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Neural Signatures of Autism Spectrum Disorders:
Insights into Brain Network Dynamics

Leanna M Hernandez1,2,3, Jeffrey D Rudie3,4, Shulamite A Green2,3,5, Susan Bookheimer2,4,5 and
Mirella Dapretto*,2,3

1Interdepartmental Neuroscience Program, University of California, Los Angeles, Los Angeles, CA, USA; 2Department of

Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA; 3Ahmanson-Lovelace

Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, USA; 4David Geffen School of Medicine,

University of California, Los Angeles, Los Angeles, CA, USA; 5Department of Psychology, University of California,

Los Angeles, Los Angeles, CA, USA

Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain

function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based

functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread

atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances

in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional

connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level

understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging

findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic

heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights

into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale

collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data.

Neuropsychopharmacology Reviews (2015) 40, 171–189; doi:10.1038/npp.2014.172; published online 6 August 2014
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INTRODUCTION

Autism spectrum disorders (ASDs) are heritable neurodeve-
lopmental disorders (eg, Bailey et al, 1995; Nordenbæk et al,
2014) in which manifestations of behavioral symptomology
vary widely in severity. Core behavioral deficits associated
with the disorder include impairments in social communica-
tion and social interactions, along with the presence of
repetitive patterns of behavior, restricted interests, and/or
altered sensory responsivity to external stimuli (American
Psychiatric Association, 2013). Although these deficits serve
as defining criteria on which diagnoses are currently based,
not all individuals on the ASD spectrum display each
symptom, and there is a broad spectrum of social, emotional,
and cognitive impairment among diagnosed individuals.

The last decade has seen the rate of ASD diagnosis rise to
an estimated 1 in every 68 children (Center for Disease
Control, 2014), making early diagnosis and effective treat-

ment a critical public health concern. However, the hetero-
geneity present in individuals with ASD makes discerning a
singular neuropathological cause and developing effective
treatments very challenging. Thus, a major goal of ASD
research is to understand the neurobiological underpinnings
of ASD from a multidimensional perspective—investigating
how brain anatomy, function, and connectivity are altered in
ASD and how they vary among affected individuals.

Over the past two decades, major advances in magnetic
resonance (MR)-based structural and functional neuroima-
ging have greatly enhanced our understanding of brain
differences in ASD. In structural brain imaging, newer
analysis approaches including cortical thickness mapping,
voxel-based morphometry (VBM), diffusion tensor imaging
(DTI), and the application of these methods in younger
subject populations or in longitudinal studies have led to
more specific and dynamic models of abnormal brain
development in autism. In functional neuroimaging, the
field has moved beyond task-based functional activation
studies, which were typically limited to high-functioning
children and adults. New acquisition methods, such as
resting state functional MR imaging (fMRI), and novel
data—analytic approaches now allow for the study of large-
scale functional brain networks and connectivity in much
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younger populations including toddlers and infants at high
risk for developing autism. Finally, the integration of both
structural and functional imaging with genetic risk and
behavioral data has driven the field toward a better under-
standing of gene–brain–behavior pathways in autism. To-
gether, the corpus of imaging studies in autism have led to an
emerging model of abnormal developmental connectivity, a
dynamic model that accounts for both genetic liability and
environmental influences that shape early brain development.
In this review, we will present data from these major new
domains of MR imaging work—structural MRI (sMRI),
functional MRI, imaging-genetics, and connectivity studies,
focusing on developmental trajectories and ultimately conver-
ging on a model of abnormal brain development in autism.

STRUCTURAL NEUROIMAGING (sMRI)
STUDIES

Structural Volume Assessment (Volumetry)

Historically, some of the first efforts to characterize the
neural correlates of ASD investigated differences in large-
scale brain structures between affected individuals and
neurotypical controls. Initial evidence for altered brain
structure and enlarged brain volume in ASD came from
postmortem investigations (eg, Bailey et al, 1998). The
development of non-invasive MRI techniques subsequently
allowed for more detailed study of brain volumes in specific
brain regions across the lifespan in otherwise healthy indi-
viduals. The primary underlying hypothesis driving such
studies has been that abnormalities in specific brain struc-
tures early in development, often assumed to be decreased
gray matter volume, may pinpoint a causal neuroanatomical
basis for behavioral features in autism.

Traditional methods for assessing volume rely on manual
tracing of regions of interest (ROIs), often defined by
macro-structural features (ie, hemispheres, lobes, subcortical
areas, major gyri, and sulci) easily visible on high-resolu-
tion sMRI images. In toddlers with ASD, one of the most
consistently reported global-level findings in sMRI is an
increase in total brain volume of 5–10% compared with
locally recruited neurotypical children (eg, Carper et al,
2002; Courchesne et al, 2001; Hazlett et al, 2005; Sparks
et al, 2002; for a review, see Amaral et al, 2008 and Stanfield
et al, 2008). Analyses of brain development suggest that
brain volume is normal at birth, diverging from typical
trajectories during early childhood when children with
ASD experience a period of brain overgrowth (reflected by
enlarged total brain volume); this period is then followed by
a plateau in volumetric changes during adolescence, ultima-
tely leading to adult brain volumes that fall within range of
typically developing controls (Courchesne et al, 2001, 2007).
However, there is also some evidence for enlarged total
brain volume in adolescence and adulthood (Freitag et al,
2009; Hazlett et al, 2006).

In addition to enlarged total cerebral volume, ASD is
characterized by atypical gray and white matter (WM)

volume in discrete brain structures (see recent reviews by
Amaral et al, 2008; Chen et al, 2011; Stanfield et al, 2008;
Steigler et al, 2011). The nature of these differences, unfor-
tunately, has varied substantially across studies. An early
finding in children, adolescents, and adults with autism
reported marked decrease in volume of the cerebellar vermis
(Courchesne et al, 1988, 1994); however, many of these sub-
jects were low functioning. Several studies subsequently found
that after controlling for or matching IQ cerebellar differences
were no longer apparent (Levitt et al, 1999; Manes et al, 1999;
Piven et al, 1992), suggesting that reduced cerebellar vermis
may relate to intellectual dysfunction but not necessarily core
features of autism. In other brain areas, both increases and
decreases in volumes have been reported in many regions
including the frontal cortex (eg, Hyde et al, 2010; McAlonan
et al, 2005), superior temporal sulcus (eg, Boddeart et al,
2004), inferior parietal lobule (eg, Hadjikhani et al, 2006),
cingulate, and fusiform gyrus (eg, Bonilha et al, 2008)—many
areas known to have a role in social cognition.

Voxel-Based Morphometry

Recent advances in postimaging processing methods allow
for comparisons of gray and WM density and volume on a
voxel-by-voxel basis, referred to as VBM. Unlike traditional
ROI-based volume analyses, VBM allows for whole-brain
comparisons of gray and WM volume between two groups.
Results of these studies comparing individuals with ASD to
neurotypical individuals have been extremely mixed, often
reporting heterogeneous and at times contradictory results
(for a review, see Chen et al, 2011). In a recent meta-analysis
of VBM studies covering a wide age range of individuals with
ASD, Nickl-Jockschat et al (2012) found converging evidence
for alterations in the lateral occipital lobe, postcentral gyrus,
medial temporal lobe, basal ganglia (right caudate and left
putamen), and a region in the right hemisphere near the
parietal operculum. The authors also suggested that puberty
had an impact on the findings reported in VBM studies,
namely that brain areas reported as having reduced gray
matter in childhood were likely to be reported as having
increased gray matter in adulthood, and similarly, brain
areas reported as showing increased gray matter in childhood
were likely to be reported as having decreased gray matter in
adulthood. Thus, discrepancies in VBM findings in ASD may
also be related to differences in sample characteristics across
studies, particularly age, which impacts developmental
trajectories of gray and WM growth (Lenroot et al, 2007).

Importantly, in some cases the nature of the reported
volumetric differences (increases, decreases, or no change
from neurotypical individuals) seems to be impacted by
the age of the cohort under investigation. For example, in
the amygdala, Schumann et al (2004) investigated regional
volume in a cross-sectional cohort of males with ASD,
finding enlarged amygdala volumes in the 8- to 12-year-old
group, but no differences from control subjects in the 13- to
18-year-old group. Degree of amygdala enlargement has also
been associated with more severe social and communication
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impairment in children aged 3–4 years (Munson et al, 2006)
and with anxiety symptoms in children aged 7–14 years
(Juranek et al, 2006). Furthermore, in a recent meta-
analysis, Stanfield et al (2008) found that amygdala volumes
were increased in young children with ASD, but decreased
with age, eventually falling to neurotypical volume levels.
Even reports of head circumference changes across develop-
ment, which have been consistently reported in ASD,
have tended to suggest an age-specific pattern of initial
overgrowth followed by reduced development in ASD
(Courchesne et al, 2001).

WM Structure and DTI

Structural brain imaging studies in autism have increasingly
moved from an early focus on gray matter volume to the
structure and organization of WM. WM can be measured
using MRI in several ways: by measuring the WM volume
globally or regionally, the integrity of WM by diffusion
tensor imaging (DTI), or the density of specific tracks
using tractography, a DTI analytic technique. Atypical WM
volume and other measures of WM integrity indicate a
structural cause of disruptions in how different brain
regions communicate with each other. This research has
contributed to an emerging understanding of autism as
a disorder of developmental connectivity.

Early studies focused on WM volume in key regions asso-
ciated with ASD. For instance, regional differences in WM
volume have been reported in individuals ranging from
toddlerhood to middle age in the cerebellum and in multiple
regions of the corpus callosum (eg, Egaas et al, 1995;
Hardan et al, 2009; Keary et al, 2009; Piven et al, 1997), a
WM tract connecting the left and right hemispheres that is
critical for integration of neural information across distant
brain regions. Indeed, there is evidence that global brain
enlargement in many individuals with autism is due prima-
rily to increased WM but decreased gray matter volume.
In one seminal study, Herbert et al (2003) divided the WM
in local ‘radiate’ compartments composed largely of short,
locally connecting circuits, and long tracts. They found that
in children with ASD there was increased WM volume in
more surface cortical regions, while the deep, long pathway
structures including the corpus callosum either exhibited
lower or unchanged WM volume. The WM differences
showing overgrowth in cortical regions are later to myeli-
nate, and suggest a very specific developmental pattern of
abnormal WM overgrowth. In contrast, Hardan et al (2009)
found that children with ASD had reduced corpus callosum
volumes, and that regional reductions in corpus callosum
subdivisions were associated with greater reciprocal social
interaction impairments, atypical speech, and sensory
abnormalities. Together, these brain-based volume differ-
ences suggest altered development of brain structures
implicated in high-level sociocognitive processes in indivi-
duals with ASD.

Diffusion MRI (dMRI; see Box 1; Figure 1) provides
a measure of structural connectivity by measuring the

diffusion of water molecules in the brain to reconstruct WM
tracts. The extent to which water molecules diffuse in a
consistent direction along the WM tract provides a proxy
measure of WM integrity, the most common of which is
fractional anisotropy (FA). Diffusion studies in children,
adolescents, and adults with ASD have documented multi-
ple structural connectivity differences, mostly suggesting
reduced WM integrity in long-range anterior–posterior and
interhemispheric fiber tracts (Alexander et al, 2007; Barnea-
Goraly et al, 2004, 2010; Cheng et al, 2010; Shukla et al,
2011; Sundaram et al, 2008), with few studies reporting
heightened WM integrity (Bode et al, 2011; Cheng et al,
2010; Cheung et al, 2009). Notably, many of the specific
fiber tracts reported as altered in ASD serve as structural
connections between brain regions subserving social
cognition. For example, Cheon et al (2011) found reduced
connectivity in the right anterior thalamic radiation, corpus
callosum, and uncinate fasciculus in children with ASD,
suggesting disruption of thalamic-to-frontal structural
connectivity. In addition, reduced structural integrity of
the corpus callosum has been consistently observed from
childhood through adulthood (eg, Alexander et al, 2007;
Keller et al, 2007) and may be associated with lower
nonverbal IQ in ASD subjects (Alexander et al, 2007).
However, observed differences in WM structure may not
be causative in ASD, as unaffected siblings also show
widespread reductions in structural integrity in medial
prefrontal WM regions, anterior forceps, in substructures
of the corpus callosum (body and splenium), cingulate,
superior longitudinal fasciculous, internal and external
capsules, superior temporal gyrus, and temporoparietal
junction (Barnea-Goraly et al, 2010). Thus, it is possible that
dMRI measures of structural integrity may be indicative of
increased risk for ASD diagnosis only.

Despite these findings, a few critical questions remain
unanswered in sMRI research among children with ASD.
First, how do these structural abnormalities relate to specific

BOX 1

Diffusion tensor imaging: DTI (Figure 1) allows for mapping of WM tracts by
measuring the diffusion of water molecules in the brain (eg, Basser and Pierpaoli,
1996). When unrestricted by physical boundaries, water diffuses in an isotropic
manner (equally in all directions). In the brain, the diffusion of water is restricted by
the physical boundaries of axons and myelin. Thus, in the brain the diffusion of
water occurs preferentially along the long axis of the axon. DTI measures the
principal direction of water diffusion in each brain voxel and models this
information in the shape of an ellipsoid whose long axis points in the direction of
the mean axonal direction for the voxel—this information can be reconstructed to
identify gross trajectories of WM fiber tracts in the whole brain. The most reported
measure in DTI neuroimaging studies is FA, which provides a metric of the degree
of diffusion for each voxel and is thought to be a reflection of WM integrity. In DTI,
the direction in which fiber tracts travel is typically expressed with different colors
that correspond to the primary direction at each point. In addition, various
mathematic algorithms can approximate the pathway a particular fiber tract takes
as it curves and turns to reach its target, thus isolating fiber bundles throughout the
brain. This approach is called tractography. Although DTI has greatly improved
our understanding of structural brain connectivity at the macroscale, confounds
including the inability to distinguish crossing fibers because of spatial resolution
limitations imposed by imaging at the voxel level, the limited ability to quantify
connection strengths, and the probabilistic nature of DTI tractography (potentially
leading to inaccurate models), remain active areas of methodological development
(Craddock et al, 2013).
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autism symptomatology? Few studies have related varia-
tions in brain structural abnormalities to specific pheno-
types in autism, other than overall severity. In the language
domain, Bigler et al (2007) found that superior temporal
gyrus volume related to receptive language ability among
typically developing children and adolescents but not those
with autism, suggesting a breakdown in the structure–func-
tion relationship. In an early study, Pierce and Courchesne
(2001) reported that cerebellar hypoplasia in children with
ASD was correlated with the severity of repetitive behaviors.
Together, these reports lend further support to the notion
that heterogeneity in neuroimaging findings may be related
to differences in subject characteristics (age, severity of
behavioral symptomatology, and so on) across samples,
and highlight the need for longitudinal studies of cortical
volume development in ASD. However, without compre-
hensive, large-scale studies that examine multiple regions
and multiple phenotypes in the same samples, we cannot yet
conclude that specific regional brain volume differences
relate to autism phenotypes.

A second major issue concerns whether structural brain
abnormalities are causal for ASD features, or whether early
behavioral changes and abnormal interactions with the
environment shape the development of brain structure to
reveal these patterns of group differences. Longitudinal
studies can help address this issue. The recent DTI findings
of WM abnormalities found in infants at-risk for autism, in
an age range that typically precedes diagnosis, suggests that

such differences precede and thus may be causal for ASD
(Elison et al, 2013; Wolff et al, 2012), although this is not a
conclusive evidence. Ongoing studies that combine imaging
with intervention may also shed light on causality, however,
there are as of yet no published findings of brain changes
associated with early intervention.

FUNCTIONAL NEUROIMAGING (fMRI)
STUDIES OF CORE ASD DEFICITS

In contrast to sMRI, fMRI measures neural activity in the
brain that relates directly to ongoing cognitive functions
in vivo. Numerous fMRI studies in ASD have examined
multiple functions including motor, sensory, and language
performance, but many studies have converged on the
brain’s social networks, reflecting an appreciation that
autism is primarily a disorder of social cognition (other
recent ASD neuroimaging reviews include Dichter 2012;
Pelphrey et al, 2011; Verhoeven et al, 2010). It is increa-
singly accepted that the primate brain has developed a
series of brain regions constructed into networks collec-
tively called the ‘social brain’, evolutionarily developed to
recognize and infer the intentions of others (Brothers,
1990). Among the fundamental behaviors associated with
social cognition are face recognition, perceiving emotions in
others, appreciating the meaning of eye gaze, discriminating
biological motion, the ability to infer the mental states of
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Figure 1. Diffusion tensor imaging. (a) For each voxel, the diffusion of water is measured in multiple directions. (b) The shape of the diffusion ellipsoid is
estimated, yielding values for three axes of the ellipse. (c) The primary diffusion direction for a given voxel is taken as the direction of primary fiber
orientation. (d) From the diffusion ellipsoid a fractional anisotropy map is created in which isotropic diffusion (spherical—ie, uniform diffusion in all
directions) is represented by darker shades, while anisotropic diffusion (directional—ie, with primary diffusion along one axis) is represented by lighter
shades. (f) The direction of primary diffusion is color converted and combined with luminosity of the FA map to the yield a color-coded fiber orientation
map (e). Reprinted from Mori and Zhang (2006), with permission from Elsevier.
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others, and responding to social rewards such as smiling.
The biological ability of neurons to respond specifically to
social stimuli has been demonstrated in studies of non-
human primates, where single-cell recordings have detected
neurons that fire selectively to faces in the superior tem-
poral sulcus (Bruce et al, 1981; Desimone et al, 1984; Perrett
et al, 1982), in response to a moving biological entity (eg, a
person walking; Bruce et al, 1981), head orientation,
or direction of eye gaze in the temporal cortex (Perrett
et al, 1985), and when animals perform or watch others
perform an action, providing a means of encoding the goals
and intentions of others, in the premotor cortex (eg,
di Pellegrino et al, 1992; Ferrari et al, 2005; Fogassi et al,
2005). Further, primate studies indicate that social stimuli
in themselves are rewarding (eg, Andrews and Rosenblum,
1993, 1994), and that different types of social stimuli
provide differential reward value (eg, viewing faces of
high-status vs low-status conspecifics; Deaner et al, 2005).
Together, these studies suggest that social stimuli and social
interactions have an evolutionarily conserved neurobiolo-
gical underpinning and provide socially relevant stimuli and
brain loci with which to test and generate hypotheses about
atypical neural function underlying social behavior in ASD.
Current diagnostic criteria for ASD include deficits in social
communication (eg, non-verbal communication, recipro-
city, and so on) and the presence of restricted or repetitive
patterns of behavior (eg, restricted interests, atypical sensi-
tivity or interest in sensory stimuli; American Psychiatric
Association, 2013), thus we focus our review on task-based
fMRI studies tapping into core behavioral deficits observed
in individuals with ASD—responding to biological motion,
looking at faces, understanding and interpreting the inten-
tions of others (theory of mind (TOM)), language and
reward processing, and sensory processing differences.

Face Processing

Faces convey critical information not only about people’s
identity, but also about internal states and intentions, as
well as about perceptions of the environment (eg, a fearful
face in response to a threatening situation). Research in
neurotypical infants has shown a preference to attend to the
human face over face-like stimuli from very early life (Fantz
1963; Goren et al 1975; Legerstee et al, 1998; Mondloch et al,
1999). Importantly, children with ASD do not show the
same attention to faces as neurotypical children. A retro-
spective study of home videotapes revealed that infants later
diagnosed with ASD could be distinguished from neuroty-
pical children based on a lack of attention to other people
and faces (Osterling et al, 2002; Osterling and Dawson, 1994),
and further, toddlers with ASD appear to be less engaged by
faces as they are faster to disengage from faces to attend to a
peripheral target (Chawarska et al, 2003, 2010). Reduced
attention to social stimuli very early in life may predispose
children with ASD to atypical social cognition resulting in
altered neurodevelopmental trajectories and ultimately to
atypical social behavior (Pelphrey et al, 2011).

Imaging studies suggest that viewing faces is associated
with activity in the bilateral fusiform face area (a region
of the fusiform gyrus), lateral occipital cortex, posterior
superior temporal sulcus (eg, Grill-Spector et al, 2004),
and amygdala (especially during fearful face processing; eg,
Guyer et al, 2008). It was originally proposed that children,
adolescents, and adults with ASD display reduced activation
to faces based on fMRI studies finding reduced activity in
the fusiform gyrus (Corbett et al, 2009; Critchley et al, 2000;
Dalton et al, 2005; Hubl et al, 2003; Kleinhans et al, 2011;
Piggot et al, 2004; Schultz et al, 2000; Wang et al, 2004), and
amygdala (Corbett et al, 2009; Kleinhans et al, 2011) during
face and emotion processing. However, brain activity in
these areas may be mediated by extrinsic factors that
increase attention. For example, presenting ASD subjects
with a cue to direct visual attention to the eye region (ie, a
cross hair at eye level before face stimuli presentation;
Bookheimer et al, 2008; Davies et al, 2011; Hadjikhani et al,
2004) is associated with increased activity in the fusiform
gyrus. Furthermore, in a combined eye-tracking and
neuroimaging study, Dalton et al (2005) found that the
amount of time spent looking at the eyes was associated
with greater activity in the fusiform gyrus and amygdala in
individuals with ASD. In addition, Pierce et al (2004, 2008)
found that when participants with ASD viewed faces of
personally significant individuals (ie, mother, friend),
activity in the fusiform gyrus was comparable to that of
controls. Together, these studies suggest that the original
findings of hypoactive responses to faces in ASD are due to
either avoidance of or lack of attention to the eye area. It
appears that ‘normative’ levels of activity in the fusiform
gyrus may be elicited from ASD subjects by explicitly cueing
attention to face stimuli, but doing so may also increase
anxiety responses; indeed increased anxiety with direct gaze
may underlie eye contact avoidance in ASD (Kleinhans et al,
2010).

Biological Motion

The ability to detect salient social stimuli depends critically
on the ability to detect biological motion, a behavior present
in infancy (Hoehl et al, 2009; Simion et al, 2008). Examples
of biological motion include following eye gaze or discern-
ing the patterns of how people walk and move, as opposed
to mechanical motion. This skill develops quickly in early
infancy, as neurotypical children can detect eye gaze devia-
tions during social interactions at five months of age (Symons
et al, 1998). Early attention to biological motion likely
heightens the amount of exposure infants receive to social
stimuli, setting the stage for ongoing cognitive development in
neural substrates involved in social and emotional cognition.
Importantly, 2-year-old children with autism show an early
behavioral deficit in attention to human biological motion
visualized in point-light animations (Klin et al, 2009), an
impairment that persists into late childhood (Blake et al, 2003).

Neuroimaging investigations of biological motion
have used a variety of stimuli including animated human
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characters moving their mouth, hand, or eyes (Morris et al,
2008; Pelphrey et al, 2005; Pelphrey and Morris, 2006),
moving elements designed to display a range of human-like
qualities (eg, a human, a robot, a grandfather clock, and a
mechanical assembly; Carter and Pelphrey, 2006), and
point-light displays of both non-biological (eg, a spinning
wheel) and biological (eg, walking) motion (Herrington
et al, 2011). These studies suggest that in neurotypical
individuals, processing biological motion relies on neural
activity in the superior temporal sulcus, (Carter and Pelphrey,
2006; Morris et al, 2008; Pelphrey et al, 2005; Pelphrey and
Morris, 2006), inferior frontal gyrus, amygdala, and visual
areas including the fusiform gyrus (eg, Herrington et al,
2011). In individuals with ASD, perception of biological
motion is consistently associated with reduced activity in
the superior temporal sulcus compared with controls when
viewing point-light displays (Freitag et al, 2008; Herrington
et al, 2007; Koldewyn et al, 2011). Individuals with ASD also
show hypoactivation of the ventrolateral prefrontal cortex
(Davies et al, 2011), temporo-parietal junction and superior
temporal sulcus (von dem Hagen et al, 2013) when viewing
direct vs averted gaze. Reduced activity in neurotypical
correlates of biological motion in individuals with ASD sug-
gests atypical processing of biological motion cues present
in everyday social contexts. In neurotypical individuals,
detection of biological motion may serve to direct attention
to socially relevant stimuli, a behavior that appears to be
impaired in ASD.

TOM and Pragmatic Language

Theory of mind (TOM) is described as the ability to under-
stand and infer the actions and intentions of others (Baron-
Cohen, 1991; Frith and Frith, 1999). It is well documented
that individuals with ASD show deficits in higher-level
social information processing, such as recognizing social
faux pas (Baron-Cohen et al, 1999), and extrapolating the
mental state of others based on cues expressed through the
eyes and by voice (Baron-Cohen et al, 1997, 2001; Baron-
Cohen and Hammer, 1997). In neurotypical individuals,
TOM skills such as reasoning about the beliefs of others or
their state of mind (eg, Saxe et al, 2009; Saxe and Kanwisher
2003) elicit neural activity in the superior temporal sulcus,
temporo-parietal junction, medial prefrontal cortex
(MPFC), and temporal poles (Gallagher et al, 2000; Saxe
et al, 2009; Saxe and Kanwisher, 2003). In ASD, neuroima-
ging studies of TOM have shown reduced activity in the
left inferior frontal gyrus (Harris et al, 2006; Just et al,
2004), MPFC (Castelli et al, 2002; Kana et al, 2009, 2014;
Nieminen-von Wendt et al, 2003; Wang et al, 2007), and
temporo-parietal junction (Kana et al, 2014). Notably, many
of these regions overlap with those activated in biological
motion, suggesting a potential common network underlying
a range of social deficits in ASD.

Paralleling the deficits seen in TOM abilities, individuals
with ASD also show deficits in language processing, parti-
cularly high-level language processing such as the proper

use and comprehension of pragmatics, or appropriate use of
language in a social context (Boucher, 2003; for a review, see
Groen et al, 2008). Behavioral studies have reported atypical
production and comprehension of prosody (the rhythm,
stress, or intonation of speech) in children with high-
functioning ASD (eg, McCann et al, 2007). Deficits in
prosodic comprehension have been documented in both
children and adults with ASD, who have difficulty inferring
the mental state of others when relying on vocal intonation
cues (eg, Golan et al, 2007; Peppé et al, 2007; Rutherford
et al, 2002). In line with the behavioral deficits observed in
ASD, functional neuroimaging studies also report atypical
activation of language relevant brain areas. For example,
a growing number of fMRI studies have reported more
bilateral or right-lateralized activity in adults (Kleinhans,
et al, 2008a; Mason et al, 2008; Tesink et al, 2009) and
children (Knaus et al, 2010; Redcay and Courchesne, 2008)
with ASD. Although some studies have shown hyperactiva-
tion (Wang et al, 2006), others have reported hypoactiva-
tion (Gaffrey et al, 2007; Wang et al, 2007), and a few others
have reported simultaneous decreased activity in frontal
brain regions and increased activity in posterior temporal
areas (Harris et al, 2006; Just et al, 2004) during basic
language processing.

A handful of studies have focused on higher-level language
abilities in ASD by assessing the neural correlates of
pragmatic or prosodic cues in language comprehension.
In one study of pragmatic language, Tesink et al (2009)
examined neural activity during a task in which adults with
ASD made inferences about a speaker’s characteristics (ie,
gender, age, and social background) using voice-based cues.
Although both ASD and neurotypical controls showed
equivalent behavioral performance, the ASD group showed
greater activity in the right inferior frontal gyrus, suggesting
an atypical and potentially compensatory neural mechan-
ism in individuals with ASD. A second study of pragmatic
language processing found that adults with ASD showed
increased activity in the left supramarignal gyrus compared
with controls (Hesling et al, 2010). Several other investiga-
tions have focused on the neural correlates of prosodic cues
in ASD by examining brain activity during processing of
ironic vs sincere speech. Wang et al (2006) used a task in
which children and adolescents with ASD listened to short
scenarios and made a choice to indicate whether the speaker
was sincere or sarcastic. Although both the ASD and neuro-
typical control groups performed well on the task, the children
with ASD showed increased activity in the right inferior
frontal gyrus and bilateral temporal pole, suggesting more
effortful processing in the ASD group during high-level
prosodic language processing. A second study by Wang
et al (2007) tested whether explicit instructions to attend to
facial or tone of voice cues could regulate neural activity in
children with ASD during ironic speech processing. Indeed,
the authors demonstrated that while the ASD group showed
reduced activity in the MPFC during ironic vs sincere
speech (a region associated with TOM), this activity was
modulated by specific instructions to attend to face or voice
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cues, and that activity in this region was negatively corre-
lated with social impairment in ASD (ie, less activity in the
MPFC was associated with greater social impairment).
Finally, a recent study by Colich et al (2012) showed that
when processing ironic vs sincere speech, children with ASD
show a more bilateral pattern of activation in right hemi-
sphere language homologues, and in brain areas implicated
in TOM processing (such as the MPFC) compared with
neurotypical children. Together, these studies suggest that
compensatory activity in distributed brain regions in
individuals with ASD may allow for normal behavioral
performance during high-level language processing, and
that atypical neural activity may be modulated by attention
to secondary social (ie, face and voice) cues. Further,
although language deficits are a common feature of ASD, it
is no longer required for an ASD diagnosis (DSM V); thus
heterogeneity in the ASD phenotype may help explain
the range of findings in language regions among children
with ASD.

Reward Processing

In humans, social cues such as smiles are processed early in
infancy and appear to be highly rewarding, biasing attention
toward these cues. Early attentional biases to social stimuli
may be modulated by increased neural mediated reward-
value for these stimuli. Evolutionarily, successful social
interaction in infancy is critical for survival as it impacts
mother–offspring bonding (Lévy et al, 1995). One general
theory of autism posits that reduced social motivation
underlies the development of autism (Chevallier et al, 2012);
reduced reward responsiveness could provide a potential
neural basis of reduced social motivation. Animal studies
suggest that reward processing involves activity in the
anterior cingulate cortex, orbitofrontal cortex, and ventral
striatum (Febo et al, 2005; Young et al, 2005). Importantly,
recent neuroimaging studies have found that the same
areas underlie reward processing in humans, including
food rewards (O’Doherty et al, 2002), monetary rewards
(O’Doherty et al, 2001; Thut et al, 1997), and social rewards
such as viewing happy faces (Phillips et al, 1998).

Given that children with ASD display reduced attentional
biases to social stimuli, recent neuroimaging work has
begun to investigate whether decreased activity in social-
reward brain regions may have a role in atypical ASD social
behavioral and neural phenotypes. These studies have
primarily contrasted social reward stimuli (ie, faces) to
monetary reward in individuals with ASD and neurotypical
controls. Compared with controls, children, adolescents, and
adults with ASD show aberrant activity during monetary
reward conditions in the anterior cingulate, frontal cortex,
and ventral striatum (Dichter et al, 2012; Kohls et al, 2013;
Schmitz et al, 2008; Scott-Van Zeeland et al, 2010). During
positive social reward conditions (ie, smiling faces), ASD
participants show reduced striatal activity in comparison
with controls (Delmonte et al, 2012; Scott-Van Zeeland et al,
2010). Recently, Cascio et al (2014) investigated brain

activity in children with ASD during exposure to images
of participant-specific restricted interest objects, aiming to
disentangle whether the observed difference in neural
activity during reward processing in ASD may be modu-
lated by the salience of the reward, or instead represent
broad functional atypicalities. Although both controls and
individuals with ASD showed activity in reward-related
circuitry when viewing pictures of their own interests, only
the neurotypical group showed similar activity when seeing
pictures of another child’s interest. Conversely, the ASD
group showed reduced activity in reward-related areas
including the insula and anterior cingulate cortex when
seeing pictures of another child’s interest. Thus, similar to
results in neuroimaging studies of face processing, extrinsic
factors that increase attention to personally relevant
rewarding stimuli may be associated with more neuro-
typical activity in individuals with ASD. As narrow, selective
interests are a core feature of children with ASD, reduced
neural responses in reward-related brain regions to non-
preferred stimuli has face validity; however, these data do
not provide a mechanistic causative explanation for these
atypical fMRI findings.

Sensory Over-Responsivity

Many children with ASD display over-responsivity to
sensory stimuli (eg, scratchy clothing and vacuum cleaners),
but others are under-responsive and many are both over-
and under-responsive depending on the situation (eg, Liss
et al, 2006). Sensory processing issues in individuals with
ASD have been challenging to study. Physiological studies
often fail to find group (ASD vs control) differences, likely
because they fail to take into account within-ASD hetero-
geneity (Rogers and Ozonoff, 2005). A recent neuroimaging
study of sensory over-responsivity (SOR) found that
children with ASD display hyper-reactivity in limbic areas
(amygdala and hippocampus) and primary sensory cortices
to mildly aversive visual and auditory sensory stimuli
(Green et al, 2013). Notably, this study took into account
individual levels of SOR, and found that activation in these
areas was related to parent-reported SOR in both groups of
children. Cascio et al (2012) compared neural response with
pleasant, neutral, and unpleasant tactile stimuli in adults
with and without ASD. They found that in general, the ASD
group was under-responsive to the stimuli compared with
the TD group, with the TD group having greater activation
in multiple brain areas including the primary somatosen-
sory cortex, middle frontal gyrus, superior temporal gyrus,
and cingulate cortex. However, the ASD group had greater
activation in the thalamus (pulvinar) in response to both
the pleasant and unpleasant stimuli, and in the posterior
cingulate and insula in response to the unpleasant stimulus.
Greater insula response was correlated with severity of
ASD symptoms. The authors hypothesized that individuals
with ASD are hyporesponsive to pleasant tactile stimuli in
primary and association somatosensory areas, but are
hyperresponsive to unpleasant stimuli in areas associated
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with emotional processing of sensory stimuli. Voos et al
(2013) also found that in neurotypical adults, higher levels
of autism traits were associated with diminished response to
pleasant touch in the superior temporal sulcus and orbital
frontal cortex. Although neither the Cascio et al (2012) nor
Voos et al (2013) study examined individual differences in
sensory processing, these studies suggest that social touch is
processed differently from unpleasant sensory stimuli in
individuals with ASD.

In summary, a broad range of fMRI studies tapping into
several aspects of social cognition and other core deficits
show abnormal brain activity in ASD. A recent meta-
analysis of 39 task-based fMRI studies in children and
adults with ASD found that during social neuroimaging
experiments, individuals with ASD had reduced probabi-
lity of activation in the anterior cingulate cortex, right
amygdala, and left frontal gyrus, as well as greater
probability of activation in somatosensory brain regions
(Di Martino et al, 2009). In particular, research shows
reduced engagement throughout brain networks involved in
processing social stimuli and responding to both positive
and negative affect, as well as brain systems involved in
understanding the emotional states of others (eg, Dapretto
et al, 2006) and regulating sensory and emotional experi-
ence. Interestingly, in some cases there is increased activity
in regions not typically associated with task performance,
which may suggest engagement of compensatory neural
systems. Of note, many regions showing reduced activity
under certain conditions can show more normative
responses when attention is explicitly directed to the task
at hand, when the salience of the stimuli is increased, or
when stimuli or tasks are more personally relevant to the
individual. This argues in favor of the social motivation
hypothesis of ASD, whereby a lack of intrinsic motivation to
attend to social stimuli early in life leads to an altered
developmental trajectory of neurocognitive development
in ASD.

STUDIES OF BRAIN CONNECTIVITY IN ASD

Although functional neuroimaging studies have informed
our understanding of the regional neurobiological under-
pinnings of ASD during social–emotional cognition, recent
work has focused on elucidating differences at the network/
systems level. Another way to conceptualize functional
brain abnormalities in autism is to look at activity not
within individual brain regions, but at the way in which
regions within social brain networks connect with each
other, working in concert to perform complex tasks. It has
been hypothesized that very early disruption in both the
structural architecture and functional connectivity of local
circuits in individuals with ASD may impact maturation of
large-scale brain networks required for complex cognitive
processing (Belmonte et al, 2004; Courchesne and Pierce
2005; Geschwind and Levitt 2007; Just et al, 2004; Mundy
et al, 2009). These structural and functional abnormalities

may thus prevent typical experience-dependent reorganiza-
tion of neural circuitry into fully integrated networks, which
are critical for understanding and initiating complex social
behavior.

Connectivity in Task-Related Brain Networks

In ASD, task-based functional connectivity (fcMRI; Figure 2)
studies have shown altered connectivity in multiple brain
networks underlying complex social and emotional infor-
mation processing. In an early study, Just et al (2004) found
that during a sentence comprehension task, individuals with
ASD displayed reduced connectivity between multiple high-
level association cortical areas. These findings led the
authors to suggest that cognitive deficits in ASD may be
due to a general underconnectivity of brain regions
important for information integration. In support of this
hypothesis, many other task-based connectivity studies have
reported underconnectivity in individuals with ASD in task-
related brain areas including fronto-parietal connections
during tasks involving working memory (Koshino et al, 2005),
visuomotor coordination (Villalobos et al, 2005), visual
imagery (Kana et al, 2006), executive functioning (Just et al,
2007), response inhibition (Kana et al, 2007), facial proces-
sing (Kleinhans et al, 2008b; Rudie et al, 2012b), theory
of mind (Kana et al, 2009), and during rest (Kennedy and
Courchesne, 2008b). However, others have reported over-
connectivity of neural networks in ASD, (eg, Mizuno et al,
2006; Noonan et al, 2009; Rudie et al, 2012b; Shih et al,
2010; Turner et al, 2006).

Importantly, recent functional and structural neuro-
imaging studies have demonstrated that altered brain
connectivity is related to behavioral phenotypes in ASD.
In a recent study, Abrams et al (2013) investigated resting
state functional connectivity of the bilateral posterior
superior temporal sulcus in children with ASD. The
posterior superior temporal sulcus is involved in human
voice processing in neurotypical individuals (Belin et al,
2000), but fails to activate in individuals with ASD (Gervais
et al, 2004). Children with ASD showed reduced connectiv-
ity between the posterior superior temporal sulcus and
many reward-related brain regions including the nucleus
accumbens, insula, orbitofrontal cortex, and ventromedial
prefrontal cortex. Importantly, the authors found that
reduced connectivity between the posterior superior tem-
poral sulcus and reward circuitry was associated with
greater communication deficits. These findings suggest that
the human voice may be less intrinsically rewarding for
children with ASD and as a consequence negatively impact
language outcomes.

Resting State Connectivity fMRI

One major limitation of task-based functional MRI studies is
that they require subject participation and thus are typically
limited to older, higher functioning children with autism.
Brain changes in later years may be a consequence rather
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than a cause of abnormal social development, and findings
may not generalize to lower-functioning or non-verbal
children or those with more severe social deficits. Further-
more, traditional fMRI studies comparing neural functioning
between ASD and neurotypical populations must control for
baseline differences in task performance, and ensure that the
task is well designed to address specific questions relating to
ASD neurobiology. A relatively new approach that alleviates
many of these concerns aims to understand functional brain
connectivity by examining the interactions between brain
regions not during task performance but while subjects are at
rest. Resting state-functional connectivity MRI (rs-fcMRI; see
Box 2) is a method in which fMRI is performed in the
absence of an overt task in order to detect low-frequency

(o0.1 Hz) fluctuations in neural activity and identify
coactivating brain regions (ie, intrinsic functional brain
networks) (Biswal et al, 1995; for a review, see Fox and
Raichle 2007). Findings of synchronized activity across brain
regions, both at rest and during task conditions, suggest that
functional brain organization consists of multiple interacting
large-scale neural networks (eg, Calhoun et al, 2008; Smith
et al, 2009). Neuroimaging studies of ASD have recently
begun to characterize functional connections within and
between brain networks.

In neurotypical individuals, rs-fcMRI studies have
identified multiple, widely replicated brain networks (for a
review of resting state networks present in early develop-
ment, see Hoff et al, 2013, and van den Heuvel and Hulshoff
Pol, 2010 for a review of findings in adults). Here we will
focus on networks implicated in ASD etiology. Perhaps the
most widely studied functional connectivity network
important for social cognition is the so-called ‘default mode
network’ (DMN), which comprises the posterior cingulate
cortex (PCC), MPFC, lateral temporal cortex, inferior parietal
lobule, and hippocampal formation (Buckner et al, 2008).
The DMN has been shown to be involved in internally
directed cognition, as it is deactivated during goal-directed
behaviors and shows an anticorrelated relationship with the
‘attentional control network’ (Stevens et al, 2009). In children,
adolescents, and adults with ASD, reports consistently sug-
gest that connectivity between nodes of the DMN is dimi-
nished (Assaf et al, 2010; Cherkassky et al, 2006; Kennedy
and Courchesne, 2008a, b; Monk et al, 2009; Rudie et al,
2012a; Weng et al, 2010). This is consistent with the known
role of specific DMN nodes in tasks of social cognition
(eg, watching social interactions; Iacoboni et al, 2004) and the
observed behavioral deficits characteristic of ASD (ie, atypical
TOM processing and social interactions). However, the DMN
interacts in a dynamic manner with other brain systems and
is unlikely to be the only functional network affected in ASD.

Another network that has recently received a substantial
amount of attention in the ASD literature is the ‘salience
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Figure 2. Seed-based functional connectivity. The average BOLD signal time series is extracted from a seed region (eg, the precuneous). The time
series of activity from this seed region is then correlated with the time series of activity of all other voxels in the brain, yielding maps of coactivating brain
areas. Brain areas represented in these maps are inferred to be part of the same functional brain network, as activity in these regions is highly correlated
with one another.

BOX 2

Resting state connectivity: resting state-functional connectivity MRI (rs-fcMRI) refers
to a growing body of literature in which imaging is performed in the absence of an
overt task to detect brain regions where the BOLD fMRI signal is co-fluctuating;
these methods provide a map of intrinsic functional brain networks. There are two
main methodological approaches used to identify resting state brain networks. (1)
Seed-based methods (Figure 2), in which the average BOLD time course is
extracted from a seed region and correlated with every other voxel in the brain,
thereby identifying voxels with BOLD signal time series co-fluctuating with that of
the seed. (2) Independent component analysis (ICA), in which statistically
independent components of the resting state BOLD scan are identified in a data-
driven manner, providing the user with all statistically independent time-varying
signals within the data. Although a main advantage of ICA is that it provides an
unbiased metric of all components in the data (ie, no a priori hypotheses related to
a seed region of interest are needed), a critical disadvantage is that individual users
must decide which components are biologically meaningful (eg, as opposed to
noise components) and merit reporting and further investigation. Some of the
most common resting state brain networks include, sensory networks such as visual
and auditory systems, attentional networks that include regions such as dorsal
prefrontal cortex, the default mode network, which is negatively correlated with
task performance, and the salience network, which relates to identifying relevant
information in one’s environment. Critically, these networks persist both during
task-based activity and when individuals are at rest, as well as during sleep and
sedation. Connectivity-based methods are uniquely suited to inform our
understanding of network-level brain activation, providing insight into the history of
coactivation between brain regions, and atypicalities indicative of clinical diagnoses.
However, interpretation of fcMRI results can be difficult because connectivity
measures can be impacted by differences in underlying brain structure, cognitive
state, and subject motion during data acquisition (Buckner et al, 2013).
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network’ (Seeley et al, 2007), which is involved in
identification of the most relevant information in one’s
environment, including social stimuli. Primary nodes of the
salience network are the anterior cingulate cortex and
anterior insula, which neuroimaging studies suggest have a
role in perception of social exclusion (Bolling et al, 2011;
Masten et al, 2011) and cognitive control (Agam et al, 2010).
A recent study (Uddin et al, 2013) compared connectivity
in large-scale brain networks in children with ASD and
matched controls. Hyperconnectivity was observed in a
number of brain networks, including the DMN and the
salience network. Importantly, salience network connectiv-
ity values showed the highest classification accuracy (CA) in
parsing neurotypical from ASD individuals, and correlated
with severity scores for restricted interests and repetitive
behaviors. Another study investigating connectivity of the
salience network in adolescents and adults found reduced
connections with the medial temporal lobe network,
including the amygdala (von dem Hagen et al, 2013).
Reduced functional connectivity between networks may
suggest altered integration of social–emotional information
across distributed brain regions in individuals with ASD.

Further evidence for network-level dysfunction in ASD
comes from two recent studies by Keown et al (2013) and
Supekar et al (2013), which found increased functional
connectivity across multiple brain networks in children
with ASD. Both studies also found that increased con-
nectivity was associated with greater severity of ASD
impairments. As both under- and over-connectivity have
been reported in ASD, a major challenge facing the autism
neuroimaging field is to reconcile these seemingly dis-
crepant findings. Findings of hyper- vs hypo-connectivity in
ASD may depend on the nature of the task-related demands,
the specific brain networks under investigation, study-
specific methodological choices, as well the age of the
cohort under investigation (Rudie and Dapretto, 2013). For
example, Uddin et al’s (2013) review of the functional
connectivity literature in ASD suggests that studies of adults
and adolescents with ASD tend to report hypo-connectivity
compared with neurotypical controls, whereas studies of
younger children often report hyper-connectivity—indicat-
ing that differences in sample characteristics can lead to
opposite findings. Taken together, these studies highlight
the complexity of brain network organization in ASD and
the need for longitudinal investigations in order to elucidate
the entire developmental trajectory of altered connectivity
in ASD.

Graph Theoretical Methods

As described above, many neuroimaging studies report differ-
ences in regional network connectivity in ASD; however, how
these findings may be reflective of more complex systems-level
dysfunctions across the brain in individuals with ASD remains
unclear. Recently, researchers have begun using graph theory
methods to address this question by modeling the brain as a
network of integrated and segregated systems composed of

hundreds of brain regions or ‘nodes’. Graph theoretical appro-
aches depict the brain as a hierarchically organized network
comprising large-scale functional systems or modules (for a
review, see Wang et al, 2010). Each module is made up of
discrete brain regions (nodes) and the connections between
these nodes (edges). In the brain, functional and structural
networks are ‘small-world’ in nature, meaning that they are
efficient at both a local-systems and global-systems level
(Watts and Strogatz, 1998). Graph theory measures such as the
number of nodes, edges, and small-world characteristics such
as modularity can be quantified (Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010) and compared across populations
during development (eg, Fair et al, 2009; Hagmann et al,
2010), and in diseases such as schizophrenia (eg, Bassett et al,
2008) and Alzheimer’s disease (eg, Supekar et al, 2008). Graph
theoretical metrics are useful in that they go beyond simple
connectivity analyses to describe large-scale properties of how
brain networks are organized and how they interact.

To date, there have been relatively few graph theory
studies of ASD, and reported findings have been mixed. In a
whole-brain investigation of network properties across four
functional brain networks, Redcay et al (2013) found few
differences between adolescents with ASD and neurotypical
controls, except for greater ‘betweenness centrality’ (a measure
of how often the shortest path goes through a given node, or
its centrality to the network) in a parietal region of the DMN
in individuals with ASD. In another study of adolescents
with ASD, Keown et al (2013) found increased local func-
tional connectivity in temporo-occipital regions, which was
associated with greater scores of ASD symptom severity.
In a third study of children and adolescents with ASD,
Rudie et al (2013) investigated both functional and
structural connectivity using graph theory methods, finding
alterations in local and global network measures including
modularity and local efficiency of brain networks in
children with ASD. Overall, graph theory studies of ASD
suggest wide-scale disruptions in how brain networks
communicate, suggesting that in autism, critical networks
are less modular and less segregated from one another, with
abnormalities both within and between networks. Although
graph theoretical approaches are in their infancy, further
research may elucidate more complex interactions between
large-scale brain networks in ASD.

Integrating Imaging and Genetics

The identification of genetic contributions to ASD has pro-
gressed rapidly in the last decade (for a review, see Huguet
et al, 2013 and Persico and Napolioni, 2013). Mirroring the
heterogeneity observed in behavioral phenotypes, hundreds
of genes have been implicated in conferring increased risk
for ASD. Importantly, the biological functions of many
ASD-associated genes impact the formation of neural
circuits in the developing brain (Won et al, 2013), including
prenatal transcription regulation and synapse development,
and are enriched in outer cortical layers of the brain
(Parikshak et al, 2013). However, little is known about how
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autism risk genes relate to brain structure, function, and
behavior. For over a decade, research on a range of common
genetic variants related to neurobehavioral disorders has
demonstrated differences in brain structure and function
in risk gene carriers despite having no overt behavioral
symptomatology (for a review, see Hariri and Weinberger
2003). The field of imaging-genetics examines the relation-
ship between risk genes and brain structure and function,
conceptualizing neuroimaging metrics as potential endo-
phenotypes. As MRI metrics of brain functional and struc-
tural connectivity are both heritable (Chiang et al, 2011;
Fornito et al, 2011; Glahn et al, 2010; Kochunov et al, 2010;
Koten et al, 2009) and altered in individuals with ASD,
neuroimaging endophenotypes are well suited to inform our

understanding of how genetic risk impacts brain circuitry.
A key goal of imaging-genetics research is to elucidate neural
mechanisms by which genetic heterogeneity may give rise
to phenotypic heterogeneity in ASD (Figure 3). As genetics
research suggests that many common single-nucleotide
polymorphisms are related to increased risk for autism
diagnosis (for a review, see Klei et al, 2012), imaging studies
have investigated whether stratifying neuroimaging data by
common genetic risk factors can inform understanding of
ASD neurobiology.

To date, neuroimaging-genetics studies have taken two
forms: studies of the effects of ASD-associated risk alleles on
brain measures in neurotypical children, adolescents, and
adults (eg, Clemm von Hohenberg et al, 2013; Dennis et al,
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Figure 3. Parsing phenotypic heterogeneity using imaging-genetics. (1) A sample population contains subjects who display a range of ASD-associated
neurocognitive phenotypes (shades of green within ovals) and a subset of individuals with a diagnosis of ASD (dark green border outlining ovals). (2)
When subjects are stratified by neuroimaging phenotypes, a continuous range of phenotypes is observed across neurotypical subjects and those with
ASD. (3) Subjects’ neuroimaging data may also be stratified by common genetic risk variants (ie, those that occur in 45% of the population) for a
particular neurobiological disorder. (4) Combining these data allow for added stratification of phenotypic heterogeneity by creating subgroups of
neurotypical and affected individuals, ultimately elucidating neural mechanisms unique to the diagnosis of ASD vs risk variant status. Reprinted from
Rudie et al (2012a), with permission from Elsevier.
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2011; Hedrick et al, 2012; Raznahan et al, 2012; Sauer et al,
2012; Tan et al, 2010; Voineskos et al, 2011; Whalley et al,
2011) and studies comparing the effects of ASD-associated
risk alleles on children and adolescents with ASD com-
pared with neurotypical controls (eg, Rudie et al, 2012a;
Scott-Van Zeeland et al, 2010). Scott-Van Zeeland et al
(2010) investigated the impact of the contactin-associated
protein-like 2 (CNTNAP2) rs2710102, C risk allele on func-
tional connectivity in children and adolescents with ASD.
Results suggested that while nonrisk allele carriers (in
both neurotypical and ASD groups) displayed connectivity
between frontal cortex and language regions in the left
hemisphere, risk allele carriers showed a pattern of diffusely
increased functional connectivity with frontal cortex and
temporal regions. A second study by Rudie et al (2012a)
found that children and adolescents carrying the met receptor
tyrosine kinase (MET) rs1858830, C risk allele had decreased
functional connectivity between the PCC and MPFC and
reduced WM integrity in the splenium of the corpus callosum,
cortical spinal tract, and inferior longitudinal fasciculus.
Interestingly, the authors also identified a significant inter-
action whereby the presence of one or two risk alleles in
ASD children had a significantly larger impact on functional
connectivity values than in neurotypical children.

Together, these results suggest that these and other ASD
liability genes may confer risk through their effects of brain
function and structure in regions involved in social and
emotional cognition. Although not causal, autism risk genes
may bias the brain toward patterns of neural activity and
connectivity that are atypical, and in combination with a
range of additional genetic and environmental factors may
contribute to abnormal brain development that ultimately
underlies ASD symptoms. Future neuroimaging studies
should continue to use relevant genetics data to help explain
variance observed in both behavioral and brain-based
phenotypes of ASD, as well as to improve diagnostic tools
and treatment strategies for individuals falling throughout
the autism spectrum (Fox and Greicius 2010).

Machine Learning

Prediction and classification of diagnostic status based on
neuroimaging data represents a powerful tool for improved
clinical care in ASD. Machine learning algorithms extract
highly relevant components from neuroimaging data to classify
an individual’s diagnostic status (see Box 3; Figure 4).
Machine learning algorithms have been applied to neuro-
imaging data to identify ASD from neurotypical subjects
using MRI measures of gray and WM volume (CA 81% and
68%, respectively, Ecker et al, 2010), regional cortical thickness
(CA 70–87%; Jiao et al, 2010; Zhou et al, 2014), VBM
(CA 79–92%; Uddin et al, 2011), DTI (CA 80%; Ingalhalikar
et al, 2011), and resting state functional connectivity
(CA 71–89%; Anderson et al, 2011; Uddin et al, 2013).
Variations in CA may be attributed to the types of classifica-
tion systems used, which MRI-based metrics are utilized, and
the number of features on which classification is determined

(eg, number of brain areas included in measures of regional
cortical thickness). In a recent study, Nielsen et al (2013)
used machine learning to evaluate whole-brain resting state
fMRI data collected from 16 sites in 964 subjects ranging in
age from 7 to 64 years from the Autism Brain Imaging Data
Exchange (ABIDE). The maximum CA achieved by this
study was just 60%, much lower than CAs reported for
single site studies. However, the authors note that higher
CAs were calculated for sites where longer resting state
scans were collected, providing support for longer fMRI
imaging times in future machine learning paradigms.

Very recently, machine learning algorithms have been
applied to address questions of heterogeneity in ASD—
aiming to distinguish between ASD sub-populations. Sato
et al (2013) used inter-regional whole-brain cortical thickness
correlations and machine learning to predict scores on the
Autism Diagnostic Observation Scale (Lord et al, 1989) in
children, adolescents, and adults with ASD, yielding a signi-
ficant correlation (r¼ 0.362) between predicted and actual
values. In another study, Uddin et al (2013) classified children
with and without ASD using large-scale brain network connec-
tivity measures. Connectivity of the salience network was
best able to classify subjects, achieving a CA of 83%, with
BOLD signal in this network also predicting restricted and
repetitive behaviors in the sample of children with ASD.
Although the machine learning literature in ASD is just beginn-
ing to emerge, these studies suggest that neuroimaging data
evaluated with machine learning may help to identify brain-
based biomarkers that correlate with severity of ASD
symptomatology. Continued methodological development
of this technique will undoubtedly further our under-
standing of neural signatures of ASD sub-populations.

METHODOLOGICAL CONSIDERATIONS

Despite the growing corpus of brain imaging studies in
ASD, many discrepant findings make it difficult to draw
broad and definitive conclusions about brain connectivity
abnormalities in ASD. As described in detail by Rudie and
Dapretto (2013), there are a few major methodological
considerations that may help to explain the seemingly
discrepant findings between many prior studies of neural

BOX 3

Machine learning. Traditional machine learning methods (Figure 4; also see Klöppel
et al, 2012) begin by feeding neuroimaging data from labeled cases and controls
(the training data set) into a mathematical classifier and identifying relevant
components (or features) from the neuroimaging data that contribute to group
discrimination. The classifier then uses the training data set to establish a set of rules
that allow for optimal discrimination of patient and control groups, converging on
an optimal classification algorithm. Finally, this algorithm is applied to a new set of
neuroimaging data consisting of non-labeled cases and controls and classification
accuracy (CA) is assessed by calculating the number of correct positive (eg, ASD)
and negative (eg, neurotypical) classifications for the new data. A major advantage
of this approach is that it allows individual subjects to be evaluated for likelihood of
ASD diagnosis. An important limitation to the application of this method to the
study of autism is the inherent heterogeneity of the ASD subject population, which
can decrease overall CA. There is great potential to overcome this limitation by
studying circumscribed ASD subgroups (including restrictions based on age,
comorbid symptoms, and so on) and collection of larger data sets.
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systems in ASD and more recent studies. First, recent studies
have used rigorous motion-correction methods. Recently, it
has been reported that even very small amounts of motion in
resting state functional connectivity data (eg, Power et al,
2012; Van Dijk et al, 2012) and in structural dMRI data
(Yendiki et al, 2013) can bias findings of group differences in
connectivity metrics. These findings are crucial to the
interpretation of reports of altered brain connectivity in
ASD, as ASD cohorts may display increased amounts of
motion related artifacts in their MRI data compared with
neurotypical controls, and similarly, the degree of motion
present in the data is likely to be correlated with subject age
(Satterthwaite et al, 2013), producing a possible age and
diagnostic status confound. A multitude of studies have
recently been published speaking to how best to account for
motion-related artifacts and aiming to identify the optimal
series of processing steps for connectivity data analysis (eg,
Carp, 2013; Hallquist et al, 2013; Power et al, 2012, 2013,
2014; Satterthwaite et al, 2013). On the heels of these reports,
scientists have begun to revisit published results of
connectivity-related findings in ASD, and in more recently
published studies to analyze their data using a variety of
processing streams. Other method-related choices such
as use of low-pass filtering, seed selection, and whether
connectivity results are obtained for the whole brain
(vs within a priori ROIs) may also impact findings of over-
or under-connectivity in ASD (for a review, see Müller et al,
2011). Importantly, when analyzing data using a variety of
suggested processing streams, findings of altered connecti-
vity in children and adolescents with ASD appear to hold

(eg, Maximo et al, 2013; Nair et al, 2014; Starck et al, 2013;
Uddin et al, 2013).

A second cause of discrepant findings are differences in
cohort age and severity among different studies. The trajectory
of age-related development in both brain structure and function
may be complex, not holding to a simple linear increase or
decrease with increasing age. For example, Schumann et al’s
(2004) work showing that the pattern of amygdala brain over-
growth seen early in life in ASD reverses later in development
indicates that differences in sampling characteristics can lead
to opposite findings. Ultimately, large-scale studies examin-
ing developmental trajectories will be essential if we are to
understand how brain structure and function differ in ASD.

A third problem in brain imaging studies relates to the
heterogeneity of the autism phenotype. The vast hetero-
geneity present in behavioral symptomatology and genetic
liability to ASD likely reflects variation in disease etiology
between diagnosed individuals (Geschwind 2009). Dissimilar
disease etiology would additionally imply varied neurodeve-
lopmental trajectories in ASD affected individuals. Discrepant
findings in the neuroimaging literature may reflect variance in
the severity of ASD symptomatology, the constellation of ASD
behavioral symptoms represented, or the presence or absence
of associated features such as mental retardation and severe
language impairment. Furthermore, as described above,
evidence suggests that the atypical functional brain responses
to task stimuli in ASD may not simply be a result of a
fundamental deficit in neural functioning, but rather, that
incorporating extrinsic factors that increase attention or
interest into neuroimaging task designs are associated with

  Phase  1: training

  Phase  2: testing

Group 1

Group 2

New case

Feature 1 Feature 2 Feature n

Testing 

Group 1 or Group 2

Group 1 vs Group 2

Group 1

Prediction

Discrimination

Discriminating
patterns

Training

Feature 1
(e.g. sMRI)

Feature 2
(e.g. DTI)

Feature n
(e.g. PET)

Figure 4. Machine learning. (a) During the first phase, the classifier is trained on neuroimaging data such as sMRI, DTI, or positron emission
tomography (PET), from two groups of participants (eg, neurotypical individuals and individuals with ASD). During training, patterns within the
neuroimaging data that best discriminate between groups are identified. (b) During the second phase, the classifier is provided with feature data from a
new set of subjects and determines to which group each of the subjects belongs. CA is determined based on classifier performance in the testing phase.
Reprinted from Ecker and Murphy (2014), with permission from Elsevier.
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more normal activity (Hadjikhani et al, 2004; Perlman et al,
2011; Pierce et al, 2004; Pierce and Redcay 2008; Wang et al,
2007; Zürcher et al, 2013). Thus, discrepant findings in the
neuroimaging literature may also be due to variation in
sample characteristics or task demands. To address these
issues, replication of previous findings will be essential.

FUTURE DIRECTIONS AND CLINICAL
IMPLICATIONS

Although neuroimaging techniques allow us to relate
behavioral traits and genetic risks to structural and
functional brain development, an important question in
autism neuroimaging research is whether findings of altered
brain activity and connectivity during childhood, adoles-
cence, and adulthood are the cause of, or the result of ASD
behavioral pathology. Experience shapes brain structure,
function, and connectivity; reduced social attention will
affect a child’s social experience, and the brain changes
observed in older children may simply reflect this socially
deprived experience. Recent advances in neuroimaging
methods will allow researchers to begin to address some
of these complex interactions by studying very young
infants who are at high genetic risk for developing ASD, and
by following individuals with ASD over time to map long-
term neurodevelopmental trajectories. Our understanding
of causality will be further guided by animal models, which
can manipulate both genetic risk and experience to under-
stand brain development in ASD, as well as large-scale
neuroimaging data sharing projects designed to achieve
sufficient power to detect true brain–gene–behavior rela-
tionships. Such work will be greatly enhanced by large-scale
collaborations such as ABIDE (Di Martino et al, 2014)
and NDAR (the National Database for Autism Research),
combining imaging data from multiple sites and integrating
these data with both genetic and behavioral data. Given
the correlational nature of imaging and genetic methods,
causality can only begin to be addressed in the context of
longitudinal studies of both affected and unaffected indivi-
duals with different genetic vulnerability for ASD. Recently,
neuroimaging studies have begun to assess brain structure
and function in unaffected family members of individuals
with ASD. By mapping developmental trajectories in
unaffected siblings, we may also gain insight into possible
genetic and neurodevelopmental protective factors and
critical periods during which such factors come on line.

Understanding developmental trajectories will be essen-
tial, both for understanding brain development in hetero-
geneous subgroups of individuals with ASD, as well as for
determining the impact of treatment on brain structure and
function in these populations. As the infant brain is very
plastic and adaptable, early interventions should help to
shape the emerging activity and connectivity patterns that
experience helps to create. As our technologies improve,
brain imaging may allow us to measure the impact of
interventions on brain development, as well as to inform the

choice of optimal interventions. With the increasing move
toward imaging infants and toddlers at-risk for autism, we
should be able to identify abnormal neurodevelopmental
trajectories and guide intervention strategies that will be
most effective at this stage of greatest brain plasticity.

Any application of neuroimaging data to aid in diagnosis
and treatment will ultimately rely on the ability to accurately
identify children at-risk for developing ASD. A major ques-
tion is whether differences in neuroimaging measures (which
are typically interpreted at the group level) are robust at the
individual subject level, a prerequisite for identifying and
developing treatment options for individuals at high risk for
ASD. Recent advances in data analytic methods, such as
machine learning classification techniques that allow for
integration of information across multiple modalities (eg,
Ingalhalikar et al, 2012) and identification of sub-populations
within a heterogeneous population (eg, Filipovych et al,
2012), may be able to identify the most relevant signatures of
ASD from neuroimaging, genetic, and behavioral data in
order to accurately predict diagnostic status, treatment res-
ponse, and/or developmental outcome at the individual level.
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