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ABSTRACT: Light-driven reduction of CO2 into chemicals using a photoelectrochemical
(PEC) approach is considered as a promising way to meet the carbon neutral target. The
very top surface of the photoelectrode and semiconductor/electrolyte interface plays a
pivotal role in defining the performance for PEC CO2 reduction. However, such impact
remains poorly understood. Here, we report an electrodeposition-annealing route for
tailoring surface composition of ZnTe photocathodes. Our work demonstrates that a Zn-rich
surface on the ZnTe photocathode is essential to impact the CO2 reduction activity and
selectivity. In particular, the Zn-rich surface not only facilitated the interfacial charge carrier
transfer, but also acted as electrocatalyst for boosting carbon product selectivity and
suppressing the hydrogen evolution reaction. This work provides a new avenue to optimize
the photocathode, as well as improvement of the CO2RR performance.

Carbon neutrality is widely accepted as one of the main
solutions to address contemporary climate change
challenges. To achieve this goal, the utilization of solar

energy has the potential to supplant the need for fossil fuels.
However, significant limitations related to seasonal, regional,
and diurnal fluctuations still hinder the widespread adoption of
this source of energy. In this context, photoelectrochemical
(PEC) CO2 reduction has attracted significant attention as a
promising approach to store intermittent solar energy in fuels
and chemicals as well as closing the chemical carbon cycle.1−3

In a typical PEC cell, photocathode materials can reduce CO2
to high-density carbon products. However, the CO2 reduction
reaction (CO2RR) is a thermodynamically complex reaction,
and viable photocathode materials for this process are also
suitable for hydrogen evolution reaction (HER) and generally
unstable, thus leading to either insufficient activity or selectivity,
as well as to instability challenges for CO2RR.4,5 Among other
candidates, zinc telluride (ZnTe) has recently gained increasing
attention as a promising material for the CO2RR, due to its
appropriate band gap (2.26 eV) for light harvesting, highly
negative conduction-band-edge position suitable for the
CO2RR, and predicted excellent durability in CO2RR.6−9

While these advantages make ZnTe a theoretically promising
photocathode candidate for CO2RR, it has been reported that
bare ZnTe photocathodes favor HER with ∼60% of Faradaic
efficiency (FE) over CO2RR, thus resulting in low performance
for light-driven CO2RR.10,11 Besides the specific thermody-

namic and kinetic barriers of the material for CO2RR, the very
top surface of the photoelectrode and semiconductor/electro-
lyte interface play a pivotal role in defining the performance for a
given reaction, and this aspect is even more evident in complex
reactions like CO2RRwithmultiple carbon product selectivity.12

To overcome these limitations, numerous reports have focused
on adding mono- or multilayer catalysts on the ZnTe surface to
provide additional catalytic active sites to boost selectivity to
CO2RR.13−16 In contrast, the interface between the intrinsic
ZnTe surface and electrolyte for PEC CO2RR remains largely
unexplored. Further insight into interfacial kinetics between
bare ZnTe and electrolyte can lead to fully exploiting the
advantages of this material for CO2RR, and to further enhance
the CO2RR performance of ZnTe/catalysts integrating systems.

In this work, we developed an electrodeposition-annealing
route for tailoring the surface composition of ZnTe photo-
cathodes. While we obtained pure phase ZnTe upon 380−550
°C annealing, we observed an interesting phenomenon that both
activity and selectivity of ZnTe in PEC CO2RR vary with the
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annealing temperatures. The temperature-dependent behavior
is attributed to surface-related properties that directly affect
interfacial charge transfer during light driven CO2 reduction and
determine the product selectivity. Specifically, the 550 °C
annealing results in a Zn-rich region on the surface of ZnTe,
which not only acts as a charge collector to accelerate
photoelectron transfer and collection at the semiconductor/
electrolyte interface but also adds active sites that favor the
CO2RR and suppress competitive HER.

Polycrystalline ZnTe was electrodeposited on fluorine doped
tin oxide (FTO)/glass substrate, in aqueous solution containing
TeO2 and ZnSO4, adapted from a previously reported
procedure.10 Additionally, we stabilized Te4+ species by
complexation with citrate ions in the plating bath.17 This
process allows for controlled diffusion of the Te4+ complexed
species to the working electrode surface, where the Te4+
discharge and react with Zn2+ species to form ZnTe. X-ray
diffraction (XRD) shows poor crystallinity of the as-deposited
ZnTe with Te as an impurity (Figure 1a). After annealing at 300
°C under N2 atmosphere, the XRD pattern of ZnTe annealed
sample exhibits the characteristic (111), (200), (220), and
(311) reflections (JPCDS PDF# 15−0746, cubic structure),
while the Te impurity is still present.18,19 At 380−550 °C
annealing, polycrystalline, phase-pure ZnTe can be obtained.
The ratios of peak intensity for (111)/(220), and (111)/(311)
were similar for ZnTe thin films annealed under 380 to 550 °C,

indicating that the (111) facet was dominant independent of the
annealing temperature within this temperature range. Annealing
at temperatures higher than 600 °C causes partial evaporation of
ZnTe from the substrate (Figure S1). Moreover, the surface
morphology of the as-deposited and annealed ZnTe (Figure 1b
and c, Figure S2) showed similar globular polycrystalline
structures by scanning electron microscopy (SEM) and atomic
force microscopy (AFM, Figure S1), which is consistent with
previous reports.10

In contrast to the XRD and SEM results, which are relatively
consistent across all the ZnTe samples annealed at 380−550 °C,
the ZnTe samples with varied annealing temperature exhibit
intriguingly different PEC behaviors toward the CO2RR.
Compared to ZnTe under 380 °C (noted as ZnTe-380), the
ZnTe annealed at 550 °C (noted as ZnTe-550) displays
significantly improved photocurrent over the entire operating
potential range, reaching a photocurrent density of −5 mA/cm2

at −0.8 V vs reversible hydrogen electrode (RHE). Moreover,
both ZnTe samples annealed at 380 and 550 °C exhibit excellent
stability over 2 h (Figure 2b and Figure S3). To verify that the
observed stable photocurrent of ZnTe photocathodes stems
from catalytic activity toward the CO2RR, the evolved gaseous
products and liquid products have been quantified by gas
chromatography and high-performance liquid chromatography,
respectively. Interestingly, ZnTe-550 showed enhanced selec-
tivity toward CO2RR products by 2 times, reaching 60% of FE

Figure 1. (a) XRD patterns as-deposited (AD) ZnTe and of ZnTe thin films annealed under various temperature; (b, c) SEM images of ZnTe
thin films annealed under 380 and 550 °C, respectively.

Figure 2. (a) J−V curves of ZnTe thin films after annealing under different temperature in 0.1MKHCO3 (CO2 saturated) aqueous solution (pH
= 6.8) under AM 1.5 G simulated sunlight (100 mW cm−2); (b) Chronoamperometry (CA) of ZnTe photocathodes after annealing under
different temperature at−0.6 VRHE under AM1.5G simulated sunlight (100mWcm−2) in 0.1MKHCO3 (CO2 saturated) aqueous solution (pH
= 6.8); (c) Faradaic efficiencies of H2, CO and formic acid for ZnTe-380 and ZnTe-550 at −0.6 VRHE under AM 1.5 G simulated sunlight (100
mW cm−2) in 0.1 M KHCO3 (CO2 saturated) aqueous solution (pH = 6.8). Data are presented as mean values based on triplicates.
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for C1 products (including 45% CO and 15% formic acid),
accompanied by significant decrease of HER from 60% down to
30%, with respect to ZnTe-380 (Figure 2c). In addition to FE, to
understand the intrinsic activity toward each product, we further
plotted partial photocurrent density for ZnTe-550 and ZnTe-
380 (Figure S4). These data support that the suppressed HER as
well as improved C1 production is the origin of the enhanced
selectivity toward CO2RR. Notably, the selectivity of CO2RR
products on ZnTe-550 surpasses the state-of-the-art ZnTe
photocathodes for CO2RR, which showed only 30% of
selectivity to CO2RR products using bare ZnTe.15,20

It is generally acknowledged that the observed photocurrent is
a result of light absorption, bulk charge transport and interfacial
charge transfer.21 To look into the origins of this temperature-
dependent photocurrent, we examined light absorption proper-
ties of ZnTe-550 and ZnTe-380 by UV−vis spectroscopy and
incident photon to current conversion efficiency (IPCE)
measurements. The UV−vis spectra show almost identical
light absorbance for both ZnTe-550 and ZnTe-380 (Figure S5).
Furthermore, the ZnTe-550 shows superior IPCE values over
the entire range of wavelengths, compared to ZnTe-380 (Figure
S6), which aligns well with the LSV results (Figure 2a). It is also
worth noting that the onset wavelength of photocurrent
response is around 550 nm for both ZnTe-550 and ZnTe-380,
which is close to the absorption edge of ZnTe. Thus, the changes
in the photocurrent cannot be attributed to changes in the band
gap of the material or presence of midgap states.

We next examine the bulk charge transport property of ZnTe-
550 and ZnTe-380 by measuring the photocurrent of ZnTe-550
and ZnTe-380 in the presence of an Fe(CN)6(3−/4−) redox
couple. The Fe(CN)6(3−/4−) redox couple ensures the collection
of all charge carriers reaching the semiconductor−electrolyte
junction, thereby allowing an assessment of bulk charge

transport without influence from surface electrocatalytic
process.22 It appears that ZnTe-550 only shows slightly better
photocurrent than ZnTe-380, in contact with the Fe-
(CN)6(3−/4−) redox couple (Figure S7). Taken together, neither
bulk light absorption nor charge transport is distinctively
different between ZnTe-550 and ZnTe-380, leaving interfacial
charge transfer as the vital point in determining the PEC
performance for the CO2RR.

To investigate the interfacial charge transfer, electrochemical
impedance spectroscopy (EIS) was carried out for ZnTe-550
and ZnTe-380 (Figure S8). The most remarkable change in the
EIS results is the significant decrease in interfacial resistance at
the electrode/electrolyte for ZnTe-550, with respect to ZnTe-
380. This result is supportive of a facilitated electron transfer at
the electrode/electrolyte for ZnTe-550 and can explain the
increase of the photocurrent in Figure 2a.

To provide further insights into the charge-transfer
mechanism, photoconductive atomic force microscopy (pc-
AFM) can provide information about photocurrent hetero-
geneity on the nanoscale. Although the tip−sample interactions
at the solid/solid interface are different from the solid/liquid
interface during water splitting or CO2 reduction conditions, the
correlation between photocurrent distribution and the specific
feature at nanoscale can still provide relevant information
between the improvement of the photocurrent generation and
morphology. As a result, pc-AFM has been extensively used in
the studies of the PEC water splitting and CO2 reduction
reactions.23−28 Therefore, we performed pc-AFM measure-
ments on ZnTe-550 and ZnTe-380 in the dark and under
illumination. The comparable results in surface topography and
roughness (Sa ∼ 22−26 nm) of ZnTe upon 380−550 °C
annealing rule out the role of surface morphology or roughness
for the different PEC performance (Figure 2b and Figure S2).29

Figure 3. pc-AFM analysis of ZnTe thin films under 380 and 550 °C: (a) Analyzed area of ZnTe-380 surface. (b) Corresponding photocurrent
measured from the ZnTe-380 surface. (c) Analyzed area of ZnTe-550 surface. (d) Corresponding photocurrent measured from the ZnTe-550
surface.
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However, the photoresponses of these two surfaces exhibited
very different behaviors. As shown in Figure 3, under
illumination with an applied bias of 300 mV, pc-AFM reveals
an increase in the photocurrent of more than one order of
magnitude in favor of the ZnTe-550 sample (500 pA) as
compared to the ZnTe-380 sample (34 pA). Figure S9 shows the
pc-AFM dark current and photocurrent for the two samples.
Interestingly, differences between changes in the current
measured without illumination under the same bias for the
ZnTe-550 was much less noticeable, while the dark current for
the ZnTe-380 was half of the measured current under
illumination (Figure S9c and S9f). These pc-AFM results
validate that the ZnTe-550 surface has a much improved charge
carrier transfer capability when compared to ZnTe-380, which is
fully in line with the EIS results discussed earlier.

To further understand the relationship between the surface
and performance, we examined the surface composition of the
ZnTe samples by scanning transmission electron microscopy
(STEM) with electron energy loss spectroscopy (EELS). STEM
images show that the grain shapes and sizes of ZnTe-380 and
ZnTe-550 are identical (Figure 4a and 4d), which is consistent
with AFM and SEM results. However, EELS line scans suggest
that the Zn and Te are homogeneously distributed within ZnTe-
380 (Figure 4b), while there existed a Zn rich region at the outer
surface of ZnTe-550, i.e., Zn reached its maximum intensity at
the position around 10 nm, whereas the intensity of Te was still
ramping up and reached its maximum value 5 nm later at the
position of 15 nm (Figure 4e). To confirm the findings through
EELS, X-ray photoelectron spectroscopy (XPS) and ion
scattering spectroscopy (ISS) were also performed on both
the ZnTe-380 and ZnTe-550 surfaces. The ISS spectra show
that the Zn signal on the outer surface of ZnTe-550 is
significantly higher than that of ZnTe-380, in excellent
agreement of EELS results (Figure S10). The Zn LMM Auger
peak and Te 3d core level obtained by XPS further revealed that,
besides the dominant Zn−Te peak and Na KLL Auger peak
(presumably originated from the trisodium citrate during
electrodeposition), both ZnTe-380 and ZnTe-550 surfaces
contained Zn0 and Te0, while the Zn0 from ZnTe-550 is more

significant than ZnTe-380 (Figure 4c, 4f and Figure
S11).14,30−32 Given that the penetration depth of XPS is about
7−9 nm, and the Auger signal is even more surface sensitive, we
can confirm that the change of the material structure and
composition mainly occurs in the first few nanometer region.
This finding also explains the similar bulk material properties
observed in Figure 1, while obvious enhancements are found in
Figure 2 and Figure 3. Correlating all the results obtained by
various characterization techniques, we conclude that the Zn-
rich region on the surface of ZnTe-550 plays a key role in
accelerating photoelectron transfer and collection at the surface.
Recent theoretical simulation revealed that Zn contributedmore
in the conduction band of ZnTe than in the valence band.33

Accordingly, a Zn-rich surface may facilitate electron transfer,
which is in good agreement with our experimental findings.

Furthermore, Zn is known as an efficient catalyst for
electrochemically reducing CO2 into CO and formic
acid.34−36 In this work, the 550 °C annealing induced a Zn-
rich surface and effectively enhanced the charge transfer at the
solid/liquid interface. Accordingly, we surmise that the Zn-rich
region also acts as a catalytic site for directing photogenerated
charge carriers for desired CO2 reduction at the semiconductor/
electrolyte interface. To validate this hypothesis, we performed
CO2RR in the dark using ZnTe-380 and ZnTe-550 (Figure
S12). As expected, the FE values for H2 and C1 products on
ZnTe-550 and ZnTe-380 in the dark exhibited a very similar
trend to those observed for ZnTe-550 and ZnTe-380 under
light. The HER was suppressed, giving rise to higher C1 product
generation. These results further verify that the Zn-rich surface
not only facilitates the charge transfer but also acts as an
electrocatalyst that enhances the selectivity of the CO2RR to
carbon products.

In this work, we reported a simple annealing method to
effectively modify the surface of ZnTe, resulted in an improved
interfacial charge transfer toward PEC CO2RR. By employing
state-of-the-art photoconductive AFM, STEM−EELS, and XPS
characterization techniques, we showed the presence of a Zn-
rich region on the surface of ZnTe upon 550 °C annealing,
which not only acts as a charge collector to accelerate

Figure 4. STEM/EELS measurements of ZnTe thin films: (a,b) ZnTe-380, (d,e) ZnTe-550; XPS analysis of ZnTe thin films: (c) ZnTe-380, (f)
ZnTe-550.
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photoelectron transfer and collection at the semiconductor/
electrolyte interface, but also plays as a catalyst, directing
photoelectrons into CO2RR and suppressing competitive HER.
This work proves the fact that, before adding electrocatalysts,
there is still sufficient room for the optimization of
thermodynamically viable materials.24 The results of our work
highlight the importance of surface compositions of photo-
cathodes on the observed PEC CO2RR activity and selectivity.
Such knowledge can improve the development of active and
selective photocathodes and provide further insights into the
reaction mechanism of light driven CO2RR.
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