on activation free energy

From  a  thermodynamic  perspective,  the  enzymatic  activation  energy  in  Eq.  (5)  can  be

decomposed as ∆ G†
=∆ H†

−T ∆ S† , where ∆ H†  and ∆ S†  are the enthalpy and entropy

change  associated with  the  catalyzed reaction,  respectively.  The  Standard  Model  of  enzyme

design has traditionally focused on development of active site models that optimize enthalpic
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interactions while minimizing a more flexible active site to yield better values of  kcat / KM .

Typically the MD introduced in Section 2 helps validate that the enthalpic interactions are at least

optimal enough to withstand the thermal fluctuations under which enzymes must operate. The

question we explore in this sub-section is whether entropic effects can play a more active role in

the design process to improve the catalytic rate.

The most popular rationalization of entropic effects in enzymes is the so-called Circe

effect, which states that the energy gain upon the favorable binding of the substrate is, at least

partially,  spent  to  pay  the  entropic  penalty  of  destabilizing  the  ground  state.115 This

destabilization  mostly  comes  from  translational,  rotational  and  conformational  substrate

entropies and results in a smaller entropy loss than in solution upon overcoming the activation

barrier.116 However, this principle is not verified in general as Kasemi et al. showed for cytidine

deaminase.117 They argue that while the activation entropy is calculated to be close to zero for the

rate-limiting acquisition of the transition state, it is due to a change in the reaction mechanism

compared to the uncatalyzed reaction in water rather than from an excess energy from substrate

binding. 

The  thermodynamic  drive  for  substrate  binding to  the  enzyme was also  revisited  by

Boehr et al., in which they found that many protein conformations co-exist and the ensemble

experiences  a  population  shift  upon  substrate  binding  that  redistributes  the  conformational

states.118 This implies that the ligand merely binds to the most favored conformation and that

equilibrium statistical fluctuations are the key to substrate binding and molecular recognition in

general.118 Some of those fluctuations can be trapped by static experimental methods such as

room temperature X-ray crystallography, in which Fraser and co-workers found evidence for

interconverting rotamer sub-states of the catalytic turnover for cyclophilin A.63
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Joshua Wand and coworkers used NMR relaxation methods to quantify the contribution

of changes in protein conformational entropy to the free energy of ES complexes.119,120 This is

achieved  by  using  NMR  measures  of  motions  between  conformational  states  on  the

subnanosecond timescale as a proxy for conformational entropy that can then be separated from

the entropy of solvent. With this technique, they showed that the large reservoirs of entropy that

characterize folded enzymes are coupled to the binding of ligands.121 Further, they demonstrate

that this effect is large, yet variable, providing a clearer picture of the mechanics of molecular

recognition. In another study, they perturbed Ubiquitin with kilobar pressures, enough to affect

side chains and backbone dynamics, but well below the denaturation pressure.122 They showed

that NMR resolved fast internal motions decreases with increasing pressure, thereby decreasing

the  conformational  entropy.  These  experiments  were  crucial  to  building  the  picture  of  the

thermodynamic architecture underlying enzyme stability and function. 

It is worth noting that entropy also impacts the stability of proteins, as evidenced when

comparing thermolabile to thermostable enzymes. Indeed, enzymes with high activity at room

temperature often exhibit a flexible structure (high entropy) resulting in enhanced thermolability.

This was also observed in the  de novo enzymes KE07 and KE70 where entropy was found to

destabilize  the  ground state  and stabilize  the  transition  state.62 When decomposing the  state

function into contributions from individual residues (entropy) and correlated motion between

side chains (mutual information) across an ensemble of backbone conformations and side chain

packings, the Head-Gordon lab found that high mutual information residues annihilate activity

when mutated.62 In contrast, enzymes with rigid structures (low entropy) are thermostable but

characterized by a low activity at room temperature. This gives rise to the activity-stability trade-

off where thermally adapted proteins are made unstable by improving their activity.123-125 
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While  this  isn’t  a  necessity  for  natural  enzymes,  biotechnological  applications  will

require  non-natural enzymes to simultaneously display high activity and thermostability.126 A

clever  strategy  to  address  this  issue  is  to  increase  the  entropy  change  of  the  reaction  by

displacing more  water  molecules  in  the  transition  state  relative  to  the  ground state,  thereby

enhancing the catalytic activity.126-129 This was proven possible in a GTPase activating protein

where a positive activation entropy of the rate-limiting step resulted in a 105-fold increase in the

rate.130 Computer simulations later rationalize this entropy increase to be associated with the

displacement of five water molecules into the bulk solvent upon formation of the transition state

due to the rearrangement of the side chain of an arginine residue in the active site. It is worth

nothing that less dramatic structural rearrangements can also lead to an increase of the entropy

change by breaking the hydrogen bonds of the water molecules around the substrate, which are

weakened in hydrophobic active sites.126 

This is to be contrasted with the entropic effects of water in the catalytic site of the

improved KE07 enzyme when subjected to  LDE.87 Using a  3D spatially  resolved two-phase

entropy analysis method of a MD trajectory of KE07, Belsare et al found that the active site of

the best evolved enzyme KE07-R7.2 enzyme held fewer hydrated waters than the original design

in the ligand-bound state.131 However they were more tightly bound than in the original design

such as to contribute to a more negative solvation entropy, thereby destabilizing the reactant

state131 as opposed to stabilizing the transition state as most natural enzymes do90,132. The contrast

between the rational design of more native-like entropic effects in the GTPase activating protein,

and the unintended entropic factors using LDE applied to the Kemp Eliminases, suggests that

more can be done at the computational design stage of new synthetic enzymes using entropic

principles.
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3.3 Dynamical correlations 

The first step of biocatalyzed reactions is the shift of the enzyme conformational ensemble upon

binding of the substrate.62,118 This is followed by a thermal search of the conformational space

towards  the  reactive  transition  state  and terminates  with  the  rare  barrier  crossing event  that

occurs on a much faster time scale. Thus, dynamical effects will impact the speed at which the

system explores the potential energy surface. Indeed, it has been long recognized that, close to

barrier crossing, statistical enzyme motions enable progress along the reaction coordinate.70 

However, there remains a controversy over the true dynamical nature of explicit selective

modes,  primarily  because detangling the  time scale  of these  processes is  not trivial.56,133 For

example, imagine these rate promoting vibration (RPV) modes are not in thermal equilibrium;

then they will be characterized by an excess energy that would dissipate more slowly.134 Taking

the hydride transfer reaction catalyzed by lactate dehydrogenase (LDH) for example, the donor-

acceptor distance fluctuations decay within 200 fs.56 Donor-acceptor distance fluctuation is a

widely used mode in this case because it was shown that an incomplete compression/relaxation

of this variable compromises the reaction (Figure 6a).135 The Schwartz group followed this study

by a microsecond-scale all-atom MD simulation of the Michaelis complex of LDH, revealing

that  it  actually  consists  of  different  substrates  that  are  interconverting  with  each  other  on

different time scales. They demonstrated that the dynamics can be treated as two independent

loop motions in a relatively rigid framework (Figure 6b). 

(a)     (b)
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Figure 6. Dynamical motions of the monomer of human heart lactate dehydrogenase.136 (a) The

donor (nicotinamide ring) and acceptor (lactate) are showed in red while the promoting vibration

residues, are shown in yellow. Reprinted with permission from D. Antoniou et al. J. Phys. Chem.

B, 2011, 115, 15147-15158. Copyright 2011 American Chemical Society. (b) the Cα dynamic

cross-correlation map137 shows the intersections of the active site loop (residues 98-110) with the

nonactive  site  loop  (residues  215-227)  and  the  contacting  helix  (residues  236-249)  are

highlighted. The two loop regions show very weak dynamical correlation, while the correlation

between  the  dynamics  of  the  active  site  loop  and  the  contacting  helix  is  relatively  strong.

Reprinted with permission from X. Pan et al. J. Phys. Chem. B, 2015, 119, 5430-5436. Copyright

2015 American Chemical Society.

In another study, they looked at LDHs from two different organisms, which have several

structural differences including a five amino acid insertion in one of them. They used transition

path sampling and committor distribution to show that RPVs are found across different type of

LDHs,  suggesting  that  it  is  a  beneficial  feature  preserved through evolution.  However  these

vibrations are modulated by structural changes near the active site that can hinder catalytically

important motions.138 To build up on these findings, they proposed a mutation for the aromatic

amine  dehydrogenase  that  enhances  the  natural  promoting  vibrations  while  preserving  the
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electrostatics of the reactive event. Their mutant is expected to lower the free energy barrier of

the reaction, hence exhibits higher acceleration rate compared to the natural enzyme.139 

Focusing on correlated motions with the active site loop, Pan and Schwartz explained

how the strong conformational heterogeneity may open alternative mechanisms for the chemical

step that need to be accounted for when designing  de novo enzymes.137 They extended their

analysis to designed Kemp Eliminases and their improved variants under LDE, for which they

found that LDE selected mutations favor a more dynamic active site that makes use of the donor-

acceptor compression.140 They propose the fact that since the Kemp Eliminases were designed

without accounting for these dynamical effects, it may explain why the design sequences were so

poorly efficient. 

It is worth noting that the work of Klinman and co-workers on gating motions is very

similar to the one of Schwartz et al.,  but their interpretation of these motions is in terms of

statistical fluctuations.141-143 Similarly, Boekelheide et al. used ring polymer molecular dynamics

that includes nuclear quantization effects to look at the role of vibrating motions in the catalytic

activity of DHFR. They showed that dynamical correlations are fast but also local, vanishing at

distances  beyond  4-6  Å.  Slow  thermal  fluctuations  from  the  protein  scaffold  gate  the  fast

dynamics in the active site, thereby modulating the instantaneous rate for the intrinsic reaction.74 

Hammes-Schiffer and co-workers70 proposed a different picture where dynamics play a

role on longer timescales, after identifying slower coupled promoting motions for the hydride

transfer of dihyfrofolate reductase (DHFR) from the entire protein, and not just the active site

(Figure 7). This would suggest that millisecond timescales are critical to the barrier passage.

While some of these conclusions were motivated by genomic analysis, Hammes-Schiffer and

colleagues  also  performed  QM/MM  simulations  of  DHFR  combined  with  rank  correlation
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analysis.  They  observed  that  single,  double  and  triple  DHFR mutants  are  characterized  by

different distributions of coupled motions correlated to the catalyzed reaction.73 Although their

method cannot  distinguish  between motions  playing an  active  role  in  catalysis  and motions

responding to alterations caused by catalysis, they argue that since the entire enzyme is coupled

via  long-range  electrostatics  and hydrogen  bond network,  surface  mutations  can  modify  the

probability  of  sampling  active  site

conformations  that  will  lead  to  the  transition

state. 

Figure 7: Diagram showing the  residues  and

their  direction  of  movement  as  a  reaction

crosses the separatrix in the DHFR reaction.136

Donor  and acceptor  are  shown as  a  blue  and

green  ball,  respectively.  There  is  no  well-

defined  promoting  vibration,  and  the  limited

protein  scaffold prevents  the  formation  of  the

type of compressive promoting vibration seen in

LDH.  Reprinted  with  permission  from  D.

Antoniou et al. J. Phys. Chem. B, 2011, 115, 15147-15158. Copyright 2011 American Chemical

Society.

 

3.4 Minimizing the reorganization energy

Lowering the activation energy via transition state stabilization is one of the main design criteria

for efficient synthetic enzymes.90,132 An important ingredient for this stabilization is embodied in

the reorganization energy, the energy cost paid as the enzyme organizationally responds to the

changes in substrate structure and charge distribution as the reaction proceeds along the reaction
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corrdinate.99 The ease with which these structural and electronic changes occur along the reaction

coordinate will contribute to an enhancement of the enzyme performance.

The  reorganization  energy  due  to  the  changing  substrate  state  can  in  principle  be

quantified by Marcus’ theory in the weak coupling, high temperature limit.144-146 Indeed, the use

of Marcus’ theory implies that the potential energy landscape of the adiabatic process that is an

enzymatic reaction, can be approximately described by a pair of crossing diabatic surfaces.144,145

This  is  non-trivial  because  diabatic  states  are  states  that  do  not  change  character  along the

reaction coordinate and as such are not easily mapped onto an adiabatic state, which change

constantly as to remain the lowest energy state at all times. This means that using diabatic states

to describe an adiabatic reaction, which is called the non-adiabatic approximation, only works

under specific conditions, namely when the reactant and product states are weakly coupled (weak

coupling regime). 

Historically, Marcus quantified the kinetics of electron transfer reactions using this non-

adiabatic  approximation  adopting  two  parabolas  for  the  reactant  and product  states  and the

energy gap,  q , as the reaction coordinates (Figure 8). Therefore, we can write the diabatic

states within this model as GRS(q)=4 λ(q−qRS)  and GPS (q )=GRS (q )+q , where GRS  and

GPS  are the potential energy curves of the reactant and product states respectively, qRS  is

the value of the energy gap at the equilibrium of the reactant state and λ  is the reorganization

energy, related to the curvature of the parabolas. As shown in Figure 8, the reorganization energy

can also be defined as the vertical energy difference between the reactant and product diabatic

curves, at the product equilibrium point.

Figure  8:  Marcus  model  for  reorganization  energy  applied  to  enzyme  catalysis. Diabatic

potential energy surfaces of the reactant and product states, which are separated along the energy

gap reaction coordinate. In the weak coupling regime, the true adiabatic surfaces only differ from
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their diabatic counterparts near qc, where they

avoid crossing. The reorganization energy (λ)

quantifies  the  cost  of  reorganizing  the

medium around the changed product charge

distribution.  Reproduced  from147 with

permission from the PCCP Owner Societies.

In  the case  of  enzymes,  the reorganization

energy  quantifies  the  electrostatic

preorganization  originally  put  forward  by

Warshel  to  explain  the  power  of  naturally

occurring  enzymes.99 In  this  model,  the

transition  state  is  located at  the  intersection  of  the  two parabolas,  where  the  two states  are

degenerate.  The rate  of reaction can then be derived from Fermi’s golden rule  in  the linear

response approximation (LRA), which results in defining the activation energy as:

∆ G†
=( ΔG0

+λ)2
/4 λ    (6)

where  ΔG0  is the reaction free energy. Alvarez-Paggi and coworkers combined theory and

experiments to characterize the reorganization energy of electron transfer reaction in Cytochrome

C.148 They showed that a stiff scaffold helps to minimize the reorganization energy by keeping

solvent  water  molecules  far  from  the  redox  active  site.  They  further  demonstrated  that

Cytochrome  C  switches  between  a  high  and  low  reorganization  energy  conformation  via

electrostatic interactions. While performed on model electrostatic complexes, this work helps to

identify  the  protein-protein  interactions  that  could  eventually  minimize  λ,  hence  the  energy

barrier of the reaction, when interacting with natural redox partners, in agreement with other

studies.149
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Although Marcus theory can be very powerful, it has some limitations for enzyme design.

Indeed, many enzymatic reactions cannot be accurately described in the diabatic regime. This is

because in condensed phase, chemical reactions exhibit strong coupling between the reactant and

product  states  and  the  free  energy  landscape  is  best  described  by  a  continuous  surface.

Furthermore,  it  is  also  traditionally  very  challenging  to  reliably  compute  the  reorganization

energy, even for small molecules,150,151 whereas for enzymatic reactions, the effect of both the

scaffold and the solvent has to be considered. 

However,  it  is  worth  noting  that  the  reorganization  energy  is  readily  available  from

empirical valence bond (EVB) methods that have been developed for decades by Warshel and

colleagues to quantify enzymatic catalytic effects. In this case, the energy landscape is built by

diagonalizing  the  EVB  matrix  whose  diagonal  elements  are  the  state  energies.  Although

applicable to many states,  two are generally used,  one for the reactant and the other for the

product state. The ith diagonal element is then defined as: 

H ii=α gas
i

+U intra
i

( R⃗ ,Q⃗)+U inter
i

( R⃗ ,Q⃗ , r⃗ , q⃗)+U solvent
i

(r⃗ , q⃗)  (7)

where R⃗ ,Q⃗  are the atomic coordinates and charges of the reactants and products; r⃗ , q⃗  are

the  atomic  coordinates  and  charges  of  the  solvent  or  protein; U intra
i  is  the  intramolecular

potential of  the  solute system relative to its  minimum; U inter
i  the  interaction energy between

the solute and solvent; U solvent
i  is the potential energy of the solvent; and α gas

i  is the energy

of the ith diabatic state in the gas phase. The coupling between the states is often approximated

to  be  constant,  but  a  more  accurate  form involves  a  functional  dependence  on  the  reaction

coordinate, Δ R'  (usually taken as distance between reacting atoms);

−a∨ΔR '
∨¿

H ij=A e¿ (8)
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The  adjustable  parameters   A  and  a  are  used  to  fit  either  the  reference  quantum

calculations or experiments. We refer readers to more authoritative reviews on EVB applied to

enzyme catalysis for more detail.58,152

Fuxreiter  et  al.  used  the  EVB  method  and  all-atom  free  energy  perturbation  to

characterize the catalytic effects of acetylcholinesterase.153 Compared to the reaction in water, the

enzyme  reduces  the  energy  barrier  of  the  acylation  step  of  acetylcholine  hydrolysis  via

electrostatic effects, which come from a reduction of both the energy of the charged intermediate

and the reorganization energy. This preorientation results in a smaller reorganization energy and

thus reaction activation energy, which contrasts with the higher reorganization energy cost for the

reference reaction in water.154

Warshel and colleagues have also analyzed the LDE trajectory of the synthetic enzyme

KE07  and  shown  that  beneficial  mutations  resulted  in  a  better  electrostatic  preorganization

around  the  reaction  transition  state,  hence  reduced  reorganization  energy.90,132 Labas  et  al.

corroborated these findings by calculating the reorganization energy of the KE07 design and its

improved  LDE  variants.155 They  derived  the  reorganization  energy  directly  from  the  EVB

diabatic states with which they constructed the free energy pathways of the various mutants.

They concluded that the improved KE07 variants are characterized by a reduced reorganization

energy, which ultimately drives the evolution of the enzyme.155 Further, they found that some

mutations  can  cause  a  decrease  in  reorganization  energy  even  if  not  directly  beneficial  for

catalysis. 

This  suggests  that  reorganization  energy  could  become  an  independent  property  to

account for in the functional screening of variants (Figure 9). It is particularly important for

distant  mutations  that  link  the  theozyme  to  the  rest  of  the  scaffold,  which  are  currently
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disregarded  after  screening.  This  is  in  line  with  other  studies  that  show  that  electrostatic

preorganization,  hence  reorganization  energy,  could  be  tuned in  the  LDE process.36,44,46 This

means that a better starting point for LDE would be a design where reorganization energy is

already optimized. Therefore, systematic reorganization energy calculations could help design

better starting sequences by changing how we evaluate and rank scaffolds.99 

Figure 9: Flowchart of computational enzyme design using reorganization energy calculations.99

The theozyme (I) determined by QM methods is docked into different scaffolds (II) and a set

filtered  based  on  steric  and  electrostatic  complementarity  (III).  Reorganization  energy  is

computed  for  the  selected  scaffolds,  using

short  MD  simulations  within  the  LRA

framework (IV).  Top-ranked candidates are

subjected to further refinements. In addition

to  TS  binding  energy  and  electrostatics,

residue  contributions  to  reorganization

energy  are  also  evaluated  and  used  for

scoring  (V).  Reproduced  with  permission99

Curr. Opin. Chem. Biol. Elsevier.

More  specifically,  integrating  the

reorganization energy in the design process

would allow us to account for two important

factors. First, it would help rank the ability

of an enzyme to respond to the changes in

charge distribution from the ground to transition state. Second, it would quantify the steric strain

on the scaffold if significant geometric deformations occur between the ground and transition

states.  The  design  strategy  incorporating  scaffold  rankings  based  on  reorganization  energy

calculations proposed by Fuxreiter et al is shown in Figure 9 is thought to improve on the current
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protocol  that  prioritizes  shape  and charge  complementarity  in  the  active  site.  This  way,  the

functional screening of proposed variants using reorganization energy will select residues that

enable  structural  changes  as  the  reaction  occurs,  even  if  they  are  not  directly  involved  in

catalysis. 

3.5 Electric field optimization

The pioneering work of Warshel and colleagues have established that an enzymatic reduction in

∆ G†  occurs in natural enzymes because they are electrostatically preorganized to stabilize the

transition state relative to the reactant state.57 While the minimization of reorganization energy is

well-appreciated,  getting  an  experimental  handle  on  the  exact  nature  of  the  preorganized

electrostatic environment is only indirectly inferred through measurements of kcat . However,

recent  developments  in  spectroscopy have  started to  remedy this  situation  by characterizing

electrostatic interactions in enzyme-substrate complexes.156-160 

The most direct advances in electrostatic characterization of proteins have been made by

the  Boxer  group161,  who brought  forward the  idea  that  electric  fields  are  an  ideal  probe for

intermolecular interactions introduced by the environment for a substrate molecule modeled as a

dipole,  which  is  illustrated for  a  simple  reaction  center  embedded in  water  in  Figure  10.162

Within this electrostatic picture, Fried and Boxer suggest that configurations of minimal energy

are achieved by the best alignment of the substrate dipole to the field they experience from the

surrounding  protein  scaffold  that  implicitly  takes  into  account  excluded  volume,  hydrogen-

bonding,  and  other  non-covalent  factors.163 Exploiting  this  concept,  Boxer  and  colleagues

developed and used vibrational Stark spectroscopy to measure electric fields in the active site of

several enzymes. By transitioning from the traditional optical probes to vibrational probes, which
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minimally perturb the system, they are able to probe electric fields in enzyme with high spatial

(< 1 Å) and field (< 1 MV/cm) resolution.51 Such experiments are done in two steps.

Figure 10: Connection between electric

fields and molecular interactions.162 (A)

A uniform  electric  field  is  created  by

applying  a  voltage  between  parallel

plates  and  interacts  with  dipole

moments.  (B)  Chemical  picture  of  a

molecule  interacting  with  other

molecules  through  non-covalent

interactions.  (C)  Conversion  of  the

chemical  picture  into  an  electrostatic

one. Reprinted  with  permission.

Copyright  2015  American  Chemical

Society.

First, the difference dipole ( Δ μ⃗ )  of a given molecule is calibrated by measuring the

change in frequency ( ∆ ν́ ) caused by a known applied electric field ( F⃗ext ) according to:

hc ∆ ν́=−Δ μ⃗ ∙ F⃗ext (9)

where h  is Planck’s constant and c  is the speed of light.51,164 Note that from this equation,

the difference dipole (e.g.  the difference between the transition state and ground state dipole

moments) can be seen as the sensitivity of the molecule to the electric field.164 This means that

the magnitude of the electric field is modulated by the dipole that changes between ground and

transition states. 

Once the difference dipole is known for a specific molecule, it can be used as a probe in

an  “inverted”  Stark  experiment  where  frequency  shifts  due  to  unknown  electric  fields  are
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measured. For example, by placing the probe in the active site of an enzyme, the electric field

due to the scaffold and surrounding solvent can be quantified according to:

Δ E=hc ∆ ν́obs=−Δ μ⃗ ∙ Δ F⃗protein  (10)

Many such experiments have been performed over the past years to perfect the technique and

determine the  best  vibrational  probes for proteins.158,159,161,164,165 For  example,  the experiments

were found to be helped by calculations of electric fields that various solvents project onto a

given probe, which provides a calibration of solvent-induced shifts (solvatochromism).163,166,167

This leads to a careful mapping of the vibrational frequencies to absolute electric fields. 

More recently, Fried et al. used the carbonyl vibration of the inhibitor 19-nortestosterone

to  probe  the  electric  field  of  the  natural  enzyme  Ketosteroid  Isomerase  (KSI),  which  is

characterized by a fast kcat (~104-105 s-1).51,160 Looking at various KSI mutants, they demonstrated

that an increase in the activation barrier was linearly correlated to the extent of electric field

decrease, directly linking magnitude of electric fields to catalytic performance. They concluded

that the enzyme produces large electric fields that stabilize the increased dipole of the transition

state. Furthermore, they estimated that these electrostatic effects were responsible for 70% of the

total rate acceleration of KSI, which is over two orders of magnitude more than the contribution

from entropic effects associated with the precise positioning of the catalytic base.51,160 Although

others have contested the assertion that a majority of the rate acceleration comes from electric

fields168-170, it is generally agreed that the Stark measurements support the view that electrostatic

interactions from the enzyme play a pivotal role in biocatalysis.171,172 

We would like to remark that these two views, namely that electrostatic effects (view 1)

or  chemical  positioning  (view  2)  as  the  main  contributor  to  enzyme  catalysis,  are  not  as

contradictory as this debate would suggest. Indeed, strong electric fields emanate from the active
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site  residues  that  are  actively  and  directly  involved  in  the  chemical  reaction.  This  was

specifically demonstrated by Wang et al. who calculated that 98% of the electric field in the

active site of KSI comes from the network of short hydrogen bond residues that stabilizes the

reaction intermediate.55 However, since both the magnitude and orientation of these fields matter,

a slight change in the position of the catalytic residues will have large consequences on the

strength  of  electrostatic  interactions.  This  means  that,  in  the  active  site,  precise  chemical

positioning and electric fields are intimately coupled and disrupting one will disrupt the other. In

addition, the electric fields from residues in the active site should not be the sole focus of our

attention. Electric field contributions from individual residue in the scaffold and hydration water,

while   individually   small,   will   integrate   to   something   substantial,   since   every   30   MV/cm

stabilization in the exponential is an order of magnitude in rate.173 

For  interpreting or  using Stark experiments in  the  context  of  enzyme design,  at  first

glance the dipole model for the substrate may seem restrictive or even unwarranted. We would

assert that it can serve to express the electronic changes of bonding that are being reformulated

within  the  substrate  molecule  along  the  reaction  coordinate,  that  can  be  modeled  as  a

superposition of changing bond dipoles that differ in the reactant and transition state.173,174 How

these bond dipoles interact with the electric field created by all other residues can give rise to

electrostatic stabilization. How much stabilization is determined by the folded structure of the

enzyme which has shaped the electric field environments in the active site.173 

The implications of this view are quite profound for the future viability of the Standard

Model of enzyme design, which in most cases has encased the theozyme in an arbitrary protein

environment. The Head-Gordon group showed that for the synthetic Kemp Eliminases that the

TIM barrel scaffold does not support the reaction in the active site of the designed KE07 and
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KE70  enzymes.173 In  fact,  they  showed  that  the  scaffold  and  surrounding  solvent  actually

disfavor the Kemp eliminase reaction, because these enzymes were designed without integrating

the interactions between the scaffold and the active site, resulting in electric fields that are only

locally optimized by the catalytic base Glu-101for KE07 and the His-Asp dyad for KE70. Such

an  approach can’t  be  completely  rescued by  LDE as  the  only  viable  option  available  is  to

optimize the  sequence locally  near  the active site.  Otherwise the  scaffold would have  to  be

reorganized entirely to create an environment commensurate with the catalytic reaction at the

active, which is equivalent to saying that the reorganization energy is so enormously high that

LDE is not a practical solution. 

This  work  provided the  basis  for  exploiting at  least  local  electric  fields  as  a  design

criterion for the active site (in line with the high local electric fields in the active site of KSI 51,55),

and to replace the early rounds of LDE to computationally evolve a synthetic enzyme. Vaissier et

al. developed an electric field optimization scheme to improve the efficiency of the synthetic

Kemp Eliminase KE15, for which no LDE was performed.175 This was achieved by computing

the electric fields emanating from the enzyme’s active site and scaffold as well as surrounding

water  molecules  in  both  the  ground and transition  states.  Considering  the  sensitivity  of  the

substrate  to  an external  electric  field (i.e.  the magnitude  and direction of the bond dipoles),

mutations were proposed as to optimize the electrostatic free energy stabilization of the transition

state:

ΔGelec
†

=−∑
i

( μ⃗EL†

i ∙ E⃗EL†

i
− μ⃗EL

i ∙ E⃗EL
i

)  (11)

Where μ⃗x
i  is the bond dipole of bond i  and E⃗ x

i  is the electric field at i evaluated in the

ground ( x =EL) and transition ( x =EL†)  states.  In  this  equation,  the  sign convention is

3
7



chosen so that the positive direction of the dipole is aligned with the one of the electric field

(promoting the flow of electron in the transition state). 

Starting from the design that has a  kcat / KM  of 27 M-1s-1, individual mutations were

proposed to enhance the magnitude and alignment of the electric fields in the transition state

relative to the ground state. Remarkably, only 4 computationally targeted mutations were needed

to yield a kcat / KM of 403 M-1s-1, with almost all of the enzyme improvement realized through

a 43-fold improvement in  kcat  as measured experimentally (Figure 11).  More importantly,

most  of  this  improvement  comes  from a  stabilization  of  the  transition  state  (by  about  2.25

kcal/mol) rather than a destabilization of the ground state (~0.7 kcal/mol). 

Figure 11. Optimization of electric fields in the KE15 Kemp Eliminase synthetic enzyme. Shown

is  the  location  of  the  4  mutations  of  KE15  best  variant  (left)  and  the  total  electric  field

contributions to the transition state relative to the original design (right).175 The positive direction

for the bond dipole is the same as for the electric field (from C to H, from N to C and from O to

N for the CH, CN and ON bond respectively with magnitude +1 , +0.4 and +2.3 Debye). The

efficiency  of  these  computationally  designed  variants  was  measured  and  confirmed

experimentally. The quadruple mutant yields a kcat/KM of 403 M-1s-1 relative to a kcat/KM of 27 M-

1s-1 for the design.
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The demonstration that true catalytic enhancement can be achieved by incorporating electric

field optimization in the design process of enzymes is an important future direction in a range of

catalytic systems.104 While the Head-Gordon lab has created a top-down approach for optimizing

electrostatics of an existing enzyme scaffold through mutations175, Sokalski and co-workers have

developed  a  bottom-up  strategy  of  proposing  what  would  be  the  optimal  electric  field

environment for a given active site chemistry.176-178 Motivated by the role of electric fields in

biocatalysis,  Coote and co-workers have taken electrostatic design in exciting new directions

ranging from synthetic chemistry illustrated by the Diels Alder reaction179 to electrocatalysis180.

The future import in which electric fields can influence new catalytic constructs and reaction

chemistry have also been reviewed very recently.104,181 

4. Conclusion

Computational enzyme design for chemical reactions that are not part of nature’s repertoire has

typically served as a plausible beginning for subsequent laboratory directed evolution, which

enhances  performance  through  rapid  exploration  of  sequence  space  using  mutation  and

recombination. While computational design followed by LDE is the obvious and popular strategy

for many protein engineering studies, there is no rational way to improve on these constructs

given  the  random  sequence  mutations  introduced.  In  fact,  LDE  can  also  be  inherently

compromised by the underlying performance of a designed enzyme that has a poorly optimized

active site at the start. 

The Standard Model for designing synthetic biocatalysts typically revolves around the

optimization of the active site chemistry, in most cases almost independently from its integration

within the greater protein environment.  However,  the knowledge acquired over the past few

years has the potential to spark a revolution in the field of computational enzyme design. Using
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higher-level  simulation  techniques  and  analyzing  successful  as  well  as  failed  designed

sequences, a few axes have been identified as promising to both improve upon as well as move

beyond the standard model for enzyme design (Table 1).

As is always the case, the accurate description of the active site is a paramount – with no

well-designed active site  there is no designed enzyme for performing catalysis.  Hence better

theoretical chemistry methods that create more accurate chemical positioning of the substrate is

always  a  desirable  improvement,  such  as  obvious  use  of  enhanced  QM  models  that  better

describe molecular interactions. In fact, any exploitation of the greater protein environment of an

enzyme for  design  will  be  fruitless  without  accurate  chemical  positioning,  for  example  the

inability of a correctly organized electrostatic environments to align appropriately due to a poorly

organized catalytic active site.

Table 1.  Criteria for computational enzyme design and their potential impact. We qualitatively

rank the impact on the catalytic activity of a synthetic enzyme by considering the transition state

theory rate and whether the effect acts on the pre-exponential or the exponential term. Note that

the impact is also evaluated given our current approach to enzyme design and by no means sets a

ceiling on the potential impact each factor could have.

Criterion Definition Relative impact on
catalytic activity

(today)

References

Transition  state
stabilization  under
the  standard model
(theozyme)

Structure determination of a few
active  site  residues  with
functional  groups  assisting  the
chemistry  of  the  reaction,  i.e.
stabilizing the transition state.

Large 44,45,75,82

Enzyme dynamics Conformational  heterogeneity
due  to  thermal  motion  of  the
enzyme and water.

Moderate 70,118,136,137

Reorganization
energy

Energy  cost  of  reorganizing  the
enzyme in response to the change
in  charge  distribution  as  the
reaction occurs. 

Moderate 99,148,154,155

Reaction  entropy Change in entropy as the reaction Potentially large 119,120,126,130,62
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change proceeds,  which  adds  onto  the
enthalpic  stabilization  of  the
transition state.

Electric fields Probe  for  short-  and long-range
intermolecular  interactions
stabilizing the  transition  state  in
the active site of the enzyme.

Large 51,104,175

An additional set of axes take a more wholistic view of the enzyme as a complete catalyst

by considering the greater environment in which the active site resides, meaning that the protein

is no longer considered as a simple physical support system for the energetics of the active site.

These axes include entropic and dynamical effects that span a variety of time and length scales.

At the very least, design sequences have to sustain the active site positioning against the natural

statistical fluctuations from the thermalized conformational ensemble of the enzyme. We could

go further and design a scaffold that accommodates the specific vibrational modes that promote

the chemistry of the reaction in the active site. Finally, long-range electrostatic effects can be

accounted for by incorporating metrics such as the reorganization energy or electric fields in the

design protocol. The latter is especially important because not only does it allow a more accurate

model of enzyme activity, it also reconciles our design strategy with our present understanding of

enzymatic machinery; that is that enzymes are pre-organized environments that electrostatically

stabilize the reaction transition state. This paves the way for building a unifying picture of the

molecular  interactions  responsible  for  enzymes’  incredible  performance,  hence  managing

efficient design and enabling further methods development for the accurate simulation of large

biomolecular catalysts.   
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