
UC Berkeley
UC Berkeley Previously Published Works

Title
Revisiting the role of persistent neural activity during working memory

Permalink
https://escholarship.org/uc/item/9jv6z07s

Journal
Trends in Cognitive Sciences, 18(2)

ISSN
1364-6613

Authors
Sreenivasan, Kartik K
Curtis, Clayton E
D’Esposito, Mark

Publication Date
2014-02-01

DOI
10.1016/j.tics.2013.12.001
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9jv6z07s
https://escholarship.org
http://www.cdlib.org/


Revisiting the role of persistent neural activity during working
memory

Kartik K. Sreenivasan1, Clayton E. Curtis2, and Mark D’Esposito3

Kartik K. Sreenivasan: kartik.sreenivasan@nyu.edu; Clayton E. Curtis: clayton.curtis@nyu.edu; Mark D’Esposito:
despo@berkeley.edu
1Division of Science and Mathematics, New York University Abu Dhabi, 19 Washington Square
North, New York, NY 10011
2Department of Psychology and Center for Neural Science, New York University, 6 Washington
Place, New York, NY 10003
3Helen Wills Neuroscience Institute and Department of Psychology, University of California,
Berkeley, 132 Barker Hall, Berkeley, CA 94720

Abstract
What are the neural mechanisms underlying working memory (WM)? One influential theory
posits that neurons in lateral prefrontal cortex (lPFC) store WM information via persistent activity.
In this review, we critically evaluate recent findings that together indicate that this model of WM
needs revision. We argue that sensory cortex, not lPFC, maintains high-fidelity representations of
WM content. In contrast, lPFC simultaneously maintains representations of multiple goal-related
variables that serve to bias stimulus-specific activity in sensory regions. This work highlights
multiple neural mechanisms supporting WM, including temporally dynamic population coding in
addition to persistent activity. These new insights focus the question on understanding how the
mechanisms that underlie WM are related, interact, and are coordinated in lPFC and sensory
cortices.
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Working memory (WM) comprises the set of operations that support the active retention of
behaviorally relevant information over brief intervals. Given the central role of WM in goal-
directed behavior, establishing the neural basis of WM has been a priority of neuroscience
research. Early WM studies observed that selective increases in neural activity during the
presentation of a to-be-maintained sample item persisted throughout the blank ‘delay’
interval of a WM delay task, bridging the temporal gap between the sample and the
subsequent contingent response [1,2]. This work inspired the theoretical framework that has
predominated the field: neurons or neuronal populations that are selectively tuned to the to-
be-remembered information hold this information in an active state through persistent
activation [3]. We refer to this model, which emphasizes stable persistent neural activity
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(See Glossary) in selective neurons, as the fixed selectivity model. Motivated by this model,
fMRI studies in humans and electrophysiological studies in monkeys have consistently
identified persistent neural activity in lateral prefrontal cortex (lPFC), leading many to
conclude that lPFC stores representations of WM memoranda.

A decade ago, we provided a critique of the literature on persistent activity in the context of
contemporary models of prefrontal cortical function [4]. We hypothesized that, in contrast to
existing theories of WM, persistent lPFC activity signifies attention directed to internal
representations maintained in sensory cortices. Viewed through the lens of the fixed
selectivity model, evidence for this proposal is limited. Studies of sensory and motor
function, however, suggest that information is likely to be represented through the combined
activity of neural populations with diverse tuning properties rather than individual highly-
tuned neurons [5,6]. This notion offers a promising framework for understanding WM.

In recent years, analytic and methodological advances (see Box 1) have expanded
researchers’ ability to capture the multivariate nature of population coding and the causal
relationships between neural activity and behavior. The findings generated using these
approaches underscore the need for a revision of existing views of WM. In light of these
results, we revisit the issue of how information remains active during WM. The studies we
discuss here focus on visual WM, but the general principles discussed herein apply to WM
in other modalities.

Box 1

Methodological advances

Here we briefly describe analytic and methodological advances that have furthered our
understanding of the neural basis of WM. The reader is encouraged to seek out some of
the excellent reviews on these approaches (referenced below) for more details.

Decoding analysis

Unlike standard univariate analyses, which independently examine data from individual
neurons or voxels for differences across conditions, multivariate decoding methods
consider data from several neurons or voxels at once to identify patterns of activity that
encode task-related information [10–13]. This technique uses machine learning
algorithms to decode, or categorize, unlabeled test data using labeled training data.
Successful (above-chance) decoding signifies that the activity pattern entered into the
algorithm differs between the categories of interest, implying that the underlying neural
activity encoded information about these categories. The chief advantage of this approach
is potentially increased sensitivity [78]. However, patterns of neural activity may reliably
distinguish between conditions for a variety of reasons, some of which are not anticipated
by the experimental design [18,79]. Caution is therefore required when interpreting the
nature of the information identified via decoding analysis [80].

Forwarding encoding models

Conversely, encoding models predict fMRI activity from task conditions [81–83]. These
models rely on a priori assumptions about the features of task conditions that will result
in changes in the hemodynamic response. In WM studies, forward encoding models of
visual cortex have been constructed using knowledge about tuning for visual features
[17]. Neural activity in hypothetical populations of neurons (channels) tuned to different
values in feature space can be reconstructed from training data by estimating the degree
to which each voxel’s response contributes to a given channel. The critical advantage
over decoding analyses is that this approach can predict fMRI responses to novel stimuli
[14]. Encoding approaches are potentially more powerful for identifying information
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encoded in neural activity, but are constrained by the validity of the underlying
assumptions of the model.

Transcranial magnetic stimulation (TMS)

TMS uses magnetic fields to focally modulate cortical excitability [84]. In WM studies,
TMS is used either offline to modulate cortical function for the duration of the
experiment, or online to modulate activity during specific epochs of a task. TMS effects
on behavior or neural activity in distal regions can support strong causal inferences about
the functional role of the regions targeted with TMS. Attenuation of TMS effects as a
function of distance from the coil imposes restrictions on which brain regions can be
targeted with TMS.

Evidence for persistent working memory representations in visual cortex
Neurons in visual cortex are selectively tuned to visual stimulus features, and are
consequently well-suited for maintaining high-fidelity representations of visual information
in the service of WM [7]. Yet, from the perspective of the fixed selectivity model, evidence
for sustained WM representations in visual cortex has been equivocal. While sustained
responses have been observed in temporal cortex [8], studies typically describe transient
neural responses to sample stimuli without any subsequent sustained activation. Studies of
early visual regions routinely note an absence of persistent activity [9].

Contemporary multivariate encoding and decoding statistical analyses (see Box 1), however,
consistently demonstrate that visual cortex does in fact retain sensory WM representations.
Decoding analysis applied to fMRI or electrophysiological data can identify activity
distributed across neurons or neural populations that codes for task-relevant information
[10–13]. In contrast, forward encoding models take advantage of assumptions about neural
population tuning to reconstruct the response of hypothetical channels from fMRI voxels
that represent the weighted sum of subpopulations of neurons tuned to these channels [14].
Both approaches can test whether feature or item information is encoded in the multivariate
patterns of persistent activity during WM, regardless of whether this activity exhibits
sustained stimulus-selective responses during sample presentation that persist across the
blank delay interval of the WM task. Studies incorporating these methods find that patterns
of delay period activity in early visual cortex contain information about simple visual
features held in WM [15–19] (see Figure 1a & b). Similarly, delay patterns in occipital and
temporal regions specialized for object representation code for actively maintained visual
objects [20–24], consistent with studies that inferred a role for temporal cortices in WM
storage on the basis of persistent neural activity in these regions [8].

Moreover, this work establishes four key properties of population coding of WM
information in visual cortex. First, decoding and forward encoding analyses have extracted
information specific to the contents of WM from visual cortex activity across multiple
timepoints during the delay period [15,17,24,25], indicating that visual cortical WM
representations persist throughout the period separating the visual stimulus and contingent
behavioral response. Second, given the limited capacity of WM [26], neural coding of
sensory representations should prioritize task-relevant over task-irrelevant information [27].
Selectivity for task-relevant information was illustrated in a study where decoding based on
the multivoxel pattern of delay period activity in early visual cortex was successful only for
the task-relevant feature (orientation or color) of the memoranda [16]. Similarly, other work
has shown that multivoxel patterns of delay period activity encodes only items cued in the
sample display as task-relevant [15,24]. Third, and in contrast to the fixed selectivity model,
information about items maintained in WM can be encoded by neural populations that are
not highly selective for the maintained stimuli. A recent fMRI study examined the degree to
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which decoding information about items maintained in WM was dependent on voxels that
were highly selective for the WM items. The key finding was that removing highly selective
voxels from the analysis did not substantially reduce the ability to decode information about
the WM items [24]. These results are in line with studies demonstrating that perceptual [28]
and motor [5] information is distributed across neural populations with diverse tuning
preferences.

Fourth, and perhaps most importantly, fMRI measures of sensory representations in visual
cortex are tied to the precision of WM representations. For example, one study found
decreases in the ability to decode maintained directions of motion from multivoxel delay
period activity as the number of to-be-maintained motion directions increased, possibly due
to interference between spatially overlapping representations [29]. Reductions in the ability
to decode the contents of WM predicted decrements in the precision of memorized motion
direction in individual subjects. Forward encoding estimates of WM representations also
correspond to memory precision. Ester and colleagues [17] estimated population tuning
curves for maintained orientations from visual cortical activity, and used the width of these
tuning curves as an inverse proxy for tuning for the maintained orientation. Tuning precision
was correlated with subjects’ behavioral precision in reconstructing the remembered
orientation (Figure 1c). Although compelling, these studies do not indicate whether the
observed modulation of memory precision is a direct or indirect consequence of neural
activity in sensory cortex. Fortunately, transcranial magnetic stimulation (TMS; see Box 1)
experiments can provide causal evidence for the role of sensory activity in maintaining high-
fidelity WM representations. TMS applied to early visual cortex during short-term retention
of visual stimuli results in a reduction in behavioral measures of WM precision [30–32].
Together, this work supports the notion that visual cortex stores precise representations of
visual WM contents.

The role of lateral prefrontal cortex in working memory
The most pervasive observation in the WM literature is that lPFC activity persists
throughout WM maintenance. This finding has been interpreted as evidence that the lPFC
delay activity encodes sensory features of WM items [3]. However, in addition to displaying
coarse selectivity for WM items and features [33], lPFC activity exhibits selectivity for a
broad range of task variables during the delay period of WM tasks. For example, lPFC
neurons show differential preferences for task rules [34], contingent motor responses [35],
and stimulus-response mappings [36]. Studies examining population coding of lPFC delay
activity have similarly found information about stimuli [37], rules [25], and object
categories [38] throughout the delay.

Not so selective selectivity
How is lPFC simultaneously selective for multiple task variables? An increasing number of
studies find that, rather than utilizing distinct populations to encode each task variable,
activity in lPFC encodes multiple task variables within a single population of neurons
[37,39,40]. For example, Machens and colleagues demonstrated that individual lPFC
neurons responded to combinations of two task variables (maintained stimulus identity and
elapsed time), but that information about each task variable could be independently
extracted from the population code [41]. This finding suggests that lPFC representations can
be high-dimensional, since they simultaneously encode multiple pieces of information that
can be interpreted by neural populations in hierarchically lower regions according to their
functional relevance.

Recent work by Rigotti and colleagues further characterized high-dimensional
representations of multiple task variables in lPFC [42,43]. They demonstrated that activity in
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a population of lPFC neurons simultaneously coded for information about all task variables
(task, object 1, and object 2) during the delay period of a complex object sequence WM task.
In order to examine the degree to which these high-dimensional representations arose from
neurons’ selectivity for individual task variables (e.g., task A vs. task B), the authors
artificially abolished classical neuronal selectivity. This was accomplished by adding noise
to each neuron’s response to equate the average response across single task variables (e.g.,
such that the average response to tasks A and B were equivalent), while preserving
differences in firing as a result of different combinations of task variables. Strikingly, and
counter to the predictions of the fixed selectivity model, population selectivity for task
variables persisted even when selectivity for individual task variables was abolished. Most
critically, this work highlights two conditions that give rise to high-dimensional lPFC
representations. The first condition is nonlinear mixed selectivity, or nonlinear neural
responses to combinations of task variables. Artificially abolishing nonlinear mixed
selectivity reduced the dimensionality of the representations, limiting the information that
was available for readout by other regions, and error trials were associated with reduced
nonlinear mixed selectivity. The second condition is randomly connected networks of
neurons, which can support complex and diverse input-output mappings [44]. The
perspective presented in this intriguing study has the potential to demystify the seemingly
limitless ability of lPFC to represent task information; however, an important future
direction will be to specify the constraints (such as anatomical input from sensorimotor
regions [45]) that limit the dimensionality of information encoded by lPFC activity.

Interpreting stimulus selectivity
How do we interpret evidence that lPFC activity is selective for maintained stimuli? Does
this imply that lPFC maintains sensory properties of the WM stimulus [33], analogous to
sensory cortices? Duplicating the sustained sensory information in sensory cortices seems
unnecessary and metabolically costly [46]. Furthermore, from the perspective of the fixed
selectivity model, the maintenance of sensory representations in lPFC would seem to require
that lPFC neurons exhibit a comparable degree of tuning for sensory features as neurons in
sensory cortex. This does not appear to be the case. For example, neurons in dorsal lPFC
exhibit preferences for task-relevant directions of motion, but are markedly less motion-
selective than neurons in motion-sensitive visual area MT [47].

The results from population decoding studies also support a dissociation between stimulus-
specific lPFC representations and sensory representations. In one study, researchers were
able to decode the identity of the memoranda from delay period activation patterns in visual
cortex – but not lPFC – when subjects were required to maintain a visual representation
[48]. The pivotal finding was that stimulus-specific activation patterns emerged in lPFC
when subjects retained the category of the item, rather than the item itself. This finding
accords well with prior work showing that lPFC preferentially encodes and maintains
arbitrary and abstract representations of object category over representations of visual
similarity [38,49–51]. Further support for the distinction between stimulus-selective lPFC
representations and sensory representations comes from a second fMRI study [24]. This
study demonstrated that, in contrast to visual cortex, where category-selective patterns of
delay period activity were more similar for visually similar categories, category-selective
lPFC activity patterns were not sensitive to visual similarity, suggesting that the
representations encoded by these patterns were categorical but not sensory in nature.

Source of top-down input
Although the above findings are compatible with the well-described role of lPFC in storing
and integrating information, an alternate perspective is that, rather than representing the
storage of information, the primary role of lPFC during WM is to influence representations

Sreenivasan et al. Page 5

Trends Cogn Sci. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in other regions [52]. Specifically, patterns of activity in lPFC may serve as top-down
signals used to bias the competition of neural representation in hierarchically lower areas,
such as sensorimotor [4] and parietal regions [53]. Indeed, the lPFC sits at the apex of the
motor hierarchy [54] and possesses diverse anatomical connections capable of directly
influencing a variety of regions [45]. We propose that activity in the lPFC is a likely source
of top-down input to visual systems during visual WM.

A causal link between prefrontal activity and the properties of visual cortical neurons has
been established through electrical microstimulation [55], pharmacological manipulations
[56], and intervention with TMS [57]. Until recently, however, there was little direct
evidence that lPFC input modulated visual activity during WM. Studies combining TMS and
neural measures such as fMRI and EEG provide such a link. TMS administered to focal
regions of lPFC causes a significant reduction in the selectivity of fMRI responses in visual
cortex, suggesting that lPFC inputs enhance selectivity in visual cortex during WM [58,59].
Comparable results were found in patients with stroke-induced lesions to lPFC: the
selectivity of responses was reduced in ipsilesional compared to contralesional visual cortex
[58].

While highly informative, these experiments did not establish whether lPFC input phasically
influenced visual cortical selectivity during a specific stage of the WM task or whether lPFC
input operated at multiple stages during WM in order to preserve visual selectivity
throughout WM maintenance. Two recent papers described TMS effects on selectivity
during stimulus encoding and maintenance. One group found that TMS applied over caudal
lPFC caused reduced selectivity for the sample stimuli, as indicated by enhanced EEG
responses to task-irrelevant sample stimuli as well as marginally suppressed EEG responses
to task-relevant sample stimuli [60]. Another group used concurrent TMS-fMRI [61] to
modulate lPFC activity during the delay period of a WM task [62]. They observed enhanced
processing in visual cortex of task-relevant information in the presence of distractors, further
confirming that lPFC input modulates visual selectivity during WM maintenance.

Taken together, these studies provide direct evidence that top-down lPFC signals modulate
sensory activity during WM, and lPFC feedback signals, whether periodic or tonic, may
enhance the selectivity of representations in sensory cortex throughout WM maintenance.
This idea is in line with results showing that consistent communication between lPFC and
visual cortex across stimulus encoding and maintenance is important for WM [63]. It should
be noted that although none of the TMS studies described above drew specific links between
top-down lPFC input and persistent activity within lPFC, they all targeted subregions of
lPFC that typically exhibit sustained activation during WM tasks. Further work is required
to explicitly test the relationship between top-down lPFC signals and persistent activity.

Persistent neural activity revisited
Persistent neural activity, particularly in lPFC, has become synonymous with WM.
However, this equivalence is misleading. First, lPFC does not appear to be privileged in its
ability to generate persistent activity. Particularly when analyses focus on neurons or voxels
that are highly stimulus-selective, persistent neural activity can be observed nearly
everywhere in the brain [8,64–66]. Second, although persistent neural activity is a key
mechanism for forming temporal links between sensation and action [54] in a variety of
contexts [67–69], there may be other mechanisms by which WM information is actively
retained (Figure 2a).

The evidence we have presented thus far underscores the importance of population coding of
WM information [40]. As demonstrated in other domains, information can be represented by
dynamic spatiotemporal patterns among populations of neurons [70,71]. That is, information
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encoded in a given state – or set of activation levels across the population – at time t, may be
encoded in an entirely different state at time t+1. Thus, a representation can be sustained via
a dynamic trajectory through state space (where the space is defined by the activity of the
neurons in the population) [72] (Figure 2b). Surprisingly, this is not antithetical to the notion
of a stable representation; theoretical work suggests that in the case where redundant coding
of information is present, time-varying population activation can encode a stable
representation [73].

Empirical findings confirm that WM information can be sustained through dynamic
population coding: by examining data in short time-steps across the delay period, studies
have found that the pattern of activation states encoding WM information changes over the
course of maintenance. One study decoded electrophysiological data from monkey lPFC
during a WM task for object category and showed that decoding was most successful when
the decoding algorithm was trained and tested on data from the same point in the trial [38].
Training and testing from temporally distal times resulted in chance-level decoding. The
inability to generalize decoding performance over time suggests that the patterns of activity
containing information about the relevant category drifted over the course of the trial. Other
studies have documented similar temporally dynamic population codes in monkey lPFC
[37,39,74], and one fMRI study recently demonstrated dynamic population coding in visual
cortex [24]. In contrast to the fixed selectivity model, therefore, WM representations may
not critically depend on the persistent activity of a fixed set of selectively tuned neurons.

Although the precise neuronal mechanisms underlying dynamic population coding are yet to
be defined, recent computational work suggests that information can be maintained through
rapid short-term changes in synaptic plasticity [75,76]. Thus, activity-dependent changes in
neural networks trace dynamic trajectories through state space that reliably and efficiently
code for task-related variables [72,76]. Future studies must determine the functional
relevance of these mechanisms for the neurobiological implementation of WM.

Concluding remarks
An understanding of the neural mechanisms underlying WM is critical for gaining insight
into the wide range of goal-directed behaviors supported by WM. In this review, we present
a perspective on WM that emphasizes the notion of distributed population activity in
encoding WM information. Methodological advances in the last ten years, and in the last
few years in particular, have highlighted the sensory nature of sustained WM information in
sensory cortices and the high-dimensional nature of information coded for by lPFC activity.
Contrary to its imputed role as a storage buffer, we suggest that lPFC activity represents top-
down influences to sensory regions. This conceptualization of lPFC echoes models of
hippocampal function that propose that the hippocampus stores pointers that can reactivate
cortical memory traces rather than storing the memories themselves [77]. Future work must
prioritize further efforts to specify the role of lPFC in WM, as well as the functions that arise
through interactions between lPFC, sensory regions, as well as other regions involved in
WM (see Box 2). An emphasis on sustained representations through multiple neural
mechanisms will facilitate the incorporation of these mechanisms into a comprehensive
theory of WM.

Box 2

Areas for future research

• A key feature of WM is the ability to maintain task-relevant information in the
face of task-irrelevant or distracting information [27,85]. A complete
understanding of how WM is implemented in the brain will require new insights
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into how sustained representations in sensory cortex are affected by incoming
sensory input. One study observed that visual WM recruits populations with
spatial receptive fields that are distinct from the receptive fields of the neurons
activated by the sample item [86]. Although the authors did not examine
interference from irrelevant information, some form of global recruitment could
potentially prevent distracting items presented in the same spatial location as the
sample item from corrupting the WM representation.

• With the studies we review here, we argue that WM relies in part on encoding
that is temporally dynamic and spatially distributed. One proposal is that
temporal and spatial coordination arises through brain oscillations [87–89].
Direct intracranial recordings in human epilepsy patients [90] and the use of
subdural electrode arrays to directly record neural activity across broad regions
of cortex in monkeys [91] offers an opportunity to describe the properties of
these oscillations in the context of WM [92], simultaneously marrying temporal
precision and spatial coverage. These techniques can provide greater insight into
regional specificity and interregional integration that are critical for elucidating
the neural basis of WM. Additionally, these techniques can facilitate more direct
comparisons across monkey and human studies.

• A logical extension of the notion of distributed coding within a region is the idea
that brain function arises from large-scale network coordination [93]. There is
evidence to suggest that WM relies on such large-scale interregional
communication. Visual WM involves top-down signals from lPFC to parietal
cortex [53,94] as well as communication from frontoparietal regions to visual
cortex [95]. Additionally, interactions between basal ganglia and lPFC are
thought to mediate the filtering of task-irrelevant information and the updating
of task-relevant information in WM [96]. Future work must integrate knowledge
about the neural computations carried out by these individual regions in the
service of WM with an understanding of the functions resulting from
interactions between these regions in order to build a complete picture of WM.
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Glossary

Delay tasks The experimental paradigm typically used to study the neural basis of WM.
A trial in a delay task begins with a brief presentation of a sample item. The
subject encodes this item into WM and maintains this item over a blank
‘delay’ period of a few to several seconds. At the end of the delay period, a
probe stimulus appears, and the subject initiates a behavioral response
contingent on the WM representation of the sample item. A key feature of
delay tasks is that they temporally segregate sub-components of WM such
as stimulus encoding, storage, and retrieval/response

Persistent
neural
activity

Above-baseline neural activity that remains stable and elevated during a
trial of a delay task. Persistent neural activity begins during the sample
presentation and persists throughout the delay period, returning to baseline
at the end of the trial. According to the fixed selectivity model of WM (see
main text), persistent neural activity in neurons selective for WM
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memoranda is the mechanism by which WM information is actively
maintained

Voxel The spatial unit for measuring changes in blood oxygenation dependent
signal (BOLD) with fMRI. A voxel is a three-dimensional volumetric pixel,
typically on the order of 3 mm3, and is an indirect measure of the summed
activity of many tens of thousands of neurons. A single whole-brain fMRI
image can consist of 60,000–100,000 voxels

Working
memory

The set of operations that support the ability to maintain information in an
active state, to manipulate that information, and to use that information to
guide behavior. Working memory is essential for several aspects of goal-
directed behavior, including language, reasoning, and abstract thought
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Highlights

Recent work suggests the standard neural model of working memory is in need of
revision

Multivariate analyses find that sensory cortex stores working memory information

Lateral prefrontal cortex simultaneously encodes multiple task variables to bias
sensory regions

Working memory is mediated by dynamic population codes in addition to persistent
neural activity
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Figure 1.
Evidence for sustained WM representations in early visual cortex. Subjects maintained an
orientation of a grating over a delay period. A, decoding analysis demonstrated successful
decoding of the cued orientation throughout the delay period. Decoding accuracy for
maintained orientation (green circles) was comparable to decoding accuracy for the
orientation of visually presented gratings (red triangles). Adapted from Ref [15]. B, a
forward encoding analysis found tuning for maintained orientation, indicating that
information about the maintained orientation was present during the delay. As in A, this
information was preserved throughout the delay period (different color channels response
functions represent tuning at different points during the trial; error bars have been omitted
for clarity). C, the relationship between the degree of tuning of the channel response
functions (estimated as dispersion of the best fit Gaussian), which was taken as a proxy for
the precision of the WM representation, and behavioral accuracy in reconstructing the
maintained orientation. Greater tuning (i.e., less dispersion in the channel response
functions) predicted increased accuracy across subjects, establishing a relationship between
the quality of WM information stored in visual cortex and memory precision. Adapted from
Ref [17].
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Figure 2.
Multiple neural mechanisms of WM. A, a simplified schematic comparing and contrasting
the fixed selectivity model with population coding models involving static and dynamic
temporal codes. Orientation tuning curves for three hypothetical neurons, A, B, and C, are
shown in the top inset; neurons A–C are tuned to −45°, 0°, and 45°, respectively. Neural
responses to the to-be-maintained orientation (17°) are indicated by the red arrow and
dashed line in the inset. The perceptual and mnemonic representations are depicted below
the inset. The visually presented sample orientation (oriented at 17°) elicits a perceptual
representation and is followed by a delay period. The mnemonic representation of the
sample orientation persists across the delay period and is followed by a probe stimulus that
elicits a perceptual representation. Below this are schematics for three different potential
neural models of WM. Note that timecourses shown here are for illustrative purposes only
and do not depict actual data. Top row: the fixed selectivity model, primarily derived from
single-unit recordings in monkey lPFC, predicts that neuron B, which is selective for the
maintained orientation (refer to the tuning curves in the inset), will exhibit persistent,
sustained activity. Neuron C, which is less selective for the maintained orientation, exhibits
persistent activity to a lesser degree, while neuron A’s activity remains at baseline. Middle
row: evidence for static population coding comes primarily from fMRI decoding and
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forward encoding studies of visual cortex. Here, the pattern of activity across neurons can
encode stimulus orientation in the absence of highly selective neural responses. This pattern
is sustained throughout maintenance. Bottom row: dynamic population coding has been
demonstrated largely in monkey lPFC. Despite time-varying activity in all three neurons, the
representation of orientation remains stable. The relevant orientation is encoded by a
different combination of neural responses at each point in time. Note that each of these
models is potentially compatible with the notion of mixed selectivity, where activity within
a single neuron or neuronal population can be simultaneously selective for multiple goal-
related variables. Portions of this figure are adapted from Ref [2]. B, a schematic illustrating
dynamic population coding in a hypothetical population comprised of neurons X, Y, and Z.
Left: the timecourses for neurons X–Z. Right: the population response can be depicted as a
trajectory through multidimensional state space. The black path represents the combined
activity of the three neurons across time. Timepoints t = 1, t = 2, and t = 3 in the trajectory
on the right correspond to activity at points t =1, t = 2, and t = 3 (indicated by the dashed
lines) in the timecourses on the left.
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