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A B S T R A C T   

Limited studies examine how prenatal environmental and social exposures jointly impact perinatal health. Here 
we investigated relationships between a neighborhood-level combined exposure (CE) index assessed during 
pregnancy and perinatal outcomes, including birthweight, gestational age, and preterm birth. Across all par-
ticipants, higher CE index scores were associated with small decreases in birthweight and gestational age. We 
also observed effect modification by race; infants born to Black pregnant people had a greater risk of preterm 
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birth for higher CE values compared to White infants. Overall, our results suggest that neighborhood social and 
environmental exposures have a small but measurable joint effect on neonatal indicators of health.   

1. Introduction 

Perinatal outcomes such as low birthweight (LBW), small or large for 
gestational age (SGA or LGA), and preterm birth (PTB) can have lasting 
consequences for child and adult health. For example, infants born SGA 
may experience rapid weight gain during a period of “catch up” growth 
that is associated with a higher risk of obesity in childhood (Ong and 
Loos, 2006). SGA and LBW babies are also at higher risk of asthma, 
delayed neurodevelopment, and metabolic disorders later in adulthood 
(Jornayvaz et al., 2016; Longo et al., 2013; Nam and Lee, 2018; Ong and 
Loos, 2006; Savchev et al., 2013; van Wassenaer, 2005; Xu et al., 2014). 
Individual-level risk factors for adverse perinatal outcomes include 
younger and advanced age at delivery, low socioeconomic status, 
gestational diabetes or hypertension during pregnancy, malnutrition, 
stress or depression, and active and secondhand smoke exposures, 
among others (Goldenberg et al., 2008; Valero de Bernabé et al., 2004). 

In addition to these important individual-level risk factors for 
adverse perinatal outcomes, epidemiologic studies have revealed that 
environmental and social stressors also increase risk at the 
neighborhood-level (Kane et al., 2017; Ncube et al., 2016). A recent 
meta-analysis of studies examining neighborhood deprivation scores 
and birth outcomes reported significant associations between higher 
scores and PTB and SGA (Vos et al., 2014). However, lower neighbor-
hood SES has been linked to LGA in other studies (Boubred et al., 2020; 
Wentz et al., 2014). Similarly, a systematic review of built environment 
characteristics and birth outcomes found that decreased neighborhood 
built environment quality was associated with higher risk of adverse 
birth outcomes (Nowak and Giurgescu, 2017). Poor environmental 
conditions and higher prevalence of social stressors at the neighborhood 
level are reflective of the harmful legacy of policies such as redlining and 
residential segregation (Bailey et al., 2021; Groos et al., 2018; Gutschow 
et al., 2021). Thus, the existing literature supports the hypothesis that 
neighborhood environments, potentially a reflection of structural racism 
(Payne-Sturges et al., 2021), are risk factors for perinatal health out-
comes, even when accounting for individual-level risk factors. 

Few prior studies have examined neighborhood-level exposures to 
multiple environmental and social stressors in the same study popula-
tion (Burris and Hacker, 2017). Examining these combined exposures is 
important for understanding how total neighborhood contexts can 
impact early life outcomes. Studies on the potential for 
neighborhood-level socioeconomic status to modify the relationship 
between air pollutants and birth outcomes suggest the interactions be-
tween neighborhood factors may be synergistic (Généreux et al., 2008; 
Mekonnen et al., 2021; Padula et al., 2014; Ponce et al., 2005; Yi et al., 
2010). These studies investigated relationships between SES and single 
environmental exposures. For example, Généreux et al., 2008 included 
distance to roadways as the exposure of interest, Padula et al. (2014) 
included ambient carbon monoxide, nitrogen dioxide, and particulate 
matter, and Mekonnen et al. (2021) included particulate matter and 
ozone. A review of interactions between social determinants and envi-
ronmental exposures on perinatal and childhood health outcomes found 
that 28 of the 39 (72%) review studies reported synergistic associations 
between social and environmental factors (Appleton et al., 2016). Of the 
perinatal outcome studies included in this review, all focused on a 
narrow set of environmental exposures (e.g., single pollutants or 
traffic-related air pollution). More recently, a systematic review and 
meta-analysis of interactions between prenatal exposure to exogenous 
chemicals and psychosocial stress on perinatal outcomes found that 
combined exposures to chemicals and stress were associated with more 
restricted fetal growth compared to either exposure alone among half 
the studies included (n = 10 studies in human populations), though 

there was limited evidence of interaction, potentially due to the vari-
ability observed among studies (Vesterinen et al., 2017). 

Because no environmental hazard or social stressor is experienced 
singularly, it is important to investigate the effects of combined expo-
sures that more accurately reflect real-world experiences on human 
health outcomes (National Institute of Environmental Health Sciences, 
2018). In an earlier study leveraging data from a single cohort (Healthy 
Start, based in Colorado) that is a member of the Environmental in-
fluences on Child Health Outcomes (ECHO)-wide Cohort consortia, a 
relationship was observed between higher exposures to combined social 
stressors and environmental risks (assessed as a single exposure index 
value that assumed a multiplicative effect for environmental and social 
risk factors) and decreased birthweight (Martenies et al., 2019). How-
ever, questions remain regarding the effects of combined environmental 
and social stressors measured at the neighborhood level in other regions 
with potentially differing exposure levels. Birth outcomes such as PTB 
and LBW show regional trends in the United States, with risks being 
highest in the South and lower in the West, Midwest, and Northeast 
(Peterman et al., 2022). Differences in environmental hazards and social 
stressors at the neighborhood level may partially explain these trends. 

Understanding the joint effect of neighborhood-level factors on 
perinatal outcomes is an important strategy for identifying public health 
interventions to reduce or prevent pediatric chronic diseases such as 
obesity or asthma, as these outcomes are associated with PTB, LBW, and 
SGA (Nam and Lee, 2018; Sonnenschein-van der Voort et al., 2014; Xu 
et al., 2014, p. 201; Zhang et al., 2018). In this expanded analysis, we 
leveraged data from the ECHO-wide Cohort to investigate the effects of 
combined environmental and social stressors on perinatal outcomes, 
including birthweight, PTB, SGA, and LGA. We replicated existing 
methods for assessing multiple exposures to develop a national-scale 
exposure index for cohort participants. This index includes indicators 
of environmental hazards and social vulnerability measured at the 
neighborhood level (operationalized as census tracts). Our hypothesis 
was that higher combined exposure index scores, which reflect worse 
neighborhood conditions, would be associated with lower birthweight 
and higher odds of PTB, SGA, and LGA. 

2. Methods 

2.1. Study population 

ECHO combines 69 ongoing pediatric cohorts across the U.S. into one 
ECHO-wide Cohort. The goal of ECHO is to study environmental factors 
associated with child health (Gillman and Blaisdell, 2018). ECHO data 
include a combination of extant study-specific data with prospective 
data collection using a common protocol. The current analysis uses 
previously collected or extant data to evaluate the association between 
census tract-level social and environmental stressors and perinatal out-
comes. Individual study cohorts were eligible for this analysis when 
more than 30 participants had both residential history during the period 
of interest (2010–2019) and perinatal outcome data. Cohorts that 
excluded or oversampled for adverse birth outcomes were included in 
this analysis and potential selection bias was evaluated through a series 
of sensitivity analyses. Participant addresses were geocoded in ArcGIS 
Pro Streetmap Premium Geocoder. Over 85% of addresses had a 
high-quality match (point or specific street address), which was required 
for inclusion in this analysis. We then assigned a census tract identifier 
to each participant address using the 2010 census tract boundaries. 

All participants were consented into their original cohort studies 
using approved methods. All participants provided additional consent to 
share data with the ECHO consortium. The ECHO-wide Cohort Data 
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Collection Protocol was approved by either the ECHO single IRB or the 
ECHO cohort’s local IRB. 

2.2. Exposure assessment 

Our primary predictor of outcomes in this study was a combined 
exposure (CE) index that characterized exposure to several environ-
mental hazards and social stressors, at the level of the census tract. For 
the overall development of the index, we leveraged methods developed 
for CalEnviroScreen 3.0 (Cushing et al., 2015) with some modifications 
based on data availability. Details about these methods are included 
below. 

2.2.1. Environmental exposure index (ENV) 
The environmental exposure index was generated from continuous 

estimates derived from seven unique input datasets. The inputs were 
categorized under two broad themes: 1) air pollution and 2) the built 
environment. We developed an annual ENV score for the years 
2010–2019. We briefly describe the data inputs here. Additional details 
about how we treated each variable in our index are provided in the 
supplemental materials. 

Air pollutant data included annual average estimates of particulate 
matter less than 2.5 μm in aerodynamic diameter (PM2.5) and ozone 
from the Fused Air Quality Surface Downscaling (FAQSD) Files (US 
Environmental Protection Agency, 2021), toxic air emissions from EPA’s 
Risk-Screening Environmental Indicators (RSEI) model (US Environ-
mental Protection Agency, 2014), and traffic density at the census tract 
level from road segment spatial files from the U.S. Department of 
Transportation’s Highway Performance Monitoring System (US 
Department of Transportation, 2020). Features of the built environment 
included tree canopy and impervious surfaces from the National Land 
Cover Database (Multi-Resolution Land Characteristics [MRLC] Con-
sortium, n.d.) and proximity to Superfund sites (US Environmental 
Protection Agency, 2015). 

Annual census tract values for raw inputs were converted to per-
centiles; percentile values were calculated by dividing the continuous 
distribution of a given variable into 100 equal intervals, assigning a new 
rank value for each estimate, and rescaling the distribution from 0 to 1. 
Rank values of input variables were then averaged to generate the air 
pollution score and the built environment score. If one or more inputs 
were available for each of the air pollution and the built environment 
scores, the environmental index for a given tract was calculated. 
Consistent with the formation of the CalEnviroScreen 3.0 index (Cushing 
et al., 2015), the final environmental index is the weighted average of an 
air pollution score and a built environment score: [(Air Pollution Score * 
1) + (Built Environment Score*0.5) / 1.5]. Values for the ENV index 
could range from 0 to 1. 

2.2.2. Social exposure index (SOC) 
The social exposure index used in this analysis was borrowed from 

the Centers for Disease Control and Prevention’s social vulnerability 
index (SVI) (Agency for Toxic Substances and Disease Registry, 2021). 
The SVI describes the relative vulnerability of every U.S. census tract 
based on 15 social factors and is intended to help public health officials 
and emergency response planners identify neighborhoods of greatest 
need before, during, and after a hazardous event. We elected to use these 
indicators because they represent the variety of social stressors and so-
cioeconomic conditions that might influence birth outcomes via stress or 
access to care (Nkansah-Amankra et al., 2010). The SVI has recently 
been used in other studies to explore associations between social 
vulnerability and PTB (Givens et al., 2021) and pregnancy complications 
(Knupp et al., 2022). Additionally, because the SVI is an existing tool, 
national level data for all included indicators were available for the time 
periods included in our study. 

The 15 social factors are grouped into four themes: 1) socioeconomic 
status, which includes the percentage of the population with income 

below the poverty level, the percentage of the population ages 25 and 
older without a high school diploma, the percentage of the population 
ages 16 and older who are unemployed and seeking work, and per capita 
income, 2) household composition and disability, which includes the 
percentage of the population ages 65 and older, the percentage of the 
population ages 17 and younger, the percentage of the population ages 5 
and older with a disability, and the percentage of households with 
children that have a single parent, 3) minority status and language, 
which includes percentage of the population who identifies as other than 
non-Hispanic White and the percentage of the population ages five and 
older who speak English “less than well”; and, 4) housing type and 
transportation, which includes the percentage of housing units in 
buildings with ten or more units, the percentage of housing units that are 
mobile homes, the percentage of housing units with more than one 
person per room (crowding), the percentage of housing units with no 
vehicle, and the percentage of the population living in group quarters. 
The percentile ranking is first calculated for all raw input values and 
then an overall ranking is assigned to each tract which is the sum of the 
individual variable rankings with a higher value always indicating 
greater vulnerability. The overall ranking was used for the social 
exposure index in this analysis, with every census tract receiving a score 
between 0 and 1. 

The SVI data were acquired from data products labeled as 2010, 
2014, 2016, and 2018 but whose inputs are 5-year estimates from the 
American Community Survey (ACS) from 2006 to 2010, 2010–2014, 
2012–2016, and 2014–2018, respectively. Considering the temporal 
span of the estimates, the SVI scores were applied to the social exposure 
index with more attention to estimate midpoint years. CDC data from 
2010 were applied to 2010, 2014 to 2011–2012, 2016 to 2013–2015, 
and 2018 to 2016–2019. 

2.2.3. Combined exposure index 
The combined exposure (CE) index was calculated as the product of 

ENV and SOC indices (i.e., CE = ENV * SOC). We opted to use the 
multiplicative approach to calculate the combined exposure index for 
two reasons. First, the multiplicative approach is used in similar indices 
combining data on environmental and social exposures (August et al., 
2021; Cushing et al., 2015; US Environmental Protection Agency, 2019). 
Second, there is evidence suggesting an interaction between neighbor-
hood factors (e.g., neighborhood SES) and environmental exposures (e. 
g., air pollution) on individual-level health outcomes in adults and 
children (Appleton et al., 2016; Chi et al., 2016; Généreux et al., 2008; 
Hazlehurst et al., 2018; Padula et al., 2014; Ponce et al., 2005; Wing 
et al., 2017; Yi et al., 2010). Values for the final CE could theoretically 
range from 0 to 1. In practice, because the minimum values for ENV and 
SOC are >0, the range for the CE does not include 0. 

Participants were assigned an annual average CE value based on the 
census tract of the reported residential address during pregnancy. When 
a pregnancy was contained in one calendar year, we used the annual 
value assigned to that census tract. When the pregnancy fell between 
two calendar years, we used a time-weighted average based on the 
number of months of pregnancy in each year. For participants who 
moved during the pregnancy, we similarly used a time-weighted average 
based on the number of months spent at each residence. 

We also modeled CE as a categorical measure (as tertiles) to assess 
the dose-response relationship. When deriving tertiles, we compared the 
CE level of the census tract a participant resided in during their preg-
nancy to that of other census tracts where at least one other analytic 
cohort participant resided in the same year. For pregnant people who 
moved and for pregnancies that spanned two calendar years, we used CE 
values from the year or census tract when she experienced the longest 
gestation period. 

2.3. Outcomes 

The primary outcomes were birthweight (continuous, in grams), 
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gestational age at birth (continuous, in weeks), and infant birthweight- 
for-gestational age z-score (continuous, no unit). We also included the 
following binary outcomes as secondary outcomes: low birthweight 
(LBW) (defined as birthweight <2500 g), preterm birth (PTB) (defined 
as gestational age at birth <37 weeks), small-for-gestational age (SGA) 
(defined as birthweight-for-gestational age <10th percentile), and large- 
for-gestational-age (LGA) (defined as birthweight-for-gestational age 
>90th percentile). 

Data on outcomes of interest were collected by each participating 
cohort based on their established protocols. ECHO perinatal data come 
from several sources including parental medical records, child medical 
records from birth, and pregnant person/caregiver self-report. If avail-
able, outcomes were based on data from medical record abstraction. If 
medical records data were not available, outcomes were based on bio-
logical pregnant parent or other caregiver report. 

For birthweight, the first weight measured after birth (ideally within 
hours of delivery) was used. Gestational age was based on a data quality 
hierarchy; estimates from ultrasounds (first or second trimester) were 
prioritized over gestational age estimates based on last menstrual 
period, followed by estimates at delivery and parental self-report. We 
calculated birthweight-for-gestational age z-score, SGA, and LGA using 
the Intergrowth-21st standard (Villar et al., 2014), which had been 
previously derived for all ECHO participants from whom data were 
available. We excluded non-singleton births, any participant missing 
data on singleton status or infant sex, or infants with a gestational age at 
birth <168 or >300 days according to the Intergrowth-21st guidelines. 

2.4. Potential confounders/covariates 

We defined confounders as covariates associated with the exposure 
(CE) and the outcome (infant birth outcomes) but not on the causal 
pathway. Confounders selected a priori, all assessed at the individual 
level, included pregnant person age at delivery (continuous), race 
(categories: White, Black, and other, which included Asian, Native Ha-
waiian or other Pacific Islander, American Indian or Alaska Native, and 
multiple race or other race), ethnicity (categories: non-Hispanic, His-
panic), educational level (categories: less than high school; high school 
degree, GED or equivalent; some college, no degree and above), tobacco 
use during pregnancy (categories: never/ever), and second-hand ciga-
rette smoke exposure during pregnancy (categories: never/ever). The 
selection of these variables was based on the previous literature (Kane 
et al., 2017; Morello-Frosch et al., 2010; Ncube et al., 2016; Nowak and 
Giurgescu, 2017; Shmool et al., 2015; Vos et al., 2014) and informed by 
a directed acyclic graph (Fig. S3). 

For pregnant person education level, we first used data reported 
during pregnancy and then imputed using education level from later life 
stages. For a small proportion of missing covariate data (3.7% for 
pregnant person race, 2.2% for pregnant person ethnicity, 3.7% for 
pregnant person education level, 17.2% for tobacco use during preg-
nancy, 31.5% for second-hand cigarette smoke exposure during preg-
nancy; Table 1), we assumed the data were missing at random and used 
the multiple imputation by chained equations method (10 imputations 
and each with 10 iterations) to impute these data (Donders et al., 2006; 
Stuart et al., 2009). We imputed data for the five pre-term/NICU cohorts 
and the 36 other cohorts separately. We calculated the regression esti-
mates using the average of the 10 estimates derived from the imputed 
datasets, and we calculated the standard errors of the regression pa-
rameters using Rubin’s rules. 

2.5. Statistical analyses 

2.5.1. Associations between the combined exposure (CE) index and 
perinatal outcomes 

To examine the associations of CE with infant birth outcomes, we 
used linear regression (for continuous outcomes: birthweight, gesta-
tional age, and birthweight-for-gestational-age z-score) and Poisson 

Table 1 
Characteristics of mother-infant pairs (N = 13,046).  

Pregnant person characteristics 

Age at delivery, years, mean (SD) 30.7 (5.5) 
Missing 84 

Racea, n (%) 
White 8472 (67%) 
Black 1670 (13%) 
Asian 739 (6%) 
Native Hawaiian or other Pacific Islander 67 (1%) 
American Indian or Alaska Native 222 (2%) 
Multiple race or other race 1390 (11%) 
Missing 486 

Ethnicitya, n (%) 
Non-Hispanic 10196 (80%) 
Hispanic 2565 (20%) 
Missing 285 

Marital statusa, n (%) 
Married or living with a partner 7377 (81%) 
Widowed, separated, or divorced 345 (4%) 
Single, never married, or partnered but not living together 1404 (15%) 
Missing 3920 

Educational levela, n (%) 
Less than high school 916 (7%) 
High school degree, GED or equivalent 1862 (15%) 
Some college and above 9788 (78%) 
Missing 480 

Tobacco use during pregnancya, n (%) 
Never 10006 (93%) 
Ever 790 (7%) 
Missing 2250 

Second-hand cigarette smoke exposure during pregnancya, n (%) 
Never 7394 (83%) 
Ever 1542 (17%) 
Missing 4110 

County type (metro vs. non-metro) based on Rural-Urban Continuum Codes (RUCC), n 
(%) 
Metro counties (RUCC ≤3) 11091 (85%) 
Non-metro counties (RUCC >3) 1955 (15%) 

Infant characteristics 
Infant sexa, n (%) 

Male 6798 (52%) 
Female 6244 (48%) 
Missing <5 

Singleton birtha, n (%) 
Yes 11637 (96%) 
No 499 (4%) 
Missing 910 
Birthweight, grams, mean (SD) 3171.2 (788.2) 
Gestational age at birth, weeks, mean (SD) 38.0 (3.5) 
Birthweight-for-gestational age z-score, mean (SD) 0.3 (1.0) 
Missingb 1444 

Preterm birth, n (%) 
Yes 1921 (15%) 
No 11125 (85%) 

Low birthweight, n (%) 
Yes 1654 (13%) 
No 11392 (87%) 

Large-for-gestational agea,b, n (%) 
Yes 1882 (16%) 
No 9720 (84%) 
Missingb 1444 

Small-for-gestational agea,b, n (%) 
Yes 717 (6%) 
No 10885 (94%) 
Missingb 1444 

Infant birth year, n (%) 
2010 289 (2%) 
2011 1421 (11%) 
2012 1461 (11%) 
2013 1312 (10%) 
2014 1444 (11%) 
2015 1397 (11%) 
2016 1139 (9%) 
2017 1301 (10%) 
2018 1560 (12%) 
2019 1722 (13%) 
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regression with robust variance estimates (for binary outcomes: PTB, 
LBW, LGA, and SGA) models. We used generalized estimating equations 
(exchangeable correlation structure and robust variance estimates) to 
account for within-cohort clustering. We started with crude (unad-
justed) models and adjusted for pregnant person age at delivery, race, 
ethnicity, education level, cigarette smoking during pregnancy, and 
second-hand cigarette exposure during pregnancy. We also estimated 
the Intraclass Correlation Coefficient to examine potential clustering of 
participants by study cohort (i.e., the original study that recruited the 
participant) and census tract. 

2.5.2. Effect modification analyses 
We considered several potential effect modifiers. First, previous 

studies have suggested that pregnant person race or ethnicity or socio-
economic status may be important effect modifiers in the relationship 
between neighborhood factors and birth outcomes (Banay et al., 2017; 
Culhane and Goldenberg, 2011; Heo et al., 2019; Kothari et al., 2016; 
Masi et al., 2007). Therefore, we examined whether the associations of 
CE with infant birth outcomes differed by pregnant person race (White 
vs. Black), ethnicity (non-Hispanic vs. Hispanic), and education level 
(less than high school vs. high school degree, GED or equivalent vs. some 
college and above). We did not conduct subgroup analyses in infants 
born to pregnant people whose race was not White or Black due to the 
small sample size of these groups (6% for Asian, 1% for Native Hawaiian 
or other Pacific Islander, 2% for American Indian or Alaska Native, and 
11% for “multiple race or other race”). Second, the relationships be-
tween environmental hazards or social stressors and perinatal outcomes 
may differ by infant sex (Ae-Ngibise et al., 2019; Deguen et al., 2021; 
Flom et al., 2018; Lakshmanan et al., 2015). Therefore, we included an 
analysis investigating effect modification by sex (male vs. female). 
Lastly, there may be differences in the effects of neighborhood-level 
contextual factors depending on urbanicity (Bertin et al., 2015; Kent 
et al., 2013; Li et al., 2020). In this third effect modification analysis, we 
stratified participants based on the 2013 Rural-Urban Continuum Code 
(RUCC) for the county in which they lived the longest during pregnancy 
(US Department of Agriculture, 2020). Due to limited numbers of par-
ticipants with high (less urban) RUCC scores, we dichotomized RUCC 
scores as ≤ 3 (metro) vs > 4 (non-metro). 

To examine potential effect modification, we examined the stratum- 
specific associations for each subgroup and included a product term of 
the potential effect modifier and the CE levels in the multivariable- 
adjusted linear models to derive interaction p-values. We considered a 
two-sided p < 0.10 as evidence for effect modification based on the p- 
value of the interaction terms. 

2.5.3. Sensitivity analyses 
We conducted several sensitivity analyses to assess the robustness of 

the findings. First, to examine the potential impact of selection bias, we 
excluded five cohorts in which all children were recruited from newborn 
intensive care units (NICU, n = 782) and one cohort in which no chil-
dren were born preterm (n = 180). Second, we conducted a “leave one 
out” analysis to examine the influence of any one cohort on the study 
results. Third, to assess how much moving during pregnancy influences 
the results, we excluded participants who moved to different census 
tracts during pregnancy (n = 744). Fourth, to assess the impact that 
multiples had on the results for birthweight gestational age, LBW and 

PTB, we excluded participants who did not have singleton pregnancies 
(n = 499). (SGA, LGA, and birthweight-for-gestational age z-score were 
already restricted to singleton births.) Lastly, to serve as a comparison to 
our main models of the associations between CE and the perinatal out-
comes, we modeled the ENV, SOC, and their interaction term in multi-
pollutant models. 

We conducted analyses using Stata (version 16.0; StataCorp). Except 
for the tests for interaction, we considered a two-tailed p < 0.05 as 
statistically significant. 

3. Results 

Of the 60,182 ECHO-wide Cohort participants who provided resi-
dential history data (n = 28,600), we included data from 13,046 infants 
recruited into 41 individual cohorts with both geocoded prenatal ad-
dresses and perinatal outcomes in our study period, 2010–2019 
(Fig. S1). Participants lived in urban, suburban, and rural parts of the 
country (Fig. S2), though most (85%) lived in metropolitan counties. 
Infants included in our cohort were born between 2010 (2%) and 2019 
(13%). Most infants, 52% of whom were male, were born to pregnant 
people who identified as White (67%) and non-Hispanic (80%), with at 
least some college education (78%). Most (96%) of the infants were 
singleton births. The mean (standard deviation) GA at birth was 38.0 
(3.5) weeks with 15% of births considered preterm. On average, babies 
weighed 3171 (788) grams at birth, with 6% and 16% categorized as 
SGA and LGA, respectively. (Table 1). 

Exposure to environmental hazards and social stressors varied 
among study participants. In general, there was more variability in the 
SOC component of the CE index than the ENV component (Table 2). The 
interquartile ranges for the SOC and ENV were 0.56 and 0.21, respec-
tively. The raw exposure values used to calculate the ENV, SOC, and CE 
at the census tract level are summarized in Table S2. On average, 
combined environmental exposures were highest in the western United 
States and the Midwest (Illinois, Indiana, and Ohio). Social exposure 
index scores were highest in southern and western United States. 
Overall, the highest CE index scores were observed in the western United 
States, New York, and the Midwest (Fig. 1). 

In our main analyses investigating associations between our CE index 
and perinatal outcomes, higher combined exposures were associated 
with lower birthweight, shorter gestational periods, and lower risk of 
LGA (Table 3). After accounting for individual-level covariates, a stan-
dard deviation (SD) increase in the CE (0.186) was associated with a 
14.90 g (95% CI: -28.62, -1.18g) decrease in birthweight and a 0.08 
week (95% CI: -0.12, -0.03 week) decrease in gestational age at delivery. 
An SD increase in CE was also associated with lower risk of LGA (RR =
0.94, 95% CI: 0.89, 1.00). When categorizing the CE into tertiles, we 
observed monotonic relationships, where associations between higher 
CE and shorter gestational age strongest in the third tertile (relative to 
the first tertile). We did not observe associations between the CE and the 
other perinatal outcomes. 

In our stratified analysis, we observed effect modification by preg-
nant person race on associations between CE and LBW, PTB, and LGA 

Abbreviations: SD = standard deviation, GED = General Educational Develop-
ment, NICU = newborn intensive care unit. 

a For categorical covariates with missing observations, missing observations 
were not included in the denominator when deriving percentages for the cate-
gories with known values. 

b For birthweight-for-gestational age z-score, large-for-gestational age, and 
small-for-gestational-age, there were 1444 missing due to non-singleton birth, 
missing singleton status or infant sex, or gestational age at birth <168 or >300 
days. 

Table 2 
Summary of ENV, SOC, and CE index values assigned to each participant based 
on the residential history. Values are time-weighted based on the number of 
months spent in a census tract. (N = 13,046).  

Index SD Min 25th 

Percentile 
50th 

Percentile 
75th 

Percentile 
Max 

ENV 0.166 0.02 0.35 0.47 0.56 0.92 
SOC 0.305 0.001 0.20 0.45 0.76 1.00 
CEI 0.191 0.00005 0.06 0.18 0.39 0.83 

Abbreviations: ENV: environmental exposure component of the CE index; SD: 
Standard deviation; SOC: social exposure component of the CE index; CEI: 
combined exposure index. 
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(Table 4, Table S3). Among Black pregnant people, the RR for LBW was 
1.11 (95%CI: 1.01, 1.21) per SD increment in the CE, whereas among 
White pregnant people the RR was 0.99 (95% CI: 0.95, 1.03) (p value for 
the interaction: 0.02). Risks for preterm birth due to an SD increase in 
the CE among Black participants (RR = 1.08, 95% CI: 1.00, 1.16) were 
higher compared to White participants (RR = 0.99, 95% CI: 0.95, 1.03) 
as well (p value for the interaction: 0.06). Black pregnant people had a 
lower risk of LGA (RR = 0.81, 95% CI: 0.66, 1.00) compared to White 
pregnant people (RR = 0.96, 95% CI: 0.89, 1.02) for the same increase in 
CE (p value for the interaction: 0.03). Black pregnant people also 

experienced greater decreases in gestational age (β = -0.15 weeks, 95% 
CI: -0.25, -0.06 weeks) due to an SD increase in CE compared to White 
pregnant people (β = -0.01 weeks, 95% CI: -0.08, 0.06 weeks), although 
the p-value for the interaction term was not significant (0.11). 

Pregnant person educational attainment, a proxy for socioeconomic 
status, modified the association between CE and gestational age (p-value 
for the interaction: 0.06). Among pregnant people with higher educa-
tional attainment (some college and above), an SD increase in CE was 
associated with a 0.07 week decrease (95% CI: -0.11, -0.03 weeks) in 
gestational age; among those with less than a high school education, CE 

Fig. 1. Maps showing the average index scores by census tract across all years of the study.  

Table 3 
Associations (estimates and 95% confidence intervals) of combined exposure indices with infant birth outcomes (N = 13,046a). Adjusted associations significant at ⍺ =
0.05 have been bolded.  

Outcome Estimates Levels of combined exposure 

Tertile 1 Tertile 2 Tertile 3 Per SD increment (SD = 0.191) 

n = 4854 n = 4050 n = 4142 

Birthweight (grams) Crude Reference (0) -48.19 (-85.31, -11.07) -94.55 (-143.80, -45.30) -50.23 (-72.75, -27.72) 
Adjustedb Reference (0) -24.47 (-53.77, 4.83) -21.12 (-52.36, 10.12) -14.90 (-28.62, -1.18) 

Gestational age at birth (weeks) Crude Reference (0) -0.12 (-0.22, -0.03) -0.27 (-0.39, -0.15) -0.15 (-0.20, -0.09) 
Adjustedb Reference (0) -0.08 (-0.16, -0.003) -0.12 (-0.23, -0.02) -0.08 (-0.12, -0.03) 

Birthweight-for-gestational age z-score (n = 11,602) Crude Reference (0) -0.05 (-0.11, 0.01) -0.15 (-0.23, -0.06) -0.08 (-0.11, -0.04) 
Adjustedb Reference (0) -0.01 (-0.06, 0.05) -0.01 (-0.07, 0.06) -0.01 (-0.04, 0.02) 

Low birthweight Crude Reference (1) 1.07 (0.97, 1.17) 1.14 (1.02, 1.29) 1.07 (1.01, 1.14) 
Adjustedb Reference (1) 1.05 (0.96, 1.14) 1.05 (0.97, 1.14) 1.03 (0.99, 1.07) 

Preterm birth Crude Reference (1) 1.07 (0.99, 1.15) 1.13 (1.02, 1.26) 1.06 (1.01, 1.11) 
Adjustedb Reference (1) 1.06 (0.99, 1.13) 1.07 (0.97, 1.17) 1.03 (0.99, 1.08) 

Large-for-gestational-age (n = 11,602) Crude Reference (1) 0.94 (0.87, 1.03) 0.74 (0.64, 0.85) 0.86 (0.81, 0.91) 
Adjustedb Reference (1) 1.01 (0.93, 1.10) 0.90 (0.79, 1.03) 0.94 (0.89, 1.00) 

Small-for-gestational-age (n = 11,602) Crude Reference (1) 1.17 (0.96, 1.43) 1.37 (1.12, 1.67) 1.13 (1.02, 1.24) 
Adjustedb Reference (1) 1.08 (0.90, 1.30) 1.07 (0.88, 1.30) 1.01 (0.93, 1.09) 

Abbreviations: SD = standard deviation. 
a Unless otherwise indicated. 
b Adjusted for age at delivery, race, ethnicity, education level, tobacco use during pregnancy, and second-hand smoke exposure during pregnancy. 
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was not associated with a change in gestational age (β = -0.09, 95% CI: 
-0.31, 0.13). We also observed differences in the risk of PTB by educa-
tion attainment, although p values for the interaction term between CE 
and education were not significant. The risk of preterm birth associated 
with an SD increase in the CE among pregnant people with some college 
education and above was 1.05 (95% CI: 1.00, 1.09); we did not observe 
associations between CE and PTB for those with less than a high school 
education or a high school degree or equivalent. 

Urbanicity (metro counties vs. non-metro counties) modified the 
associations between CE and birthweight (p for the interaction = 0.01) 
and gestational age (p for the interaction = 0.001) (Table 4). Partici-
pants in non-urban counties experienced larger decreases in birthweight 
and gestational age relative to those living in urban counties. Among 
participants living in non-urban counties, an SD increase in the CE was 
associated with a 108.39 g decrease (95% CI: -201.16 g, -15.63 g) in 
birthweight and a 0.46 week (95% CI: -0.83, -0.10) decrease in gesta-
tional age. Comparatively, pregnant people living in urban counties had 
a 13.02 g decrease (95% CI: -26.36 g, 0.31 g) in birthweight and a 0.08 
week (95% CI: -0.12, -0.04) decrease in gestational age per SD increase 
in CE. 

We did not observe effect modification by either pregnant person 
ethnicity (Hispanic vs. non-Hispanic) or infant sex (Table 4, Table S3). 

Our results were robust and generally not sensitive to the inclusion of 
cohorts recruiting exclusively from neonatal intensive care units, the 
inclusion of participants who moved during their pregnancies, the in-
clusion of multiple births, or the inclusion of cohorts that recruited only 
term infants (Table S4). In our main analysis, an SD increase in CE was 
not associated with the risk of LBW. After excluding NICU cohorts, an SD 
increase in the CE was associated with RR of 1.08 (95% CI: 1.01, 1.16) 
for LBW and after excluding participants who moved during pregnancy, 
an SD increase in the CE was associated with a RR of 1.04 (95% CI: 1.00, 
1.08) for LBW. When excluding multiple births, the RR for LBW was 1.04 
(95% CI: 1.00, 1.08). Similarly, an SD increase in CE was not associated 
with the risk of PTB in the main analysis. After excluding NICU cohorts, 
an SD increase in the CE was associated with RR of 1.08 (95% CI: 1.01, 
1.16) for PTB and after excluding participants who moved during 
pregnancy, an SD increase in the CE was associated with a RR of 1.04 

(95% CI: 1.00, 1.08) for PTB. When excluding multiple births, the RR for 
LBW was 1.04 (95% CI: 1.00, 1.08). Point estimates for other perinatal 
outcomes were similar across our sensitivity analyses (Table S4 and 
Table S5). In leave-one-cohort-out models, we found that most estimates 
were similar to the overall estimates (Figs. S4 and S5). 

When modeling the ENV and SOC components of the CE as separate 
predictors, we observed similar trends in the associations between ENV 
and birthweight and LGA and SOC and gestational age (Table S6). In 
two-pollutant models (ENV + SOC) that were adjusted for all individual 
covariates, an SD increase in ENV was associated with a 20.44 g decrease 
(95%CI: -39.82 g, -1.05 g) in birthweight and a RR of 0.89 (95%CI: 0.82, 
0.96) for LGA. An SD increase in SOC was associated with 0.07 week 
decrease (95% CI: -0.11, -0.03) in gestational age. 

4. Discussion 

Although data on environmental and social stressors are widely 
available, few studies have examined their combined effects on birth 
outcomes. Existing studies have been limited to single metropolitan 
areas or states, where the range of exposures may be reduced relative to 
the nation as a whole. To address this knowledge gap, we leveraged the 
large ECHO-wide cohort data set to examine how the neighborhood 
environmental and social context influences perinatal health. In a study 
of 41 cohorts from across the United States, we used an index summa-
rizing combined exposures to multiple stressors and examined associa-
tions with perinatal outcomes. The use of a combined index that 
considered environmental hazards and social stressors allowed us to 
capture several components of the neighborhood context in a single 
construct and use a categorical analysis to examine potential dose- 
response relationships. Consistent with our original hypothesis, we 
found that higher combined exposures were associated with poorer 
outcomes, including lower birthweight and shorter gestational age. 
However, we observed no associations with other outcomes of interest, 
including birthweight for gestational age z-score, preterm birth, low 
birthweight, and small-for-gestational age in our primary analysis of the 
full cohort. In stratified analyses, we found some evidence of effect 
modification by race, pregnant person education, and urbanicity for 

Table 4 
Associations (estimates and 95% confidence intervals) of combined exposure indices with infant birthweight, gestational age at birth, low birthweight, and preterm 
birth: stratified analyses by race/ethnicity and education level. Estimates show the multivariable adjusted associations of per standard deviation (SD) increment in 
combined exposure indices with infant birth outcomes.  

Groups N Birthweight (grams) Gestational age at birth (weeks) Low birthweight Preterm birth 

Overall (Adjusteda estimates from Table 3) 13,046 -14.90 (-28.62, -1.18) -0.08 (-0.12, -0.03) 1.03 (0.99, 1.07) 1.03 (0.99, 1.08) 
Pregnant person race 
White 8472 -1.58 (-20.83, 17.68) -0.01 (-0.08, 0.06) 0.99 (0.95, 1.03) 0.99 (0.95, 1.03) 
Black 1670 -39.48 (-82.98, 4.02) -0.15 (-0.25, -0.06) 1.11 (1.01, 1.21) 1.08 (1.00, 1.16) 
P-interaction N/A 0.150 0.105 0.021 0.060 
Pregnant person ethnicity 
Non-Hispanic 10,196 -9.20 (-25.54, 7.14) -0.05 (-0.10, 0.01) 1.02 (0.98, 1.06) 1.03 (0.99, 1.08) 
Hispanic 2565 -23.55 (-53.95, 6.85) -0.14 (-0.25, − 0.03) 1.07 (1.00, 1.16) 1.06 (0.97, 1.14) 
P-interaction N/A 0.602 0.563 0.727 0.874 
Pregnant person education 
1: Less than high school 916 -24.07 (-69.07, 20.93) -0.09 (-0.31, 0.13) 1.00 (0.89, 1.13) 1.05 (0.89, 1.24) 
2: High school degree, GED or equivalent 1862 -35.84 (-65.79, -5.89) -0.10 (-0.23, 0.03) 1.07 (0.98, 1.17) 0.98 (0.89, 1.07) 
3: Some college and above 9788 -11.72 (-28.64, 5.20) -0.07 (-0.11, -0.03) 1.04 (1.00, 1.08) 1.05 (1.00, 1.09) 
P-interaction N/A 0.192 (2 vs. 1) 

0.334 (3 vs. 1) 
0.261 (2 vs. 1) 
0.063 (3 vs. 1) 

0.174 (2 vs. 1) 
0.235 (3 vs. 1) 

0.686 (2 vs. 1) 
0.198 (3 vs. 1) 

Infant sex 
Male 6798 -3.06 (-22.70, 16.59) -0.05 (-0.11, 0.01) 1.01 (0.96, 1.06) 1.03 (0.99, 1.08) 
Female 6244 -27.18 (-44.93, -9.43) -0.11 (-0.17, -0.05) 1.06 (1.00, 1.12) 1.04 (0.98, 1.10) 
P-interaction N/A 0.968 0.483 0.576 0.336 
Metro vs. non-metro counties 
Metro 11,091 -13.02 (-26.36, 0.31) -0.08 (-0.12, -0.04) 1.03 (0.99, 1.07) 1.04 (1.00, 1.08) 
Non-metro 1955 -108.39 (-201.16, -15.63) -0.46 (-0.83, -0.10) 1.07 (0.93, 1.23) 1.11 (0.95, 1.30) 
P-interaction N/A 0.012 0.001 0.248 0.207 

Abbreviations: GED = General Educational Development, N/A = not available. 
a All models presented in this table were adjusted for age at delivery, race (if not stratified by race), ethnicity (if not stratified by ethnicity), education level (if not 

stratified by education level), tobacco use during pregnancy, and second-hand smoke exposure during pregnancy. 
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some outcomes included in our analysis. When examining effects for the 
two component scores as separate predictors, ENV scores were associ-
ated with gestational age and LGA and SOC scores were associated with 
PTB, suggesting different components of the index may be driving some 
of the observed associations for the particular set of neighborhood-level 
exposures we are considering. 

Overall, our findings are generally consistent with previous studies 
relying on similar index-based methods to capture multiple stressors. In 
the Colorado-based Healthy Start cohort study that motivated this 
expanded analysis, combined exposures (assessed as an index) were 
associated with lower birthweights (Martenies et al., 2019). Similar 
results were observed in California, where components of the CalEn-
viroScreen tool (pollution burden, particulate matter exposures, and 
drinking water contamination scores) were associated with higher odds 
of preterm birth (Huang et al., 2018). In Fresno, CA, higher pollution 
scores were associated with increased odds of preterm birth; notably, the 
effects of environmental exposures were stronger in areas of low so-
cioeconomic status (Padula et al., 2018). In a recent paper using the 
Childhood Opportunity Index, which measures favorable social, 
educational, and environmental conditions within a neighborhood, 
higher scores were associated with higher birthweight and lower risk of 
intrauterine growth restriction among infants in upstate New York 
(Appleton et al., 2021). Our analysis, which includes data from several 
regions of the country, adds to the growing body of evidence suggesting 
a combined effect of neighborhood-level environmental and social fac-
tors on perinatal outcomes. 

Although the effect estimates we observed in this study were small, 
they are indicative of potentially large risks when applied to the full 
population of infants born in the United States. In our cohort, an SD 
increase in the CE was associated with a 15 g decrease in birthweight. 
Between 1990 and 2012 the mean birthweight among first-born 
singleton infants decreased by 67 g on average (Tilstra and Masters, 
2020). Small decreases in mean birthweight at the population level shift 
the overall birthweight distribution, resulting in more infants born with 
LBW. In recent years, rates of singleton LBW births have increased in the 
United States, driven primarily by the increase in the rate of moderately 
LBW births (1500–2499 g) (Womack et al., 2018). The risks in adulthood 
to infants born preterm or LWB are well documented and include car-
diovascular and respiratory diseases (Luu et al., 2016; Visentin et al., 
2014). Although further evidence is needed to draw conclusions, our 
results suggest neighborhood-level exposures may be contributing to 
these overall trends and indicate there may be important policy ap-
proaches available to improve both perinatal health and health later in 
life. 

Questions regarding the joint effects of social stressors and envi-
ronmental exposures, particularly during the prenatal period, on health 
outcomes are of growing interest (Koman et al., 2018; Padula et al., 
2020). Neighborhood conditions are known to be associated with stress 
(Boardman, 2004), which is a risk factor for adverse birth outcomes 
(Dole et al., 2003; Hobel et al., 2008; Nkansah-Amankra et al., 2010). 
However, the specific mechanisms underlying these effects are still not 
fully understood. Oxidative stress and inflammation have been identi-
fied as shared pathways for both environmental factors and social 
stressors to jointly impact perinatal outcomes (Erickson and Arbour, 
2014; Rakers et al., 2020). Both pregnant person cortisol, which is an 
indicator of psychosocial stress, and isoprostanes, which are biomarkers 
of oxidative stress, are associated with perinatal outcomes including 
preterm birth and birthweight (Eick et al., 2020; Guardino et al., 2016; 
Rosen et al., 2019). An alternative hypothesis is that social stressors 
mediate or modify associations between environmental exposures and 
perinatal outcomes (Brunst et al., 2018; Deguen et al., 2021; Erickson 
et al., 2016). Our findings and those of other similar studies suggest 
there may be a combined effect of these types of exposures on prenatal 
and infant health and that future studies should aim to elucidate the 
mechanisms driving these associations. 

Importantly, our study provides additional evidence that 

environmental hazards and social stressors assessed at the neighborhood 
level may be contributing to health disparities in infant outcomes by 
race. Our current analysis does not allow us to fully examine disparities 
using the framework presented by Ward et al. (2019), but our results are 
consistent with other studies of disparities by race. Pregnant people who 
identified as Black in our study had higher relative risks of PTB and LBW 
compared to White pregnant people; they also experienced greater de-
creases in gestational age associated with higher CE levels compared to 
White participants. Disparities in LBW and PTB across racial groups in 
the United States are well documented (Blumenshine et al., 2010; 
Grobman et al., 2018; Lu and Halfon, 2003). The etiology of these dis-
parities is still not fully understood (Grobman et al., 2018), but factors 
such as psychosocial stress or structural racism may contribute to 
adverse perinatal outcomes (Almeida et al., 2018). For example, a recent 
meta-analysis reported that higher levels of segregation were associated 
with greater odds of PTB and low birthweight among Black pregnant 
people but generally not among White pregnant people (Mehra et al., 
2017). Given the complicated relationships between race, psychosocial 
stress, and neighborhood quality, further elucidation of the pathways 
between neighborhood context and birth outcomes is needed to better 
inform public health strategies to address these disparities. 

For both birthweight and gestational age, we found evidence that 
urbanicity was an effect modifier. Lower birthweights and shorter 
gestational periods associated with combined exposures for participants 
living in rural areas might reflect differences in access to health care and 
other resources. Access to obstetric care in rural counties in the United 
States has decreased over the last decades (Hung et al., 2017), mirroring 
trends in overall health care access (Douthit et al., 2015). Losing access 
to obstetric care has been associated with more preterm births in the 
United States (Kozhimannil et al., 2018) and will be an important 
consideration in future work examining the rural neighborhood context 
for perinatal outcomes. 

We also observed effect modification by pregnant person educational 
attainment in the unexpected direction. In our study, associations be-
tween CE scores and decreases in gestational age were observed among 
pregnant people with higher educational attainment. These results may 
be driven by the large number of participants we have living in metro-
politan areas where the relationship between environmental exposures 
and socioeconomic status (SES) is sometimes counterintuitive. For 
example, higher environmental exposures have been documented in 
higher SES areas in New York City and in Denver, Colorado (Martenies 
et al., 2019; Savitz et al., 2014; Shmool et al., 2015). Additional clari-
fication of these findings is warranted to assess how SES and urbanicity 
might jointly modify these associations. 

There are important limitations to note when interpreting the results 
of our study. First, key exposure data were not available for all years, so 
we relied on imputation or other methods to fill temporal gaps. Second, 
limitations in the available exposure data prevented us from using a 
finer temporal resolution than annual averages. For many of the expo-
sures included in our analysis, there may be important impacts based on 
the timing of exposure during pregnancy that are not captured by our 
exposure assessment methods. Third, we did not include every available 
environmental data set when developing our index. For example, to 
capture risks associated with air toxics, we opted to use the RSEI, which 
is updated each year based on the Toxic Release Inventory. An alter-
native data source, which includes additional pollutants but is updated 
less frequently, is the National Air Toxics Assessment (NATA) data set 
which includes additional sources of air toxics. Exclusion of this data set 
may have influenced census tract rankings. Fourth, due to differences 
across states in how environmental data are collected and made avail-
able, we were not able to include all potentially relevant environmental 
exposures, e.g., our index did not include pesticides or water contami-
nants that may influence perinatal health outcomes (Huang et al., 2018). 
Fifth, due to limitations in sample size, we were not able to examine 
effect modification for all race and ethnicity groups. Previous work has 
demonstrated that exposures to environmental hazards and incidence of 

S.E. Martenies et al.                                                                                                                                                                                                                            



Health and Place 76 (2022) 102858

9

adverse birth outcomes are higher among Asian, Native Hawaiian, and 
Pacific Islander populations (Dongarwar et al., 2021; Grineski et al., 
2019; Payne-Sturges et al., 2022) and American Indian or Alaska Native 
populations (Dashner-Titus et al., 2018; Lewis et al., 2015). Sixth, we 
used census tracts as our unit of analysis. Census tracts may not be the 
most meaningful unit of analysis for investigating the role systemic 
racism plays in health outcomes; boundaries that reflect the scope of 
public policy (e.g., school districts or municipal boundaries) may be 
more appropriate for some exposures (Riley, 2018). Lastly, the use of an 
index is helpful for reducing the dimensionality of our data set but does 
not allow us to identify the specific exposures driving these associations. 

Despite these limitations, our study had several strengths. First, we 
were able to leverage the large ECHO-wide cohort to include data from 
more than 10,000 participants living throughout the United States. 
Second, we were able to evaluate exposures from several geographic 
regions of the country. The geographic diversity in our study population 
is an improvement over previous studies that have focused on single 
metropolitan areas or states. Third, we were able to leverage a 
comprehensive data set on participant residential history that accounts 
for moving during pregnancy. This allowed us to time-weight our ex-
posures during pregnancy and assess the influence of moving on our 
study results. Lastly, we were able to use medical record data to assess 
our outcomes of interest and limit the challenges associated with self- 
reported data. 

Moving forward, these data will have value for exploring how 
environmental and social factors may jointly impact childhood health. 
However, several recommendations follow from our work to improve 
future studies. First, we need better national-level environmental and 
social stressor datasets that capture the variety of hazards to which we 
are exposed. For example, national-level datasets on water pollutants 
and pesticides are needed to expand the environmental exposure index 
(ENV) to cover multiple pathways of exposure. Additionally, data sets on 
crime and other issues that relate to perceived safety are needed to 
reflect additional pathways by which social determinants influence 
perinatal health. Second, whenever possible, national data sets should 
reflect the temporal variability in exposures. Data averaged to the 
annual level cannot be linked to sensitive windows during gestation. 
However, given how environmental and social data are collected, this 
may be challenging for several indicators included in this index. Lastly, 
more work is needed to assess how these exposures may interact. Future 
studies should leverage recently developed statistical methods, e.g., 
Bayesian Kernel Machine Regression or quantile-based g-computation, 
to address prenatal exposure mixtures to better identify the effects of 
components within the mixture on perinatal outcomes (Bobb et al., 
2015; Harley et al., 2017; Keil et al., 2020; Valeri et al., 2017). 

5. Conclusions 

Our study adds to the growing body of evidence suggesting there are 
important effects of multiple exposures on perinatal health outcomes. 
Our exposure assessment methods captured several of the key environ-
mental and social stressors associated with perinatal health. By 
leveraging the ECHO Cohort, which includes participants enrolled in 
studies across the country, we were able to demonstrate that the asso-
ciations observed in previous studies were relevant on a national scale. 
Although the effect sizes observed here were generally small, they 
represent potentially large impacts when applied to the entire United 
States population. While our use of an exposure index does not allow us 
to determine the nature of the interactions between these exposures, our 
results support the need for additional datasets that better capture the 
range of hazards that exist at the neighborhood scale and more research 
to assess the potentially complex ways in which these exposures influ-
ence perinatal outcomes and infant health. 
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Padula, A.M., Rivera-Núñez, Z., Barrett, E.S., 2020. Combined impacts of prenatal 
environmental exposures and psychosocial stress on offspring health: air pollution 
and metals. Curr Envir Health Rpt 7, 89–100. https://doi.org/10.1007/s40572-020- 
00273-6. 

Payne-Sturges, D.C., Gee, G.C., Cory-Slechta, D.A., 2021. Confronting racism in 
environmental health Sciences: moving the science forward for eliminating racial 
inequities. Environmental Health Perspectives 129, 055002. https://doi.org/ 
10.1289/EHP8186. 

Payne-Sturges, D.C., Puett, R., Cory-Slechta, D.A., 2022. Both parents matter: a national- 
scale analysis of parental race/ethnicity, disparities in prenatal PM2.5 exposures and 
related impacts on birth outcomes. Environ Health 21, 47. https://doi.org/10.1186/ 
s12940-022-00856-w. 

Peterman, N., Kaptur, B., Lewis, M., Ades, L., Carpenter, K., 2022. Prematurity and low 
birth weight: geospatial analysis and recent trends. Maternal Health, Neonatology 
and Perinatology 8, 2. https://doi.org/10.1186/s40748-022-00137-x. 

Ponce, N.A., Hoggatt, K.J., Wilhelm, M., Ritz, B., 2005. Preterm birth: the interaction of 
traffic-related air pollution with economic hardship in Los Angeles neighborhoods. 
Am. J. Epidemiol. 162, 140–148. https://doi.org/10.1093/aje/kwi173. 

Rakers, F., Rupprecht, S., Dreiling, M., Bergmeier, C., Witte, O.W., Schwab, M., 2020. 
Transfer of maternal psychosocial stress to the fetus. Neuroscience & Biobehavioral 
Reviews, Prenatal Stress and Brain Disorders in Later Life 117, 185–197. https://doi. 
org/10.1016/j.neubiorev.2017.02.019. 

Riley, A.R., 2018. Neighborhood disadvantage, residential segregation, and 
beyond—lessons for studying structural racism and health. J. Racial and Ethnic 
Health Disparities 5, 357–365. https://doi.org/10.1007/s40615-017-0378-5. 

Rosen, E.M., van ‘t Erve, T.J., Boss, J., Sathyanarayana, S., Barrett, E.S., Nguyen, R.H.N., 
Bush, N.R., Milne, G.L., McElrath, T.F., Swan, S.H., Ferguson, K.K., 2019. Urinary 

S.E. Martenies et al.                                                                                                                                                                                                                            

https://doi.org/10.1007/s11111-018-0308-4
https://doi.org/10.1097/AOG.0000000000002441
http://refhub.elsevier.com/S1353-8292(22)00119-8/sref35
http://refhub.elsevier.com/S1353-8292(22)00119-8/sref35
http://refhub.elsevier.com/S1353-8292(22)00119-8/sref35
https://doi.org/10.1037/hea0000313
https://doi.org/10.1016/j.cppeds.2021.101028
https://doi.org/10.1016/j.cppeds.2021.101028
https://doi.org/10.1038/pr.2017.112
https://doi.org/10.3390/ijerph15030472
https://doi.org/10.1088/1748-9326/ab4cd0
https://doi.org/10.1097/GRF.0b013e31816f2709
https://doi.org/10.1097/GRF.0b013e31816f2709
https://doi.org/10.1016/j.envint.2018.07.027
https://doi.org/10.1377/hlthaff.2017.0338
https://doi.org/10.1186/s12933-016-0389-2
https://doi.org/10.1186/s12933-016-0389-2
https://doi.org/10.1016/j.ssmph.2017.08.003
https://doi.org/10.1289/EHP5838
https://doi.org/10.1289/EHP5838
https://doi.org/10.1186/1471-2393-13-129
https://doi.org/10.1016/j.ajog.2021.11.210
https://doi.org/10.1002/wmh3.257
https://doi.org/10.1016/j.ssmph.2016.09.011
https://doi.org/10.1016/j.ssmph.2016.09.011
https://doi.org/10.1001/jama.2018.1830
https://doi.org/10.1001/jama.2018.1830
https://doi.org/10.1016/j.envres.2014.10.035
https://doi.org/10.1016/j.envres.2014.10.035
https://doi.org/10.1080/1536710X.2015.1068261
https://doi.org/10.1080/1536710X.2015.1068261
https://doi.org/10.1186/s12942-020-00218-0
https://doi.org/10.1186/s12942-020-00218-0
https://doi.org/10.3109/14767058.2012.715006
https://doi.org/10.3109/14767058.2012.715006
https://doi.org/10.1023/A:1022537516969
https://doi.org/10.1023/A:1022537516969
https://doi.org/10.1503/cmaj.150450
https://doi.org/10.1503/cmaj.150450
https://doi.org/10.1097/EE9.0000000000000043
https://doi.org/10.1097/EE9.0000000000000043
https://doi.org/10.1016/j.socscimed.2007.07.014
https://doi.org/10.1016/j.socscimed.2007.07.014
https://doi.org/10.1016/j.socscimed.2017.09.018
https://doi.org/10.1038/s41370-021-00323-7
https://doi.org/10.1186/1476-069X-9-44
https://www.mrlc.gov/data
https://www.mrlc.gov/data
https://doi.org/10.6065/apem.2018.23.1.9
https://doi.org/10.6065/apem.2018.23.1.9
https://www.niehs.nih.gov/about/strategicplan/index.cfm
https://www.niehs.nih.gov/about/strategicplan/index.cfm
https://doi.org/10.1016/j.socscimed.2016.02.014
https://doi.org/10.1007/s10995-009-0447-4
https://doi.org/10.1097/NMC.0000000000000299
https://doi.org/10.1097/NMC.0000000000000299
https://doi.org/10.1080/08035250600719754
https://doi.org/10.1080/08035250600719754
https://doi.org/10.1186/s12940-018-0414-x
https://doi.org/10.1016/j.annepidem.2014.10.004
https://doi.org/10.1007/s40572-020-00273-6
https://doi.org/10.1007/s40572-020-00273-6
https://doi.org/10.1289/EHP8186
https://doi.org/10.1289/EHP8186
https://doi.org/10.1186/s12940-022-00856-w
https://doi.org/10.1186/s12940-022-00856-w
https://doi.org/10.1186/s40748-022-00137-x
https://doi.org/10.1093/aje/kwi173
https://doi.org/10.1016/j.neubiorev.2017.02.019
https://doi.org/10.1016/j.neubiorev.2017.02.019
https://doi.org/10.1007/s40615-017-0378-5


Health and Place 76 (2022) 102858

12

oxidative stress biomarkers and accelerated time to spontaneous delivery. Free 
Radical Biology and Medicine 130, 419–425. https://doi.org/10.1016/j. 
freeradbiomed.2018.11.011. 

Savchev, S., Sanz-Cortes, M., Cruz-Martinez, R., Arranz, A., Botet, F., Gratacos, E., 
Figueras, F., 2013. Neurodevelopmental outcome of full-term small-for-gestational- 
age infants with normal placental function. Ultrasound in Obstetrics & Gynecology 
42, 201–206. https://doi.org/10.1002/uog.12391. 

Savitz, D.A., Bobb, J.F., Carr, J.L., Clougherty, J.E., Dominici, F., Elston, B., Ito, K., 
Ross, Z., Yee, M., Matte, T.D., 2014. Ambient fine particulate matter, nitrogen 
dioxide, and term birth weight in New York, New York. Am J Epidemiol 179, 
457–466. https://doi.org/10.1093/aje/kwt268. 

Shmool, J.L.C., Bobb, J.F., Ito, K., Elston, B., Savitz, D.A., Ross, Z., Matte, T.D., 
Johnson, S., Dominici, F., Clougherty, J.E., 2015. Area-level socioeconomic 
deprivation, nitrogen dioxide exposure, and term birth weight in New York City. 
Environ. Res. 142, 624–632. https://doi.org/10.1016/j.envres.2015.08.019. 

Sonnenschein-van der Voort, A.M.M., Arends, L.R., de Jongste, J.C., Annesi-Maesano, I., 
Arshad, S.H., Barros, H., Basterrechea, M., Bisgaard, H., Chatzi, L., Corpeleijn, E., 
Correia, S., Craig, L.C., Devereux, G., Dogaru, C., Dostal, M., Duchen, K., 
Eggesbø, M., van der Ent, C.K., Fantini, M.P., Forastiere, F., Frey, U., Gehring, U., 
Gori, D., van der Gugten, A.C., Hanke, W., Henderson, A.J., Heude, B., Iñiguez, C., 
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