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Abstract

The complexity of non-convex and conic optimization problems in data science applications

by

Igor Molybog

Doctor of Philosophy in Engineering - Industrial Engineering & Operations Research

University of California, Berkeley

Professor Javad Lavaei, Chair

Mathematical optimization is the cornerstone for the data-driven design and exploitation of
various large-scale cyber-physical and information systems. The generic off-the-shelf tools
for guaranteed global optimization used today often have a prohibitively high computational
complexity on practical instances, preventing their convergence within a reasonable time.
Instead, highly-scalable heuristics are utilized with no guarantee of global optimality of their
result, which poses a problem in the analysis of complex safety-critical systems. Thus,
specialized highly-scalable algorithms that come with a guarantee of their performance are
required. These can be constructed by providing guarantees and limits of applicability
for the well-performing heuristics. In this dissertation, we study how to leverage system-
specific characteristics to analyze computational heuristics leading to guarantees of global
optimality of their outputs. A prominent example of a large-scale safety-critical system that
we consider throughout the first part of the dissertation is the sensor network within the
measurement system of an electrical power grid. It is known that the associated generic
problem of recovery of the state of a power system is computationally complex yet critical.
The three main ways to reduce the complexity of computation associated with a sensor
network are to increase the density of sensors, place them strategically, or enhance their
security and accuracy to limit the set of possible errors and faults of measurement. All
three of these paths are investigated within the first part of this dissertation. We provide
numerical quantification to the computation complexity of inverse problems depending on
the total number of measurements, the properties of the graph structure of the measurement
network, and the signal-to-noise ratio measured as the ratio between the numbers of good
and bad measurements. We address both the computational complexity and the matter
of constructing a suitable, efficient algorithm in each of the three scenarios. Our results
offer implications that should be considered at multiple stages throughout the life cycle of a
system, starting from the design of the sensing mechanisms to ensure robustness and security
of operation both in normal conditions and in situations of an emergency such as during a
cyber-attack.
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In the second part of this dissertation, we present a pioneering work considering an automatic
approach toward selecting the most suitable efficient heuristic algorithm for an optimization
problem at hand. We focus on a machine learning technique that can be adopted for heuris-
tic selection and investigate its properties and the guarantees of its performance from the
perspective of mathematical optimization. We conclude that adopting this machine learning
technique in its original form would not result in guaranteed optimal heuristic selection even
in a benign scenario, propose modifications and outline future work toward the automatic
selection of heuristics.
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Chapter 1

Introduction

Even under the ideal condition of no noise and zero approximation error, many highly-
efficient techniques for data analysis involve solving potentially challenging or intractable
computational problems while learning from data. They are tackled by heuristic optimization
algorithms based on relaxations or greedy principles in practice. The lack of guarantees on
their performance limits their use in applications with a high cost of an error, impacting
our ability to implement progressive data analysis techniques in crucial social and economic
systems, such as healthcare, transportation, and energy production and distribution.

This dissertation focuses on addressing the challenge of designing efficient, highly scal-
able, and at the same time, provably safe and reliable algorithms for the solution to the big
data challenges of the twenty-first century. The rapid development of automation in heavy
industry, agriculture, transportation, energy, and everyday life implies the growing inter-
connectivity and complexity of our society’s systems: sensor and communication networks,
infrastructure, governmental organizations, etc. This trend leads to new opportunities, mas-
sively increasing the amount of data available for processing by the decision-makers on the
one hand. On the other hand, this introduces new correlations, meaning higher risks for
errors and failures to quickly propagate and amplify through the systems, causing significant
disruptions (traffic jams in transportation, goods shortages in supply chains) or even disas-
ters (blackouts in power systems, pandemics in healthcare and public policy). The situation
demands conceptually new computational tools to be developed for robust analytics and
control of the systems on an increasingly large scale, driving the probability of an error to
zero at the cost of large-scale computation. The work presented here aims at confronting
this grave challenge.

In the following sections of this chapter, we first formally introduce the core subject
of our study: optimization problems. Then, we motivate our work and provide a general
introductory overview of the practical problems considered in this dissertation, along with a
brief summary of our contributions. Next, we provide the relevant publications, notations,
and definitions that are used throughout the dissertation. We conclude this chapter by
presenting the Semidefinite Affine Rank Feasibility problem that will be the core subject
throughout the first part of this dissertation.
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1.1 Comprehensive Framework of Optimization

Problem

The questions of numerical optimization and its computation complexity are in the core of
this dissertation. An instance of a minimization problem can be written in the form

minimizex∈X f(x)

where

• X is the domain of the instance, which in this dissertation is supposed to be a set
of multivariate decision variables x ∈ X ⊆ Rn. For example, when x is the vector
of voltage magnitude and phases on the nodes of a power system, X consists of the
voltage regimes that are safe to operate the power system in. In case x represents a
control policy for a dynamical system, the set X restricts the space of policies only
to those stabilizing the system. In the first part of this dissertation, the set X is
normally assumed to be the space of solutions of a system of inequalities without loss
of generality.

• f : X → R is the objective function of the instance. For example, it may return
the operational cost of a particular power system, the probability of misclassification
by a computer vision algorithm on a given dataset or it may capture some notion of
robustness in a dynamical system. A pair (X , f) uniquely defines the instance of a
minimization problem.

An optimization problem is a set of instances. We will consider problems where instances
can be parametrized with θ ∈ Θ by assuming the domain to be dependent on the parameter
X = X (θ) as well as the objective function f(x) = f(x; θ). Here the space of parameters Θ
is an infinite-dimensional vector space consisting of vectors with finite support, i.e. for each
θ ∈ Θ there is p ∈ Z+ such that θ ∈ Rp. The number of bits necessary for encoding of θ is
called its size. Using this notation, a minimization problem (P ) can be written formally as

(P ) {minimizex∈X (θ) f(x; θ)
∣∣ θ ∈ Θ}

If the parametrizations of the domain sets X and objective functions f is fixed, the vector
θ uniquely defines a minimization instance and the set Θ uniquely defines a minimization
problem. For example, for the general problem of Optimal Power Flow (OPF) the parameter
set Θ contains an encoding for any of the possible admittance matrices of electrical grids. For
the problem of OPF for the electrical grids with tree topology, the set Θ contains only the
encodings for the admittance matrices of tree-like electrical grids. When the instances of two
problems (P1) and (P2) have the same parametrizations of the domain sets X = X (θ) and
the objective functions f(x) = f(x; θ) and the problems’ parameter sets are nested Θ1 ⊂ Θ2

we say that (P1) is a sub-problem of (P2). In applications, the parameter θ is the available
data.
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A class of optimization problems is a set of problems (X (θ), f(x, θ),Θ) . An important
class of optimization problems is the class of polynomial-time solvable (or tractable) problems
which consists of the problems {minimizex∈X (θ) f(x; θ)

∣∣ θ ∈ Θ} such that there exists an
algorithm a : Θ→ Rn which runs in polynomial time of the size of the input θ and returns
the solution to minimizex∈X (θ) f(x; θ). Here we assume that both X (θ) and f(x, θ) have a
compact description compared to the size of θ. There are plenty of practical problems that
belong to this class and even more of those conjectured to be in the complement of it.

1.2 Motivation and the Summary of Contributions

Unfortunately, the most powerful problems that are useful in the modeling of a wide range of
processes and phenomena in the real world are believed not to be polynomial-time solvable.
For example, the mixed-integer linear programming problem (MIP), often used to model
electrical generation, production, and scheduling does not have a known efficient algorithm
for its solution. In practice, however, the modeling often does not require the full power of
MIP and can be formulated as a simpler sub-problem. Thus, the logistics and scheduling
tasks can often be modeled through tractable sub-problems of MIP: the linear programming
problem (LP) and the minimum cost network flow (MCNF). Thus, this dissertation is devoted
to the study of NP-hard optimization problems and their polynomial-time solvable sub-
problems that arise in the modeling of interconnected systems and statistical learning tasks.
We focus on the three main reasons for a practical problem to be tractable: the amount of
data, the strength of the available signal compared to the noise, and the presence of sparsity
structure in the problem. In the first part, we quantitatively characterize their effect on
the complexity of the practical problems and propose and evaluate efficient algorithms for
their solution. We work on the vast space of tasks that can be formulated in the form of
a Semidefinite Affine Rank Feasibility problem. In the second part, we propose a general
paradigm to automatically recognize and solve tractable practical problems and study a
prominent method that is aligned with it.

• Chapter 2

In many engineering applications increasing the amount of data makes a statistical
inference problem easier to solve, even in the absence of noise. In some cases, the
transition from an intractable to a tractable problem occurs smoothly, while in others,
it is a leap. Since different problem instances require different numbers of variables
to be estimated, it is fair to directly compare only those having the same dimension
n of the domain X (θ) ∈ Rn(θ). The data in our formalism is enclosed in θ, and thus,
the amount of data now can be measured through the relation between the size of the
parameter vector θ and the dimension of the domain n. To quantify the impact of the
amount of data, we would need to determine the complexity of the problem composed
of the instances for which the size of the parameter vector is larger than a certain
threshold that depends on n. In Chapter 2, we consider solving the feasibility problem
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via its convex relaxation as it is a vital tool in analyzing a wide variety of systems.
Convex relaxations are typically used as a heuristic for the solution of optimal power
flow problems and their variations, mixed-integer programming formulations arising in
logistics, scheduling, and production planning, and the approximation of max-cut prob-
lems in integrated circuit design. In the past, profound results from algebraic geometry
and measure theory allowed the development of a systematic approach to the convex-
ification of general-purpose polynomial optimization, namely the Lasserre hierarchy.
However, this method has found limited applications in practice, in part, due to the
complicated analysis of computational complexity under a high data volume regime.
In Chapter 2, we provide an in-depth analysis of an alternative systematic method of
convexification. In particular, we consider semidefinite programming relaxations of the
problem with systematically constructed objective functions and studied their proper-
ties. In particular, we proposed an analytical bound on the number of relaxations that
are sufficient to solve in order to obtain a solution of a generic instance of the semidefi-
nite affine rank feasibility problem or prove that there is no solution to it. This bound
is followed by a heuristic algorithm based on semidefinite relaxation and an experi-
mental testament of its performance on a large sample of synthetic data. As one of the
main contributions of this paper, we were able to observe the information-computation
tradeoff in this problem and captured how the increasing amount of data causes the
problem to go from NP-hard to tractable in the process of a phase transition.

• Chapter 3

The cybersecurity of electrical grids is considered to be one of the critical problems of
the 21st century. The aftermath of a power grid emergency took billions of dollars to
repair in the past (e.g., major blackouts of 1977, 2003, and 2019 in Northern America).
With the advancement of automation and the transition to smart grids, the stakes
become even higher. Among the most dangerous threats to a power system is the
failure of a control unit, which can lead to inefficient or even self-destructing modes of
operation. While it is possible to impose high-security standards for the central con-
troller, enforcing the protection of all of the periphery infrastructure, such as electrical
current measurement devices, is often infeasible, making manipulating the measure-
ments a potential threat. This leaves vulnerability in the system’s defense against a
hacker attack, as even a perfectly functional control algorithm could be tricked into
self-adversarial behavior given corrupted data. This vulnerability cannot be offset by
the standard provably robust data processing methods as they are developed for linear
systems, which is often not an acceptable model for the power grid. In Chapter 3, we
model the event that an unknown part of a power grid is being attacked by an adversary
infusing noise into the measurement of the power flow to impact the decision-making
process that follows the solution of the state estimation problem. The amount of noise
in this setting can be measured by the number of measurements affected, while the
signal is proportional to the total number of measurements as well as the quality of
the prior guess of the solution if one is available. The principal question in this setting
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is the signal-to-noise ratio that can be tolerated by a tractable problem without pro-
ducing an error in the solution. To measure it quantitatively, we first develop the first
tractable algorithms to learn the states of a nonlinear (quadratic) system subject to
sparse adversarial noise, which is well-suited for power flow analysis. Then, we analyze
the precision of the recovered state in instances with different relationships between the
number of corrupted measurements, the distance between the prior guess and the ac-
tual solution, and the total number of measurements. It is important to note that even
without noise, quadratic regression is an NP-hard problem, and introducing adver-
sarial noise into the system makes it even harder in general. The proposed algorithms
are constructed to tolerate sparse errors of arbitrary magnitude. They are based on
penalized semidefinite and second-order convex relaxations. Under the assumption of
the data being Gaussian, we were able to theoretically prove the exactness of these
relaxations by adapting the technique of primal-dual witness. The practical efficacy of
the developed methods was demonstrated on synthetic data and the data of the power
system state estimation (PSSE) problem for the European power grid (with over 1300
buses) under injected sparse adversarial noise combined with dense white noise.

• Chapter 4

Acquiring more correct measurements seems to help to make the hard statistical esti-
mation problems easier to solve. However, sometimes the number of measurements is
strictly bounded and cannot be increased for fundamental reasons. For example, this
is the case for many applications possessing a network structure. Luckily, such struc-
ture itself may be leveraged to identify a relevant sub-problem and device a tractable
algorithm for its solution. A bright example is the min-cost network flow, which is a
tractable sub-problem of the mixed-integer linear programming problem. What is the
structure induced by power systems which allows local search algorithms to solve the
problems of their analysis efficiently? Chapter 4 describes an answer to that question.
There, we used tools from conic optimization to develop necessary and sufficient con-
ditions for the inexistence of spurious local solutions in the non-convex matrix sensing
formulation. We developed the novel notion of kernel structure property and conditions
that are likely to be satisfied in instances arising from the analysis of sparse networks,
such as power and transportation systems. We used our approach to analytically prove
that the low-rank Q-norm minimization problem does not possess spurious local min-
ima and also experimentally demonstrated that one should not expect spurious local
solutions in problems that possess low-dimensional structures.

• Chapter 5

The mappings learned from data have advanced significantly in the areas of computer
vision, natural language processing, and robotics. Through an iterative procedure of an
optimization algorithm or heuristic, a machine learning system selects parameters for
the mapping between the input and the output of an algorithm. Machine’s ability to
tune to the thin structure of every individual problem, obtaining a better result using a
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minimal amount of time and resources, is remarkable and makes it a preferred method
of algorithm design. Before machine learning techniques became widely available, the
tasks of algorithm design for these areas were carried out by field researchers designing
pre-processing procedures and feature maps for individual pattern recognition prob-
lems. These tasks are very similar to the problem we have been solving manually
throughout the first part of this dissertation, which brings up a question: How can
we make a machine learning system that learns the structure of an optimization prob-
lem from a dataset of instances, and picks the algorithm for it? A related question
has already been addressed by the researchers inside the machine learning community,
where the optimization problem of interest is the problem of training a model. The
corresponding domain is called meta-learning, and the dominant technique there is the
Model-Agnostic Meta Learning (MAML). In Chapter 5 we study this technique from
the perspective of designing optimization algorithms that converge to the globally op-
timal solution. We show that the original form of MAML is guaranteed to succeed in
selecting a correct algorithm if the instances of the optimization problem of interest
have a benign landscape and do not differ much from one another. For other scenarios,
we conclude that MAML does not fit the task, propose a modification to the scheme
of the MAML algorithm and summarise further directions of research.

1.3 Related Publications

• Chapter 2

Main paper:

– Igor Molybog and Javad Lavaei. “On Sampling Complexity of the Semidefinite
AffineRank Feasibility Problem”. In:Proceedings of the AAAI Conference on
Artificial Intelligence. 2019, pp. 1568–1575.

• Chapter 3

Main paper:

– Igor Molybog, Ramtin Madani, and Javad Lavaei. “Conic Optimization for
Quadratic Regression Under Sparse Noise”, Journal of Machine Learning Re-
search (JMLR), 2020

Related paper:

– Igor Molybog, Ramtin Madani, and Javad Lavaei, “Conic Optimization for Robust
Quadratic Regression: Deterministic Bounds and Statistical Analysis”, Confer-
ence on Decision and Control (CDC), 2018

• Chapter 4

Main paper:
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– Igor Molybog, Somayeh Sojoudi, and Javad Lavaei. “Role of sparsity and struc-
ture in the optimization landscape of non-convex matrix sensing”, Mathematical
Programming, 2020

Related paper:

– Igor Molybog, Somayeh Sojoudi, and Javad Lavaei. “No Spurious Solutions in
Non-convex Matrix Sensing: Structure Compensates for Isometry”, American
Control Conference (ACC), 2021

• Chapter 5

Main paper:

– Igor Molybog and Javad Lavaei, “When Does MAML Objective Have Benign
Landscape?”, Conference on Control Technology and Applications (CCTA), 2021

1.4 Definitions and Notation

Notation

Sets: The cardinality of a set S is indicated as |S|. For a sequence S, the symbol {αi}i∈S
denotes a sequence indexed by S. Whenever the index set is obvious from the context, we
drop the subscript for simplicity of the notation.

Vectors: The symbols R and C denote the sets of real and complex numbers, while Rn,
Rn

+ and Cn denote the sets of real, real nonnegative and complex n-dimensional vectors,
respectively. In any finite-dimensional vector space, 1 is a vector whose entries are all equal
to 1, while 0 is the zero vector and I represents the identity operator or its matrix. With vi
we denote the i-th component of a vector v, and denote with vi the i-th vector in the sequence
of vectors {vi}i∈A or the i-th column or row in the matrix V, which will be understood from
the context. Thus, ei stands for the i-th column of the identity matrix I of an appropriate
dimension. Given a vector v, the symbols ∥v∥∞ ∥v∥2, ∥v∥1 and ∥v∥0 denote the maximum
norm, the Euclidian norm, the Manhattan norm and the cardinality of the support of v, i.e.,
the number of its nonzero elements. Given a vector v ∈ Cn and an index set S ⊂ {1, . . . , n},
the vector aS is defined to be a subvector of a obtained by collecting together the entries of
a with indexes from S.

Matrices: Let Rn×k and Cn×k denote the sets of real and complex n × k matrices. The
symbols Hn and Sn denote the sets of n × n Hermitian and symmetric matrices. Let the
symbol Ln;k = {V ∈ Rn×k |Vij = 0 if i < j} denote the set of lower triangular matrices.
M ⪰ 0 means that the matrixM is symmetric and positive semidefinite, whileM ⪰C 0 means
that M belongs to the cone C. Let Sn;r+ be the set of n× n positive semidefinite matrices of
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rank r and let Tn;r ⊂ Sn;r+ be the set of matrices in Sn;r+ whose nonzero eigenvalues are all
equal to 1 (Stiefel manifold).

Given a matrix M ∈ Cn×k, its singular values are denoted as σ1(M), . . . , σmin{n,k}(M)
in descending order. σmin(M) = σmin{n,k}(M) and σmax(M) = σ1(M) are the smallest
and the largest singular values. [M ]ij and Mij denote the (i, j)-component of M . Given
a set S ⊂ {1, . . . , k}, the matrix MS is defined to be a matrix obtained by adjoining the
columns of M with indexes in S. Given two index sets A and B, the submatrix M[A,B]

contains the entries of M located on the intersection of rows indexed by A and columns
indexed by B. The symbols ∥M∥1, ∥M∥∞, ∥M∥2, and ∥M∥F denote the maximum absolute
column sum, maximum absolute row sum, maximum singular value, and Frobenius norm of
M , respectively. The transpose, conjugate transpose and Moore-Penrose pseudoinverse of a
matrix M are shown as M⊤, M∗ and M+. The matrix vectorization operator vec : Cn×k →
Cnk stacks the columns of a matrix into a vector. vecnd : Cn×n → Cn2−n is a non-diagonal
vectorization operator that puts non-diagonal entries of the argument matrix into the form

of a vector. veclt : Cn×k → Cnk− k(k−1)
2 is a lower triangular vectorization operator that puts

the elements on and below the diagonal of the argument matrix into the form of a vector.
For any two compatible matrices A and B, their Frobenius inner product is ⟨A,B⟩, their
Hadamard (entrywise) product is A ◦B and their Kronecker product is A⊗B.

Given a square matrix M ∈ Cn×n, its symmetric part is denoted with Sym(M) = (M +
M⊤)/2 and its trace is denoted with tr(M). For square matricesM1,M2, . . . ,Mn, the matrix
diag(M1, . . . ,Mn) is block-diagonal with Mi on the diagonal. The eigenvalues of a matrix
M ∈ Hn are denoted as λ1(M), . . . , λn(M) in descending order. λmin(M) is the eigenvalue
of M with the smallest absolute value.

Operators: For a linear operator L : Rn×k → Rm, the adjoint operator is denoted by
LT : Rm → Rn×k. The matrix L ∈ Rm×nk such that for any x ∈ Rn×k it holds that
L(x) = Lvec (x) is called the matrix representation of the linear operator L. Bold letters are
reserved for matrix representations of corresponding linear operators. The null space of an
operator or a matrix that represents it is denoted with Ker(L) or Ker(L).

Probability: Given a probability space, let P[E] be the probability of an event E in the
space, E[x] the mathematical expectation of a random variable x. The notation x ∼ N (α, β)
means that x is a normally distributed random variable with the parameters α and β. A
multivariate normal distribution with mean vector µ and covariance matrix Σ is denoted as
N (µ,Σ).

Functions: Given the sequences a(n) and b(n), the notation a(n) ∼ O(b(n)) means that
there exists a number C ≥ 0 such that a(n) ≤ Cb(n) for all n ≥ 1. Positive part is denoted
with (·)+ = max{0, ·}
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Special definitions: Sparsity pattern S of a set of matrices M ⊂ Rn×k is a subset of
{1, . . . , n}×{1, . . . , k} such that (i, j) ∈ S if and only if there is M ∈M such that Mij ̸= 0.
Given a sparsity pattern S, define its matrix representation S ∈ Rn×k as

Sij =

{
0 if (i, j) ∈ S,
1 if (i, j) /∈ S,

and its operator representation S(M) = S ◦M.
The orthogonal basis of a given n×k matrix M (with n ≥ k) is a matrix P = orth(M) ∈

Rn×rank(M) consisting of rank (M) orthonormal columns that span range(M):

P = orth(M) ⇐⇒ PP TM =M, P TP = Irank (M).

For a set S = {a1, . . . , a|S|} ⊆ {1, . . . , n} define a permutation πA = (1, a1), . . . (k, ak) of
{1, . . . , n} and its matrix Πn;S, i.e. the matrix that permutes the entries of a vector it acts
upon according to the permutation πn,S.

For ω ∈ Rn×k and R ∈ R ∪ {+∞}, we define BR(ω) = {a ∈ Rn×k : ∥a − ω∥F ≤ R},
B̄R(ω) = {a ∈ Rn×k : ∥a − ω∥F < R} and ∂BR(ω) = {a ∈ Rn×k : ∥a − ω∥F = R}. It
follows from the definition that ∂B+∞(ω) = ∅.

General Definitions

In this dissertation, we consider a point x ∈ Rn to be a solution for the instance minimizex∈X f(x),
saying that it is a feasible solution (feasible point) if x ∈ X . The value of a solution is f(x)
if defined. We distinguish between a locally optimal solution (local solution) x ∈ X such
that f(x) ≤ f(x′) for all x in the neighborhood Ux ⊂ X of x, and a globally optimal solu-
tion (global solution) x ∈ X such that f(x) ≤ f(x′) for all x ∈ X . We denote the value of
a globally optimal solution with minx∈X f(x) if the set of globally optimal solutions of an
instance denoted with Argminx∈X f(x) is not empty. A solution that is localy optimal but
not globally optimal is called spurious.

Suppose X is the set of points x ∈ Rn satisfying a system of inequalities of the form
fi(x) ≤ 0 for i ∈ {1, . . . ,m}. If the objective function f and all of the constraint functions
fi are continuously differentiable at a feasible solution x′ ∈ X and the following conditions
hold for some nonnegative vector µ ∈ Rm

+{
∇f(x′) +

∑m
i=1 µi∇fi(x′) = 0∑m

i=1 µifi(x
′) = 0

then the solution x′ is called a first-order stationary point. In case for the same x′ and µ it
also holds that

s⊤

[
∇2f(x′) +

m∑
i=1

µi∇2fi(x
′)

]
s ≥ 0
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is satisfied by every nonzero s ∈ Rn, s ̸= 0 such that s⊤∇fi(x′) = 0 for all i ∈ {1, . . . ,m}
then x′ is called a second-order stationary point. It is important within the scope of this
dissertation that local search methods commonly have guaranteed convergence to a first-
or second-order stationary point. It is also known that a locally optimal solution of an
optimization problem has to be a stationary point if a constraint qualification condition is
held at the solution. When considering non-convex landscapes, we will focus on smooth
problems where constraint qualifications hold everywhere over the domain, therefore we will
assume that the sets of first-order critical points, second order critical points, local minima
and global minima are nested.

Affine Rank Feasibility Problem

The first three chapters are concerned with the problem of recovery of a real n×n symmetric
and positive semidefinite matrix X of rank k that satisfies m linear specifications. In case
there is no such a matrix up to a given accuracy, we expect to receive the corresponding
information within a finite time. We refer to this problem as the Semidefinite Affine Rank
Feasibility (SARF), which can be formally written as:

find X ∈ Sn

subject to ⟨Mr, X⟩ = yr, r = 1, . . . ,m, (1.1a)

X ⪰ 0, (1.1b)

rank{X} = k. (1.1c)

whereM1, . . .Mm ∈ Sn are some known symmetric matrices, y1, . . . , ym ∈ R are some scalars
that parametrize the problem, and ⟨·, ·⟩ denotes the Frobenius inner product.

The above problem is closely related to the Affine Rank Feasibility (ARF) problem,
which can be obtained by dropping the constraint (1.1b). It is clear that a solution to the
Semidefinite Affine Rank Feasibility problem must also be a solution to its ARF relaxation.
In addition, every ARF problem can be equivalently converted to a SARF problem [34, 68].

Both of the above feasibility problems encompass several practically important cases.
For example, the Phase Retrieval [18] and Quantum State Tomography [59] problems can
be treated as special cases of the Semidefinite Affine Rank Feasibility problem with rank-
one matrices Mr and k = 1. In Power Systems Engineering, the State Estimation problem
consists in recovering complex voltages based on measured power flows and select voltage
magnitudes for a power grid, which can be formulated as the Semidefinite Affine Rank-one
Feasibility problem [121]. In this case, the matricesMr depend on the topology of the power
system and change a few times a day, while the measurements yr change every 5-15 minutes
based on the data updated by system operators. This defines a class of problems with
a fixed set of matrices Mr’s. In wireless communication systems, the problem of Feasible
Downlink Beamforming [75] can be formulated as a block-diagonally shaped Affine Rank-one
Feasibility problem. The most commonly studied problem with the target rank being not
necessarily equal to 1 is the Low-rank Matrix Completion problem, for which each matrix
Mr has exactly one nonzero element in its upper/lower triangular part [19].
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While the Affine Rank Minimization (ARM) [89] is probably the most studied rank-
constrained problem, the solution of any Affine Rank Minimization problem can also be
obtained from the solutions of O(n) Affine Rank Feasibility problems of the same size. The
same is also true for those problems with a positive semidefinite constraint, so the results of
this chapter can be extended to rank minimization problems as well. From the point of view
of computational complexity, the Affine Rank Minimization is an NP-hard problem, since it
contains Cardinality Minimization as a sub-problem [78]. Moreover, the work by Marianna,
Laurent, Varvitsiotis, et al. [70] establishes the result that the rank-constrained completion
of a semidefinite matrix with all diagonal entries equal to 1 is NP-hard as soon as k ≥ 2.
Hence, the Semidefinite Affine Rank Feasibility is also NP-hard.

Nevertheless, the above problems have been extensively studied over the past decade,
and practical approaches have been developed in various special cases. A major line of
research assumes that the matrices Mr form a linear operator that satisfies a Restricted
Isometry Property. For example, those matrices whose elements are independently sampled
from the standard Gaussian distribution satisfy this property with high probability. Classical
papers with this assumption adopt Nuclear Norm Minimization [90, 19, 89, 15, 59], while
more recent developments deploy the minimization of other surrogate functions [28]. In
particular, the minimization of a rank function has received a lot of attention for applications
related to artificial intelligence. For example, Xu, Lin, and Zha [112] proposes a surrogate
of the Schatten-p norm as a spectral regularization, while Zhang and Zhang [117] attacks
the problem of rank-constrained distance matrices. For the Low-rank Matrix Completion
problem, a number of nonconvex techniques have been developed recently. More importantly,
Bhojanapalli, Neyshabur, and Srebro [12], Ge, Lee, and Ma [42], Ge, Jin, and Zheng [41], and
Zhang et al. [119] show that the classical l2-norm regression has no spurious local minimum
under a Restricted Isometry Property. In addition, Josz et al. [53] prove a similar result
for nonsmooth problems, including l1-norm regression. One possible option to avoid the
Restricted Isometry Property assumption is to require the distribution of the true solution
X∗ to belong to a certain ensemble [111].

Given ϕ ∈ Φ and an arbitrary ε > 0, it follows from the Stone-Weierstrass theorem
that there exists a polynomial pa : Rn → R that uniformly approximates f on X with
the precision error of ε. This way, given the data θ = {(yi, ϕi)}mi=1, there exists a nonlinear
regression model

yi = pϕi(x) + ε̂i, ∀i ∈ {1, ...,m}

where each function pϕi(x) is a polynomial and ε̂i is the difference between pϕi(x) and f(x, ϕi)
that is bounded from above by ε. Notice that ε̂ is dense noise of a small value that we do not
consider in this paper since its presence just shifts the solutions recovered using our methods
by a small value that can be naturally bounded (this corresponds to the sensitivity analysis
of conic optimization). On the other hand, each polynomial equation can be converted to a
quadratic equation by introducing new variables and adding new quadratic equations [93].
As an example, the polynomial equation 1 = x4 − x3 + x can be written as 1 = z2 − xz + x
with the additional variable z and measurement equation 0 = z − x2 (note that the number
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of variables and constraints increases in a logarithmic fashion in terms of the degree of the
polynomial). This discussion implies that every nonlinear regression could be approximated
up to any arbitrary precision with a quadratic regression where the augmented model of the
system is quadratic. For this reason, the focus of this paper is only on quadratic regression.

As a far more general case of phase retrieval, a quadratic regression problem with the
variable x can be modeled as f(x;Ai) = x∗Aix. The state estimation problem for power
systems belongs to the above model due to the quadratic laws of physics (i.e., the quadratic
relationship between voltage and power), where each matrix Ai has rank 1 or 2. Robust
regression in power systems is referred to as bad data detection. This problem was first
studied in 1971 by [73], and there are many recent signs of progress on this topic [31, 109,
69].

In the context of the electric power grid, the regression problem is known as state es-
timation, where the goal is to find the operating point of the system based on the voltage
signals measured at buses and power signals measured over lines and at buses [1, 69, 121].
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Part I

The Effect of Data, Signal and
Structure on the Complexity of

Semidefinite Affine Rank Feasibility
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Chapter 2

Sampling Complexity of the Noiseless
Problem

In this chapter, we study a generic semidefinite affine rank feasibility (SARF) problem, which
consists in finding a positive semidefinite matrix of a given rank from its linear measurements.
We aim to quantify the dependence between the complexity of the problem and the number
m of linear measurements available in it. We measure the complexity with respect to the
algorithm based on solving a number of semidefinite programming problems of the dimension
n of the desired matrix. The complexity is higher the more semidefinite problems are required
to solve within the algorithm. In this chapter, we propose the first nontrivial analytical upper
bound on this number which depends on the number m of generic linear measurements in
the SARF. Our theoretical results suggest that the problem transits to a polynomial-time
solvable state when it has at least an order of n2 of measurements.

Besides analytical bound, we propose a randomized version of the algorithm and study its
performance on a large sample of synthetic data. We obtain the approximate characteristic
for the point of “phase transition” of a uniformly sampled problem. It turns out that for the
uniform distribution over instances, the point of transition behaves linearly with n, which
suggests that our theoretical bound can be improved if the problem parameters θ are assumed
to come from a specific distribution.

2.1 Introduction

Methods of solution of the SARF sub-problems vary depending on the assumed noise model.
Besides Gaussian additive noise [50, 74], a particularly interesting case is the presence of
sparse noise, which has been considered by Candès et al. [20], Klopp, Lounici, and Tsybakov
[57], and Akhriev, Marecek, and Simonetto [3] and will be addressed in the next chapter.
However, even under the absence of any noise, SARF remains a difficult problem if the
amount of information is not sufficient.

The key question studied in this chapter is the question of sampling complexity, which
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can be interpreted as the question on the amount of information contained in the linear
measurements (1.1a). This can be measured in terms of the number of measurements m
and/or the sampling strategy of selecting Mr’s such that the problem becomes polynomial-
time solvable. The known results on this topic are related to the Matrix Completion problem
[19, 108]. The present chapter develops the first result in the literature that studies the
sampling complexity of a general Semidefinite Affine Rank Feasibility problem.

This work builds upon an important contribution into the Low-rank Matrix Recovery that
has been made by Madani et al. [68], where conic relaxations of linear matrix inequalities
(LMIs) are proposed and it is shown that there is a low-rank solution for any sparse LMI with
an upper bound on the rank being a function of certain graph-theoretic parameters such as
the treewidth. Note that any LMI Rank Feasibility problem is equivalent to a Semidefinite
Affine Rank Feasibility problem. From this perspective, there is another application of
Semidefinite Affine Rank Feasibility problem, which can be found in reducing the complexity
of large-scale semidefinite programs [40, 5].

2.2 Problem Formulation

To make the computational complexity analysis of Semidefinite Affine Rank Feasibility prob-
lem (1.1) meaningful, we consider a feasibility problem specified by the measurement matrices
{M1, . . . ,Mm} and the measurements y1, . . . , ym. This defines infinitely many feasibility in-
stances, where every rank-k positive semidefinite matrix X is a solution to some feasibility
problem in this class (by appropriately designing y1, . . . , ym). The analysis of this problem
is partially motivated by data analytics for electric power systems, where the matrices Mr

are designed based on the parameters of the infrastructure that are considered to be fixed
(as long as there is no network reconfiguration) while the measurements y1, . . . , ym used by
power operators change every 5-15 minutes. In this regard, we have infinitely many feasibility
problem instances with the same matrices M1, . . . ,Mm.

The results of this chapter are based on the idea of constructing a semidefinite program-
ming (SDP) of the form

minimize
X∈Sn

⟨M,X⟩ (2.1a)

subject to ⟨Mr, X⟩ = yr, r = 1, . . . ,m, (2.1b)

X ⪰ 0, (2.1c)

corresponding to the Semidefinite Affine Rank Feasibility problem (1.1). Here, M is the ma-
trix of an orthogonal projection onto an (n − k)–dimensional linear subspace. In this case,
the convex problem (2.1) is called an SDP relaxation with the parameters (M, y). A
solution X⋆ of the Semidefinite Affine Rank Feasibility problem (1.1) is said to be recov-
erable through the SDP relaxation (2.1) with M if it is the unique optimal solution of (2.1)
with the parameters (M, [⟨Mr, X

⋆⟩]mr=1).
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The recovery region of the matrix M associated with the class {M1, . . . ,Mm} is the
set of all rank-k positive semidefinite matrices that are recoverable for their corresponding
feasibility problems via the SDP relaxation with the objective function ⟨M,X⟩. Figure 2.1
depicts a two-dimensional slice of the recovery region of a single matrix M for a randomly
generated problem (see the section “Numerical Results” for more details). It can be observed
that the recovery region is not convex in general, but there is a ball with a positive radius in
the space of matrices such that every matrix in the ball is recoverable via an SDP relaxation
with the single objective matrix M for the corresponding Affine Rank Feasibility problem.
This observation was first noticed and formalized in Theorem 1 of Ashraphijuo, Madani, and
Lavaei [6].

Figure 2.1: A slice of the recovery region of a single matrix. The x and y axes represent δ1 and
δ2, respectively (for definition, see “Implementation” in the section “Numerical Results”).

One of the main results of Ashraphijuo, Madani, and Lavaei [6] is that under m >
k(2n − k), there are a finite number of SDPs with specially designed objectives such that
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every instance of the Semidefinite Affine Rank Feasibility problem (1.1) in the infinite class
defined by {M1, . . . ,Mm} is recoverable via one of those SDPs. In other words, there is
a finite list of matrices M defining a set of SDPs that can be used to solve any of the
infinity many feasibility problems sharing the same model. The practical application of this
technique has been demonstrated by Ashraphijuo, Madani, and Lavaei [7] for solving a set
of polynomial equations. The paper by Madani, Lavaei, and Baldick [66] applies the above
technique to the power flow / state estimation problem for power systems, where a small
number of SDPs have solved many real-world feasibility problems and outperformed the
existing methods.

The main objective of this chapter is to find an upper bound on the number of SDP
problems (2.1) to be solved in order to guarantee obtaining a solution of (1.1). Since we do
not make any assumption on the structure of the matrices {M1, . . . ,Mm}, the upper bound
cannot be a polynomial function but the methodology pursued in this chapter could be used
to study specialized problems (such as those appearing in power systems) to obtain a tighter
upper bound for structured problems. Although we do not make any assumption on the
uniqueness of the solution of (1.1), it is well known that the solution is unique when m is
large enough.

2.3 Main Results

Remember that veclt is a lower triangular vectorization operator and form a matrix H ∈
R(nk− k(k−1)

2
)×m with the vectors veclt(Mr) as its columns. To set up a uniform bound on

the size of a region that can be recovered through a single objective M , define the following
function of the measurements matrices:

r(H) = min
Y ∈Ln;k:Y Y ⊤∈Tn;k;
A⊆{1..n}:|A|=k

σmin([veclt(Πn;AM1Π
⊤
n;AY ) . . . veclt(Πn;AMmΠ

⊤
n;AY )])

Note that, according to Ashraphijuo, Madani, and Lavaei [6], it holds that r(H) > 0 if
m > k(2n− k), for a generic choice of {Mr}mr=1. This implies that the inequality holds true
for almost every choice of {Mr ∈ Sn}mr=1. A formal definition comes next.

Definition 1. A property (Q) is said to hold for every generically chosen member of a
topological space if there exists an open dense subset of it whose members all satisfy (Q).

The main analytic result of this chapter will be stated below, which sets up a bound on
the sufficient number of SDP relaxations.

Theorem 1. Given an arbitrary positive number κ, there are constants C1 = C1(k, {Mr})
and C2 = C2(k, {Mr}, κ, ∥y∥2) ∈ R and at most

min

{
C
k(n−k)
1 , C

n(n+1)
2

−m+1

2

}
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SDP relaxations of the form (2.1) such that any solution (satisfying σ1(·)
σk(·)
≤ κ) of a generic

instance of the Semidefinite Affine Rank Feasibility problem (1.1) in the class of infinitely
many feasibility problems defined by {M1, ...,Mm} can be obtained via one of those SDPs.

Proof. This is a direct corollary of Theorems 2 and 3 in the section “Proofs”.

It can be observed that for a fixed k the bound in Theorem 1 is at most exponential
in terms of the dimension of the problem for a generic choice of the matrices Mr, while all
known finite-time algorithms for the general ARF problem have at least doubly exponential
running times [89]. Moreover, the bound has a dependence on m, which implies the following
corollary:

Corollary 1. For every polynomial p(·), if the number of measurements obeys the inequality

m ≥ n(n+ 1)

2
− log p(n) ∼ O(n2),

then a generic problem becomes polynomial-time solvable with any fixed sensing constant κ
and up to an arbitrary nonzero precision error.

This captures the fact that the problem is expected to be easy when m is large because
the feasible region of (2.1) for m = n(n+1)

2
collapses into at most a single point that should

be the solution to the SARF problem (1.1).
The above result is the first one that studies the notion of “phase transition of complexity”

for the generic rank-constrained feasibility problem. This notion has already been studied
in the literature for other NP-hard problems [27]. We will continue this topic during the
discussion of Numerical Results.

2.4 Proofs of the main result

The dual problem of (2.1) can be written in the form:

minimize
u∈Rm

yTu (2.2a)

subject to M +
m∑
i=1

uiMi ⪰ 0 (2.2b)

Since the primal and dual feasible matrices must be positive semidefinite, the Karush-Kuhn-
Tucker (KKT) conditions impose the relationship:(

M +
m∑
r=1

urMr

)
X = 0. (2.3)
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Without loss of generality, we can assume that the vectors veclt(Mr) form an orthonormal
basis. To support this, suppose that the original problem (1.1) is associated with the mea-
surement matrices M̂r (⟨M̂r, X⟩ = ŷr). One can apply the Gram-Schmidt orthogonalization
process to the system of vectors veclt(M̂r) to obtain an orthonormal system of vectors that
would generate symmetric matrices Mr in the obvious way. Note that Mr has a linear de-
pendence on M̂r and, therefore, yr = ⟨Mr, X⟩ can be computed by applying the same linear
transformations to ŷr. Furthermore, now we can refer to m as to the maximum number of
linearly independent matrices Mr.

The next lemma states that each matrix of a potential solution can be represented through
a projection matrix onto the span of its eigenvectors.

Lemma 1. For any orthogonal matrix U, if X = UU⊤ is not a singular point of [⟨Mr, ·⟩]mr=1

and recoverable with M, then X ′ = UΛU⊤ is also recoverable with M for any positive definite
diagonal matrix Λ.

Proof. Strong duality holds for the pair of problems (2.1)-(2.2) due to Lemma 4 by Ashraphi-
juo, Madani, and Lavaei [6]. Let (X, u) be a primal-dual optimal pair of the SDP relaxation
(2.1) with the parameters (M, [⟨Mr, X⟩]mr=1). Then, the equation (2.3) is still satisfied after
being multiplied by X ′ on the right. It takes the form (M +

∑m
r=1 urMr)X

′ = 0, which im-
plies that Complementary Slackness holds for the SDP relaxation (2.1) with the parameters
(M, [⟨Mr, X

′⟩]mr=1) together with primal and dual feasibility.

Due to Lemma 1, it is enough to only consider the case when a solution X⋆ of (1.1) to be
found belongs to Tn;k. We assume X⋆ ∈ Tn;k henceforth, except for the proof of Theorem 2.

Consider a matrix X ∈ Tn;k, the set of indexes A ⊆ {1, . . . n} (|A| = k) of linearly
independent columns of X, and its Cholesky embedding Cn;A : Sn;A+ → Ln;k defined as

Cn;A(X) ≜
[
LT, L−1X[A,{1,...,n}\A]

]T
where LLT = X[A,A] is the Cholesky decomposition of X[A,A]. Using the Guttman rank
additivity formula, it is possible to show that X⋆ = Π⊤

n;ACn;A(X⋆)Cn;A(X⋆)⊤Πn;A. We will
rewrite this factorization in the form

X⋆ = CC⊤ (2.4)

Let us introduce

J = [veclt(Πn;AM1C) . . . veclt(Πn;AMmC)]
⊤,

It follows directly from the form of the pushforward function of the mapping that J has full
column rank if and only if X⋆ is not a singular point of the mapping [⟨Mr, ·⟩]mr=1 [6]. Consider
the dual vector

u⋆ = −(J+)Tveclt(MC)
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By multiplying both sides of this equation by J⊤, it is easy to observe that if J has full
column rank, then u⋆ solves the equation (2.3). Let R be a matrix whose columns form an
orthonormal basis in the space that is orthogonal to the span of the columns of C.

Lemma 2. Assume that X⋆ is not a singular point of [⟨Mr, ·⟩]mr=1. The pair (X⋆, u⋆) is the
primal-dual optimal pair for the SDP problem (2.1) with the parameters (M, [⟨Mr, X

⋆⟩]mr=1)
if and only if ∥R⊤FR∥2 ≤ 1 for the matrix F ∈ Sn defined through the equation

veclt(F ) = H(J+)⊤veclt(MC)

Proof. Primal feasibility of X⋆ is obvious. Complementary slackness (2.3) is satisfied by the
construction of u⋆. Now show the dual feasibility of u⋆:

M +
m∑
r=1

u⋆rMr =M +
∑
i≥j

Eijfij

where Eij is a matrix with the only nonzero entries equal to 1 in the (i, j) and (j, i) locations
(or just (i, i)), while fij = m⊤

iju
⋆ with mij = [M1

ij . . . Mm
ij ]

⊤. Note that m⊤
ij = veclt(Eij)

⊤H
and

fij = −veclt(Eij)⊤H(J+)⊤veclt(MC)

It follows from (2.3) that the dual matrix has k zero eigenvalues in the subspace of the span
of X⋆. We study the minimum eigenvalue of the matrix in the rest of the space:

λmin(M +
m∑
r=1

u⋆rMr) =

1− max
v:∥v∥2=1;C⊤v=0

2
∑
i≥j

vivjveclt(Eij)
⊤veclt(F )−∑

i

v2i veclt(Eii)
⊤veclt(F ) =

1− max
v:∥v∥2=1;C⊤v=0

n∑
i,j=1

[vv⊤]ijFij =

1− max
ϕ∈Rn−k:∥ϕ∥2=1

trace(ϕ⊤R⊤FRϕ),

which is greater than or equal to zero if and only if ∥R⊤FR∥2 ≤ 1.

Note that ifm = n(n+1)
2

, then rank(H) = n(n+1)
2

, and it is possible (e.g., using a Kronecker
product representation) to show that F = Π⊤

n,AMCC+, so ∥RFR⊤∥2 ≤ 1, (this is expected
since the only feasible point of the SDP relaxation should be the solution to the SARF
problem).
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Lemma 3. If MX = 0, then

∥MC∥F ≤
√
k∥X −X⋆∥2

Proof.

∥MC∥F =
√

trace(MX⋆M) =
√

trace(MX⋆X⋆M) =

∥MX⋆∥F ≤
√
k∥MX⋆∥2 =

√
k∥M(X⋆ −X)∥2 ≤√

k∥M∥2∥X⋆ −X∥2 ≤ ∥X⋆ −X∥2
√
k

The previous lemma and the definition of r(H) lead to the result stated below.

Corollary 2. If MX = 0, then then the matrices R and F in Lemma 2 satisfy the inequality

∥RFR⊤∥2 ≤
√
k

r(H)
∥X⋆ −X∥2

The above result will be used to prove Theorem 1. In a normed vector space (V, ∥ · ∥),
let the symbol BV,∥·∥(r) stand for the closed r-ball centred at zero

BV,∥·∥(r) = {v ∈ V : ∥v∥ ≤ r}

. Define Φ : (Sn, ∥ · ∥F ) → (Sn, ∥ · ∥F ) such that Φ(X) = XX+ and Ξn;k(t) = {X ∈
BSn,∥·∥2(1) ∩ Sn;k+ : σk(X) ≥ t}, where σk(·) is the k-th largest singular value of a symmetric
matrix.

Lemma 4. For every t > 0, the operator Φ is Lipschitz over Ξn;k(t) with the constant L = 1
t

Proof. It is known that the projection of X ∈ (Sn, ∥ · ∥F ) onto BSn,∥·∥2(1) is given by the
matrix X ′ which can be obtained from X by replacing with 1 all eigenvalues that are greater
than 1. Thus, XX+ can be viewed as the ∥·∥F -projection of X ∈ Ξn;k(1) onto the convex set
BSn,∥·∥2(1). Consequently, Φ is Lipschitz with the constant 1 over Ξn;k(1). Consider X, Y ∈
Ξn;k(t) :

∥Φ(X)− Φ(Y )∥F =

∥t−1X
(
t−1X

)+ − t−1Y
(
t−1Y

)+ ∥F ≤
∥t−1X − t−1Y ∥F = t−1∥X − Y ∥F

Note that Ξn;1(1) ⊃ Tn;1, so the function Φ has the Lipschitz constant 1 over the entire
Tn;1.
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Theorem 2. The number (
3κ
√
k

r(H)

max{∥y∥22, 1}
min{∥y∥22, 1}

)n(n+1)
2

−m+1

is an upper bound on the number of SDP relaxations needed to find a solution with the
property σ1(·)

σk(·)
≤ κ for every instance of the Semidefinite Affine Rank Feasibility problem

defined by {M1, ...,Mm}.

Proof. By Lemma 1, Lemma 2 and Corollary 2, given A ∈ Tn;k, every X⋆ ∈ Sn;k+ with the

property ∥(X⋆)+X⋆−A∥2 ≤ r(H)√
k

is recoverable throughM such thatMA = 0. Now, we aim
to compute the covering number for the set of all possible solutions to the problem. Define

X(x) = x0

m∑
r=1

yrMr +

n(n+1)
2

−m∑
r=1

xrKr

and

S = {X(x)
∣∣x ∈ R

n(n+1)
2

−m+1},

where {Kr ∈ Sn} are normalized as vectors that are orthogonal to {Mr} and to each other.
X({x0 = 1}) includes the set of all possible solutions to the SARF. By considering X⋆ =
X(x⋆) as the solution to be found, X⋆

∥X⋆∥2 = X( x⋆

∥X⋆∥2 ) belongs to S. In light of Lemma 1, if

X( x⋆

∥X⋆∥2 ) belongs to the recovery region of M, then X⋆ belongs to it as well. Therefore, it is

enough to cover S ∩BSn,∥·∥F (
√
k) ∩ Ξn;k(

σk(X
⋆)

∥X⋆∥2 ) with recovery regions to guarantee that X⋆

lies in one of them.
Lemma 4 yields that ∥X( x⋆

∥X⋆∥2 )X( x⋆

∥X⋆∥2 )
+−A∥2 ≤ ∥X⋆∥2

σk(X⋆)
∥X( x⋆

∥X⋆∥2 )−A∥F . Therefore, it
is sufficient to cover S ∩BSn,∥·∥F (

√
k)∩Ξn;k(σk(X

⋆)
∥X⋆∥2 ) with the ∥ · ∥F -balls of radius r(H)σk(X

⋆)√
k∥X⋆∥2

.

After noticing
∥X(x)∥2F = x20(∥y∥22 − 1) + ∥x∥22 ≥ ∥x∥22min{∥y∥22, 1},

∥X(x)∥2F ≤ ∥x∥22max{∥y∥22, 1},

we conclude

S ∩BSn,∥·∥F (R) ⊂ X

(
{∥x∥2 ≤

R√
min{∥y∥22, 1}

}

)

X

(
{∥x∥2 ≤

r√
max{∥y∥22, 1}

}

)
⊂ S ∩BSn,∥·∥F (r).

It is known that the covering number of the ball B
R

n(n+1)
2 −m+1,∥·∥2

(R) with balls of radius

r obeys the bound
(
3
r
R
)n(n+1)

2
−m+1

[82]. Applying the function X(·) to this cover, one can
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obtain that S ∩BSn,∥·∥F (
√
k) ∩ Ξn;k(

σk(X
⋆)

∥X⋆∥2 ) belongs to the union of

3
√

max{∥y∥22, 1}
r(H)σk(X⋆)√

k∥X⋆∥2

√
k√

min{∥y∥22, 1}


n(n+1)

2
−m+1

balls having radius r(H)σk(X
⋆)√

k∥X⋆∥2
in Frobenius norm. This concludes the proof.

Theorem 3. There is an absolute constant C such that(
C
√
k

r(H)

)k(n−k)

is an upper bound on the number of SDP relaxations needed to solve every instance of the
Semidefinite Affine Rank Feasibility problem in the class defined by {M1, ...,Mm}.

Proof. Due to Proposition 8 by Szarek [99], there is an absolute constant C such that the
covering number of the Grassmann manifold Gn;k obeys the inequality

MGn;k
(ε) ≤

(
C diam(Gn;k)

ε

)k(n−k)
.

Similarly to the proof of Theorem 2, the diameter of the Grassmann manifold for the l2-
induced norm is equal to 1. Therefore, the proof is completed by noting that ε = r(H)√

k
.

2.5 Numerical results

In this section, we present and study a randomized algorithm for solving the SARF problem
via an SDP relaxation that is based on the theoretical results of this chapter. Algorithm 1
iteratively solves SDP relaxations of the problem with randomly sampled objective matrices.
Under the assumption that no prior information is available about the unknown solution,
we sample M uniformly since it belongs to the compact set Tn;k that is isomorphic to the
Grassmann manifold Gn;k.

We present experimental results on the performance of Algorithm 1 on a large set of
synthetic data. The main goal of these experiments is to study the dependence between
the probability of success of the convex (SDP) procedure and the number of linearly inde-
pendent measurements in the problem. For a number of values of m and k, we sample a
random problem with the data {Mr}mr=1 and a random solution X⋆ (from which we design
y1, ..., ym), and aim to solve it with Algorithm 1. After a successful ending, we sample an-
other dataset together with a solution and then start over. After constructing and solving
300 SDP relaxations for a particular value of m, we proceed to the next value. The details on
the sampling strategy are given below in the Implementation paragraph, and the results are
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Algorithm 1 Heuristic algorithm for solving the Semidefinite Affine Rank Feasibility prob-
lem (1.1)

Require: {Mr, yr}mr=1

1: initialization
2: for all t ∈ {1, . . . , T} do
3: Sample a random M
4: X = solution of (2.1) with M
5: if rank(X) = k then
6: return X
7: end if
8: end for

summarized in Figure 2.2. It can be observed that it is easy to design an SDP that recovers
the true solution even for those values of m that are much smaller than n(n + 1)/2. Notice
that the frequency of recovery decreases linearly at first, and then turns to exponential at
a certain point, which appears to be a constant loosely related to n but closely connected
to the value of k. This shows the existence and characterizes the behavior of the point of
“phase transition” of the problem from easy to hard, at least with respect to the considered
algorithm.

Implementation To build the region for the example in Figure 1, we randomly sample
Mr ∈ Sn and the matrix X ∈ Sn;k+ following the procedure to be explained later. After-
wards, we select M in such a way that MX = 0. Let Q0 ∈ Rn×k be the matrix with
orthonormal columns such that X = Q0Q

⊤
0 . In this notation, yr is obtained as follows:

yr = ⟨Mr, Q(δ1, δ2)Q(δ1, δ2)
⊤⟩, where Q(δ1, δ2) = Q0+ δ1E00+ δ2E01. We solve problem (2.1)

with the parameters (M, y) for different values of δ1 and δ2, compare the result to the matrix
Q(δ1, δ2)Q(δ1, δ2)

⊤, and mark the points where they almost coincide.
Now, let us turn to the generation procedures. u({1, . . . , n}) denotes the uniform distri-

bution over the set {1, . . . , n}; the uniform distribution over all n × n orthogonal matrices,
named O(n) Haar distribution, is denoted as Haar(O(n)).

• Generating {Mr} : We denote the uniformly distributed subset of indexes as γ ∼
u({1, . . . , n(n+1)

2
}), where |γ| = m. For sampling a random matrix, we obtain H ′ ∼

Haar(O(n(n+1)
2

)) and subsample H = H ′
[{1,...,n(n+1)

2
},γ]
. Afterwards, Mr is the only sym-

metric matrix such that veclt(Mr) = H
[{1,...,n(n+1)

2
},{r}].

• Generating X⋆ : Similarly, we set up indexes α ∼ u({1, . . . , n}), where |α| = k. Then,
we obtain X ′ ∼ Haar(O(n)) and set Q = X ′

[{1,...,n},α]. In this notation, X⋆ = QQ⊤

For more statistically significant results, we also use the same scheme to design a random
objective matrix:
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n = 15

n = 20

n = 25

Figure 2.2: These plots show the frequency of recovery for synthetic data. The x axis is the
percentage (normalized) of total number of extra measurements available. This means that
0 corresponds to m = mmin = nk−k(k−1)/2, and 1 corresponds to m = mmax = n(n+1)/2.
The y axis shows the probability of successful recoveries.
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• Generating M : We obtain β ∼ u({1, . . . , n}), |β| = n − k and K ′ ∼ Haar(O(n)).
Similarly to the previous cases, set K = K ′

[{1,...,n},β] and M = KK⊤.

The experiments have been scripted in Python with the use of CVXOPT as the mathe-
matical optimization library.
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Chapter 3

Complexity of the Problem Under
Sparse Noise

In this chapter, we focus our attention on the semidefinite affine rank-1 feasibility problem,
which can be equivalently thought of as the problem of quadratic regression. In this problem,
the goal is to find the unknown state (numerical parameters) of a system modeled by a set of
equations that are quadratic in the state. We study the setting when a subset of equations of a
fixed cardinality is subject to errors of arbitrary, possibly adversarially selected, magnitudes.
Our aim is to determine the conditions on the instances θ that guarantee tractability of the
problem of the exact state recovery. Understanding these conditions could clear the path
towards designing cyber-physical systems that, by design, limit the scope of instances of the
inference problem to the tractable ones, even in conditions of a cyber-attack, and therefore
are robust to cybersecurity threats of data augmentation.

To measure complexity, we develop two algorithm schemes that address the quadratic
regression problem. Both of them are based on conic optimization and are able to utilize a
prior guess of the solution if one is available. We develop a set of conditions on the properties
of the data (the coefficients of the equations), the quality of the prior guess, the size of the
support of the noise vector, and the hyperparameters of the algorithms from each of the
schemes. Under these conditions, polynomial-time recovery of the unknown state is possible
with the corresponding algorithms. We show that there exists a trade-off between the time
complexity of an algorithm schema and its tolerance to errors in the measurements. This
makes one method better at enforcing cybersecurity and the other better at scaling for larger
systems. The key feature of the obtained conditions consists in bounds on the number of bad
measurements each method can tolerate without producing a nonzero estimation error. It is
proved that the proposed methods allow up to half of the total number of measurements to
be grossly erroneous if the prior guess is close enough to the true solution. We also propose a
surrogate iterative method for quadratic regression which is based on conic programming and
does not rely on the prior guess. It offers another level of the trade-off between robustness
and the complexity of the algorithm. The efficacy of the developed methods is demonstrated
in four empirical experiments on learning dynamical systems and power network states under
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both sparse and dense errors in the measurements.

3.1 Introduction

Nonlinear regression aims to find the parameters of a given model based on observational
data. One may assume the existence of a potentially nonlinear continuous function f(x;ϕ) :
X × Φ → R defined over the set of models x ∈ X and inputs ϕ ∈ Φ, where the goal is to
estimate the true model given a set of imperfect measurements yi’s:

yi = f(z;ϕi) + ηi, ∀i ∈ {1, ...,m} (3.1)

In this formulation, the unknown error vector η could be the measurement noise with modest
values. However, a more drastic scenario corresponds to the case where the vector η is sparse
and its nonzero entries are allowed to be arbitrarily large. Under this circumstance, a priori
information about the probability distribution of the sparse vector η may be available, in
addition to an upper bound on the cardinality of η. This important problem is referred to
as robust regression and appears in real-world situations when some observations, named
outliers, are completely wrong in an unpredictable way. This could occur during an image
acquisition with several corrupted pixels, or result from communication issues during data
transmission in sensor networks. Such problems arise in different domains of applications
and have been studied in the literature. The problem of errors in estimation of the state of
an electric power grid is of a special importance. Outliers in this case are associated with
faulty sensors, cyber attacks, or regional data manipulation to impact the electricity market
[52, 69].

There are several classical works on robust regression and outliers detection. The book
by Rousseeuw and Leroy [91] offers an overview of many fundamental results in this area
dating back to 1887 when Edgeworth proposed the least-absolute-value regression estimator.
Modern techniques for handling sparse errors of arbitrary magnitudes vary with respect to
different features: statistical properties of the error, class of the regression model f(x;ϕ), set
of possible true models, type of theoretical guarantees, and characteristics of the adversary
model generating errors [20, 77, 10, 116, 57]. There is a plethora of papers on this topic for the
well-known linear regression problem [17, 110, 95, 22, 11]. In this case, the function f(x;ϕ)
is linear in the model vector x, and can be written as ϕ∗x. Nevertheless, there are far less
results known for nonlinear regression. This is due to the fact that linear regression amounts
to a system of linear equations with a cubic solution complexity if the measurements are
error-free, whereas nonlinear regression is NP-hard and its complexity further increases with
the inclusion of premeditated errors. However, very special cases of nonlinear regression have
been extensively studied in the literature. In particular, the robust phase retrieval problem
that can be formulated with f(x;ϕi) = |ϕ∗

ix|2 has received considerable attention [116, 48,
21]. Another special case is the trace regression problem that has been studied by Hamidi
and Bayati [47] under a low-rank assumption on the unknown matrix solution. However,
this has not yet been studied under adversarial sparse additive errors. The mathematical
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framework provided in the current chapter addresses the trace regression problem under a
low-rank assumption and sparse adversarial noise.

The existing approaches for robust regression include the analysis of the unconstrained
case [17, 95, 10, 11, 53], the constrained scenario with conditions on the sparsity of the
solution vector z [110, 77, 79, 71], and more sophisticated scenarios in the context of matrix
completion [20, 23, 57, 119]. Motivated by applications in inverse covariance estimation [106],
the papers by Xu, Caramanis, and Mannor [113], Yang and Xu [114], and McWilliams et al.
[71] consider sparse noise in the input vector ϕi as opposed to the additive error considered
in the present chapter. The work of [17] is based on l1-minimization, whereas [77] solve an
extended Lasso formulation defined as the minimization of ∥y−Ax+ν∥22+µ1∥x∥1+µ2∥ν∥1.
The work by Dalalyan and Chen [29] proposes to solve a second-order cone programming
(SOCP) for robust linear regression, which is related to the current chapter with a focus on
robust nonlinear regression. In contrast to the above-mentioned papers that aim to develop a
single optimization problem to estimate the solution of a regression, there are iterative-based
methods as well. For instance, [22, 10, 11] propose iterative algorithms via hard thresholding.

Due to the diversity in the problem formulation and approaches described in different
papers, it is difficult to compare the existing results since there is no single dominant method.
However, the most common measures of performance for robust regression algorithms are the
traditional algorithmic complexity and the permissible number of gross measurements ∥η∥0
compared to the total number of measurements m. In this chapter, the objective is to design
a polynomial-time algorithm, in contrast with potentially exponential-time approaches [104],
with guaranteed convergence under technical assumptions. As far as the robustness of an
algorithm is concerned, the existing works often provide probabilistic guarantees on the
recoverability of the original parameter vector z for linear Gaussian stochastic systems under
various assumptions on the relationship between ∥η∥0 and m. In this case, the ratio ∥η∥0

m
,

named breakdown point, is limited by a constant and could even approach 1 if the unknown
solution z is sparse.

Contributions and Organization

The main objective of this chapter is to analyze a robust regression problem for an arbitrary
quadratic model that includes power system state estimation and phase retrieval as special
cases. The focus is on the calculation of the maximum number of bad measurements that
does not compromise the exact reconstruction of the model vector z. In Section 3.2, we
formally state the problem. In Section 3.3, we propose two conic optimization methods
and study their properties. In particular, we obtain conditions that guarantee the exact
reconstruction of z. In Section 3.4, we develop the main results of this chapter. Under
certain technical assumptions, we discover the dependence between the number of perfect
measurements and the maximum admissible number of wrong measurements. After that,
we consider a stochastic setting based on Gaussian distributions. In this case, we show that
the number of bad measurements can safely be on the order of the square root of the total
number of measurements, and moreover the breakpoint approaches 1/2 if there is enough
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prior information. To provide a broader range of possible approaches to the problem, Section
3.5 designs an alternative iterative-based method. Numerical results are presented in Section
3.6, which includes a case study on a European power grid.

3.2 Problem Formulation and Preliminaries

The quadratic regression under sparse noise aims to find a vector z in Rn or Cn such that

yr = z∗Mrz + ηr, ∀r ∈ {1, . . . ,m}, (3.2)

where

• y1, . . . , ym are some known real-valued measurements.

• η1, . . . , ηm are unknown but sparsely occurring real-valued noise of arbitrary magni-
tudes.

• M1, . . .Mm are some known n× n Hermitian matrices.

The regression problem could have two solutions ±z in the real-valued case, which increases
to infinitely many in the form of z× e

√
−1ψ in the complex case. To avoid this ambiguity, the

objective of this work is to find the matrix zz∗ rather than z since this matrix is invariant
under the rotation of z. At the same time, the recovery of z from zz∗ is a simple task that
can be accomplished using the spectral decomposition. If m is large enough, then zz∗ is
expected to be unique. In this chapter we aim to recover any solution zz∗ in case there are
multiple ones. In Problem (3.2), each measurement equation could have a linear term in
addition to its purely quadratic function x∗Mrx. By introducing one additional variable u
such that u2 = 1, one can multiply the linear terms with u to make them quadratic [68]. As
a result, Problem (3.2) is a general quadratic regression problem.

Let ẑ be an initial guess for the unknown solution z. We refer to this as prior knowledge.
We do not make any assumption about the gap between ẑ and z, and develop different
methods that can be run independent of this gap. However, the goal is to show that as this
gap becomes smaller, the performance of these methods increases. More precisely, we define
a measure to quantify the amount of information in the prior knowledge and use it to study
the to-be-developed techniques. Note that it is easy to deduce prior knowledge for many
real-world systems. For example, we will show that the physics of power systems naturally
provide such useful knowledge.

Consider the complex-valued case and write x = a+
√
−1b ∈ Cn and M = A+

√
−1B ∈

Hn, where a, b ∈ Rn, A ∈ Sn and B = −B⊤ ∈ Rn×n. It is straightforward to verify that:

x∗Mx = a⊤Aa+ 2b⊤Ba+ b⊤Ab =

[
a
b

]⊤ [
A −B
B A

] [
a
b

]
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Notice that the matrices in the right-hand side of the above equation are real-valued. As a
result, we will only develop the theoretical results of this work in the real-valued case z ∈ Rn

and Mr ∈ Sn since they can be easily carried over to the complex-valved case. However, we
will offer a case study on power systems where the unknown state is a complex vector.

In the regression problem under sparse noise, the vector η is assumed to be sparse. To
distinguish between error-free and erroneous measurements, we partition the set of measure-
ments into two subsets of good and bad measurements:

G = {r ∈ {1, . . . ,m}|ηr = 0}, B = {1, . . . ,m}\G

To streamline the derivation of the analytical results of this chapter, we assume that G =
{1, . . . , |G|} and B = {|G|+1, . . . ,m}. However, the algorithms to be designed are completely
oblivious to the type of each measurement and its membership in either G or B.

The objective of this chapter is to develop efficient algorithms for finding z precisely as
long as η is sufficiently sparse. This statement will be formalized in the next sections.

3.3 Conic Optimization Methods

Consider a variable matrix X playing the role of xx⊤. This matrix is positive semidefinite
and has rank 1. By dropping the rank constraint, one can cast the quadratic regression as a
linear matrix regression. Motivated by this relaxation, consider the optimization problem

minimize
X∈Sn, ν∈Rm

⟨X,M⟩+ µ∥ν∥1

subject to ⟨X,Mr⟩+ νr = yr, ∀r ∈ {1, . . . ,m} (3.3a)

X = X⊤ ⪰C 0 (3.3b)

where the notation ⪰C is the generalized inequality sign with respect to C, which is either the
cone of symmetric positive semidefinite (PSD) matrices or the 2× 2 principal sub-matrices
PSD cone [see 86]. The above cones are formally defined in Subsection 3.3.

The problem definition involves a matrix M that is to be designed based on the prior
knowledge ẑ ∈ Rn in such a way that the term ⟨W,M⟩ in the objective function promotes
a low-rank structure on W. The construction of M will be studied later in the chapter. We
refer to Problem (3.3) as penalized conic program, but call it with more specific names in
two special cases: (i) penalized semidefinite program (SDP) if C is the cone of PSD matrices,
(ii) penalized second-order cone program (SOCP) if C is the cone of matrices with all 2× 2
principal sub-matrices being PSD. The penalized conic program is a convex problem and
can be solved in polynomial time up to any given accuracy.

A popular approach to solving rank minimization problems is via an approximation
technique that replaces the non-convex objective function with the nuclear norm of the
unknown matrix [20]. We exploit a different approach for three main reasons:
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• The nuclear norm minimization is rooted in the fact that the nuclear norm is a convex
envelope of the rank over a certain ball, but the connection between nuclear norm and
rank fades away when the ball is intersected with the hyperplanes given by (3.3a).

• In many practical applications, some prior knowledge about the unknown state is avail-
able. However, the nuclear norm minimization cannot incorporate such information
to improve the search for the unknown solution. This is in contrary to the stan-
dard numerical algorithms for optimization that allow the initialization of the process
for finding an optimal solution. Therefore, one would expect to have a new learning
method for quadratic regression that exploits prior knowledge about the solution.

• The minimization of the trace is meaningless in many applications where the trace of all
feasible matrices W is automatically in a narrow bound. In this case, the trace cannot
be used to distinguish low-rank solutions from high-rank solutions. This naturally
occurs in power systems, for which the trace is almost fixed since voltage magnitudes
are always close to nominal values (e.g., 110 volts) [67]

The method to be developed in this chapter addresses the above issues via a major general-
ization of the nuclear norm minimization. In particular, if ẑ = 0, then the proposed approach
is equivalent to the nuclear norm minimization. We refer to ẑ as prior knowledge, and aim
to show how the amount of information in the prior knowledge—measured in terms of the
closeness between ẑ and the unknown solution—affects the performance of the penalized
conic program and the estimation error.

In the following two subsections, we will introduce the functions κ and ξ, matrices J̄
and J̃ , and vectors d̄ and d̃, and then study the problem of designing M based on the prior
knowledge ẑ.

Penalized Semidefinite Programming

Consider the penalized SDP that corresponds to Problem (3.3) with C equal to the PSD
cone. Given a matrix X ∈ Sn, define κ(X) to be the sum of the two smallest eigenvalues of
X, i.e.,

κ(X) := λn(X) + λn−1(X)

Let the matrix M in the objective function of the penalized SDP be chosen to have the
following properties:

Mẑ = 0,

rank(M) ≥ n− 1

κ(M) > 0

If there is no prior knowledge available, one can select ẑ to be zero and then choose M
as I. This will correspond to the famous nuclear norm minimization. As will become
evident later in the chapter, the linear term ⟨X,M⟩ with the above-mentioned matrix M
penalizes the deviation of X from ẑẑ⊤. Since ẑẑ⊤ is low-rank, the inclusion of this linear
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term automatically takes care of both prior knowledge and low-rank promotion. There are
infinitely many choices forM , and it is not important which one to select as far as the analysis
of this chapter is concerned. One natural choice forM is the matrix of orthogonal projection
onto the hyperplane that is orthogonal to ẑ. This particular matrix is computationally cheap
to construct. However, if more than one initial guess is available, it is beneficial to design
the matrix M via an optimization problem that attempts to minimize the violation of the
above conditions for all initial values of ẑ.

Observe that the dual of Problem (3.3) can be obtained as:

maximize
λ∈Rm

− y⊤λ

subject to M +
m∑
r=1

λrMr ⪰ 0 (3.4a)

∥λ∥∞ ≤ µ (3.4b)

where ⪰ 0 is the positive semidefinite sign. Define the matrix J̄ and the vector d̄ as:

J̄ = [M1z . . . Mmz] (3.5a)

d̄ =Mz (3.5b)

where z is the solution of the original problem (3.2). The matrix J̄ captures the coherence
between the model vector z and the measurement matrices Mr. At its turn, the vector d̄
measures the alignment of the solution z and the prior knowledge ẑ. Note that J̄ and d̄ are
both completely noise-agnostic. The regularity property of the matrix J̄ and the norm of
the vector d̄ play important roles in guaranteeing the correct recovery of z. A preliminary
result is provided below, which will later be used to study the penalized SDP.

Lemma 5. Assume that there exists an index r ∈ {1, . . . ,m} such that ẑ⊤Mrẑ ̸= 0 and

µ > ∥J̄+
G
(
d̄− µJ̄B sign(ηB)

)
∥∞ (3.6a)

κ(M)

2max
r
∥Mr∥2

> ∥J̄+
G
(
d̄− µJ̄B sign(ηB)

)
∥1 + µ|B| (3.6b)

Then, (zz⊤, η) is the unique solution of the penalized SDP. Moreover, λ̂ =

[
λ̂G
λ̂B

]
defined as

λ̂B =− µ sign(ηB)

λ̂G =− J̄+
G

(
d̄+ J̄Bλ̂B

)
is a dual solution.
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Proof. The proof is provided in Appendix.

The conditions given in Lemma 5 will be refined and further studied in Section 3.4 to
uncover useful properties of the penalized SDP.

Penalized Second-Order Cone Programming

Although penalized SDP is a convex optimization, its memory and time complexities make it
less appealing for large-scale problems [14]. These complexities can be significantly reduced
if the union of the 0-1 sparsity patterns of the matricesM,M1, ...,Mm is a sparse matrix itself
[40]. This requires a natural sparsity in the measurement matrices Mr and also the design
of a sparse matrix M, which is not always possible. As an alternative, one can break down
the complexity of the penalized SDP by replacing its constraint X ⪰ 0 with second-order
conic constraints. Although penalized SDP offers better recovery guarantees than penalized
SOCP, the latter has a significantly lower computational complexity and can be efficiently
solved for large-scale problems using interior-point methods [4]. In this part, we study the
penalized SOCP as a counterpart of penalized SDP. This optimization problem is obtained
by building the cone C based on the 2× 2 principal submatrices of W , as explained below.

Definition 2 (2PSM). A matrix X ∈ Sn belongs to the 2× 2 principal sub-matrices PSD
cone if each 2× 2 principal sub-matrix of X is positive semidefinite, i.e.,

[ei ej]⊤X[ei ej] ⪰ 0, ∀ i < j

Since the 2PSM cone is not self-dual, we introduce the scaled diagonally dominant cone
below.

Definition 3 (SDD). A matrix X ∈ Rn×n belongs to the scaled diagonally dominant cone
if there exists a set of 2× 2 positive semidefinite matrices {X ij}j≤ni<j such that

n∑
j=2

j−1∑
i=1

[ei ej]X ij[ei ej]⊤ = X

The notation {X ij}j≤ni<j in the above definition means {X ij
∣∣j = 2, . . . , n, i = 1, . . . , j−1}.

The next lemma explains the connection between 2PSM and SDD cones.

Lemma 6 ([86]). The dual of the 2× 2 principal sub-matrices PSD cone is the scaled diag-
onally dominant cone of the same dimension.

In what follows, we will define and describe certain properties of a linear space of diagonal
decompositions of matrices. These definitions are somewhat more tedious than the ones in
the previous subsection, but they serve the same aim: they formally define the matrix M
and the counterparts of J̄ and d̄ for the penalized SOCP.
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Definition 4. The sequence {Aij ∈ S2}i<j is said to be a diagonal decomposition (or just
decomposition) of A ∈ Sn if

A =
n∑
j=2

j−1∑
i=1

[ei, ej]Aij[ei, ej]⊤

A decomposition that consists of PSD matrices is a certificate that a matrix belongs to
the SSD cone. Similarly to the function κ defined for the penalized SDP, we introduce the
function χ({X ij}i<j) as follows:

χ
(
{X ij}i<j

)
:= min

i<j
tr(X ij) = min

i<j

(
λ1(X

ij) + λ2(X
ij)
)

Consider a sequence {M ij ∈ S2}j≤ni<j such that{
χ({M ij}i<j) > 0

M ij[ẑi ẑj]
⊤ = 0 for all i < j

Define the corresponding penalized SOCP as Problem (3.3) with C equal to the 2PSM cone
and

M =
∑
i<j

[ei ej]M ij[ei ej]⊤. (3.7)

Since M ij ⪰ 0, the matrix M belongs to the SDD cone. Similarly to the penalized SDP,
there is an infinite number of possible matrices M, one of which can naturally be obtained
by selecting M ij to be the orthogonal projection onto the line orthogonal to [ẑi ẑj]

⊤.
The dual of the penalized SOCP takes the form:

maxλ,H,Hij − y⊤λ

subject to M +
m∑
r=1

λrMr = H (3.8a)∑
i<j

[ei ej]H ij[ei ej]⊤ = H (3.8b)

H ij ⪰ 0 (3.8c)

∥λ∥∞ ≤ µ (3.8d)

where the variables are λ ∈ Rm, H ∈ Sn and {H ij}j≤ni<j ⊂ S2. Now, it is easy to observe that

each conic constraint [ei ej]⊤X[ei ej] ⪰ 0 in Problem (3.3) corresponds to the dual variable
matrix H ij. Hence, the complementary slackness condition can be written as

⟨[ei ej]⊤X[ei ej], H ij⟩ = 0, for all i < j ≤ n
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Define G to be a symmetric matrix such that M ij[zi zj]
⊤ = [Gij Gji]

⊤ for all i < j ∈
{1, . . . , n} and Gii = 0 for all i ∈ {1, . . . , n}. Furthermore, for every r ∈ {1, . . .m}, define
Rr as a matrix with the properties:

n∑
j=1

Rr
ij =M r

ii for all i ∈ {1, . . . , n}

Rr
ii = 0 for all i ∈ {1, . . . , n}

One simple example of this matrix is a matrix with the (i, j)-entry equal to Rr
ij =

Mr
ii

n−1

for i ̸= j. Given r ∈ {1, . . . ,m}, define Gr ∈ Rn×n as a matrix with the components
Gr
ij = zjM

r
ij + ziR

r
ij and G

r
ii = 0 for all i, j ∈ {1, . . . , n}. Similarly to (3.5), define:

J̃ =
[
vecnd (G1) . . . vecnd (Gm)

]
(3.9a)

d̃ = vecnd (G) (3.9b)

where the vectorization operator vecnd : Rn×n → Rn2−n puts all elements excluding the
diagonal of its matrix argument into the form of a vector. Similarly to the penalized SDP
case, here J̃ captures the coherence between the data and the true model, while d̃ captures
the correlation between the true model and the prior knowledge.

The counterpart of Lemma 5 is stated below for the penalized SOCP.

Lemma 7. Assume that the components of the initial guess are nonzero (i.e., ẑi ̸= 0 for all
i ∈ {1, . . . , n}) and that there exists an index r ∈ {1, . . . ,m} such that ẑ∗Mrẑ ̸= 0 and

µ > ∥J̃+
G

(
d̃− µJ̃B sign(ηB)

)
∥∞ (3.10a)

χ({M ij}i<j)
max
r, i<j

|tr({M ij
r }i<j)|

> ∥J̃+
G

(
d̃− µJ̃B sign(ηB)

)
∥1 + µ|B| (3.10b)

Then, (zz⊤, η) is the unique solution of the penalized SOCP. Moreover, λ̂ =

[
λ̂G
λ̂B

]
defined

as

λ̂B =− µ sign(ηB)

λ̂G =− J̃+
G

(
d̃+ J̃Bλ̂B

)
can be completed to a dual optimal solution.

Proof. The proof is provided in Appendix.

We need to mention that while there is some freedom in the choice of λ̂G in the proof of
Lemma 7, the dual variables λ̂B associated with the bad measurements are inflexible. This
is elaborated below.
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Lemma 8. λ̂B = −µ sign(ηB) is the only possible choice for the optimal dual variables if the
optimal primal variables are (zz⊤, η).

Proof. The proof is provided in Appendix.

3.4 Main Results

In this section, we develop the key theoretical results on the Robust Quadratic Regression
solution via the conic methods presented in the preceding section. The common structure
of the conditions in Lemmas 5 and 7 allows us to derive results providing guarantees for
both the SDP and the SOCP approaches simultaneously. To do so, we will use the universal
notations J and d to denote J̄ and d̄ (defined in Subsection 3.3) in the penalized SDP case
and to denote J̃ and d̃ (defined in Subsection 3.3) in the penalized SOCP case. Define

αSDP = κ(M)

2∥d̄∥2 max
r

∥Mr∥2
or αSOCP =

χ({M ij}i<j)

∥d̃∥2 max
r, i<j

|tr(M ij
r )|

For the particular matricesM constructed in Section 3.3 using the projection operator, both
κ(M) and χ({M ij}i<j) are equal to 1. In addition, one can normalize the equations in (3.2)
before solving the problem via a rescaling so that ∥Mr∥ = 1, in which case the terms withMr

in the definitions of αSDP and αSOCP can be eliminated (or bounded by a constant). Therefore,

we can write that αSDP ∝ |⟨ z
∥z∥ ,

ẑ
∥ẑ∥⟩|

−1 and αSOCP ∝ (
∑

i<j |⟨[
zi
∥z∥

zj
∥z∥ ], [

ẑi
∥ẑ∥

ẑj
∥ẑ∥ ]⟩|)

−1, which
imply that these parameters measure the amount of information in the prior knowledge.
Henceforth, we use the shorthand notation α to denote αSDP or αSOCP depending on whether
the penalized SDP or SOCP is analyzed. The same notation is used for l that takes one of
the following values:

lSDP = n; lSOCP = n2 − n

Deterministic Bound

In this subsection, we establish a uniform bound on the number of bad measurements that
a penalized conic relaxation can tolerate. To do so, we make use of two matrix properties
introduced in [11].

Definition 5 (SSC property). A matrix X ∈ Rl×m is said to satisfy the Subset Strong
Convexity (SSC) Property at level p with constant γp > 0 if

γp ≤ min
|S|=p

√
λmin(XSX⊤

S )

Definition 6 (SSS property). A matrix X ∈ Rl×m is said to satisfy the Subset Strong
Smoothness (SSS) Property at level p with constant Γp > 0 if

max
|S|=p

√
λmax(XSX⊤

S ) ≤ Γp
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Note that the notation |S| = p in the above definition specifies the index set of any p
columns of the matrix X. The ratio of the constants γp and Γm−p can be interpreted as a
uniform condition number at level p.

Theorem 4. Consider Problem (3.2), and let N = |B| denote the cardinality of the support
of the noise vector η. Without any future assumption on the noise, consider the corresponding
penalized conic problem. Consider arbitrary constants ᾱ, γ and Γ such that

ᾱ >

(√
N Γ

γ
+ (1− Γ

γ
)
)√

m−N +N

γ − Γ
,

• If the exact solution z of (3.2), the prior knowledge ẑ and the measurement matrices
Mr are such that J̄ satisfies the SSC property at level m−N = |G| with the constant γ
and the SSS property at level N = |B| with the constant Γ, then there exists a constant
µ for which (zz⊤, η) is the unique solution of the penalized SDP problem if αSDP ≥ ᾱ.

• If the exact solution z of (3.2), the prior knowledge ẑ and the measurement matrices
Mr are such that J̃ satisfies the SSC property at level m−N = |G| with the constant γ
and the SSS property at level N = |B| with the constant Γ, then there exists a constant
µ for which (zz⊤, η) is the unique solution of the penalized SOCP problem if αSOCP ≥ ᾱ.

Proof. The proof follows from Lemmas 5 and 7, together with Lemma 9 to be stated later
in the chapter.

Theorem 4 implies that the penalized conic relaxations are exact and the corresponding
instances of the NP-hard problem (3.2) can be solved in polynomial time, provided that
they satisfy a certain condition. This condition is not restrictive as long as the amount of
information in the prior knowledge is not too low.

Notice that aside from the cardinalities of the sets G and B, Theorem 10 imposes no con-
dition on the noise values. Therefore, the guarantee provided by this Theorem is established
for the “worst-case scenario” when the adversary is adaptive and strategically selects the
indexes of the error vector η based on the true solution z to have the most impact. Theorem
4 in the chapter is based on two basic assumptions:

• Incoherence of the good measurements and dominance of good measurements over bad
ones: This is implied by the terms of the form γ − Γ in the inequality bound;

• The amount of information in the prior knowledge: This is implied by the lower bound
α ≥ ᾱ.

Although Theorem 4 just states the existence of the hyperparameter µ, we will identify an
interval for this parameter below.
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Lemma 9. Let J be a matrix in Rl×m that satisfies the SSC and SSS properties on levels |G|
and |B| with the respective constants γ|G| and Γ|B| (γ|G| > Γ|B|). Moreover, let d be a vector
in Rl and λ be a vector in Rm such that λB = µ · s, where µ is a scalar and the entries of s
are only +1 or −1. If

αγ|G|(γ|G| − Γ|B|)− |B|γ|G| >
(√
|B|Γ|B| + (γ|G| − Γ|B|)

)√
|G|

then the interval [
∥d∥2

γ|G| − Γ|B|
,
(αγ|G| −

√
|G|)∥d∥2√

|B||G|Γ|B| + |B|γ|G|

]
(3.11)

is not empty and the system of inequalities{
µ > ∥λG∥∞
α∥d∥2 > ∥λG∥1 + µ|B|

is satisfied with λG = −J+
G (JBλB + d) for every µ in the interval (3.11).

Proof. The proof directly follows from Definitions 5 and 6, as well as Lemma 19 proved in
Appendix.

Lemma 9 provides an interval for the hyperparameter µ. The length of this interval and
its location depend on the solution z and the amount of information in the measurements,
but they are independent of the noise values. This is consistent with the existing results
for the precedents of the quadratic regression problem, such as Lasso [105] and Graphical
Lasso [88]. In such problems, the existence of this interval with unknown endpoints is
enough for developing iterative methods, such as bisection techniques, to repeatedly solve
the problem and update µ based on measuring the quality of estimation at each run of the
optimization. This fits within the realm of model selection, where one can use information-
theoretic methods such as the Akaike criterion. In Section 3.6, we will verify that the simple
idea of trying multiple values for µ with different orders of magnitude performs well on real
data.

Stochastic Bound

In the preceding section, we developed theoretical results on the correct recovery of the
state of the problem and the number of permissible bad measurements. Unlike the existing
results that focus on particular types of quadratic regression problems, these results apply
to any arbitrary set of matrices Mr’s. This generality of the results has made the conditions
somewhat sophisticated. In what follows, we will simplify the results and provide some
intuition under a stochastic setting.

Definition 7. A matrix X is called standard Gaussian over R if its entries are independent
and identically distributed random variables with a standard normal distribution.
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The data in this subsection is assumed to be stochastic, and therefore the associated
theoretical results should be stated in a probabilistic sense. We select δ ∈ (0, 1), and define

ε∗ = argminε>0 2
√
6e ·
√
l log 3

ε
+log 2

δ

1−2ε
and τδ = 2

√
6e ·
√
l log 3

ε∗+log 2
δ

1−2ε∗
where e is the Euler’s

number.

Theorem 5. Consider a random instance of Problem (3.2) where the measurement matrices
Mr and the exact solution z are random and distributed such that J (either J̄ or J̃) is a
standard Gaussian matrix. B consists of N elements selected uniformly on random from the
measurement index set {1, 2, ...,m}. Consider an arbitrary constant δ ∈ (0, 1). Introduce

shortcut notation: a =
√√

m−N − τδ; b =
√√

N + τδ and c =
√√

m−N + τδ, let ᾱ be a
constant satisfying

ᾱ >

(m−N)
1
4 −N 1

4
b
a
+ N

a

[
b

N
1
4
+ c

(m−N)
1
4

]
a−N 1

4 (m−N)−
1
4 b

• If the exact solution z of (3.2) and the prior knowledge ẑ are such that αSDP ≥ ᾱ,
then with probability at least (1− δ)2 there exists a constant µ for which (zz⊤, η) is the
unique solution of the penalized SDP problem.

• If the exact solution z of (3.2) and the prior knowledge ẑ are such that αSOCP ≥ ᾱ,
then with probability at least (1− δ)2 there exists a constant µ for which (zz⊤, η) is the
unique solution of the penalized SOCP problem.

Proof. The proof follows from Lemmas 5 and 7, together with Lemma 10 to be stated later
in the chapter.

Unlike the results of the previous subsection, the stochastic bounds given above are es-
tablished for a “random scenario” when the adversary is oblivious and selects the indexes of
the nonzero components of the error vector η on random with a uniform distribution. Never-
theless, we still consider the noise values to be completely arbitrary and possibly engineered
to have the most negative impact on the regression problem.

It is important to discuss when J becomes a Gaussian matrix in order to use the stochastic
bounds in Theorem 5. The easiest scenario corresponds to the case where the true solution
z is a deterministic vector while Mr’s are stochastic matrices. For example, [Mr]ij with
the distribution N (0, 1

nz2j
) makes [Mrz] a standard normal vector, independent of any other

column vector in the matrix J̄ . Likewise, an example of the data distribution for the SOCP
case is [Mr]ii ∼ N (0, n − 1) and [Mr]ij ∼ N (0, ( zi

zj
)2) when i ̸= j. Indeed, Rij ∼ N (0, 1)

whenever i ̸= j will make J̃ a standard Gaussian matrix.
The major difference between Theorem 5 and Theorem 4 is the elimination of the SSC

property conditions. The simplification of the deterministic bounds was carried out for a
Gaussian setting, but the developed techniques could be used to study other distributions
as well. We will identify an interval for the hyperparameter µ below.
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Lemma 10. Let J be a matrix in Rl×m that is sampled from a normal standard Gaussian
distribution. Moreover, let d be a vector in Rl and λ be a vector in Rm such that λB = µ · s,
where µ is a scalar and the entries of s are only +1 or −1. Consider arbitrary numbers

δ ∈ (0, 1) and ϵ > 0. Denote τδ,ε =

√
cl+c′ log 2

δ

1−2ε
, where c = 24e2 log 3

ε
and c′ = 24e2. If√

|G| >
√
|B|
√

1+∆|B|√
1−∆|G|

+ |B|
α
√

1−∆|G|−1

√
1+∆|B|+

√
1+∆|G|√

1−∆|G|
, (3.12)

where ∆t ≥ τδ,ε√
t
for t = |B| and |G|, then with probability at least (1− δ)2 the interval[

∥d∥2√
|G|(1−∆|G|)−

√
|B|(1+∆|B|)

,
(α
√

(1−∆|G|)−1)∥d∥2
|B|(
√

(1+∆|B|)+
√

(1+∆|G|))

]
(3.13)

is not empty and the system of inequalities{
µ > ∥λG∥∞
α∥d∥2 > ∥λG∥1 + µ|B|

is satisfied with λG = −J+
G (JBλB + d) for every µ in the interval (3.13).

Proof. The proof is provided in Appendix.

As explained after Lemma 9, the existence of the unknown interval given in (3.13) enables
the design of iterative techniques to adaptively find a suitable value for µ. We will illustrate
the insensitivity of the conic programs to the exact value of µ in Section 3.6.

It can be verified that to satisfy the condition (3.12), the number of good measurements
|G| must grow quadratically in the number of bad measurements |B| for both the penalized
SDP and the penalized SOCP relaxations. Nevertheless, in the case when α → ∞, this
condition on |G| and |B| can be reduced to the simple inequality

|G|(1− τδ,ε√
|G|

) > |B|(1 + τδ,ε√
|B|

)

or equivalently {
|G| > τ 2δ,ε
|B| < |G|+ τ 2δ,ε − 2τδ,ε

√
|G|

(3.14)

The above inequalities imply that the number of bad measurements |B| is allowed to increase
from O(

√
|G|) to O(|G|) as the amount of information in the prior knowledge increases.

Numerical studies show that the function τδ,ε is expected to be fairly flat with respect
to ε for practically important values of the parameters. For illustration purposes, consider
l = 100 and δ = 0.05. In this setting, ε = ε∗ = 0.05514 is the minimum of τδ,ε and

τ 2δ,ε∗ ≃ 893.7l + 223.6 log
2

δ
≃ τ 2δ
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which demonstrates the asymptotic behavior of the function. Since lSDP = n but lSOCP =
n2 − n, it can be concluded that the guarantee for the SDP approach works whenever the
number of measurements is on order of the size of the problem, while the guarantee for
the SOCP approach requires a higher number of measurements. This gives rise to a salient
difference between the penalized SDP and the penalized SOCP: the SDP approach offers a
higher performance over the SOCP approach but is computationally more expensive. An-
other important difference between the SDP and SOCP approaches—coming from the nature
of the problem itself—is rooted in the definition of the coefficient α. The amount of prior
knowledge needed for the SDP approach to work is less than or equal to that needed for the
SOCP approach.

3.5 Robust Least-Squares Regression

Taking a step back from the penalized convex program, note that the literature on regres-
sion under sparse noise utilizes other methods along with convex relaxation techniques. To
consider an alternative baseline, in this section we focus our attention on the development of
an iterative technique inspired by Bhatia et al. [11]. This new method is most useful when
no prior knowledge about the unknown solution is available. To build an iterative algorithm
for solving Problem (3.2), consider the optimization

minimize
X∈Sn, ν∈Rm

1

2

m∑
r=1

(⟨X,Mr⟩+ νr − yr)2

subject to X ⪰C 0

∥ν∥0 ≤ k

(3.15)

where k is a parameter. This problem is nonconvex due to a cardinality constraint.

Definition 8. Define HTk : Rm → Rm as a hard thresholding operator such that

[HTk(y)]i =

{
yi if |zi| is among the k largest-in-magnitude entries of z
0 otherwise,

where [HTk(y)]i denotes the i
th entry of HTk(y).

Consider the function

f(ν) := min
X⪰C0

1

2

m∑
r=1

(⟨X,Mr⟩ − (yr − νr))2

and let Ŵ (ν) denote a solution to this problem. We propose a Hard Thresholding method
for solving the quadratic regression problem, which consists of the iterative scheme

νt+1 = HTk(ν
t − d(νt))
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where

d(ν) =
1

2
∇ν

(
m∑
r=1

(⟨X,Mr⟩ − (yr − νr))2
)∣∣∣∣

X=Ŵ (ν)

(the symbol ∇ν stands for the gradient with respect to ν). By Lemma 3.3.1 in [9], if Ŵ (ν)
is a continuously differentiable mapping, then ∇f(ν) = d(ν). Inspired by this fact, one may
informally regard d(ν) as the gradient of the optimal value of the optimization problem (3.15)
without its cardinality constraint. Define w = vec (X), ŵ(ν) = vec (Ŵ (ν)), ar = vec (Mr)
for r = 1, ...,m, and A = [a1 . . . am]

⊤. It can be verified that

d(ν) = Aŵ(ν)− y + ν

which implies that
HTk(ν − d(ν)) = HTk(y − A · vec (Ŵ (ν)))

Based on this formula, we propose a conic hard thresholding method in Algorithm 1. Unlike

Algorithm 2 Conic Hard Thresholding

Input: Covariates A, responses y, corruption index k, tolerance ε, and cone C
Initialization :

1: ν0 ← 0, t← 0;
LOOP Process

2: while ∥νt − νt−1∥ > ε do

3: Ŵ t = arg min
X⪰C0

m∑
r=1

(⟨X,Mr⟩ − (yr − νtr))
2
;

4: νt+1 = HTk(y − A · vec (Ŵ t));
5: t← t+ 1;
6: end while
7: return Ŵ t+1

the penalized SDP and penalized SOCP methods, Algorithm 1 does not rely on any prior
knowledge. Instead of the penalty terms in the objective, it solves a sequence of conic
programs to identify the set of bad measurements through a thresholding technique. In
the regime where m ≥ n(n+1)

2
, this algorithm with a high computational complexity can be

further relaxed by letting the cone C be the set of symmetric matrices. We refer to this as
Algorithm 2, where the condition W ⪰C 0 is reduced to W = W⊤. Note that Algorithm
2 is not effective if m < n(n + 1)/2 because the number of measurements becomes less
than the number of scalar variables in W . On the other hand, as m grows, the feasibility
constraint W ⪰C 0 would more likely be satisfied for free (since the feasible set shrinks) and
Algorithm 1 would perform similarly to Algorithm 2. Inspired by this property, we analyze
the asymptotic behavior of Algorithm 2 for Gaussian systems below.
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Lemma 11. Suppose that |B| < m
20000

, m ≥ n2, andMr is a random normal Gaussian matrix
for r = 1, ...,m. For every ϵ > 0, Algorithm 2 recovers a matrix W such that ∥W−zz⊤∥2 ≤ ϵ

within O(log(∥η∥2
ϵ
) + log( 2m

n2+n
)) iterations.

Proof. It follows from Theorem 4 by [11].

Let W ∗ be any solution obtained by Algorithm 2. Then, one can use its eigenvalue
decomposition to find a vector u such that u = arg min

v∈Cn
∥vv⊤ −W∥2. Therefore,

∥uu⊤ − zz⊤∥2 = ∥(uu⊤ −W ∗)− (zz⊤ −W ∗)∥2
≤ ∥uu⊤ −W ∗∥2 + ∥zz⊤ −W ∗∥2 ≤ 2ε

(3.16)

This means that Algorithm 2 can be used to find an approximate solution u with any arbi-
trary precision for the robust regression problem for Gaussian systems with a large number
of measurements and yet it allows up to a constant fraction of measurements to be com-
pletely wrong. Comparing this with the guarantee O(|B|) = O(|G| 12 ) for the penalized conic
methods, given by Theorem 5, it can be concluded that Algorithm 1 (or 2) is asymptoti-
cally more robust to outliers than the penalized conic program since it solves a sequence of
optimization problems iteratively as opposed to a single one. This leads to another level of
tradeoff between the complexity of an estimation method and its robustness level.

The theoretical analyses of this work were all on a regression model subject to a sparse
error vector. However, the results can be slightly modified to account for modest noise
values in addition to sparse errors. The bounds derived in this work remain the same, but
the solutions found by the penalized conic problem and Algorithm 1 would no longer match
the true regression solution being sought (as expected, due to a corruption in all equations).
The mismatch error is a function of the modest noise values. The details are omitted for
brevity; however, the this scenario will later be analyzed in numerical examples.

3.6 Experiments

In this section, we study the numerical properties of the penalized conic methods and the
conic hard thresholding Algorithm 1. The simulation results in Section 3.6 and 3.6 are on
physical systems for which we use the realistic prior knowledge that can be inferred from
the physics of the problem (without having access to any information about the solution).
In addition, we do not use any prior knowledge for the simulations in Sections 3.6 and 3.6,
and select M to simply be a diagonal matrix.

Synthetic Data

Remember that, following [65], we define the representation of a sparsity pattern of an
arbitrary matrix X ∈ Sn to be a binary matrix N ∈ Sn whose (i, j)-entry is equal to 1 if and
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Figure 3.1: Estimation error as a function of: (a) the number of data points m, (b) the dimen-
sionality n, (c) the standard deviation σ of additive white noise.
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Figure 3.2: Estimation error as a function of the number of bad measurements k for different
magnitudes of additive dense Gaussian noise.
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only if Xij ̸= 0. Define the set of all of the matrices with the same sparsity pattern

S(N) ≜ {X ∈ Sn|X ◦N = X}

We conduct some experiments on synthetically generated quadratic regression data sets with
corruptions. The true model vector z is chosen to be a random unit-norm vector, while the
input matrices Mr’s are chosen from S(N) according to a common random sparsity pattern
N . The nonzero entries of Mr’s are generated from a normal standard distribution. The
matrix N has all diagonal elements and 3n off-diagonal elements nonzero. The off-diagonal
positions are selected uniformly. The measurements to be corrupted are chosen uniformly
at random and the value of each corruption is generated uniformly from the interval [10, 20].
The measurements are then generated as yr = z∗Mrz + ηr + ωr, where in addition to the
sparse error vector η there is a random dense noise vector ω whose entries are Gaussian with
zero mean and standard deviation σ. All reported results are averaged over 10 random trials.

By assuming that no prior information about the solution z is available, we set the matrix
M to be the identity matrix. The parameter µ is chosen as 10−2. Regarding Algorithm 1,
the parameter k is selected as the true number of corrupted measurements, the tolerance ε is
set to 10−3, and the algorithm is terminated early if the number of conic iterations exceeds
50. In both of the methods, C is considered to be the 2PSM cone. Hence, we refer to these
methods as penalized SOCP and SOCP hard thresholding. Due to the sparsity in the data,
the SOCP formulation can be simplified by only imposing those 2× 2 constraints in (2) that
correspond to the members of {(i, j) | Nij = 1}.

We measure the performance of each algorithm using the root mean squared error
(RMSE) defined as ∥z−x∥2√

n
, where x is the output of the algorithm and z is the correct

solution. Figure 3.1 shows the RSME in three different plots as a function of the number
of data points m, the dimensionality n, and the additive white noise standard deviation σ.
Figure 3.2 depicts the RSME as a function of the number of bad measurements k for different
magnitudes of additive dense Gaussian noise. It can be observed that both the penalized
conic problem and the conic hard thresholding algorithm exhibit an exact recovery property
for systems with up to 700 randomly corrupted measurements out of 2500 measurements in
the absence of dense Gaussian noise. The same behavior is observed in the presence of dense
Gaussian noise of different magnitudes: the error of the penalized SOCP solution grows
gradually, while the error of the hard thresholding algorithm has a jump at around 800 bad
measurements. These simulations support the statement that up to a constant fraction of
measurements could be completely wrong, and yet the unknown regression solution is found
precisely.

Although the theoretical analysis provided in this chapter favors Algorithm 1 over the
penalized conic problem, our empirical analysis shows that the penalized SOCP method
has a better performance than the hard thresholding algorithm uniformly in the number of
measurements, dimensionality, noise magnitude and the number of outliers. To explain this
observation, note that the derived theoretical bounds correspond to the worst-case scenario
and are more conservative for an average scenario. Moreover, the implementation of Algo-
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rithm 1 in this section has limited the number of iterations to 50, while Theorem 11 requires
the number of iterations to grow with respect to the amount of corruption.

The results of this part are produced using the standard MOSEK v7. SOCP-solving
procedure, run in MATLAB on a 12-core 2.2GHz machine with 256GB RAM. The CPU
time for each round of solving SOCP ranges from 3s (for n = 250, m = 2500) to 30s (for
n = 400, m = 2500).

State Estimation for Power Systems

In this subsection, we present empirical results for the penalized conic problem with a PSD
cone C tested on the real data for the power flow state estimation with outliers. As discussed
in [69], this problem can be formulated as robust quadratic regression. The experiment is run
on the PEGASE 1354-bus European system borrowed from the MATPOWER package [38,
54]. This system has 1354 nodes and the objective is to estimate the nodal voltages based
on voltage magnitude and power measurements of the form yr = z∗Mrz + ηr + ωr, where
ω is a dense additive noise whose rth entry is Gaussian with mean zero and the standard
deviation equal to σ times the true value of the corresponding voltage/power parameter. The
dimension of the complex vector x is 1354, which leads to 2708 real variables in the problem.
In this model, the measurements are voltage magnitude squares, active and reactive nodal
power injections, and active and reactive power flows from both sides of every line of the
power system. This amounts to 3n+4t = 12026 measurements, where t = 1991 denotes the
number of lines in the system. Note that the quadratic regression problem is complex-valued
in this case.

The penalty parameter µ of the penalized conic problem is set to 102 and the matrix M
is chosen as −Y + γI, where Y is the susceptance matrix of the system and γ is the smallest
positive number that makesM positive semidefinite. This choice ofM corresponds to ẑ being
equal the eigenvector of−Y associated with its smallest eigenvalue. This eigenvector provides
a combination of voltages that results in the minimum amount of reactive power loss, as
shown by Madani, Lavaei, and Baldick [66]. Hence, by using this particularM, we implicitly
assume that the ground truth vector of voltages does not create a large amount of reactive
power loss, which is a physical feature of real-world power systems. Since the penalized SDP
problem is large-scale, we employ a tree decomposition technique to leverage the sparsity of
the problem to solve it more efficiently [64]. The width of the tree decomposition used to
reduce the complexity is equal to 12. We do not report any results on Algorithm 1 because it
requires solving large-scale SDPs successively and this could be time-consuming. Moreover,
the number of measurements is not high enough to use Algorithm 2, and, therefore, we will
not test this method either.

The numerical results are reported in Figure 3.3. Remarkably, if the dense Gaussian
noise is non-existent, the conic problem recovers the solution precisely as long as the number
of bad measurements is less than 150 (note that

√
m ≃ 109). Note that power systems are

sparse networks, their models are far from Gaussian, but the bounds from Theorem 5 are
still valid in this numerical example.
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Figure 3.3: This plot shows the RMSE with respect to the number of corrupted measurements k
for the PEGASE 1354-bus system.

Dynamic State Estimation

In this subsection, we demonstrate the usefulness of the proposed mathematical technique
for solving sequential decision-making problems. We again consider data analytics for power
systems, but leverage the fact that state estimation is solved regularly due to the time-varying
and stochastic demands requested by millions of consumers. At each time instance, we use
the estimated state of the system at the previous time as prior knowledge for inferring
the current state of the system. We use the IEEE 300-bus benchmark system from the
MATPOWER package and simulate two hours of its evolution under varying nodal active
and reactive powers to reflect the changes in supply and demand. The net nodal powers
are the only time-varying measurements of this system (each net power is the difference
between the generation and the consumption at the node). To make the analysis realistic,
we simulate both continuous changes and sudden jumps in the time-varying nodal powers.
The continuous changes are modeled by a Wiener random process, while the jump values and
locations are sampled from a uniform distribution that affect each time-varying measurement
(curve) 5 times over the considered interval on average. The evolution of some of these
measurements is depicted in Fig. 3.4.

At each time step of the simulation, happening every 2 minutes, we solve the state
estimation under sparse noise via the penalized SOCP method described in Section 3.3. We
let the number of corrupted measurements be 20% of the total number of measurements
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Figure 3.4: Net active (top) and reactive (bottom) powers at buses 2 (left), 50 (middle) and 93
(right) over the period of simulation.
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Figure 3.5: This plot shows the root mean squared error over the time period of the simulation.
The dashed line denotes the error obtained by applying the SOCP penalized method with the
objective matrix M constructed from the matrix Y as in Section 3.6. The solid line denotes the
error obtained by applying the same method, but using a dynamic method for designing M through
the path-following approach.

m = 3444. In the first time step, we construct the matrix M according to the formula
(3.7) based on the true state of the system, set in accordance with the IEEE 300-bus system
data set. At each subsequent time instance, we construct the matrix M based on the
solution obtained in the previous time step. We refer to this procedure as the path-following
experiment.

As a baseline for comparison, we also study a different strategy where we apply the
penalized SOCP method at each time step with the objective matrix M constructed from
the matrix Y as in Section 3.6, without using the prior knowledge in the solution of the
previous time instance. Both the baseline and path-following experiments were conducted 5
times to produce an average result. The values of the parameter µ were chosen prior to the
experiment as 5 · 10−1 for the baseline and 5 · 10−4 for the path-following part. They were
chosen experimentally from the set {5, 5 · 10−1, 5 · 10−2, 5 · 10−3, 5 · 10−4, 5 · 10−5}.

Figure 3.5 demonstrates that the errors produced in the path-following experiment are
smaller than the errors produced in the baseline experiment by an order of magnitude. Given
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Figure 3.6: This plot shows the average estimation error of 15 random ground truth realizations
with respect to the number of corrupted observations.

that the only difference between these two approaches is in the construction of the objective
matrix, one can conclude that the solution of the problem in each time step can serve as
useful prior knowledge for the next time step.

There is also a notable uptrend of the bottom curve, which reflects the error accumulation
during the path-following experiment. This is due to the fact that the prior knowledge at
each time is considered to be the state estimated at the previous time, rather than the true
state of the system at the previous time. As a result, if the previous estimated state has some
error, it affects learning the current state and this error accumulates over time. However,
since the model (e.g., topology) of a power network changes on a slow time scale (e.g., every
few hours), there is a reset in the process that eliminates the error.

Linear System Identification

Following [33], this case study is concerned with the problem of identifying the parameters
of a linear dynamical system, given limited observation and non-uniform snapshots of the
state vector. Consider a discrete-time linear system described by the equations

z[τ + 1] = A⋆z[τ ] +B⋆u[τ ] τ = 1, 2, . . . , T − 1, (3.17a)

y[τ ] = C⋆x⋆[τ ] + w⋆[τ ] τ = 1, 2, . . . , T, (3.17b)

where
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• {z[τ ] ∈ Rn}Tτ=1 are the state vectors that are known at times τ ∈ {τ1, . . . , τo},

• {u[τ ] ∈ Rm}Tτ=1 and {y[τ ] ∈ Rk}Tτ=1 are the known control and observation vectors,
respectively,

• A⋆ ∈ Rn×n, B⋆ ∈ Rn×m and C⋆ ∈ Rk×n are fixed unknown matrices, and

• {w⋆[τ ] ∈ Rk}Tτ=1 are the vectors of sparsely occurring observation errors that are un-
known.

We propose to determine the triplet (A⋆, B⋆, C⋆) by solving the following system of quadratic
equations:

0 = e× x[τ + 1]− (e×B)u[τ ]− Ax[τ ] τ = 1, 2, . . . , T − 1, (3.18a)

y[τ ] = Cx[τ ] + w[τ ] τ = 1, 2, . . . , T, (3.18b)

x[τ ] = e× x[τ ] τ = τ1, τ2, . . . , τo, (3.18c)

1 = e2, (3.18d)

with the unknown vector

x ≜ [e, x[1]⊤, x[2]⊤, . . . , x[T ]⊤, vec {A}⊤, vec {B}⊤, vec {C}⊤]⊤ (3.19)

and the noise estimation vectors {w[τ ] ∈ Rk}Tτ=1. The auxiliary variable e is added to make
the system of equations homogeneous, similar to the canonical quadratic regression problem
(3.2). In order to solve the system of equations (3.18), we formulate the penalized SDP
problem (3.3) by introducing the matrix variable X accounting for xx⊤. In this experiment,
we use the objective function

⟨M,X⟩+ η ×
T∑
τ=1

∥w[τ ]∥1 (3.20)

where M = diag{[0, 0.001×11×nT , 11×n2 , 01×nm, 11×nk]} and η = 0.1.
We consider system identification problems with n = 5, m = 2, k = 3, and T = 50

time epochs. We assume that, for every τ ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, the state
vector z[τ ] is unknown. The elements of the ground truth matrices A⋆ ∈ R5×5, B⋆ ∈ R5×2,
C⋆ ∈ R3×5 and the control vectors {u[τ ]}Tτ=1, as well as the initial state z[1] have independent
Gaussian distribution with zero mean and variance 1

3
. Unstable ground truth matrices A

with an eigenvalue outside of the unit circle are excluded. For various values of ρ, we
randomly choose ρ elements of {y[τ ]}Tτ=1 and corrupt them by adding observation errors
chosen uniformly from the interval [10, 20]. Figure 3.6, demonstrates the average estimation
error for 15 trials. As shown in Figure 3.6, with up to 35 corrupted observations, the triplet
(A⋆, B⋆, C⋆) can be recovered with zero error. Exploiting the sparsity of the problems [76],
each round of penalized SDP has been solved within 5 minutes.
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Appendix

Proof of Lemma 5

The following lemma studies Slater’s condition for the dual problem (3.4).

Lemma 12. If there exists an index r ∈ {1, . . . ,m} such that ẑ⊤Mrẑ ̸= 0, then the interior of
the feasible region of the problem (3.4) is not empty and strong duality holds for the penalized
SDP.

Proof. Choose c ∈ {−1,+1} such that cẑ⊤Mrẑ > 0. To construct a strictly feasible point
for Problem (3.4), it is enough to consider λ = uer, where u > 0 is a constant that is smaller
than µ and M + cuMr̂ ≻ 0. Such a constant exists due to Lemma 3.2.1 in [8].

Proof. of Lemma 5 Strong duality of the penalized SDP follows from Lemma 12. We
aim to prove that under such a choice of λ̂, the matrix M +

∑
λ̂rMr is a PSD matrix. The

complementary slackness condition:

⟨zz⊤,M +
m∑
r=1

λrMr⟩ = 0

or equivalently

(M +
m∑
r=1

λrMr)z = 0. (3.21)

It is straightforward to verify that the condition (3.21) is satisfied for λ = λ̂. Therefore,

rank(M +
m∑
r=1

λ̂rMr) ≤ n − 1. In light of Corollary 4.3.39 in [49], that κ(·) is a concave

function. Now, it follows from condition (3.6b) that

κ(M +
m∑
r=1

λ̂rMr) ≥ κ(M) +
m∑
r=1

κ(λ̂rMr) ≥ κ(M)− 2
m∑
r=1

|λ̂r| ∥Mr∥2 > 0

which, combined with (3.6b), yields that rank(M +
∑m

r=1 λ̂rMr) ≥ n−1. Dual feasibility for

λ̂G follows from condition (3.21), the above inequality, definition of κ and condition (3.6a).
On the other hand, primal feasibility is satisfied for (zz⊤, η). Therefore, (zz⊤, η) and λ̂ is a
primal-dual optimal pair for the problem. This completes the proof.

Proof of Lemma 7

Lemma 13. The sequence {Aij ∈ S2}i<j is a decomposition of A if and only if:{
[Aij]21 = [Aij]12 = Aij = Aji∑n

i=2

∑i−1
j=1 [A

ji]22 +
∑n

j=2

∑j−1
i=1 [A

ij]11 = Aii
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Proof. The proof is based on basis linear algebra and is omitted for brevity.

We define linear operations over decompositions below.

Definition 9. Given the sequences {Aij ∈ S2}j≤ni<j and {Bij ∈ S2}j≤ni<j , define the sum:

{Aij}j≤ni<j + {Bij}j≤ni<j := {Aij +Bij}j≤ni<j

Definition 10. For a sequence {Aij ∈ S2}j≤ni<j and a scalar c ∈ R, define the multiplication:

c{Aij}j≤ni<j := {cAij}j≤ni<j

In the following statements, we sometimes omit the indexes of decompositions when they
are obvious from the context.

Lemma 14. If {Aij ∈ S2}j≤ni<j and {Bij ∈ S2}j≤ni<j are decompositions of A and B respectively,
then {Aij + Bij} is a decomposition of A + B and c{Aij} is a decomposition of cA, for all
c ∈ R.

Proof. To prove the first part, one can write:∑
i<j

[ei ej]
(
Aij +Bij

)
[ei ej]⊤ =∑

i<j

[ei ej]Aij[ei ej]⊤ +
∑
i<j

[ei ej]Bij[ei ej]⊤ = A+B

Moreover, ∑
i<j

[ei ej]cAij[ei ej]⊤ = c
∑
i<j

[ei ej]Aij[ei ej]⊤ = cA

This proves the second part of the lemma.

Recall that κ is a concave function, and an analogous property of χ will be stated below.

Lemma 15. Given the sequences {Aij} = {Aij ∈ S2}j≤ni<j and {Bij} = {Bij ∈ S2}j≤ni<j as well
as c ∈ R, the following properties hold:

χ({Aij}+ {Bij}) ≥ χ({Aij}) + χ({Bij})
χ(c{Aij}) ≥ −|c|max

i′<j′
|tr(Ai′j′)|

Proof. Introduce

(i′, j′) = argmin
i<j

tr(Aij);

(i′′, j′′) = argmin
i<j

tr(Bij);

(i∗, j∗) = argmin
i<j

tr(Aij +Bij);
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The proof of the first inequality follows from the following expression:

χ({Aij}+ {Bij}) ≥ tr(Ai
∗j∗ +Bi∗j∗) = tr(Ai

∗j∗) + tr(Bi∗j∗) ≥
≥ tr(Ai

′j′) + tr(Bi′′j′′) = χ({Aij}) + χ({Bij})

For the second inequality, one can write

χ(c{Aij}) = min
i<j

tr(cAij) = min
i<j

c tr(Aij) ≥ −max
i<j
|c tr(Aij)| ≥ −|c|max

i<j
|tr(Aij)|

This completes the proof.

Lemma 16. If the components of the initial guess are nonzero (ẑi ̸= 0 for all i ∈ {1, . . . , n})
and there exists an index r ∈ {1, . . . ,m} such that ẑ∗Mrẑ ̸= 0, then the interior of the feasible
region of Problem (3.8) is not empty, and strong duality holds for the penalized SOCP.

Proof. Recall that ẑ is an initial guess for the solution z and M a matrix in the objective
function constructed based on ẑ. We choose c ∈ {−1,+1} such that cẑ⊤Mrẑ > 0, and
select λ = ucer. It is desirable to show that if u is a sufficiently small positive number, then
M + ucMr belongs to the interior of the SDD cone, i.e., it can be written as

M + ucMr =
∑
i<j

[ei ej]H ij[ei ej]⊤,

where each H ij is a 2 × 2 symmetric positive-definite matrix. By construction, the matrix
M can be written as

M =
∑
i<j

[ei ej]M ij[ei ej]⊤

where each M ij is a 2× 2 symmetric positive semidefinite matrix that has rank 1 and [ẑi, ẑj]
belongs to the null space ofM ij. Now, we need to find a decomposition {Bij}i<j of F := cMr

such that M ij + uBij becomes positive definite if u is small. Since the null space of M ij is
one dimensional, it suffices to show that [ẑi ẑj]B

ij[ẑi ẑj]
⊤ > 0 (due to Lemma 3.2.1 in [8]).

To this end, consider the following decomposition:

[Bij]11 = (di − dj − Fij) ẑjẑi +
s

n−1

[Bij]12 = Fij
[Bij]21 = Fji
[Bij]22 = (dj − di − Fji) ẑiẑj +

s
n−1

where di =
ẑ⊤Fei−sẑi

1⊤ẑ
for every i ∈ {1, . . . , n} and s = ẑ⊤F ẑ

ẑ⊤ẑ
. To complete the proof, it suffices

to show that {
F =

∑
i,j[e

i ej]Bij[ei ej]⊤

[ẑi ẑj]B
ij[ẑi ẑj]

⊤ > 0



CHAPTER 3. COMPLEXITY OF THE PROBLEM UNDER SPARSE NOISE 57

Which according to lemma 13 is equivalent to the following three conditions satisfied simul-
taneously:

Bij
12 = Fij, Bij

21 = Fji, ∀i < j (3.22)

Bij
11ẑ

2
i +Bij

22ẑ
2
j > −(Fij + Fji)ẑiẑj ∀ i < j (3.23)∑

j<i

Bji
22 +

∑
j>i

Bij
11 = Fii, ∀i (3.24)

Condition (3.22) is straightforward to verify. To verify (3.23), notice that

Bij
11ẑ

2
i + Bij

22ẑ
2
j

= ((di − dj − Fij)
ẑj
ẑi

+
s

n− 1
)ẑ2i + ((dj − di − Fji)

ẑi
ẑj

+
s

n− 1
)ẑ2j

= (−Fij − Fji)ẑiẑj + s
ẑ2i + ẑ2j
n− 1

> −(Fij + Fji)ẑiẑj

To analyze (3.24), one can write:∑
j<i

Bji
22 +

∑
j>i

Bij
11

=
∑
j<i

((di − dj − Fij) ẑjẑi +
s

n−1
) +

∑
j>i

((di − dj − Fij) ẑjẑi +
s

n−1
)

=
∑
j ̸=i

(di − dj − Fij) ẑjẑi + s

= di
ẑi
(
∑
j

ẑj − ẑi)− 1
ẑi
(
∑
j

dj ẑj − diẑi)− 1
ẑi
(
∑
j

Fij ẑj − Fiiẑi) + s

= di
ẑi

∑
j

ẑj − 1
ẑi

∑
j

dj ẑj − 1
ẑi

∑
j

Fij ẑj + s+ Fii

= di
ẑi
1⊤ẑ − 1

ẑi

∑
j

dj ẑj − 1
ẑi
[ei]⊤F ẑ + s+ Fii

= di
ẑi
1⊤ẑ − 1

ẑi1⊤ẑ

∑
j

[ẑ⊤Fej − ẑjs]ẑj − 1
ẑi
[ei]⊤F ẑ + s+ Fii

= di
ẑi
1⊤ẑ − 1

ẑi1⊤ẑ
[ẑ⊤F ẑ − sẑ⊤ẑ]− 1

ẑi
[ei]⊤F ẑ + s+ Fii

= di
ẑi
1⊤ẑ − 1

ẑi
[ei]⊤F ẑ + s+ Fii

= Fii.

As a result, if u is small, then ∥ucer∥∞ ≤ µ and Aij + uBij is positive definite. Therefore
M + uF belongs to the interior of the SDD cone.

Using the notation from Section 3.3, define

M ij
r :=

[
Rr
ij M r

ij

M r
ji Rr

ji

]
and state the following lemma.
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Lemma 17. The sequence {M ij
r }

j≤n
i<j is a decomposition of Mr.

Proof. It is straightforward to verify that

n∑
i=2

i−1∑
j=1

[M ji
r ]22 +

n∑
j=2

j−1∑
i=1

[M ij
r ]11 =

n∑
j=1

Rr
ij =M r

ii

The rest of the proof follows from Lemma 13.

Lemma 18. {M ij}i<j +
m∑
r=1

λr{M ij
r }i<j is a decomposition of M +

m∑
r=1

λrMr

Proof. The proof follows immediately from Lemmas 14 and 17.

Proof. of Lemma 7 Strong duality of the penalized SOCP follows from Lemma 16. In
sight of Lemma 18, it is desirable to show that under λ = λ̂ each matrix M ij +

∑
λ̂rM

ij
r is

a PSD matrix. The complementary slackness condition can be written as

⟨[zi zj][zi zj]
⊤,M ij +

∑
λrM

ij
r ⟩ = 0

or, given M ij +
m∑
r=1

λ̂rM
ij
r ⪰ 0, equivalently,

(M ij +
∑

λrM
ij
r )

[
zi
zj

]
= 0. (3.25)

The condition (3.25) combined with χ({M ij}i<j +
m∑
r=1

λ̂r{M ij
r }i<j) > 0 yields

M ij +
m∑
r=1

λ̂rM
ij
r ⪰ 0

for all i, j ∈ {1, . . . , n}, and thus M +
m∑
r=1

λ̂rMr ∈ SDD (by Lemma 14). To satisfy the

condition (3.25), λ must be such that:

m∑
r=1

λr

[
Rr
ij M r

ij

M r
ji Rr

ji

] [
zi
zj

]
= −

[
Gij

Gji

]
∀ i < j

or equivalently ∑
r∈G∪B

λrR
r
ijzi = −

∑
r∈G∪B

λrM
r
ijzj −Gij ∀ i ̸= j
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Use the definitions given in (3.9) and rewrite this as

J̃GλG = −(J̃Bλ̂B + d̃)

One solution to the above system is

λ̂G = −J̃+
G (J̃Bλ̂B + d̃)

To conclude with dual feasibility, it is sufficient to show that

χ({M ij}i<j +
m∑
r=1

λ̂r{M ij
r }i<j) > 0,

which is guaranteed by condition (3.10b) and Lemma 15, and ∥λ̂∥∞ ≤ µ which is guaranteed
by condition (3.10a). On the other hand, primal feasibility is satisfied for (zz⊤, η). Therefore,

(zz∗, η) and (λ̂, {M ij} +
m∑
r=1

λ̂r{M ij
r }) is a primal-dual optimal pair for the problem. This

completes the proof.

Proof. of Lemma 8 Consider strong duality:

⟨zz⊤,M⟩+ µ∥η∥1 = −y⊤λ̂⇐⇒

z⊤Mz + µ∥ηB∥1 = −
m∑
r=1

z⊤λ̂rMrz − η⊤B λ̂B ⇐⇒

z⊤

(
M +

m∑
r=1

λ̂rMr

)
z = −

(
µ∥ηB∥1 + η⊤B λ̂B

)
By complementary slackness condition, we have

z⊤(M +
m∑
r=1

λ̂rMr)z =

= z⊤

{∑
i<j

[ei ej](M ij +
∑
λ̂rM

ij
r )[e

i ej]⊤

}
z

=
∑
i<j

[zi zj](M
ij +

∑
λ̂rM

ij
r )

[
zi
zj

]
= 0

Subject to the constraint ∥λ̂∥∞ < µ, the only solution of µ∥ηB∥1 + η⊤B λ̂B = 0 is λ̂B =
−µ sign(ηB)

Proof of Lemma 10

The next lemma will help prove some key results of this Chapter.
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Lemma 19. Let J be a matrix in Rl×m, d be a vector in Rl and λ be a vector in Rm such
that λB = µ · s, where µ is a scalar and s consists of +1 or −1. If

σmin(JG) > σmax(JB)

and

(σmin(JG)− σmax(JB))(ασmin(JG)−
√
|G|) >

√
|B|σmax(JB)

√
|G|+ |B|σmin(JG) (3.26)

then the interval [
∥d∥2

σmin(JG)− σmax(JB)
,

(ασmin(JG)−
√
|G|)∥d∥2√

|B||G|σmax(JB) + |B|σmin(JG)

]
(3.27)

is not empty and the system of inequalities{
µ > ∥λG∥∞
α∥d∥2 > ∥λG∥1 + µ|B| (3.28)

is satisfied by λG = −J+
G (JBλB + b) for every µ in the interval given in (3.27).

Proof. Set λG = −J+
G (JBλB + d) and check the set of values of µ under which the system

(3.28) is satisfied. It can be shown that ∥λB∥∞ = µ; ∥λB∥2 = µ
√
|B|. One can use several

auxiliary inequalities:

1. ∥J+
G d∥1 ≤

√
|G|∥J+

G d∥2 ≤
√
|G|∥J+

G ∥2∥d∥2

2. ∥J+
G d∥∞ ≤ ∥J

+
G d∥2 ≤ ∥J

+
G ∥2∥d∥2

3. ∥J+
G JBλB∥1 ≤

√
|G|∥J+

G JBλB∥2 ≤
√
|G|∥J+

G ∥2∥JBλB∥2 ≤ µ
√
|G||B|∥J+

G ∥2∥JB∥2

4. ∥J+
G JBλB∥∞ ≤ ∥J

+
G JB∥∞∥λB∥∞ ≤ µ∥J+

G JB∥2 ≤ µ∥J+
G ∥2∥JB∥2

It is desirable to show that{
µ > ∥J+

G (JBλB + d)∥∞
α∥b∥2 > ∥J+

G (JBλB + d)∥1 + µ|B| (3.29)

One can use ∥J+
G (JBλB + d)∥ ≤ ∥J+

G d∥ + ∥J
+
G JBλB∥ and relax the inequalities in (3.29) by

applying the auxiliary inequalities:{
µ > ∥J+

G ∥2∥d∥2 + µ∥J+
G ∥2∥JB∥2

α∥d∥2 >
√
|G|∥J+

G ∥2∥d∥2 + µ
√
|G|∥J+

G ∥2
√
|B|∥JB∥2 + µ|B|

Using ∥JB∥2 = σmax(JB) and ∥J+
G ∥2 = σmin(JG)

−1, it yields that
µ(1− σmax(JB)

σmin(JG)
) > ∥d∥2

σmin(JG)

α∥d∥2 >
√

|G|
σmin(JG)

∥d∥2 + µ

( √
|G|

σmin(JG)

√
|B|σmax(JB) + |B|

)
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One can express the bounds on µ as µ > ∥d∥2
σmin(JG)−σmax(JB)

µ <
ασmin(JG)∥d∥2−

√
|G|∥b∥2√

|B|σmax(JB)
√

|G|+|B|σmin(JG)

This gives rise to a condition to guarantee that the interval is not empty:

(ασmin(JG)−
√
|G|)∥d∥2√

|B|σmax(JB)
√
|G|+ |B|σmin(JG)

>
∥d∥2

σmin(JG)− σmax(JB)

The above inequality holds by (3.26). This concludes the proof.

Proof. of Lemma 10 Note that the inequality (3.12) is stronger than√
|G|(1−∆|G|) >

√
|B|(1 + ∆|B|)

In light of Lemma 14 in [10], any randomly sampled Gaussian matrix X ∈ Rl×m satisfies the
inequalities

λmax(XX
⊤) ≤ m+ (1− 2ε)−1

√
cml + c′m log 2

δ

λmin(XX
⊤) ≥ m− (1− 2ε)−1

√
cml + c′m log 2

δ

with probability at least 1 − δ for every ε > 0, where c = 24e2 log 3
ε
and c′ = 24e2. This

implies that the relations

σmin(JG) ∈ [
√
|G|(1−∆|G|),

√
|G|(1 + ∆|G|)]

and

σmax(JB) ∈ [
√
|B|(1−∆|B|),

√
|B|(1 + ∆|B|)]

are each satisfied with the probability 1−δ, and both are met simultaneously with probability
at least (1−δ)2. By tightening the bounds in Lemma 19 with these limits on singular values,
it is straightforward to verify the statement of the theorem.
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Chapter 4

Complexity of Linearly Structured
Problem

In this chapter, we come back to studying a generic semidefinite affine rank feasibility (SARF)
problem, which consists in finding a positive semidefinite matrix of a given rank from its
linear measurements. Here we assume that instances θ belong to a low-dimensional manifold
of a known structure and investigate the conditions on this manifold that would impose
tractability on the corresponding SARF sub-problem. In this chapter, we measure the com-
plexity of SARS sub-problems with respect to an approach based on local optimization of
a non-convex objective, called non-convex matrix sensing. It is popular in the applications
where the low-dimensionality assumption on Θ holds, such as sensor networks data process-
ing. It is known that the optimization landscape of the non-convex matrix sensing problem
may have many stationary points to which a local search method can converge. Thus, we
connect the tractability of the problem and the inexistence of spurious second-order station-
ary points. The existing results on the properties of the landscape of non-convex matrix
sensing are related to the notion of restricted isometry property (RIP). The RIP-based con-
ditions are likely to hold for data coming from a Gaussian distribution but are too strong
in the context of real-world applications where the amount of data is not exorbitantly high,
especially those with inherent sparsity coming from the graph and network structure. To
relax these conditions, we develop the notion of Kernel Structure Property (KSP) and use
it to formulate the necessary and sufficient conditions for the inexistence of spurious local
solutions in matrix sensing problems. We demonstrate the applicability and use of the novel
results in analytical and numerical studies on data analytics for power systems.

4.1 Introduction

Non-convexity is the main obstacle for a guaranteed learning of optimal continuous param-
eters of any cyber-physical system. It is well known that many fundamental problems with
a natural non-convex formulation are NP-hard [83]. Sophisticated techniques for address-
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ing this issue, like generic convex relaxations, may require working in an unrealistically
high-dimensional space to guarantee the exactness of the solution. As a consequence of com-
plicated geometrical structures, a non-convex function may contain an exponential number of
saddle points and spurious local minima, and therefore local search algorithms may become
trapped in any of those points. Nevertheless, empirical observations show positive results re-
garding the application of these approaches to several practically important instances. This
provokes a major branch of research that aims to explain the success of experimental results
in order to understand the boundaries of the applicability of the existing algorithms and
develop new ones. A recent direction in non-convex optimization consists in studying how
simple algorithms can solve potentially hard problems arising in data analysis applications.
The most commonly applied class of such algorithms is based on local search, which will be
the focus of this chapter. In some cases, prior information about the location of the solution
is available, which significantly reduces the complexity of the search.

The analysis of the landscape of the objective function around a global optimum may
lead to an optimality guarantee for local search algorithms initialized sufficiently close to the
solution [55, 56, 51, 124, 123, 98]. Finding a good initialization scheme is highly problem-
specific and difficult to generalize. Global analysis of the landscape is harder, but potentially
more rewarding.

Both local and global convergence guarantees have been developed to justify the suc-
cess of local search methods in various applications, such as dictionary learning [2], basic
non-convex M-estimators [72], shallow [94] and deep [115] artificial neural networks with
different activation and loss functions [61, 81], phase retrieval [24, 103, 16] and more general
matrix sensing problems [41, 53]. Particularly, significant progress has been made towards
understanding different variants of the low-rank matrix recovery, although explanations of
the simplest version called matrix sensing are still under active development [126, 25, 63,
41, 26, 119]. Given a linear sensing operator A : Sn → Rm and a ground truth matrix
z ∈ Rn×r (r < n), an instance of the rank-r matrix sensing problem consists in minimizing
over Rn×r the nonconvex function

fz,A(x) = ∥A(xx⊤ − zz⊤)∥22 = ∥A(xx⊤)− b∥22, (4.1)

where b = A(zz⊤). We consider this function over a general set X ⊆ Rn×r, although in this
section we assume X = Rn×r. Recent work has generally found a certain condition on the
sensing operator to be sufficient for the matrix sensing problem to be “computationally easy
to solve”. Precisely, this condition works with the notion of Restricted Isometry Property
(RIP).

Definition 11 (Restricted Isometry Property). The linear map A : Sn → Rm is said to
satisfy δr-RIP for some constant δr ∈ [0, 1) if there is γ > 0 such that

(1− δr)∥X∥2F ≤ γ∥A(X)∥22 ≤ (1 + δr)∥X∥2F

holds for all X ∈ Sn satisfying rank(X) ≤ r.
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The existing results proving absence of spurious local minima using this notion (such
as [43, 97, 96, 12, 42, 41, 84, 126]) are based on a norm-preserving argument: the problem
turns out to be a low-dimensional embedding of a canonical problem known to contain no
spurious local minima. While the approach is widely applicable in its scope, it requires fairly
strong assumptions on the data. In contrast, [119, 120] introduced a technique to find a
certificate to guarantee that any given point cannot be a spurious local minimum of the
problem of minimizing fz,A over the set X ⊆ Rn×r, where z ∈ Z ⊆ Rn×r and A satisfies
δ2r-RIP. Note that two different sets X and Z are involved here. Since fz,A is parametrized
with θ = (z,A), this introduces a problem defined as{

minimize
x∈X

fz,A(x)
∣∣∣ A satisfies δ2r-RIP, z ∈ Z

}
. (ProblemRIP)

(ProblemRIP) consists of infinitely many instances of an optimization problem, each corre-
sponding to some point z in Z and some operator A satisfying δ2r-RIP. The state-of-the-art
results for (ProblemRIP) are stated below.

Theorem 6 ([12, 41, 120]). By taking X = Z = Rn×r, the following statements hold:

• If δ2r < 1/5, no instance of (ProblemRIP) has a spurious second-order critical point.

• If r = 1 and δ2 < 1/2, then no instance of (ProblemRIP) has a spurious second-order
critical point.

• If r = 1 and δ2 ≥ 1/2, then there exists an instance of (ProblemRIP) with a spurious
second-order critical point.

Non-existence of a spurious second-order critical point effectively means that any algo-
rithm that converges to a second-order critical point is guaranteed to recover zz⊤ exactly.
Examples of such algorithms include variants of the stochastic gradient descent (SGD) that
are known to avoid saddle or even spurious local minimum points under certain assump-
tions [30], and widely used in machine learning [58, 13]. Besides SGD, many local search
methods have been shown to be convergent to second-order critical points with high prob-
ability under mild conditions, including the classical gradient descent [60], alternating min-
imizations [62] and Newton’s method [85]. In this chapter, we present guarantees on the
global optimality of the second-order critical points, which means that our results can be
combined with any of the algorithms mentioned above to guarantee global convergence.

Theorem 6 discloses the limits on the guarantees that the notion of RIP can provide.
However, linear maps in applications related to physical systems, such as power system
analysis, typically have no RIP constant smaller than 0.9, and yet the non-convex matrix
sensing still manages to work on those instances. The gap between theory and practice
motivates the following question.

What is the alternative property practical problems satisfy that makes them
easy to solve via simple local search?



CHAPTER 4. COMPLEXITY OF LINEARLY STRUCTURED PROBLEM 65

This question was studied earlier for special cases of matrix sensing, namely phase re-
trieval [96] and matrix completion [42]. In case of the phase retrieval problem, the alternative
property consists in the particular distribution of the measurements operator. Regarding the
matrix completion problem, the assumption includes conditions on the properties of the ma-
trix being recovered along with conditions on the measurement operator itself. We address
the above mentioned question by developing a new notion that deals with the measurement
operator and precisely captures when a structured matrix recovery problem has no spurious
solution over an arbitrary ball. We focus the analysis over a given ball since local search
methods tend to search over a neighborhood rather than the entire space, based on prior
knowledge. In Section 4.2, we motivate the need for a new notion replacing or improving
RIP with real-world examples. Section 4.3 introduces some formal definitions and develops
a mathematical framework to analyze spurious solutions and relate them to the underlying
sparsity and structure of the problem, using techniques in conic optimization. Sections 4.4
and 4.5 give the theory behind this notion and examples of its application. In Section 4.6, we
present numerical results on the application of the developed theory in a real-world problem
appearing in power systems analysis. Some of the proofs, technical details and lemmas are
collected in the appendix.

4.2 Motivating example

In this section, we motivate this work by offering a case study on data analytics for en-
ergy systems. Remember that the state of a power system can be modeled by a vector of
complex voltages on the nodes (buses) of the network. Monitoring the state of a power
system is obviously a necessary requirement for its efficient and safe operation. This crucial
information should be inferred from some measurable parameters, such as the power that is
generated and consumed at each bus or transmitted through a line. The power network can
be modeled by a number of parameters grouped into the admittance matrix Y ∈ Cn×n. The
state estimation problem consists in recovering the unknown voltage vector v ∈ Cn from the
available measurements. In the noiseless scenario, these measurements are m real numbers
of the form

v∗Miv, ∀ i ∈ {1, . . . ,m}, (4.2)

where Mi ∈ Cn×n are sparse Hermitian matrices that are obtained from Y and model power
flow, power injection, and voltage magnitude measurements. The sparsity pattern of the
measurement matrices is determined by the topology of the network, while its nonzero entries
are certain known functions of the entries of Y . Since the total number of nonzero elements
in the matrices Mi exceeds the total number of parameters contained in Y, one can regard
the mapping Y → {Mi}mi=1 as an embedding from a low-dimensional space. For a detailed
discussion on the problem formulation and approaches to its solution, please refer to e.g.
[122].

To formulate the problem as a low-rank matrix recovery, we introduce a sparse matrix
A ∈ Cm×n2

with its i-th row equal to vec(Mi)
⊤. The measurement vector can be written as
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(a) (b)

Figure 4.1: Examples of the structure patterns of operators A (left plot) and H (right plot)
in power system applications. The positions of the identical nonzero entries of a matrix are
marked with the same markers.

Avec(vv⊤). To find v from the measurements, one may solve the non-convex optimization
problem:

minimize
x∈Cn,∥x−ω∥F≤R

∥Avec (xx⊤ − vv⊤)∥2 (4.3)

where ω ∈ Cn and R ∈ R ∪ {+∞} are some parameters determined by the prior knowledge
about the solution v. In practice, this non-convex optimization problem is usually solved
via local search methods, which converges to a second-order critical point at best. Since
fv(x) = ∥Avec (xx⊤− vv⊤)∥2F = ⟨xx⊤− vv⊤,A⊤Avec (xx⊤− vv⊤)⟩, the set of critical points
of the problem is defined by the linear map represented with the matrix H = A⊤A, which
thus is the key subject of the study. Problems arising in power systems analysis are based
on operators that possess a specific structure. An example of a structure for the matrix A
is given in Fig. 4.1a, and the structure of the corresponding H is described in Fig. 4.1b.
The respective power network will be considered in more details in Section 4.6. As discussed
previously, given H, it is practically important to know if there exist v, x ∈ Cn such that x is
a critical point of (4.3) while xx⊤ ̸= vv⊤. Absence of these points proves that a local search
method recovers v exactly, certifying safety of its use. For example, in case of unconstrained
optimization (R = +∞), the answer is affirmative if the optimal objective value of the
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following problem is equal to zero:

minimize
v, x∈Cn

∥A(xx⊤ − vv⊤)∥2

subject to ∇fv(x) = 0
∇2fv(x) ⪰ 0

where ∇ and ∇2 denote the gradient and Hessian operators. However, this is an NP-hard
problem in general and cannot be solved efficiently. Even if we were able to solve it, the
sensing operator A could change over time without changing its structure, and therefore
any conclusion made for a specific problem cannot be generalized to other instances of the
problem for real-world applications where the data analysis is to be performed periodically.
One way to circumvent this issue is to develop a sufficient condition for all mappings H with
the same structure.

4.3 Introducing Kernel Structure

Consider a set of linear operators A : Sn → Rm with the matrix representations A ∈ Rm×n2

and a sparsity pattern SA. Assume that there is a set of hidden parameters ξ ∈ Rd with
d ≪ m such that A is the image of ω in the space of a much higher dimension. In this
way, A has a low-dimensional non-sparsity structure beyond sparsity, which is captured by
A = A(ξ). Without loss of generality, we assume A(0) = 0. The motivating complex-valued
example in Section 4.2 is a special case of this construction since it could be stated entirely
with only real-valued vectors and matrices of a bigger size. We define the nonconvex objective

f : Rn×r → R such that f(x) = ∥A(xx⊤ − zz⊤)∥2

parametrized by A and z ∈ Rn×r. Its value is always nonnegative by construction, and the
global minimum 0 is attainable. To emphasize the dependence on certain parameters, we
will write them in the subscript. To align the minimization problem with the problem of
reconstructing zz⊤, we need to introduce a regularity assumption:

Assumption 1. For all x, z ∈ Rn×r:

∥A(xx⊤ − zz⊤)∥ = 0 if and only if xx⊤ = zz⊤

We will rely on Assumption 1 throughout the chapter. Note that this assumption is
weaker than the assumption of existence of a 2r-RIP constant, although it is stronger than
the assumption of existence of a r-RIP constant. Another way to express the objective is

f(x) = ⟨xx⊤ − zz⊤,H(xx⊤ − zz⊤)⟩.

Here, H = A⊤A is the linear kernel operator that has the matrix representation H = A⊤A
and sparsity pattern SH. Namely, (i, j) ∈ SH if and only if there exists k such that (k, i) ∈ SA
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and (k, j) ∈ SA. Sparsity of H is controlled by the out-degree of the graph represented
by SA, and tends to be low in applications like power systems. SH is represented by a
matrix S, so that SH-sparse operators are exclusively those satisfying the linear equation
S(H) = S ◦H = 0. Besides sparsity, H inherits the low-dimensional non-sparsity structure
from A, which can be captured by H = A(ξ)⊤A(ξ) = H(ξ) where ξ ∈ Rd. This dependence
can be locally approximated in the hidden parameter space with a linear one. More precisely,
suppose that there is a linear operator W defined over Sn2

such that W(H(ξ)) ≈ 0 for the
values of ξ under consideration. Thus, from now on we focus exclusively on low-dimensional
structures of the formW(H) = 0. Together, the sparsity operator S and the low-dimensional
structure operator W form the combined structure operator T = (S,W) that accumulates
the structure of the kernel operator.

Definition 12 (Kernel Structure Property or KSP). Given a linear structure operator T :
Sn2 → Rt, the linear map A : Sn → Rm is said to satisfy T -KSP if it satisfies Assumption 1
and

T (A⊤A) = 0

where A is the matrix representation of A.

Notice that a particular sensing operator A can be kernel structured with respect to an
entire family of structure operators, and we can possibly select any of them for our benefit
in the following section.

4.4 Analysis based on KSP

Given a kernel structure T , ω ∈ Rn×r and R ∈ R ∪ {+∞}, we can state the problem under
study as follows:{

minimize
x∈BR(ω)

fz,A(x)
∣∣∣ A satisfies Assumption 1 and T -KSP, z ∈ BR(ω)

}
, (ProblemKSP)

Note that (ProblemKSP) consists of infinitely many instances of an optimization problem,
each corresponding to some point z ∈ BR(ω) and some operator A satisfying T -KSP.

The RIP constant is designed to characterize the input-output behavior of the system
represented with A. This input-output relationship can also be controlled by imposing the
following constraint on the matrix H:

(1− δ)I ⪯ H ⪯ (1 + δ)I,

where I is the identity operator. More precisely, the above inequality guarantees that the
operator A will have an RIP constant less than or equal to δ. Inspired by this observation, we
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define the function O(x, z; T ) to be the optimal objective value of the convex optimization
problem:

minimum
δ∈R,H

δ

subject to Lx,z(H) = 0 (4.4a)

Mx,z(H) ⪰ 0 (4.4b)

T (H) = 0 (4.4c)

(1− δ)I ⪯ H ⪯ (1 + δ)I (4.4d)

where Lx,z(H) = ∇fz,H(x) andMx,z(H) = ∇2fz,H(x). This optimization is performed over
all operators H satisfying the T -KSP. We will later show that the function O sets an upper
bound on the δ2r such that none of the functions fz;A with A satisfying T -KSP and δ2r-RIP
has a spurious second-order critical point at x, provided that x is not on the boundary of
the optimization domain BR(ω).

For completeness and for further reference within this chapter, we calculate the analytic
forms of the first- and second-order derivatives of fz,H below. Introduce a vector e and a
matrix X such that for all u ∈ Rn×r it holds that

e = vec (xxT − zzT ), Xvec (u) = vec (xuT + uxT ).

We write the operators L,M and their transpose operators in closed form:

Lx,z : Sn
2 → Rn×r Lx,z(H) = 2 ·XTHe,

LTx,z : Rn×r → Sn2 LTx,z(y) = eyTXT +XyeT ,

Mx,z : Sn
2 → Snr Mx,z(H) = [Ir ⊗

(
mat(He) + mat(He)⊤

)
] +XTHX,

MT
x,z : Snr → Sn2 MT

x,z(V ) = vec (V )eT + e vec (V )T +XVXT .

where mat is the inverse operator to vec . Since fz,H(x) is linear in H, the operators Lx,z and
Mx,z are both linear operators. Thus, the problem defining the function O is convex.

The function O is useful only for analysis of those points x that are located strictly
inside the domain BR(ω) . This is due to the constraints (4.4a) and (4.4b) are meant to
be optimality conditions for a point inside the domain BR(ω). For a point x that lies on
the boundary, we define the corresponding function O∂B(x, z; T , ω) as the optimal objective
value of the convex optimization problem:

minimum
δ,µ≥0,H

δ

subject to Lx,z(H) = −µ(x− ω) (4.5a)

Px−ωMx,z(H)P⊤
x−ω ⪰ 0 (4.5b)

T (H) = 0 (4.5c)

(1− δ)I ⪯ H ⪯ (1 + δ)I (4.5d)
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where Px−ω ∈ R(nr−1)×nr is the matrix of orthogonal projection onto the subspace orthogonal
to x − ω. The role of the function O∂B is the same as of O but is designed to analyse only
those values of x such that ∥x − ω∥ = R. Note that (4.5a) and (4.5b) are the necessary
optimal conditions for a solution on the boundary of BR(ω).

To relax the δ2r-RIP condition, we consider those operators that have a bounded effect
on a linear subspace of limited-rank inputs. Indeed, for any 2r linearly independent vectors,
the linear span of them is a linear subspace of the manifold of the 2r-rank matrices. Thus,
for any linear operator P from a 2r-dimensional (or lower) vector space to Rn2

, the following
condition on H holds if A satisfies δ-RIP:

(1− δ)P⊤P ⪯ P⊤HP ⪯ (1 + δ)P⊤P . (4.6)

Based on this observation, we define the function OP (x, z; T ) as the optimal objective value
of the following convex optimization problem:

minimum
δ∈R,H

δ

subject to Lx,z(H) = 0 (4.7a)

Mx,z(H) ⪰ 0 (4.7b)

T (H) = 0 (4.7c)

(1− δ)P⊤P ⪯ P⊤HP ⪯ (1 + δ)P⊤P (4.7d)

where P is the linear operator from Rrank([x z])2 to Rn2
that is represented by the matrix

P = orth([x z])⊗orth([x z]). Note that (4.7) is obtained from (4.4) by replacing its constraint
(4.4d) with the milder condition (4.6). We will show that the function OP sets a lower bound
on the δ2r such that none of the functions fz;A with A satisfying T -KSP and δ2r-RIP has
a spurious second-order critical point at x, provided that x is not on the boundary of the
optimization domain BR(ω).

Similarly to O∂B, the function O∂B
P (x, z; T , ω) is defined as the optimal objective value of

the convex optimization problem:

minimum
δ,µ≥0,H

δ

subject to Lx,z(H) = −µ(x− ω)
Px−ωMx,z(H)P⊤

x−ω ⪰ 0
T (H) = 0
(1− δ)P⊤P ⪯ P⊤HP ⪯ (1 + δ)P⊤P

which is designed to lower bound the constant δ2r such that none of the functions fz;A with
A satisfying T -KSP and δ2r-RIP has a spurious second-order critical point at x, provided
that x is on the boundary of BR(ω).

Now, we are ready to state one of the main results of this chapter.
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Theorem 7 (KSP necessary and sufficient conditions). For all instances of (ProblemKSP),
there are no spurious second-order critical points if{

OP (x, z; T ) ≡ 1 over BR(ω)× BR(ω) \ {xx⊤ = zz⊤}
O∂B
P (x, z; T , ω) ≡ 1 over ∂BR(ω)× BR(ω) \ {xx⊤ = zz⊤}

(4.8)

and only if {
O(x, z; T ) ≡ 1 over BR(ω)× BR(ω) \ {xx⊤ = zz⊤}
O∂B(x, z; T , ω) ≡ 1 over ∂BR(ω)× BR(ω) \ {xx⊤ = zz⊤}

(4.9)

This theorem is formally proven in the appendix. To elaborate on implications and
practicality of the result, we present its application for a specific structure of the sensing
operator below.

Ellipsoid norm: Rank 1

In this subsection, we prove a special case of Theorem 7 for the ellipsoid norm objective
function and R = +∞. This proof first provides useful intuition behind the proof of the
general case and then simplifies the conditions of Theorem 7 to show that they always hold
for a specific class of operators.

Consider the ellipsoid norm of xx⊤− zz⊤ given by a full-rank matrix Q ∈ Rn×n, denoted
with h(x) :

h(x) = ∥Q(xx⊤ − zz⊤)∥2F = fz,A(x)

With no loss of generality, assume that Q ∈ Sn since h(·) really depends only on
Q⊤Q. The function can be implemented with a block-diagonal sensing operator ma-
trix A = diag(Q, . . . , Q) ∈ Sn2

, which generates a block-diagonal kernel matrix
H = diag(QQ, . . . , QQ). Thus, the kernel matrix is a block-diagonal matrix H =
diag(H11, . . . , Hnn) ∈ Sn2

with blocks of size n × n equal to each other; in other words,
Hii = Hjj for all i, j ∈ {1, . . . , n}. This generates a kernel structure. By applying the theory
introduced above, we obtain the following result for the rank-one case.

Proposition 1. Consider a kernel structure operator T = (S,W) such that

• S(H) = 0 iff H = diag(H11, . . . , Hnn)

• W(H) = 0 iff Hii = Hjj for all i, j ∈ {1, . . . , n},

Then, no instance of the (ProblemKSP) with R = ∞ has a spurious second-order critical
point over Rn.

The proposition implies that the function h(x) can never have a spurious solution for
rank-1 arguments. To prove this result, first notice that, Assumption 1 and the following
lemma combined imply that Hii, and, consequently, its decomposition Hii = QQ, are full-
rank matrices.
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Lemma 20. Given a constant δr ∈ [0, 1), the matrix Q ∈ Sn satisfies

(1− δr)∥X∥2F ≤ ∥QX∥2F ≤ (1 + δr)∥X∥2F

for every X such that rank (X) ≤ r only if rank (Q) = n

Proof. By contradiction, suppose that u ∈ Ker(Q) and u ̸= 0. Take X = uu⊤ and observe
that QX = 0, which contradicts that (1− δr)∥X∥2F ≤ ∥QX∥2F .

The following lemma provides a version the conditions (4.8) and (4.9) combined for this
particular structure operator.

Lemma 21. Given z ∈ Rn×r, a point x ∈ Rn×r is not a first-order critical point of the
function h(·) for an arbitrary full-rank matrix Q if and only if there is λ ∈ Rn×r such that

0 ̸= Sym
[
(xλ⊤ + λx⊤)(xx⊤ − zz⊤)

]
⪰ 0

Proof. By expanding h(x+ u) as

h(x+ u) = h(x) + tr(2x⊤
(
(xx⊤ − zz⊤)M +M(xx⊤ − zz⊤)

)
u) +

tr
(
u⊤
(
(xx⊤ − zz⊤)M +M(xx⊤ − zz⊤)

)
u + (xu⊤ + ux⊤)M(xu⊤ + ux⊤))

)
+o(|u|2)

one can arrive at a more specified expression for the second-order necessary conditions for
local optimality:

⟨∇h(x), u⟩ = 2⟨Q(xx⊤ − zz⊤), Q(xu⊤ + ux⊤)⟩ = 0 (4.10a)

⟨∇2h(x)u, u⟩ = 2⟨QQ(xx⊤ − zz⊤), uu⊤⟩+ ∥Q(xu⊤ − ux⊤)∥2F ≥ 0 (4.10b)

for all u ∈ Rn×r. We re-arrange the first-order condition (4.10a):(
(xx⊤ − zz⊤)M +M(xx⊤ − zz⊤)

)
z = 0 (4.11)

If the equation (4.11) does not hold for some M ≻ 0, then x cannot be a critical point for
that z and M. Consequently, the problem

minimize
M∈Sn,α∈R

− α

subject to
(
(yy⊤ − xx⊤)M +M(yy⊤ − xx⊤)

)
y = 0 (4.12a)

M − α I ⪰ 0, (4.12b)

is bounded from below by 0 if and only if the equation (4.11) does not hold for arbitrary
M ≻ 0. If x is critical for some M ≻ 0, then it is unbounded.

The problem (4.12) is a semidefinite program with a zero duality gap, since M = 0 and
α = −1 constitute a strictly feasible primal point. We introduce the dual variable λ ∈ Rn×r
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for the equality constraint (4.12a) and the dual variable G ∈ Sn for the positive semi-definite
(PSD) constraint (4.12b). The dual problem can be written as

max
λ∈Rn×r,G⪰0

min
M∈Sn,α∈R

tr[
(
2 Sym[(yλ⊤ + λy⊤)(yy⊤ − xx⊤)]−G

)
M ] + α(tr(G)− 1)

The inner optimization problem has a finite solution if and only if{
G = (yλ⊤ + λy⊤)(yy⊤ − xx⊤) + (yy⊤ − xx⊤)(yλ⊤ + λy⊤)
tr(G) = 1

The dual problem can be expressed as

maximize
λ∈Rn×r,G∈Sn

0

subject to G = Sym[(yλ⊤ + λy⊤)(yy⊤ − xx⊤)],
tr(G) = 1,
G ⪰ 0

This is feasible if and only if the primal problem (4.12) is bounded. Consequently, it is
feasible if and only if the point x ∈ Rn×r is not a critical point of the function h for all
M ≻ 0.

To eliminate the condition on the trace, notice that a PSD matrix has a nonnegative
trace that is equal to zero if and only if the matrix is the zero matrix. Since the constraints
are homogeneous in G, the trace can always be normalized to 1. Thus, the dual feasibility is
equivalent to the condition 0 ̸= G ⪰ 0. This concludes the proof.

This condition will be relaxed further for simplicity below.

Lemma 22. Given z ∈ Rn×r, a point x ∈ Rn×r is not a first-order critical point of the
function h(·) for an arbitrary full-rank matrix Q if there are T1 ∈ Rr×r and T2 ∈ Sr such

that the matrix T =

[
0 T1
−T⊤

1 T2

]
satisfies the relations

0 ̸= [−z x]
(
T⊤P + PT

) [ −z⊤
x⊤

]
⪰ 0 (4.13)

where P =

[
z⊤

x⊤

]
[z x] .

Proof. Suppose that there exists T satisfying the condition of the lemma. Notice that

xT⊤
1 z

⊤ +
1

2
xT2x

⊤ + zT1x
⊤ +

1

2
xT2x

⊤ = [−z x]

[
0 −T1
T⊤
1 T2

] [
z⊤

x⊤

]
=

[z x]

[
0 T1
−T⊤

1 T2

] [
−z⊤
x⊤

]
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and

xx⊤ − zz⊤ = [z x]

[
−z⊤
x⊤

]
= [−z x]

[
z⊤

x⊤

]
We use the above formulas to expand the condition (4.13) and obtain

0 ̸= Sym[(x(zT1 +
xT2
2

)⊤ + (zT1 +
xT2
2

)x⊤)(xx⊤ − zz⊤)] ⪰ 0,

The proof follows immediately from applying Lemma 21 with λ = zT1 +
1
2
xT2.

To prove Proposition 1, we check the previous condition for all pairs of z and x.

Proof of Proposition 1. We start by proving that no point other than 0 and ±z can be a
first-order critical point of the function h. Assume that x ̸∈ {0,±z}. By Lemma 22, it is

sufficient to prove that there are α and β in R such that the matrix T =

[
0 α
−α β

]
satisfies

0 ̸= G = [−z x]
(
T⊤P + PT

) [ −z⊤
x⊤

]
⪰ 0

where P =

[
z⊤

x⊤

]
[z x] . Consider three scenarios for x and z :

Case 1 x = γz: One can write

G = [−z x]
(
T⊤P + PT

) [ −z⊤
x⊤

]
= 2γ(γ2 − 1)(2α + βγ)zz⊤zz⊤

For α = γ(γ2−1) and β = 0, it holds that G =
(
2γ(γ2 − 1)zz⊤

)2 ⪰ 0. The matrix is nonzero
for x ̸∈ {0,±z}.

Case 2 z⊤x = 0: The matrix P takes the form P =

[
∥z∥2 0
0 ∥x∥2

]
. Therefore, for α = 0

and β = 1, it holds that
G = 2∥x∥2xx⊤ ⪰ 0

The matrix is nonzero for x ̸= 0.
Case 3 0 < (z⊤x)2 < ∥z∥22∥x∥22: By scaling, we can assume without loss of generality that

z⊤x = 1; thus P =

[
∥z∥22 1
1 ∥x∥22

]
. It is sufficient to show that T⊤P +PT ≻ 0 to guarantee

G to be nonzero and PSD. To show this, we use Sylvester’s criterion. The upper-left corner
of this matrix is equal to −2α. Moreover,

det(T⊤P + PT ) = (−(∥x∥22 − ∥y∥22)2 − 4)α2 − 2(∥x∥22 + ∥y∥22)αβ − β2

For α = −1, the discriminant of this quadratic polynomial with respect to β is equal to
D = 16(∥z∥22∥x∥22 − 1). By the strict Cauchy-–Schwarz inequality in the assumption of the
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case, D is strictly greater than 0. Thus, there exists β such that the matrix is positive
definite. This implies that none of x /∈ {0,±z} satisfies the first-order necessary condition
of local optimality for an unconstrained problem. Assume that x = 0. The quadratic form
on the Hessian at this point

⟨∇2h(0)u, u⟩ = −2⟨Qzz⊤, uu⊤⟩
takes a negative value at u = z. Thus, it does not satisfy the second-order necessary condition
of local optimality for an unconstrained problem. The points x = ±z are not spurious points,
which concludes the proof.

Ellipsoid norm: Higher ranks

The function h(·) defined over Rn×r is significantly harder to study analytically if r > 1. An
empirical analysis of Theorem 7 allows us to make a conjecture.

Conjecture 1. For the kernel structure operator introduced in Proposition 1, no instance of
the (ProblemKSP) with Z = Rn×r has a spurious second-order critical points over Rn×r for
an arbitrary r.

This conjecture is based on the evaluation of O(x, z; T ) at 72000 pairs of points x, z ∈
R8×3 randomly sampled from a standard Gaussian distribution. All of them have the optimal
value 1. However, if we consider first-order critical points as well, then it is straightforward
to find a counterexample. After dropping the constraint on Mx,z in the formulation of
O(x, z; T ) and OP (x, z; T ), one can formulate a statement similar to Theorem 7 tailored to
first-order solutions. The following proposition presents a corollary of the result.

Proposition 2. For the kernel structure operator introduced in Proposition 1, for every
n ≥ 8 and r > 1, there is z ∈ Rn×r such that (ProblemKSP) has a spurious saddle point.

Proof. First, we prove it for n = 8 and r = 2 by a counterexample. Consider the two points

x =



0 −1
1 −1
1 1
1 0
0 0
−1 1
−1 1
0 0


, z =



−1 1
1 1
1 −1
−1 0
1 0
1 −1
1 −1
−1 −1


and find a matrix H that solves O(x, z; T ) without the constraint onMx,z. This will result
in H such thatMx,z(H) has both negative and positive eigenvalues. For larger values of n
and r, one can fill up the extra entries with zeros and the proof carries over.

The code for reproducing the result is available on-line1. It took 482 tosses to generate
1github.com/igormolybog/matrix-sense-global
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the counterexample of the matrices containing only ±1 or 0 as their components. We used
the uniform distribution over those matrices to generate the tosses.

DC power systems with acyclic topology

In the previous subsection, we studied one particular structure for the operator A. Now, we
analyze a real-world problem to highlight the role of the KSP. Recall that the power system
discussed in Section 4.2 was an AC network for which the voltages were complex numbers.
To simplify the computation, we analyze a DC system in this section, where all voltages are
real-valued [44]. Assume that there are n nodes, associated with the unknown real-valued
voltages x̃1, ..., x̃n. The power is measured at each node i ∈ {1, ..., n} and is denoted as p̃i,
which can be calculated according to the formula:

pi(x̃) =
∑
j∈N(i)

x̃i(x̃i − x̃j)
1

rij
= p̃i,

where N(i) ⊂ {1, . . . , n} is the set of nodes adjacent to node i and rij = rji > 0 is the
resistance of the line between nodes i and j. The least-squares formulation of the voltage
recovery problem consists in minimization over the set v ∈ BR(1) of

f(x) =
n∑
i=1

(pi(x)− p̃i)2

which is a special case of the function (4.1). Let R be a number such that 2xi > xn for all
i ∈ {1, . . . , n− 1}. In this subsection, we will demonstrate the application of our results on
a specific topology of the network, although as discussed later on, our conclusion applies to
any acyclic topology.

Suppose that the network possesses a star topology, meaning that each node i among
{1, . . . , n−1} is connected to only one node — namely, node n— and no others. This means
that N(i) = {n} if i ̸= n and N(n) = {1, . . . , n − 1}. As a result, the power measurements
in this particular case can be written as

pi(x) = xi(xi − xn) 1
rin
, i ∈ {1, ..., n− 1}

pn(x) =
n−1∑
j=1

xn(xn − xj) 1
rjn

which generate a particular structure for the sensing operator. Solving aivec (xx
⊤−x̃x̃⊤) = pi

for ai, we conclude that the rows a1, . . . , an of A can be written as

ai = ξivec (Eii − Eni), i ∈ {1, ..., n− 1}

an = −vec (ξnEnn +
n−1∑
j=1

ξjEjn)
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Figure 4.2: Sparsity pattern of the matrix H corresponding to a DC power system with a
star topology consisting of four buses.

where Eij is an n × n matrix with (i, j)-th entry equal to 1 and all other entries equal to
zero, and where ξi =

1
rin

= 1
rni

> 0 for i ̸= n and ξn = −
∑n−1

j=1 ξj. The corresponding kernel
matrix is given by

Hstar(ξ) := H = A⊤A =
n∑
i=1

a⊤i ai

As a result, H has a structured sparsity pattern: it is a block-diagonal matrix with n blocks
M1, . . . ,Mn ∈ Sn such that the first n− 1 blocks each have only four nonzero entries:

Mi = ξ2i [Eii − Ein − Eni + Enn] = ξ2i [en − ei][en − ei]⊤, i ∈ {1, ..., n− 1}

where ei is the i-th column of the n×n identity matrix. The last block of H is a full matrix:

Mn = ξξ⊤

The sparsity pattern of H is visualized for n = 4 in Figure 4.2. The matrix H = Hstar(ξ) also
has a low-dimensional structure: the 4(n−1)+n2 nonzero entries of H quadratically depend
on only n− 1 parameters ξ1, . . . , ξn−1. In Section 4.6, we will demonstrate how linearization
of the structure can be applied, while here we provide an analytical proof that deals with
the nonlinear low-dimensional structure directly. This proof sheds light on some of the ideas
behind Theorem 7.

The 2-RIP constant of the sensing operators that correspond to star topology power
networks does not exist due to their sparsity. Therefore, Theorem 6 cannot be applied.
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Nevertheless, we will show that the non-convex voltage recovery problem on a system with
a star topology possesses no spurious local minima.

Proposition 3. Consider the problem{
minimize
x∈B̄1/3(1)

fz,A(x)
∣∣∣H = Hstar(ξ); z ∈ B̄1/3(1) and ξ

⊤p(z) ̸= 0

}
,

or equivalently, (ProblemKSP) under the additional constraint ξ⊤p(z) ̸= 0. No instance of
this problem has a spurious second-order critical point.

Proof. Since R < 1
3
, it holds that 2xi > xn and 2zi > zn for all i ∈ {1, . . . , n}. We are

interested in the landscape of the function

h(x) = vec (xx⊤ − zz⊤)⊤Hvec (xx⊤ − zz⊤)
=

n∑
i=1

(xix− ziz)⊤Mi(xix− ziz)

To find the first and second derivatives, consider

h(x+ u) =
n∑
i=1

(xix− ziz + xiu+ uix+ uiu)
⊤Mi(xix− ziz + xiu+ uix+ uiu)

= h(x) + 2
n∑
i=1

(xiu+ uix)
⊤Mi(xix− ziz)+

+
n∑
i=1

(xiu+ uix)
⊤Mi(xiu+ uix)+

+2
n∑
i=1

(uiu)
⊤Mi(xix− ziz) + o(|u|2)

Selecting the term that is linear in u, the gradient takes the form

∇xh(x) = 2
n∑
i=1

[xiMi(xix− ziz) + tr[x⊤Mi(xix− ziz)]ei]

= 2
n−1∑
i=1

ξ2i xi(en − ei)(en − ei)⊤(xix− ziz)+

+tr[x⊤(en − ei)(en − ei)⊤(xix− ziz)]ei+
+2xiξξ

⊤(xix− ziz) + tr[x⊤ξξ⊤(xix− ziz)]ei
which can be written in the compact form

∇xh(x) = B(x)[p(x)− p(z)]

where the (i, j)-th component of the n× n matrix B(x) is

Bij =


ξi(2xi − xn) if i = j, i ̸= n∑n−1

s=1 ξi(2xn − xs) if i = j = n

−ξixi if i ̸= j, i = n or i ̸= j, j = n

0 otherwise
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and p(x) is a vector with its i-th component eqal to pi(x). If B(x) is non-singular at a
point x, then x is a first-order critical point of h(x) in the open ball B̄1/3(1) if and only if
p(x) − p(z) = A(xx⊤ − zz⊤) = 0, which implies that it is a global minimum. Therefore, it
is essential to identify all points x such that det(B) = 0.

With a slight abuse of notation, we denote B(x) with the shorthand notation B. Let βn
denote the (n, n)-th entry of B, which is equal to

∑n−1
s=1 ξs(2xn − xs). Represent the matrix

B as a block matrix: B =

[
B′ b⊤

b B′′

]
with the scalar B′ = ξ1(2x1 − xn) and the (n − 1)-

dimensional vector b⊤ = [0, . . . , 0,−ξ1x1]. Since x ∈ B̄1/3(1), we have B′ ̸= 0. One can
write:

det(B) = 0 ⇐⇒ det(B′′ −B′−1bb⊤) = 0

The new (n − 1) × (n − 1) matrix B′′ − B′−1bb⊤ is equal to B′′ in all components but its
(n− 1, n− 1)-th entry, which changes to

βn−1 = −ξ1 x1xn
2x1−xn + βn

= −ξ1 x1xn
2x1−xn + ξ1(2xn − x1) +

n−1∑
s=2

ξs(2xn − xs)

= −2ξ1 (x1−xn)
2

2x1−xn +
n−1∑
j=2

ξs(2xn − xs)

Repeating the above matrix reduction argument n − 1 times yields that det(B) = 0 if and
only if β1 = 0, where

β1 = −2
n−1∑
i=1

ξi
(xi − xn)2

2xi − xn

Since 2xi − xn > 0, we conclude that β1 = 0 if and only if x1 = · · · = xn. Therefore, there
are no spurious solutions outside the set {x : x1 = · · · = xn}. To study this set, we derive
the Hessian of h(x) by extracting from h(x+ u) the term that is quadratic in u :

∇2
xxh(x) =

n∑
i=1

[ x2iMi + xi(eix
⊤Mi +Mixe

⊤
i ) + eix

⊤Mixe
⊤
i +

+Mi(xix− ziz)e⊤i + ei(xix− ziz)⊤Mi]

and substitute x1 = · · · = xn = x′ or x = x′1. At the same time, we substitute Mi =
ξ2i [en − ei][en − ei]

⊤ and Mn = ξξ⊤, and note that (en − ei)
⊤1 = 1⊤(en − ei) = 0 and

ξ⊤1 = 1⊤ξ = 0 by construction. After simplification, we obtain that

∇2
xxh(x)

∣∣
x=x′1

= x′2
[ n−1∑

i=1

ξ2i (en − ei)(en − ei)⊤ + ξξ⊤ − (ξe⊤n + enξ
⊤)znz

⊤ξ−

−
n−1∑
i=1

ξ2i ((en − ei)e⊤i + ei(en − ei)⊤)zi(zn − zi)
]
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Consider the quadratic form q(s, t) = [s . . . s t]∇2
xxh(x)

∣∣
x=x′1

[s . . . s t]⊤, where
[s . . . s t] ∈ Rn. One can write:

q(s, t) =
n−1∑
i=1

ξ2i (t− s)2 +
(
n−1∑
i=1

sξi + tξn

)2

−

−2tzn
(
n−1∑
i=1

sξi + tξn

)(
n−1∑
i=1

ziξi + znξn

)
−

−2s(t− s)
n−1∑
i=1

ξ2i zi(zn − zi) =

= (t− s)2
[
n−1∑
i=1

ξ2i +

(
n−1∑
i=1

ξi

)2
]
+

+2(t− s)
[
t

(
n−1∑
i=1

ξi

)(
n−1∑
i=1

ξizn(zi − zn)
)
− s

(
n−1∑
i=1

ξ2i zi(zn − zi)
)]

=

= c1(t− s)2 + 2(t− s)(c2t− c3s) =
= (c1 + 2c2)t

2 − 2(c1 + c2 + c3)st+ (c1 + 2c3)s
2

where c1, c2 and c3 are some constants introduced to shorten the expression. If q(s, t) takes
negative values, then ∇2

xxh(x)
∣∣
x=x′1

has a negative eigenvalue, and therefore x = x′1 cannot
be a spurious second-order critical point.

Now, consider the polynomials q(1, t) and q(s, 1). Suppose that
n−1∑
i=1

ξ2i ≥
(
n−1∑
i=1

ξi

)2

and

consider any point z ∈ B̄1/3(1). Since |zn(zi − zn)| ≤ 4
3
· 2
3
= 8

9
, it must hold that

c1 + 2c2 >
n−1∑
i=1

ξ2i +

(
n−1∑
i=1

ξi

)2

− 2
8

9

(
n−1∑
i=1

ξi

)2

=
n−1∑
i=1

ξ2i −
6

9

(
n−1∑
i=1

ξi

)2

≥ 0

Thus, q(1, t) is a polynomial of order 2 with respect to t with a positive leading term. Suppose

that
n−1∑
i=1

ξ2i <

(
n−1∑
i=1

ξi

)2

. Similarly,

c1 + 2c3 >
n−1∑
i=1

ξ2i +

(
n−1∑
i=1

ξi

)2

− 2
8

9

n−1∑
i=1

ξ2i =

(
n−1∑
i=1

ξi

)2

− 6

9

n−1∑
i=1

ξ2i ≥ 0

and thus q(s, 1) is a polynomial of order 2 with respect to s with a positive leading term. At
least one of the polynomials q(1, t) or q(s, 1) has a positive leading term. Both q(1, t) and
q(s, 1) have the same determinant and thus the argument to be made below can be made
for any of them. Without loss of generality, assume that q(1, t) has a positive leading term
and takes negative values if and only if its determinant is strictly positive:

4(c1 + c2 + c3)
2 − 4(c1 + 2c2)(c1 + 2c3) > 0.
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It is positive if and only if (c2 − c3)2 > 0, which is equivalent to c2 ̸= c3. After substituting
c2 = (

∑n−1
i=1 ξi)(

∑n−1
i=1 ξizn(zi − zn)) = −(

∑n−1
i=1 ξi)pn(z) and c3 = (

∑n−1
i=1 ξ

2
i zi(zn − zi)) =

−
∑n−1

i=1 ξipi(z), one can guarantee that ∇2
xxh(x)

∣∣
x=x′1

has a negative eigenvalue unless

ξ⊤p(z) = 0.

Otherwise, q(1, t) only reaches zero at t = 1 and never crosses it.

The technique of using the properties of the Schur complement to reduce the dimension
of a matrix one by one can be applied to any arbitrary network with an acyclic topology. For
any such network, the gradient∇xh(x) also takes the form∇xh(x) = B[p(x)−p(z)], but with
a different matrix B. Applying elimination of the rows and columns of B that correspond to
the leaves first, then to the first layer of parent nodes, then to the second layer of parent nodes
and so forth leads to a similar result on the location of first-order critical points. Thus, in a
similar way, the conclusion of Proposition 3 can be proven for any arbitrary acyclic network,
but for a different value of the radius R that may not be analytically calculable. However,
the proof is not generalizable to networks with cycles. The proof of Proposition 3 was based
on analyzing the first- and second-order optimality conditions and exploiting the properties
of the operator A that benefits from both sparsity and a low-dimensional structure. The
ideas used in the proof help the reader understand Theorem 7. Since Proposition 3 does not
apply to networks with cycles, one may instead use Theorem 7 to numerically evaluate the
inexistence of spurious solutions for any particular cyclic network. This will be carried out
in Section 4.6.

4.5 Combining KSP with RIP

After fixing the hyperparameters ω ∈ Rn×r and R ∈ R ∪ {+∞} together with the kernel
structure of the sensing operators and the RIP constant, we can state the problem studied
in this section as follows:{

minimize
x∈BR(ω)

fz,A(x)
∣∣∣ A satisfies δ2r-RIP and T -KSP, z ∈ BR(ω)

}
, (ProblemKSP+RIP)

Note that (ProblemKSP+RIP) consists in the minimization of a class of functions fz,A that
correspond to some point z ∈ BR(ω) and some operator A that satisfies T -KSP and δ2r-
RIP simultaneously. This is a generalization of both (ProblemRIP) and (ProblemKSP). For
(ProblemKSP+RIP), we provide necessary and sufficient conditions for having no spurious
second-order critical point, and consequently no spurious local minimum.
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Theorem 8 (KSP+RIP necessary and sufficient conditions). For all instances of
(ProblemKSP+RIP), there are no spurious second-order critical points if

δ2r < min
x∈BR(ω),z∈BR(ω)

xx⊤ ̸=zz⊤

OP (x, z; T )

δ2r < min
x∈∂BR(ω),z∈BR(ω)

xx⊤ ̸=zz⊤

O∂B
P (x, z; T , ω)

(4.14a)

(4.14b)

and only if 
δ2r < min

x∈BR(ω),z∈BR(ω)

xx⊤ ̸=zz⊤

O(x, z; T )

δ2r < min
x∈∂BR(ω),z∈BR(ω)

xx⊤ ̸=zz⊤

O∂B(x, z; T , ω)

(4.15a)

(4.15b)

Following the results of [120], the necessary and sufficient conditions coincide for the
trivial structure operator T ≡ 0 and R = +∞.

Robustness

Consider the scenario where the measurements are corrupted with independent and identi-
cally distributed Gaussian noise. More precisely, we assume that the measurement vector
b is corrupted by an additive noise that can be written as A(V ) for some random matrix
V that is probably full rank (since A(·) is from the high-dimensional space Sn to the pre-
sumably low-dimensional space Rm, we just need the mild surjectivity assumption). In this
section, we show that the resulting recovery error can be bounded with high probability. For
simplicity, we consider the case R = +∞, but a similar argument can be used to analyze the
case with a finite radius.

Theorem 9. Consider (ProblemKSP+RIP) with R = +∞ for which the condition (4.14a)
holds. Let V ∈ Sn be a random matrix of arbitrary rank. Define the noisy recovery loss

g(x) = ∥A(xx⊤ − zz⊤ + V )∥.

For every p ∈ (0, 1) and ε > 0, there exists σ = σ(p, ε;A, z) > 0 such that for V ∼
N (0, σ2I), with probability at least p, every second-order critical point x⋆ of g(x) satisfies
∥x⋆x⋆⊤ − zz⊤∥ < ε

Proof. Expand the recovery loss:

g(x) = ⟨xx⊤ − zz⊤ + V, (xx⊤ − zz⊤ + V )⟩
= f(x) + ⟨V,H(xx⊤ − zz⊤) + xx⊤ − zz⊤⟩+ ⟨V,H(V )⟩

We outline the proof below:
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• Split Rn into four regions according to the behavior of f(x) associated with the noiseless
scenario:

1. ε-neighborhood of the second-order critical points of f(x)

2. some neighborhood of the remaining first-order critical points of f(x)

3. inner compact region where the value of ∥∇f∥ is bounded by some positive con-
stants from below and from above

4. Outer region, where ∥∇f∥ is large;

• Show the existence of σ such that there are no second-order critical points of g(x) in
regions 2, 3 and 4 with high probability;

• Conclude that the only region that contains the second-order critical points of g(x)
with high probability is region 1, which coincides with the set {x : ∥xx⊤ − zz⊤∥ < ε}.

The illustration of the regions used in the proof can be found in Figure 4.3. To prove formally,
first calculate the gradient

∇xg(x) = ∇xf(x) +∇x⟨V,H(xx⊤) + xx⊤⟩

For i ∈ {1, . . . , n} and j ∈ {1, . . . , r}, one can write:

∂

∂xij
⟨V, xx⊤⟩ = ⟨V, eix⊤j + xje

⊤
i ⟩ = 2e⊤i V xj

where ei is the i-th column of the n× n identity matrix. Moreover,

∂

∂xij
⟨V,H(xx⊤)⟩ = ⟨V,H(eix⊤j + xje

⊤
i )⟩

The Hessian can also be written as

∇2
xxg(x) = ∇2

xxf(x) +∇2
xx⟨V,H(xx⊤) + xx⊤⟩

Similarly, for i′ ∈ {1, . . . , n} and j′ ∈ {1, . . . , r}, we have

∂2

∂xij∂xi′j′
⟨V, xx⊤⟩ = 2δjj′⟨V,Eii′⟩

where δjj′ ∈ R is defined as δjj′ =

{
1 if j = j′

0 otherwise
, and Eii′ ∈ Rn×n is a matrix whose

(i, i′)-th entry is 1 and other entries are 0. Similarly,

∂2

∂xij∂xi′j′
⟨V,H(xx⊤)⟩ = δjj′⟨V,H(Eii′ + Ei′i)⟩
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By assumption, there exists γ > 0 such that 1−δ2r
γ
∥xx⊤ − zz⊤∥2F ≤ ∥A(xx⊤ − zz⊤)∥2F for

all x. This implies that f(x) is a coercive functions of x for any given A and z. Moreover,
∥∇xf(x)∥ is also a coercive function. To show this, using the notation from Section 4.4,
consider

⟨ x
∥x∥F

,∇xf(x)⟩ = 2
∥x∥F
⟨vec (x),X⊤He⟩

= 2
∥x∥F
⟨Xvec (x),He⟩

= 2
∥x∥F
⟨xx⊤ + xx⊤,H(xx⊤ − zz⊤)⟩

= 4
∥x∥F

[f(x) + ⟨zz⊤,H(xx⊤ − zz⊤)⟩]

Knowing that f(x) grows as fast as ∥xx⊤∥2F = ∥x∥4F and −⟨zz⊤,H(xx⊤ − zz⊤)⟩ grows at
most as fast as ∥x∥2F , we conclude that ⟨ x

∥x∥F
,∇xf(x)⟩ → ∞ as ∥x∥ → ∞, which implies

that ∥∇xf(x)∥ → ∞ as ∥x∥ → ∞.
For an arbitrary K ′ > 0, define the set CK′ = {x|f(x) ≤ K ′, ∥∇xf(x)∥ ≤ K ′}. It is

compact due to the coerciveness. The difference ∇xg(x) − ∇xf(x) is linear in both V and
x, while ∇xf(x) is cubic in x. Noting that ∥∇xg(x)∥ ≥ ∥∇xf(x)∥ − ∥∇xf(x) − ∇xg(x)∥,
one can conclude that ∥∇xg(x)∥ is also a coercive function. Therefore, for any pK ∈ (0, 1)
there exist K and σ = σK such that ∥∇xg(x)∥ > 0 over Rn\CK with probability pK . Select
pK = 3

√
p and fix the corresponding K and σK .

The set Ofo of first-order critical points of f(x) is closed due to the closed graph theorem.
Moreover, it is bounded due to coercievness of f(x), and thus compact even when R =
+∞. Denote the set of second-order critical points of f(x) with Omin ⊆ Ofo. It coincides
with the set of global minimizers of f(x) since the condition (4.14a) holds and Theorem
8 can be utilized. Define Umin = ∪x∈Omin

B̄ε(x), and the set Orest = Ofo\Umin that is
compact. Note that the minimum eigenvalue of ∇2

xxf(x) is strictly negative for every x ∈
Orest. Since minimum eigenvalue is a continious function, there exists λ̄ < 0 such that
minx∈Orest λmin(∇2

xxf(x)) = λ̄. By continuity of ∇2
xxf(x) with respect to x, there exists ξ > 0

such that λmin(∇2
xxf(x)) <

λ̄
2
for all x ∈ Urest = ∪x′∈OrestB̄ξ(x′). The difference of Hessians

∇2
xxg(x)−∇2

xxf(x) is linear in V and constant in x. Therefore, for any ψ > 0 and pψ ∈ (0, 1),
there exists σψ such that with probability pψ, it holds that ∥∇2

xxg(x) −∇2
xxf(x)∥F < ψ for

all x ∈ CK . Select ψ = λ̄
3
and pψ = 3

√
p, and fix the corresponding σψ. Notice that under

σ ≤ σψ, with probability pψ there are no second-order critical points of g(x) in Urest.
Denote Ufo = Urest ∪ Umin and notice that CK\Ufo is a compact set that contains no

first-order critical points of f(x). Therefore, there exists ρ > 0 such that ∥∇xf(x)∥ > ρ for
all x ∈ CK\Ufo. Due to the continuity of ∇xg(x) − ∇xf(x), for any ϕ > 0 and pϕ ∈ (0, 1),
there exists σ = σϕ such that with probability pϕ it holds that ∥∇xg(x) − ∇xf(x)∥F < ϕ
for all x ∈ CK . Select ϕ = ρ and pϕ = 3

√
p, and fix the corresponding σϕ. Notice that under

σ ≤ σϕ, with probability pϕ there are no second-order critical points of g(x) in CK\Ufo.
To conclude the proof, select σ < min{σK , σψ, σϕ} and observe that with probability at

least pK × pψ× pϕ = p there are no second-order critical points of g(x) in the set Rn\Umin =
[Rn\CK ] ∪ Urest ∪ [CK\Ufo].
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CK

Omin

Orest

Umin

Urest

Figure 4.3: Schematic of the domain of the function f(x) with highlighted regions. The
grey area denotes the compact region CK . The bold lines denote the set of first-order critical
points named Ofo whose subset shown in red corresponds to the set of global minimizers
named Omin, while the blue part corresponds to Orest. The area countered by the red shaded
line is the ε-neighborhood of Omin, namely Umin, while the area countered by the blue shaded
line is the ξ-neighborhood of Orest, namely Urest. The proof finds that with high probability
there are no second-order critical points of g(x) outside of CK (outer region 4), or inside
Urest (region 2), or inside CK\[Urest∪Umin]. Therefore, all such points must be located inside
Umin.

Sparse structure and normalization

Due to Theorem 6 for the rank-1 case, the instances of (ProblemKSP+RIP) have no spurious
solutions with T ≡ 0 as long as the RIP constant δ2 is upper bounded by 1

2
. In this subsection,

we are concerned with the question of how much sparsity can impact the best bound on RIP
that certifies global convergence. Formally, we set W ≡ 0 and T ≡ S and find a tighter
upper bound on δ2. After enforcing sparsity, it is natural to expect that the bound grows
and becomes less restrictive. However, this turns out not to be the case.

Let n = 2 and r = 1, and consider the smallest sparsity pattern possible for H = A⊤A ≻
0. It consists exclusively of elements (i, i), and thus enforces H to be diagonal. Consider the
point x with respect to the instance of the problem given by z and A as in the example
below:
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Example 1. Assume that

x = (1, 1); z = (
√
2,−
√
2); A = diag(

√
3, 1, 1,

√
3)

Then, x is spurious for fz,A since it satisfies the second-order necessary conditions:

∇fz,A(x) = 0, ∇2fz,A(x) = 16

[
1 1
1 1

]
⪰ 0

which makes it a spurious second-order critical point (note that xx⊤ ̸= zz⊤). Notice that
H = A⊤A is indeed diagonal. Moreover, for all X ∈ S2, the operator A satisfies the tight

bound ∥X∥2F ≤ ∥A(X)∥2 = ∥
[ √

3 1

1
√
3

]
◦ X∥ ≤ 3∥X∥2F . Therefore, the largest number

δ2 for this instance is equal to 1/2, which coincides with the upper bound for unstructured
problems. Somewhat counter-intuitively, the tight bound established in [119, 120] holds even
when a very restrictive sparsity pattern of the kernel operator is enforced. Nevertheless, for an
arbitrary low-dimensional structure W , a tighter sparsity constraint entails a less restrictive
bound on the RIP constant as discussed below.

Proposition 4. If the sparsity pattern S has a sub-pattern S ′ meaning that S ′ ⊂ S, then
O(x, z;W ,S ′) ≤ O(x, z;W ,S) for all x, y ∈ Rn×r. Thus, the necessary bound on the RIP
constant for H with S ′ is not more restrictive than the bound for H with S.

In other words, a more restrictive assumption on the sparsity of the kernel operator can
only push the upper bound on the RIP constant higher up. Consequently, Example 1 shows
that there is no sparsity pattern of cardinality greater than 3 that can itself compensate
the lack of isometry. Note that the example is given for the case n = 2, but there is
a straightforward extension to an arbitrary n by adding zero components to x and z. It
is common in practice to normalize the rows of the sensing matrix before proceeding to
recovery. In the context of power systems, it is expressed as x⊤Mix→ x⊤Mix

∥Mi∥F
. For Example

1, after normalization, A turns into the identity. The corresponding instance of the problem
is known to have no spurious critical points. This illustrates how normalization helps to
improve the isometry property of the sensing operator and removes the spurious second-
order critical points out of the corresponding instance of the problem. Normalization in this
case can be regarded as inducing structure on top of sparsity.

4.6 Numerical results

It is desirable to numerically study the non-convex matrix recovery in problems with a
structured sensing operator. The objective is to show how the general theory developed in
Section 4.3 can be applied to a real-world problem, namely the power system state estimation
discussed in Section 4.2. In general, optimization problems in (4.14) and (4.15) are non-
convex. Thus, we propose to use Bayessian optimization [39] in order to obtain a numerical
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estimation of their solutions. We have empirically observed that Bayesian optimization tends
to obtain the same optimal solution to this problem much faster than random shooting or
cross-entropy.

Power systems

In this section, we focus our attention on three networks named case9, case14 and case30

that are provided in the MATPOWER package [127]. For case9, the number of buses is
n = 9 and there are m = 63 possible power measurements that can be collected, while we
have n = 14 and m = 98 for case14 and have n = 30 and m = 210 for case30. We denote
the corresponding sensing operators with A9, A14 and A30. Both matrices A30 and H30 are
visualized in Figure 4.1.

We linearize the low-dimensional structure that was discussed in Section 4.4. Repetition
of the nonzero entries of H· (after some scaling) is considered as a form of low-dimensional
structure, instead of the nonlinear dependence on the admittance. For example, if the entries
(i, j) and (i′, j′) of H30 are equal, then W30 is constructed to be such that its kernel consists
of matrices, for which the entries (i, j) and (i′, j′) are equal.

Based on this property, we form the linear operators T 9, T 14 and T 30. All of the matrices
in their kernel subspace are rank deficient. In this case, Theorem 8 can only provide us with
the trivial upper bound on the RIP: δ2 < 1. However, this operator will allow us to use
Theorem 8 to find a less conservative bound on RIP to certify the inexistence of spurious
solutions for the structured mapping.

The purpose of the experiment is to study the dependence of δ2r that is sufficient for
the absence of spurious solutions in (ProblemKSP+RIP) on the radius R of the ball domain.
Intuitively, one would expect the dependence to be monotonically decreasing, since the larger
the domain is, the more solutions can appear there with some being spurious. However, this
is not exactly what can be observed. Figure 4.4 shows the right-hand side of the inequalities
in (4.14) from Theorem 8 for a range of values of R for three structure operators: T 9, T 14

and T 30. In these experiments, the vector ω has the unit entries. The red line provides
a guarantee on no spurious solutions in the interior of the domain, while the blue dashed
line takes care of the spurious solutions on the boundary. Indeed, the red curve decreases
monotonically and converges to a value around 0.64 for all of the experiments, while the
blue dashed line decreases to 0.5 and recovers back to the same value afterwards. It turns
out that 0.64 is the bound on δ2r for R = +∞ in each of the cases as well. This interesting
behavior can be explained qualitatively. Consider a toy example with three cases in Figure
4.5, where the domain grows from Case I to Case III. There are no spurious solutions in
case I, whereas one appears in case II and disappears in case III. Notice that the spurious
solution can only appear on the boundary, which motivates the steady behavior of the red
curve in Figure 4.4. Recall that the threshold 0.5 is valid for the trivial structure operator
T ≡ 0 and R = +∞ and the blue curve never goes below it. Therefore, the constructed
conditions of the absence of spurious local optimality are strictly superior to the previously
known bound.
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(a) T 9

(b) T 14

(c) T 30

Figure 4.4: The outcome of the minimization of OP (x, z) and O∂B
P (x, z) with the Bayessian

optimization toolbox. The resulting value is the approximation of the right-hand side of
the inequalities in (4.14) and can be used in Theorem 8 to estimate the lower bound on
the sufficient RIP constant for global optimality. The values of the radius of the domain
ball BR(ω) are on the x-axis, and the corresponding approximations of minOP (x, z) and
minO∂B

P (x, z) are on the y-axis. The red line depicts the lowest observed value of the function
OP (x, z) and the blue dashed line depicts the minimum value of the function O∂B

P (x, z).
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Figure 4.5: Illustration for the local solution on the boundary. Three cases are considered,
each marked with a different color. The colored intervals along the x-axis depict the domain
in each of the cases, while the colored crosses denote the local solutions.

The above simulations were based on the networks provided in the package MATPOWER
7.0b1 [127]. Keeping the structure of a network, we set the parameters of the lines equal to
each other to be able to better visualize the operator H. All of the presented simulations
were performed using the MATLAB bayesopt toolbox, and the MATLAB modeling toolbox
CVX [45, 46] with SDPT3 [101, 102] as the underlying solver.

Synthetic data

In this subsection, we present numerical studies of the matrix recovery problem for structured
sensing operators obtained from random ensembles. For simplicity, we set R = +∞. In this
section, the smallest value of δr such that A satisfies the δr-RIP property is referred to as
the best RIP constant of the map A.

Recall that the structure operator is defined by two operators stack together: T = (S,W).
Here, W captures the underlying structure that is not captured by the sparsity operator S.
We consider the same form of this operator as in the experiment on power systems data.
Given the matrix representation H of the kernel operator, denote the unique nonzero values
in this matrix with the scalars h1, . . . , hdW . It means that H is representable in the form
H = h1E1 + · · · + hdWEdW , where Ei is a matrix of the same size as H with 0 and 1
entries. The operator W that we use in this section is any operator that has the subspace
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Figure 4.6: The average of sufficient best RIP constant obtained from the developed analytic
framework (Theorem 8) for random structures generated from the distribution RS(p0, U)
(each colored line stands for one specific value of p0), compared with the baseline method
from Theorem 6 (shown as black and dashed). Shaded area represents the standard deviation
window.

{β1E1 + . . .+ βdWEdW |β1, · · · , βdW ∈ R} as its kernel.
We introduce a distribution RS(p0, U) over the space of structure operators by describing

the sampling scheme below. First, we generate the measurement structure matrix Ast such
that each of its components takes value 0 with probability p0 and any of the values 1, . . . , U
with the equal probability of 1−p0

U
.We then form the kernel structure matrix as Hst = A⊤

stAst

and construct the sparsity operator S and the extra structure operatorW as discussed before.
The obtained structure operator T is such that the operator represented withAst satisfies the
T -KSP. Note that the average sparsity of Ast is p0 and the number of unique nonzero values
is U with high probability, which implies that p0 is a parameter qualifying the amount of
sparsity structure in the problem, and U is a parameter qualifying the amount of additional
structure.

Figure 4.6 depicts the estimated sufficient RIP to guarantee the existence of no spurious
second-order critical points in random problems with different values for the sparsity (p0)
and the unique counter (U). The sufficient RIP is obtained from Theorem 8 by imposing the
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KSP. Observe that the sparsity and the additional structure (the number of unique nonzero
values in the measurement matrix in this particular case) both have a significant impact on
the sufficient RIP. Note that a higher p0 means more sparsity and a lower U means more extra
structure. Although it was observed theoretically that sparsity alone could not guarantee
an increase in the sufficient best RIP constant, it appears to be an important characteristic
when combined with the additional structure. Even for structures with a considerably low
sparsity (0.85), the tight extra structure (U = 2) has the sufficient best RIP of 1, which is a
counter-intuitive result. The sufficient RIP seems to decay exponentially as we relax extra
structure by increasing U , but with different bases for different p0. This behavior coincides
with the one predicted in Proposition 4. If the goal is to make the RIP higher than a certain
threshold, the amount of extra structure needed to achieve this reduces dramatically with
the increase of the sparsity structure.

The experiment demonstrates that our method can be successfully applied to matrix
sensing with randomly generated structure. The key takeaway from this experiment is that
our method captures the trade-off between the sparsity and the low-dimensional structural
properties of a given mapping. It shows that imposing restrictions on structure significantly
affects the sufficient RIP, which leads to certifying the absence of spurious solutions under
far less restrictive requirements (by improving the previous RIP bound 0.5 for arbitrary
mappings).
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Appendix

In this part, we will prove Theorems 7 and 8 via showing the nonexistence of a counterex-
ample. Specifically, given T , for a point x and a parameter value z, we aim to find a value
δx,z2r for which the following claim holds:

“There exists A that satisfies T -KSP and δ2r-RIP such that x

is a second-order critical point of fz,A if and only if δ2r > δx,z2r ”

X is equal to BR(ω) in the notation from Section 4.1. The conditions for a point x to be a
second-order critical point of a function f over BR(ω) can be expressed in the compact form:{

∇f(x) = 0,

∇2f(x) ⪰ 0
if x ̸∈ ∂BR(ω) or

{
∃ µ ≤ 0 : ∇f(x) = µ(x− ω),
Px−ω∇2f(x)P⊤

x−ω ⪰ 0
if x ∈ ∂BR(ω)

where Px−ω ∈ R(nr−1)×nr is the matrix of orthogonal projection onto the subspace orthogonal
to x − ω. With that in mind, we construct the two functions: δ(x, z) and ∂δ(x, z) via the
following optimization procedures:

δ(x, z) ≡ minimum
δ2r∈R,A

δ2r

subject to Lx,z(A⊤A) = 0

Mx,z(A⊤A) ⪰ 0

T (A⊤A) = 0

A satisfies δ2r-RIP.

∂δ(x, z) ≡ minimum
δ2r,µ∈R,µ≥0,A

δ2r

subject to Lx,z(A⊤A) = −µ(x− ω)
Px−ωMx,z(A⊤A)P⊤

x−ω ⪰ 0

T (A⊤A) = 0

A satisfies δ2r-RIP.

In each of the problems, the first two constraints represent the requirement that x is a second-
order critical point of fz,A, the third constraint takes care of the KSP, and the last one is
the RIP. It is straightforward to verify that min{δ, ∂δ} takes the value of the desired δx,z2r .
Minimization of δx,z2r over {x ∈ X , z ∈ Z : xx⊤ ̸= zz⊤} gives δ⋆2r such that (ProblemKSP+RIP)
with δ2r has an instance with a spurious second-order critical point if and only if δ2r > δ⋆2r.
Suppose that we are able to find δx,z2r and δx,z2r such that δx,z2r ≤ δx,z2r ≤ δx,z2r for all x ∈ X , z ∈ Z.
Then,

δ⋆ = min
x∈X ,z∈Z
xx⊤ ̸=zz⊤

δx,z2r ≤ min
x∈X ,z∈Z
xx⊤ ̸=zz⊤

δx,z2r ≤ min
x∈X ,z∈Z
xx⊤ ̸=zz⊤

δx,z2r = δ⋆.
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This inequality shows that δ2r ≥ δ⋆2r is a sufficient, and δ2r ≤ δ⋆2r is a necessary condi-
tion for the absence of spurious second-order critical points in the instances of the problem
(ProblemKSP+RIP). Now, it is desirable to show that min{O∂B

P (x, z; T , ω),OP (x, z; T )} can
serve as δx,z2r , and min{O∂B(x, z; T , ω),O(x, z; T )} can serve as δx,z2r .

Lemma 23. The following statements hold all x ∈ X and z ∈ Z:

OP (x, z) ≤ δ(x, z) ≤ O(x, z) (4.16a)

O∂B
P (x, z) ≤ ∂δ(x, z) ≤ O∂B(x, z) (4.16b)

Proof. Here, we show only inequality (4.16a) since (4.16b) can be shown similarly. Notice
that for P = orth([x, z]), the following sequence of inclusions holds:

{PY P T : Y ∈ Srank([x z])} ⊆ {X ∈ Sn : rank (X) ≤ 2r} ⊆ Sn. (4.17)

Let (H∗, δ∗) denote the minimizer of the problem corresponding to LMI(x, z). By the defe-
nition of the O function, for every X ∈ Sn it holds that

(1− δ∗)∥X∥2F ≤ ⟨X,H∗(X)⟩ = ∥A∗(X)∥2 ≤ (1 + δ∗)∥X∥2F
The decomposition H∗ = A∗TA∗ exists because H∗ ⪰ 0. If the inequality holds for all
X ∈ Sn, it must hold when rank(X) ≤ 2r, as noticed in (4.17). Thus, we conclude that
the pair (A∗, δ∗) is feasible for the problem defining δ(x, z). This proves the upper bound.
Similarly, if (A∗, δ∗) is the minimizer of the problem defining δ(x, z), then by (4.17), the pair
(AT∗A∗, δ∗) is feasible for the problem defining OP (x, z). This can be verified after rewriting
the last constraint of the problem defining OP in the form

(1− δ)∥PY P T∥2F ≤ ⟨PY P T ,AT∗A∗(PY P
T )⟩ = ∥A∗(PY P

T )∥2 ≤ (1 + δ)∥PY P T∥2F
for all Y ∈ Srank(x,z). It is important to notice that the same argument works for an arbitrary
choice of P ∈ Rn×d with d ≤ 2r.

The above lemma completes the proof of Theorem 8. Theorem 7 follows by substituting
1 in the right-hand sides of (4.14) and (4.15). Notice that the linearity of the gradient and
the Hessian with respect to the kernel operation matrix is the only property of the objective
function that has been extensively used here. It can be exploited for generalization of the
developed theory.

Proof of Proposition 4. We write the dual of the problem defining the function O as:

maximize
y,λ,U1⪰0,U2⪰0,V⪰0

tr[U1 − U2] (4.18a)

subject to tr[U1 + U2] = 1, (4.18b)

L⊤
x,z(y)−M⊤

x,z(V ) + T ⊤(λ) =

U1 − U2 (4.18c)
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This problem is the exact reformulation of

maximize
y∈Rn×r,V⪰0,µ∈Rt

∑d
i=1(−λi(L⊤

x,z(y)−M⊤
x,z(V ) + T ⊤(µ)))+∑d

i=1(+λi(L⊤
x,z(y)−M⊤

x,z(V ) + T ⊤(µ)))+
(4.19)

For details, please refer to Lemma 14 in [120]. Both primal and dual problems are bounded
and the dual is strictly feasible. Recall vector e and matrix X from Section 4.4, where for
all u ∈ Rn×r it holds that

e = vec (xxT − zzT ), Xvec (u) = vec (xuT + uxT )

A strictly feasible point of (4.18) can be chosen as y = 0, λ = 0, V = εI, U1 = ηI − εW and
U2 = ηI + εW, where 2η = n−2, 2W = r[vec (I)eT + evec (I)T ]−XXT , and ε is sufficiently
small to ensure that both U1 and U2 are PSD. Consequently, Slater’s condition and strong
duality hold, and thus the optimal solution of (4.19) coincides with O(x, z).
If T = (S,W), then T ⊤(u, T ) =W⊤(u)+S⊤(T ). If S represents a sparsity pattern then there
is a matrix S such that S(T ) = S⊤(T ) = S ◦ T. Let S and S ′ be the matrix representations
of S and S ′, respectively. S ′ ⊂ S means that there exists S∆ such that S = S ′ ∪ S∆ and
therefore S ′ = S + S∆. It is straightforward to verify that for every R ∈ Sn2

there exists
T ∈ Sn2

such that S ◦T +S∆ ◦R = S ′ ◦T. The opposite is also true: for every T ∈ Sn2
there

exists R ∈ Sn2
such that S ◦ T + S∆ ◦R = S ′ ◦ T.

We introduce the short-hand notation V(y, V, u) = L⊤
x,z(y) −M⊤

x,z(V ) +W⊤(u). One can
verify that the following expression holds:

O(x, z;W ,S ′) = minimize
y∈Rn×r,V⪰0,u∈Rl,T∈Sn2

∑d
i=1(−λi(V(y, V, u) + S ′ ◦ T ))+∑d
i=1(+λi(V(y, V, u) + S ′ ◦ T ))+

=

minimize
y∈Rn×r,V⪰0,u∈Rl,T∈Sn2

,R∈Sn2

∑d
i=1(−λi(V(y, V, u) + S ◦ T + S∆ ◦R))+∑d
i=1(+λi(V(y, V, u) + S ◦ T + S∆ ◦R))+

≤

minimize
y∈Rn×r,V⪰0,u∈Rl,T∈Sn2

∑d
i=1(−λi(V(y, V, u) + S ◦ T + S∆ ◦ 0))+∑d
i=1(+λi(V(y, V, u) + S ◦ T + S∆ ◦ 0))+

= O(x, z;W ,S)

This completes the proof.
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Part II

Learning to Resolve Complexity
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Chapter 5

Model-Agnostic Meta Learning as a
Path to Tractable Sub-problems

Let us consider a decision process formulated for a system through an optimization problem

{minimizex∈X (τ) f(x; τ) : τ ∈ T }

where T is the set of all possible states the system can be found at. Given this optimization
problem, a task would be to come up with a tractable algorithm that solves the problem,
or at least with a heuristic that solves the problem efficiently in the most important cases.
One way to define the importance of cases is to introduce a probability distribution PT
over T , measuring the probability that the system would be found in the state with the
parameters τ ∈ T . One idea that may help to automatize the process of designing this
heuristic is the idea to teach a machine learning model to take in a dataset of a number
of instances τi ∼ PT and output an optimization algorithm that solves a potentially hard
optimization problem very efficiently. Since the search in the space of all of the algorithms is
not a tractable problem, we assume that the model would output an algorithm a : T → Rn

from a parametric family of efficient algorithms A. For a given algorithm a ∈ A, the set of
parameters that defines the largest problem which can be solved with a is

T ⋆(a) = Argmax
S⊆T

{
PT [S] : a(τ) ∈ Arg min

x∈X (τ)
f(x; τ) ∀τ ∈ S

}
The Bayesian optimal rule for this ML formulation would take in the pair (T ,PT ) and return

a⋆glob ∈ Argmax
a∈A

PT [T ⋆(a)]

which implies that it would need to recognize the largest subproblem of T that can be solved
with an algorithm from A.

The global optimization property over a sub-problem is a desirable feature of an algorithm
a, especially for safety-critical systems. However, there are high-scale applications of data
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analysis, where an efficient heuristic can be of a greater value than an exact algorithm. For
designing a heuristic, an alternative Bayes optimal rule should be formulated:

a⋆ ∈ Argmax
a∈A

∫
τ∈T

f(a(τ), τ)dPT (τ)

The corresponding optimization problem characterized with all couples (A, T ) of interest
is the problem we are considering in this chapter. A practical machine learning model, at
the exploitation stage, would take in a dataset {τi}i∈D and return an estimate â of a⋆. One
example of a successful application of this approach lay inside the field of Machine Learning
itself and called Meta-Learning, with the Model-Agnostic Machine Learning algorithm being
a prominent representative. Therefore, in this chapter, we study the non-convex optimization
problem solved within the MAML framework to understand its tractability with respect to
local search methods. We consider θ = (A, T ) to be a single instance of the MAML problem,
where a task set T is a subset of instances of the Linear Quadratic Regulator problem due to
MAML’s typical area of application lying in Reinforcement Learning and Control. To align
well with the previous research, we consider A that consists of single-step gradient descent
routines with a fixed step size but different initialization points. Nevertheless, the findings
reported here can be easily generalized to T consisting of instances with benign optimization
landscapes and A made of multi-step local search methods with small enough step sizes.

This chapter shows that the MAML objective inherits the benign optimization landscape
from the underlying tasks if their objectives are close pointwise. This desirable property
fails to hold for the objectives that coincide up to a multiplicative constant. We proposed a
modification of MAML that does not possess this drawback. We conclude that for the choice
of A that is common in the machine learning practice and even for elementary practically
important tasks T , MAML is unlikely to obtain the Bayes optimal rule a⋆ presented above.

5.1 Introduction

Meta-learning, along with transfer learning, is a rapidly developing research area in machine
learning which aims to design algorithms that gain computational advantages out of inherent
similarities between optimization problem instances of learning, otherwise referred to as
tasks. In this work, we study one of the most popular meta-learning algorithms, named
Model-Agnostic Meta-Learning (MAML), which has been developed by Finn, Abbeel, and
Levine [36]. In the reinforcement learning domain, the algorithm is expected to rapidly adapt
a pre-learned policy to a new task. However, measuring the quality of adaptation is vague and
therefore the domain of application of meta-learning remains uncharted. In the core of meta-
learning, there is an optimization problem that is concerned with the expected generalization
performance averaged among considered tasks. In this chapter, we propose to measure the
performance of MAML by the optimality gap of the corresponding optimization problem. We
consider a space of tasks to be suitable for meta-learning if the algorithm converges to a global
optimizer of the meta-learning objective or to a point with a similar value. This approach
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enables distinguishing those meta-learning problems that are solvable by MAML from the
problems that are not. Intuitively, a particular algorithm should perform satisfactorily on
a meta-learning problems that consists of tasks united by a particular type of similarity.
For the purpose of demonstration, we consider linear quadratic control problems, although
our theory applies to a broad class of RL tasks with benign optimization landscape. The
term benign landscape in this chapter is used to describe optimization problems which can
be (approximately) solved with common tractable optimization techniques. It is formalized
in Section 5.2. We aim to theoretically study the global convergence properties of the
original MAML algorithm on sequential decision-making tasks. In short, our findings can be
summarised as follows:

• Meta-Learning objective inherits a benign landscape from the objectives of the indi-
vidual tasks if they are similar pointwise. As a result, the original MAML and other
meta-learning algorithms that rely on local search are guaranteed to perform well on
the corresponding problems.

• As a strongly negative result, those problems consisting of linear quadratic tasks that
coincide up to a scaling of the reward function are not solvable by MAML. We propose
an alternative scheme that addresses the issue with this type of similarity.

For the clarity of explanation, we investigate discrete stationary infinite-horizon decision
problems and note that the generalization of the results to non-stationary and finite-horizon
cases is straightforward. A stationary discrete dynamical system is described as

st+1 ∼ T (st, at) ,

where T is a probability distribution over the next state st+1 ∈ Rd given the current state
st ∈ Rd and action at ∈ Rr. The initial state s0 is assumed to follow the distribution T0. The
objective of the infinite-horizon problem is to find a control input at minimizing the total
discounted cost (the negation of the reward)

minimize Es0∼T0

[
∞∑
t=0

γtc(st, at)

]
subject to st+1 ∼ T (st, at) ∀ t ∈ {0, 1, . . .}

where γ ∈ (0, 1] is the discount factor that is assumed to be 1 for the LQR problem and E[·]
denotes the expectation operator.

Linear-Quadratic Regulator

One of the important examples of decision-making problems is related to the control of lin-
ear dynamical systems with a quadratic objective, referred to as linear-quadratic regulator
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(LQR). LQR and Iterative LQR (iLQR) [100] are fundamental tools for model-based rein-
forcement learning. Moreover, linear-quadratic problems enjoy a rich theoretical foundation
with a large number of provable guarantees, which make them a compelling benchmark for
the mathematical analysis of novel learning algorithms.

We consider the following infinite-horizon exact LQR problem:

minimize Ex0

[
∞∑
t=0

(s⊤t Qst + a⊤t Rat)

]
subject to st+1 = Ast +Bat, ∀ t ∈ {0, 1, . . .}

(5.1)

where Q and R are positive semidefinite matrices. Assuming that the matrices A and B are
such that the optimal cost is finite, it is a classic result that the optimal control policy is
deterministic and linear in the state, i.e.,

at = −W ⋆st

where W ⋆ ∈ Rr×d [9]. Moreover, the matrix W ⋆ can be found from the model parameters
by solving the Algebraic Riccati Equation (ARE)

P = A⊤PA+Q− A⊤PB(B⊤PB +R)−1B⊤PA ,

and substituting the positive-definite root P into

W ∗ = (B⊤PB +R)−1B⊤PA.

This implies that in order to find the solution of LQR, it suffices to only search over deter-
ministic policies of the form a = −Ws parameterized with a matrix W ∈ Rr×d.

In an effort to build a bridge between practical RL algorithms and the optimal control
theory, [35] shows that W ∗ can be found by applying the policy gradient algorithm to a
reformulated cost function. The LQR cost of a linear deterministic policy with respect to
W can be defined as

C(W ) := Es0∼T0

[
∞∑
t=0

(s⊤t Qst + a⊤t Rat)

]

where at = −Wst and st+1 = (A−BW )st. This can be reformulated as

C(W ) = Es0∼T0 s⊤0 PW s0

where PW is the solution of PW = Q+W⊤RW +(A−BW )⊤PW (A−BW ).We only consider
the cost of stable policies, and assume the cost to be infinite for unstable ones.
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Model-Agnostic Meta-Learning

Given a set of tasks T , each represented by an objective function Lτ , and a probability
distribution PT over the tasks, [36] proposes an algorithm for finding an initialization of the
policy gradient method that allows a fast adaptation to a task through just several gradient
updates. In case the task consists in regression, classification, or clusterization, Lτ is a risk
or an empirical risk. In case of a reinforcement learning task, Lτ is the cost (the negated
return) of a policy.

If the space of considered policies is parameterized via w ∈ W , then a single-shot MAML
(which uses just one gradient update) aims to minimize the objective

L(w) = Eτ∈T [fτ (w − η∇gτ (w))] (5.2)

where fτ and gτ can be two different approximations of the objective function of the task
τ and ∇ is the gradient operator. Similarly, a multi-shot version applies multiple gradient
updates within the adaptation procedure. For example, if Lτ is the risk of a learning problem,
then fτ can be the empirical risk conditioned on a large dataset, while gτ is the empirical risk
conditioned on a smaller dataset. The generality of this formulation will be used in Section
5.2, but for the study of LQR we will assume that the functions Lτ , fτ and gτ all coincide
and are equal to C(W ). When it is clear from the context which task is being discussed, we
will omit the subscript.

Being based upon gradient descent with a constant step size, Algorithm 3 is a basic
version of a few-shot MAML although other versions have been developed in the literature,
e.g. FO-MAML, HF-MAML [32], iMAML [87], Reptile [80] and FTML [37]. We do not
directly address the other formulations in the chapter, but the conclusions of this work are
applicable to them as well since they are created to minimize essentially the same objective
function (5.2) and the convergence to at least a first-order stationary point has been proven
for the majority of these variants.

An interesting modification of MAML is based on exact proximal optimization as an
alternative to a gradient update. [125] proposes the proximal update MAML algorithm
with the adaptation procedure that finds the best set of parameters in the neighborhood of
initialization, while [107] proves that a similar idea can be shaped into a meta-RL algorithm
that is proven to converge globally under some overparametrization assumption. However,
the exact optimization in the adaptation procedure may be problematic in meta-learning
setup, since adaptation is supposed to be fast, meaning that there are sharp constraints on
sample complexity and the amount of computation allowed for it.

As meta-learning seeks to improve learning performance by exploiting similarities between
tasks, it is important to understand what type of similarities a particular meta-learning
algorithm can take advantage of. A highly desirable feature of a meta-learning algorithm
is an acceptable meta-test performance at least on the tasks it has been meta-trained on.
In other words, if the set of tasks T is finite and the meta-training procedure has access to
all of them, then it should succeed at global optimization on the meta-testing stage. For
MAML, this translates into a requirement of successful minimization of the objective (5.2).
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Algorithm 3 Model-Agnostic Meta-Learning (MAML)

Require: p(T ): Probabilistic task generator
Require: η, β: Step size hyperparameters
1: Randomly initialize w
2: while not done do
3: Sample batch of tasks Ti ∼ p(T )
4: for all Ti do
5: Evaluate ∇gTi(w)
6: Compute adapted parameters with gradient descent: w′

i = w − η∇wgTi(w)
7: end for
8: Update w ← w − β∇w

∑
Ti∼p(T ) fTi(w

′
i)

9: end while

[37] shows that the global minimum is achieved in case the functions fτ = gτ are all smooth
and strongly convex. However, the objective of many practical decision-making tasks are
not convex, although may possess benign landscape, like the LQR objective (5.1). Tasks
with non-convex objectives are substantially harder to analyze, and thus [32] only shows
convergence of MAML to a first-order stationary point of (5.2) if fτ are non-convex. We
aim to study the global convergence properties of MAML applied to tasks with non-convex
objectives.

The landscape of (5.1) has been studied in [35], which has observed that there exist
instances of LQR that are not convex, quasi-convex, or star-convex, which means that none
of the existing results on global convergence of MAML can be applied even to such a basic
decision problem as LQR. However, (5.1) possess benign landscape, and our study shows
that this property can be transferred to (5.2).

The purpose of this chapter is not to design a new algorithm or conduct a study of its
application on a specific real-world case, but rather to prove the basic properties of a popular
existing algorithm for a vast variety of cases. Meta-Learning algorithms are supposed to
capture similarities between tasks, although there is no clear way to determine whether or
not a similarity has been captured. For MAML, we propose a criterion that is based on
the properties of the landscape of the optimization associated with MAML. Specifically,
we declare that a version of MAML captures the similarities between the tasks in T if
the objective of the algorithm on T has benign landscape. Otherwise, the tasks in T are
recognized to be too distinct for this particular version of MAML.

The advantage of the above criterion is that it correlates with the computational complex-
ity of the problem that MAML aims to solve. If the objective function has benign landscape,
then the optimization problem has a low computational complexity and one can solve it by
a local search method, which is implemented within MAML. If the objective does not have
benign landscape, then MAML can become stuck in a spurious local minimum, which can
potentially be arbitrarily worse than the optimal solution.

A drawback of this approach is that it does not allow to compare Meta-Learning algo-
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rithms against each other, since it does not take into account the computational complexity
of the adaptation algorithm. In this chapter, we do not consider this aspect because of our
focus specifically on the few-shot MAML. We consider MAML primarily with applications
to linear-quadratic systems because they are realistic and yet easy to analyze although our
conclusions go far beyond this application.

5.2 Main Results

In this section, we study the MAML algorithm under four different scenarios. We consider
MAML applied to a single task and to several identical tasks. Afterwards, we introduce a
metric between tasks and extend the study to a number of close tasks, and, finally, we study
the convergence of MAML on a large number of distant LQR tasks.

We provide theoretical results for general multi-dimensional systems, while all of the
presented examples and counter-examples are on one-dimensional LQR tasks since they are
easy to visualize. Note that these examples are extendable to multi-dimensional systems as
well. The details on the exact tasks used for the computations are moved to the Appendix.

Single task

We begin by analyzing MAML applied to a singleton task set T . If MAML fails under this
scenario, then its global convergence for the multiple-task scenario becomes questionable.
For the single task, we rewrite the MAML objective (5.2) as

h(w) = f(w − η∇g(w))

where f is assumed to be a continuously differentiable function and g is assumed to be
twice continuously differentiable. As noticed in Section 5.1, the existing results on global
convergence of MAML are not applicable to LQR. Figure 5.1 demonstrates an example of the
MAML objective (5.2) applied to a single LQR task. It is non-convex and has three distinct
strict local minimizers. Nevertheless, all of these three points are also global minimizers,
which implies that Algorithm 3 would converge to its global minimizer from almost any
initial point. The minimizer in the middle corresponds toW ⋆ of the task, while the rightmost
and leftmost minimizers are some pointsW such thatW−η∇C(W ) = W ⋆ and ∇C(W ) ̸= 0.
The minimizers on both sides rely on the rapid adaptation during the meta-testing stage,
which has been assumed in the design of the algorithm.

This example gives rise to a hypothesis that the MAML objective for a single LQR
possesses some sort of benign landscape and, more generally, that benign landscape of the
cost of the underlying task results in benign landscape of the resulting MAML objective.
Following [53], we formalize the notion of benign landscape by defining global functions

Definition 13. A continuous function ℓ : Z → R is called global if every local minimizer of
ℓ is a global minimizer.
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Figure 5.1: MAML objective (5.2) on a single LQR task.

This property is also referred as having no spurious local minima and generalizes the
notions of convexity, quasiconvexity, and star-convexity. As a relaxation of this property, we
define ε-global function:

Definition 14. A continuous function ℓ : Z → R is called ε-global if for every local mini-
mizer z̄ of ℓ it holds that

ℓ(z̄)−minz∈Zℓ(z) ≤ ε

Being global is equivalent to being 0-global. This property is more likely to be satisfied
than a perfect no-spurious property for cost functions coming from real-world applications,
providing with a broader way to formalize the intuitive meaning of a benign landscape.
These two notions of benign landscape characterize when a coercive function is easy to
optimize using local optimization methods based on gradient descent. The following theorem
shows that the benign landscape of the cost of the underlying task indeed leads to a benign
landscape for the resulting MAML objective.

Theorem 10. Let f :W → R be global and g :W → R be twice continuously differentiable
with ∥∇2g(w)∥ ≤ M <∞ for all w ∈ W . If Algorithm 3 with the parameter η chosen to be
smaller than 1

M
converges to a local miminizer w⋆ ∈ W of h, then w⋆ is a global minimizer

of h.

Theorem 10 is proven in the appendix, and its proof relies significantly on the following
technical Lemma:



CHAPTER 5. MODEL-AGNOSTIC META LEARNING AS A PATH TO
TRACTABLE SUB-PROBLEMS 104

Lemma 24. Let ℓ : Z → R be an ε-global function, and consider a continuous map F :
W → Z with Z = range(F) that is locally open at a local minimizer w̄ of ℓ ◦ F . Then, it
holds that

ℓ(F(w̄))− min
w∈W

ℓ(F(w)) ≤ ε

In the context of LQR, Theorem 10 results in the statement below.

Theorem 11. Let w⋆ ∈ Rr×d be the limit point of the sequence generated by Algorithm 3
(MAML) with η < 1

∥∇2C(w⋆)∥2 applied to a single LQR task, meaning that h(W ) = C(W −
η∇C(W )). Then, w⋆ is the global minimizer of h, which implies that C(W − η∇C(W )) is a
global function.

Proof. It is shown in [32] that MAML converges to a first-order stationary point of a smooth
nonconvex loss. Therefore, if the limit point w⋆ exists, it must be a stationary point of
C(W − η∇C(W )). Consider the first-order stationarity condition for w⋆ :

0 =∇C(w⋆ − η∇C(w⋆)) =
=[I − η∇2C(w⋆)]⊤∇C(W )

∣∣
W=w⋆−η∇C(w⋆)

Similar to the proof of Theorem 10, I −η∇2C(w⋆) is a full-rank marix, meaning that w⋆ is a
first-order stationary point for the MAML objective if and only if∇C(W )

∣∣
W=w⋆−η∇C(w⋆)

= 0.

Theorem 7 of [35] states that the Gradient descent algorithm finds an ε-approximation of
the global optimum of C(W ) in polynomial time for any initial point with a finite value. This
directly implies that all first-order stationary points of C(W ) are the global minimizers of
C(W ) because otherwise we could initialize the Gradient descent algorithm at a stationary
point and since it converges to the point of initialization, it will lead to a contradiction.
Being a first-order stationary point is a sufficient condition of local minimality, and hence
guaranties that C(W ) is a global function. By Theorem 10, the MAML objective is global
for a sufficiently small η.

Since w⋆ − η∇C(w⋆) is a first-order stationary point of C, it is a global minimizer of C
and since minW C(W ) ≤ minW C(W − η∇C(W )), the point w⋆ is the global minimizer of
the MAML objective.

Theorem 10 has implications far beyond the study of LQR. For example, Theorem 4.3
in [118] states that, under certain conditions, the objective of H2 linear control with H∞
robustness guarantee is a global function. Applying Theorem 24 to this objective yields
that MAML on the mixed H2/H∞ state-feedback control design will also have no spurious
local minima under the corresponding conditions. It is also applicable in case f is not a
reinforcement learning objective but an objective of a regression or a classification task.
It also has a straightforward extension to the multi-shot MAML and other variants of the
MAML algorithm. Theorem 10 can also be viewed as a practical guideline for proving
global convergence post-factum. If the function f is global and one runs Algorithm 3 with a
parameter η that converges to a point w⋆ such that ∇h(w⋆) = 0, then one can check whether
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∇2h(w⋆) ≻ 0 and η < 1
∥∇2g(w⋆)∥2 and if so, w⋆ is guaranteed to be a global minimizer of h. In

case f is not global but its landscape has benign properties, then the following generalization
takes place:

Proposition 5. If f is ε-global for some ε > 0 and w⋆ ∈ W is a local minimum and
η < 1

∥∇2g(w⋆)∥2 , then

h(w̄)− min
w∈W

h(w) ≤ ε

Proof. The mapping F(w) = w−η∇g(w) is continuously differentiable overW . The Jacobian
of this mapping is ∇F(w) = I − η∇2g(w). By assumption, η < 1

∥∇2g(w⋆)∥2 and consequently

there exists δ such that η < 1
∥∇2g(w)∥2 for all w ∈ B̄δ(w⋆). Similar to the proof of Theorem

10, ∇F(w) is positive definite for all w ∈ B̄δ(w⋆), and therefore by Theorem 9.25 in [92],
F
∣∣
B̄δ(w⋆)

is an open mapping and hence locally open at w⋆. By Lemma 24, it means that

h(w̄)−minw∈W h(w) ≤ ε.

So far, we have shown that the benign landscape properties of MAML applied to a
singleton T are inherited from the benign landscape of the objective of the task to which
MAML has been applied. In particular, this holds true for the LQR tasks.

Several identical tasks

Results obtained for the single-task scenario give rise to a hypothesis that the benign land-
scape of every individual task would help with the convergence of MAML in a multi-task
setting as well, provided that all of the tasks have a similar structure. Thus, in this part we
study multiple-task learning for which the MAML has originally been designed for. Starting
with some tasks that are the most similar to each other, we consider LQR tasks that coincide
up to multiplication of the cost by a positive scalar. This is the highest degree of similarity
one may hope to have between sequential decision-making problems. More precisely, the
landscape features of the cost function (local and global minimizers, maximizers and saddle
points) are preserved under this transformation, and therefore we refer to tasks of these
types as identical henceforth.

We consider a finite set of LQR tasks with a uniform distribution among them, which
allows us to reduce the MAML objective (5.2) to the form

1

|T |
∑
τ∈T

Cτ (W − η∇Cτ (W ))

Figure 5.2 demonstrates an example of the MAML objective applied to two identical LQR
tasks. Although the MAML objective of each individual task is global, only one global
minimizer coincides among all of them. This is the minimizer that corresponds to W ⋆. The
two minimizers on the sides are shifted and after interference they produce spurious local
minima for the total objective function. Hence, we can conclude that MAML fails to capture
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Figure 5.2: Two MAML objective functions (5.2) for identical LQR tasks (dashed lines) and
the MAML objective for the uniform distribution among them (solid line). 5.2b demonstrates
spurious local minima of the solid line.
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this type of similarity between the tasks. One practical lesson to learn from this figure is that
keeping the cost (or the reward) function of the considered tasks normalized may improve the
quality of the solution provided by MAML. Another lesson is that the design of meta-learning
algorithms may benefit from considering the analysis of identical tasks as the simplest form
of common structure in the tasks.

As an alternative, we propose a modification of MAML with normalized adaptation step.
It turns out that this modification manages to capture the similarity between tasks with
scaled rewards. The objective function for this version of MAML under single-task scenario
is h′ :

h′(w) = f

(
w − η ∇g(w)

∥∇g(w)∥

)
For which a statement similar to Proposition 5 holds.

Proposition 6. If f is ε-global for some ε > 0 and w⋆ ∈ W is a local minimizer of h(w)

with η < ∥∇g(w⋆)∥
∥∇2g(w⋆)∥ , then

h′(w̄)− min
w∈W

h′(w) ≤ ε

Proof. The mapping F(w) = w−η ∇g(w)
∥∇g(w)∥ is continuously differentiable overW . The Jacobian

of this mapping is

∇F(w) = I − η
[
∇2g

∥∇g∥3
(
∥∇g∥2I −∇g∇g⊤

)]
Observe that ∥∥∥∥ ∇2g

∥∇g∥3
(
∥∇g∥2I −∇g∇g⊤

)∥∥∥∥ ≤
∥∇2g∥
∥∇g∥3

∥∥∥∇g∥2I −∇g∇g⊤∥∥
Since ∇g∇g⊤ is a rank-one matrix, the largest eigenvalue of ∥∇g∥2I−∇g∇g⊤ must be equal
to ∥∇g∥2 and therefore ∥∥∥∇g∥2I −∇g∇g⊤∥∥ = ∥∇g∥2

Hence, η < ∥∇g(w⋆)∥
∥∇2g(w⋆)∥ is a sufficient to conclude that there exists δ such that ∇F(w) is

positive definite for all w ∈ B̄δ(w⋆), and therefore by Theorem 9.25 in [92], F
∣∣
B̄δ(w⋆)

is an open

mapping and thus locally open at w⋆. By Lemma 24, it follows that h′(w⋆)−minw∈W h′(w) ≤
ε.

In general, the objective of this modification of MAML can be written as

Eτf
(
w − η ∇gτ (w)

∥∇gτ (w)∥

)
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and its first-order stationary point can be found by utilizing the gradient descent with Armijo
rule as noticed by [8] in Proposition 1.2.1. The claim that MAML with normalized gradient
step inherits the benign landscape from the identical tasks can be formulated for LQR tasks
as follows:

Theorem 12. Let the normalized-gradient version of MAML be applied to k LQR tasks
{(Ai, Bi, Qi, Ri)}ki=1 with scaled dynamics and rewards, meaning that there exist α1, . . . , αk >
0 and β1, . . . , βk > 0 such that

A1 = · · · = Ak;

B1 = · · · = Bk;

α1Q1 = · · · = αkQk;

α1R1 = · · · = αkRk,

and h(W ) =
∑k

i=1 ωiCi

(
W − η ∇Ci(W )

∥∇Ci(W )∥

)
. Let w⋆ ∈ Rr×d be a local minimal point of h(W )

with η < ∥∇Ci(w
⋆)∥

∥∇2Ci(w⋆)∥ for some i ∈ {1 . . . k}. Then, w⋆ is the global minimizer of h.

Proof. From the construction of the function Ci, it follows that for allW ∈ Rr×d there exists
C(W ) such that

C(W ) =
C1(W )

α1

= · · · = Ck(W )

αk

Consequently, ∇C(W ) = ∇C1(W )
α1

= · · · = ∇Ck(W )
αk

and ∇2C(W ) = ∇2C1(W )
α1

= · · · = ∇2Ck(W )
αk

for all i ∈ {1 . . . k}. Hence,

h(W ) =

[
k∑
i=1

wiαi

]
C

(
W − η ∇C(W )

∥∇C(W )∥

)
Since w⋆ is a local minimum, by Proposition 6, we conclude that w⋆ is also a global minimum.

Several similar tasks

Moving forward, it is desirable to consider a different type of similarity between different
tasks in the MAML setting. Therefore, we study the landscape of MAML on those tasks that
are similar to each other in terms of the norm of the difference between parameters. For LQR,
the parameters are the matrices A,B,Q and R. Our result states that the benign landscape
of the underlying tasks carries over to the MAML objective if the tasks are sufficiently close
to each other. For LQR, it will be informally stated below.

Proposition 7. For every ε > 0 and k ∈ N, there exists δ > 0 such that the MAML
objective (5.2) is ε-global for almost any set T of k LQR tasks defined through the parameters
{(Ai, Bi, Qi, Ri)}ki=1 such that for all i, j ∈ {1 . . . k}

∥Ai − Aj∥+ ∥Bi −Bj∥+ ∥Qi −Qj∥+ ∥Ri −Rj∥ ≤ δ
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The formal statement along with the proof of the result and additional discussions are
provided in the Appendix. Intuitively, as long as the dependence of the cost of a single task
on the parameters is continuous, for a set of tasks that are close to each other, the multi-task
landscape of MAML remains close to the landscape of MAML for just one of them. However,
for this reasoning to hold true, we need to determine the continuity properties of a manifold
of parametric ε-global functions. In order to do that, we make an assumption below.

Assumption 2. Let ℓ : X × Rm → R with a compact set X ⊂ Rn be a twice continuously
differentiable function with respect to x ∈ X with ℓ,∇xℓ and ∇2

xxℓ being continuous with
respect to t ∈ Rm. Assume that ℓ(·, t) has a finite number of first-order stationary points for
all t ∈ Rm and that the Hessian is non-singular (det[∇2

xxℓ(x, t)] ̸= 0) for all t ∈ Rm and all
x ∈ X such that ∇tℓ(x, t) = 0.

The following Theorem determines the continuity property of ε-globality over the mani-
fold of parametric functions satisfying Assumption 2.

Theorem 13. If for some t̄ and ε > 0 the function ℓ(·, t̄) satisfying Assumption 2 is ε-global,
then for any ε′ > 0 such that ε′ > ε there exists δ > 0 for which the function ℓ(·, t) is ε′-global
for all t ∈ B̄δ(t̄).

Proof. We prove the theorem in three steps. Step 1: ℓ(·, t) has stationary points in the
neighoborhoods of the stationary points of ℓ(·, t̄). Step 2: the types of the stationary points
coincide. Step 3: There are no stationary points outside of the considered neighborhoods.

A finite number of stationary points means that all of them are isolated. Consider a
stationary point x̄ of ℓ(·, t̄). By Theorem 9.28 of [92] (Generalized implicit function theorem),
there exist ψ > 0 and ϕ > 0 such that for all t ∈ B̄ψ(t̄) there exists a unique x(t) ∈ B̄ϕ(x̄)
with the property that ∇xℓ(x(t), t) = 0. This implies that for every function ℓ(·, t) with
t ∈ B̄ψ(t̄) there is a unique stationary point over B̄ϕ(x̄).

Note that for any v ∈ Rn the function h(x, t, v) = v⊤[∇2
xxℓ(x, t)]v is continuous in both x

and t. By the assumption of the theorem, det[∇2
xxℓ(x̄, t̄)] ̸= 0, and therefore ∇2

xxℓ(x̄, t̄) ≻ 0 if
x̄ is a local minimum, ∇2

xxℓ(x̄, t̄) ≺ 0 if it is a local maximum, and ∇2
xxℓ(x̄, t̄) indefinite if it

is a saddle point. In each of these cases, we describe how to find values δ′ and ϕ′ such that
ℓ has a bounded value of local minima over B̄ϕ′(x̄)× B̄δ′(t̄).

Case 1: x̄ is a local minimum. The value of h(x̄, t̄, v) is positive for all v ∈ Rn\{0}. By
continuity, there exist ψ′ > 0 and ϕ′ > 0 such that ψ′ < ψ and ϕ′ < ϕ and h(x, t, v) > 0 for
all x ∈ B̄ϕ′(x̄), t ∈ B̄ψ′(t̄) and v ∈ Rn\{0}. This way, ∇2

xxℓ(x(t), t) ≻ 0 and therefore x(t) is a
local minimum of ℓ(·, t). By continuity of ℓ(x, t) with respect to x and t, there exists δ′ > 0
such that δ′ < ψ′ and |ℓ(x(t), t)− ℓ(x̄, t̄)| < ε′−ε

2
for all t ∈ B̄δ′(t̄).

Case 2: x̄ is a local maximum. The value of h(x̄, t̄, v) is negative for all v ∈ Rn\{0}. By
continuity, there exist ψ′ > 0 and ϕ′ > 0 such that ψ′ < ψ and ϕ′ < ϕ and h(x, t, v) < 0 for
all x ∈ B̄ϕ′(x̄); t ∈ B̄ψ′(t̄) and v ∈ Rn\{0}. This way, ∇2

xxℓ(x(t), t) ≺ 0 and therefore x(t) is
a local maximum of ℓ(·, t). In this case, we assign to the point x̄ the value δ′ = ψ′.
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Case 3: x̄ is a saddle point. There exist v ∈ Rn and u ∈ Rn such that h(x̄, t̄, v) > 0 and
h(x̄, t̄, u) < 0. By continuity, there exist ψ′ > 0 and ϕ′ > 0 such that ψ′ < ψ and ϕ′ < ϕ
yet h(x, t, v) > 0 and h(x, t, u) < 0 for all x ∈ B̄ϕ′(x̄), t ∈ B̄ψ′(t̄) and v ∈ Rn\{0}. This way,
∇2
xxℓ(x(t), t) is indefinite and therefore x(t) is a saddle point of ℓ(·, t). In this case, we assign

to the point x̄ the value δ′ = ψ′.
As a result, having selected a single stationary point x̄ of ℓ(·, t̄), we can find δ′ and ϕ′

such that all the stationary points of ℓ(·, t) for t ∈ B̄δ′(t̄) are of the same type as x̄, and in
case they are local minimizers, they have a value that is not too different from ℓ(x̄, t̄). One
can repeat this argument for all the stationary points and therefore form sets of numbers
{δ′i}Ni=1 and {ϕ′

i}Ni=1, where i corresponds to the index of each of the N stationary points x̄i
of ℓ(·, t̄).

Consider the set Y = X\ ∪i∈{1...N} B̄ϕ′i(x̄i). It is a compact set as a compact set minus
an open set and ∥∇xℓ(x, t̄)∥ > 0 for all x ∈ Y . Since ∥∇xℓ(x, t̄)∥ is continuous in x over a
compact set, it is uniformly continuous and it reaches its lower bound, meaning that there
exists ξ > 0 such that ∥∇xℓ(x, t̄)∥ ≥ ξ for all x ∈ Y . By continuity of ∥∇xℓ(x, t)∥ with
respect to t, there exists δ′′ such that ∥∇xℓ(x, t)∥ > ξ

2
over Y × B̄δ′′(t̄) and therefore there

are no stationary points of ℓ over Y × B̄δ′′(t̄).
We select δ = min[{δ′i|i ∈ {1 . . . N}} ∪ {δ′′}] and observe that for all t ∈ B̄δ(t̄) the

only local minimizers of ℓ(·, t) are those close to the local minimizers of ℓ(·, t̄). In Case
1, the corresponding δ′ was selected such that, given a local minimizer x(t) of ℓ(·, t) that
is neighboring a local minimizer x̄ of ℓ(·, t̄) and a global minimizer x′(t) of ℓ(·, t) that is
neighboring a local minimizer x̄′ of ℓ(·, t̄), it holds that

ℓ(x(t), t)−min
x
ℓ(x, t) = ℓ(x(t), t)− ℓ(x′(t), t) =

ℓ(x(t), t)− ℓ(x̄, t̄) + ℓ(x̄, t̄)− ℓ(x̄′, t̄)+
+ℓ(x̄′, t̄)− ℓ(x′(t), t) ≤

|ℓ(x(t), t)− ℓ(x̄, t̄)|+ |ℓ(x̄, t̄)− ℓ(x̄′, t̄)|+
+|ℓ(x̄′, t̄)− ℓ(x′(t), t)| <
ε′ − ε
2

+ ε+
ε′ − ε
2

= ε′

Proposition 7 goes beyond the uniform distribution and holds for any distribution on a
finite number of tasks. An example of the MAML objective for five similar LQR tasks is
demonstrated in Figure 5.3a. Similarly to the results for single-task scenario, the statements
of this section are generalizable to other tasks with benign optimization landscape. In the
end, we conclude that MAML is able to capture the common structure among different tasks
given through similar values of the parameters.



CHAPTER 5. MODEL-AGNOSTIC META LEARNING AS A PATH TO
TRACTABLE SUB-PROBLEMS 111

A number of tasks with common dynamics

Figure 5.3 demonstrates the MAML objective for several LQR tasks that share the same
dynamics but have different cost functions. Increasing the number of considered tasks im-
proves the features of the landscape of the total MAML objective. In the eleven-task scenario,
MAML learns the mean of the optimal policies W ⋆ for the tasks, which implies that instead
of learning to rapidly adapt, MAML learns the average policy by effectively finding the min-
imum of 1

|T |
∑

τ∈T Cτ (W ). However, for the two-task scenario, the global minimizer of the

MAML objective appears to correspond to a policy W that has ∇Cτ (W ) far from zero for
every considered τ , and thus the algorithm that converged to that point would learn to adapt
to a task during the meta-testing phase.

We observe that the weighted sum of a large number of functions that have minimizers
in a close proximity ends up being almost global with the minimizer in the same region.
Therefore, in practice, increasing the number of similar tasks on meta-training stage may
improve the properties of the landscape of the MAML objective and assure convergence to
the global minimum.
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Figure 5.3: Five MAML objective functions (5.2) for LQR tasks with similar values of A,
B, Q and R (dashed lines) and the MAML objective for the uniform distribution among
them (solid line) (plot 5.3a). MAML objective (5.2) for the uniform distribution among
two (plot 5.3b), five (plot 5.3c) and eleven (plot 5.3d) different LQR tasks that share
the same dynamics A and B but have different cost matrices Q and R.
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Appendix

Lemma 25. Given λi > 0 and
∑k

i=1 λi = 1, if for some t̄ and ε > 0 the function ℓ(·, t̄)
satisfying Assumption 2 is ε-global, then for any ε′ > 0 such that ε′ > ε there exists δ > 0
for which the convex combination λ1ℓ(·, t1)+· · ·+λkℓ(·, tk) is ε′-global for all t1, . . . , tk ∈ B̄δ(t̄).

Proof. We provide the proof for k = 2, but the argument holds true for other finite values
of k. By Theorem 13, ℓ(·, t1) can be assumed to be ε′′-global for ε′ > ε′′ > ε. Therefore,
without loss of generality, we assume that t1 = t̄, and then aim to prove that for a given
λ ∈ [0, 1] there exists δ > 0 such that λℓ(x, t̄) + (1 − λ)ℓ(x, t) is ε′-global. We introduce
r(x, t) = λℓ(x, t̄) + (1 − λ)ℓ(x, t) and note that r(x, t̄) = ℓ(x, t̄), which means that r(·, t̄) is
ε-global and satisfies Assumption 2. Theorem 13 applied to r yields that there exists δ > 0
such that λℓ(x, t̄) + (1− λ)ℓ(x, t) is ε′-global.

Proposition 8. Given λi > 0 and
∑k

i=1 λi = 1, if for all the values of t in a compact set
C ⊂ Rm and some ε > 0 the function ℓ(·, t) satisfying Assumption 2 (restricted from Rm to
C) is ε-global, then for any ε′ > 0 such that ε′ > ε there exists δ > 0 for which any convex
combination λ1ℓ(·, t1) + · · ·+ λmℓ(·, tm) is ε′-global for all t1, . . . , tm such that ∥ti − tj∥ < δ.

Proof. To prove by contradiction, suppose that there exists ε′ > 0 such that ε′ > ε and for
all δ > 0 there are t1(δ), . . . , tk(δ) such that ∥ti−tj∥ < δ and λ1ℓ(·, t1)+ . . .+λmℓ(·, tm) is not
ε′-global. From the sequence t1(

1
l
), one can extract a converging sub-sequence t1(δl) since C

is compact. By Lemma 25, for the point t̄ = liml→∞ t1(δl) there exists δ
′ > 0 such that for all

t1, . . . , tk ∈ B̄δ′(t̄) the convex combination λ1ℓ(·, t1) + . . . + λkℓ(·, tk) is ε′-global. Therefore,
for the t1(δl), . . . , tk(δl) such that δl <

δ′

2k
and ∥t1(δl) − t̄∥ < δ′

2k
, this convex combination is

ε′-global, which is a contradiction.

Proposition 9 (Formal statement of Proposition 7). Consider the instances of LQR such
that their parameters A,B,Q and R belong to a compact set. Assume that none of them
produces a cost function C(W ) with a singular Hessian at a stationary point. For any ε > 0
and k ∈ N, there exists δ > 0 such that for any set of k considered instances of LQR defined
through the parameters {(Ai, Bi, Qi, Ri)}ki=1 with

∥Ai − Aj∥+ ∥Bi −Bj∥+ ∥Qi −Qj∥+ ∥Ri −Rj∥ ≤ δ,

for all i, j ∈ {1 . . .m}, the MAML objective (5.2) is ε-global.

Proof. Take t = (A,B,Q,R). By Theorem 10, every function C(W, t) satisfies Assumption
2. Therefore, C(W, t) satisfies all of the assumptions of Proposition 8 and the proof follows
immediately.

Given a matrix W̄ , the system of equations

∇C(W̄ ) = 0; det
(
∇2C(W̄ )

)
= 0 (5.3)
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Figure LQR (A,B,Q,R, s0s
⊤
0 )

Figure 5.1 (1, 1, 2, 2, 1), η = 0.1
Figure 5.2 (1, 1, 2, 2, 1), (1, 1, 0.1, 0.1, 1), η = 0.1

Figure 5.3a
(1.01, 1, 1, 1, 1), (1, 1.01, 1, 1, 1),

(1, 1, 1.01, 1, 1), (0.99, 1, 1, 1, 1), η = 0.1
Figure 5.3b (1, 1, 1, 2, 1), (1, 1, 2, 1, 1), η = 0.1

Figure 5.3c
(1, 1, 1, 1, 1), (1, 1, 1, 2, 1), (1, 1, 2, 1, 1),

(1, 1, 2, 3, 1), (1, 1, 3, 2, 1), η = 0.1

Figure 5.3d

(1, 1, 1, 1, 1), (1, 1, 1, 2, 1), (1, 1, 2, 1, 1),
(1, 1, 2, 3, 1), (1, 1, 3, 2, 1), (1, 1, 3, 1, 1),
(1, 1, 1, 3, 1), (1, 1, 4, 1, 1), (1, 1, 1, 4, 1),

(1, 1, 5, 3, 1), (1, 1, 3, 5, 1), η = 0.1

Table 5.1: To simplify the visualization, all of the examples and counterexamples in the
chapter were given for one-dimensional LQR systems. As a result, the parameters A,B,Q
and R were scalar values, and so were the state and the action. For reproducibility, this
table collects the parameters used to construct each of the examples.

with respect to the parameters A,B,Q and R defines a low-dimensional manifold in the space
of LQR tasks denoted by HS(W̄ ). All the LQR systems that have at least one stationary
point with a singular Hessian are contained in ∪WHS(W ). Now, notice that the union occurs
over an n×n dimensional space, whileHS(W ) is defined with a system of (n×n)+1 equations.
This implies that ∪WHS(W ) is a low-dimensional manifold and thus almost no LQR has a
stationary point with a singular Hessian. Thus, the compact domain that is mentioned in
the assumption of Proposition 9 can be a large closed set with ∪WHS(W ) excluded together
with its small neighborhood. Thus, Proposition 7 is an informal restatement of Proposition 9.

Details on the experiments

For the numerical experiments, we computed the MAML objective explicitly using the for-
mulas provided in the Section on LQR. The initial state s0 was chosen to be deterministic.
Further details are provided in Table 5.1.
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