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ABSTRACT OF DISSERTATION 

Population Dynamics of Human Immunodeficiency Virus 

By  

John Wei Lau 

Doctor of Philosophy in Ecology and Evolutionary Biology 

University of California, Irvine, 2014 

Professor Dominik Wodarz, Chair 

 
 

  
 In this work, we explore the in vivo population dynamics of HIV with mathematical 

and computational methods. Chapter 1 examines the effects of productive unintegrated 

virus (uDNA) on viral dynamics in the context of free-virus and synaptic transmission. We 

find that productive uDNA can contribute up to 20% towards the basic reproductive ratio 

of HIV in vivo. If more than one unintegrated virus is required for productive infection, then 

uDNA does not contribute towards R0 from free virus infection. As more viruses are 

successfully transmitted per synapse, the lower the contribution of uDNA. Chapter 2 

explores the effect of uDNA in the context of an immune response during the asymptomatic 

phase. We find that productive uDNA can decrease or increase set-point viral levels 

compared to the case of inert uDNA, and this depends on the rate of viral production and 

the strength of the immune response. In Chapter 3, we explore a two-compartment model 

to explain the observed difference in the multiplicity of infection of HIV between the 

lymphoid system and the blood. Our model suggests that the absence of strong synaptic 

transmission in the peripheral blood tends to create many singly infected cells – reducing 

the proportion of multiply infected cells. Although this simple mechanism can explain much 
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of the difference between the two systems, we also conclude that there must be some 

additional mechanism that is reducing the number of highly multiply infected cells in the 

blood.



 1 

INTRODUCTION 

 

The principles and methods used in the study of population dynamics can be 

applied to any collection of units and their interaction with other factors. In the case of this 

dissertation, we investigate the ecology of Human Immunodeficiency Virus (HIV) in vivo 

with mathematical and computational models. We treat HIV and susceptible cells as 

individual organisms that interact with each other and the environment within an infected 

individual. HIV was chosen in particular because of the rich history of mathematical 

modeling of the disease and availability of data to support and validate models. New 

aspects of the disease have been discovered recently and, in this dissertation, I explore 

different facets of HIV from the perspective of population dynamics.               

 

 Human Immunodeficiency Virus (HIV) is a retrovirus that causes acquired 

immunodeficiency syndrome (AIDS). As of 2012, approximately 35 million people are 

living with HIV worldwide, with 2.5 million infections, and 1.6 million deaths [1]. A 

majority of the new infections are in Sub-Saharan Africa, where education and medicine is 

less available [1, 2].  In well-developed countries the number of AIDS deaths and new HIV 

cases has declined, partially due to the availability of effective treatment [1]. However, even 

amongst those with access to medicine, the disease remains chronic and requires a life-long 

drug regimen. Despite significant advances in treatment, a permanent cure to HIV remains 

elusive. 
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HIV and AIDS gained prominence in the early 1980s. It was during this time that the 

United States Centers for Disease Control coined the name AIDS and began dedicating 

groups to study and combat the potential epidemic.  It is believed that HIV was originally 

transferred from non-human primates, who have the similar disease SIV (simian 

immunodeficiency virus), through blood contact. After its recognition in the United States, 

in 1981, there were approximately 600 recorded deaths from AIDS in 1982, ballooning to 

200,000 cumulative deaths in 1992 and 500,000 by 2002 [3]. In 2002, AIDS was the leading 

cause of premature death worldwide amongst people from 15-59 [2]. As antiretroviral 

drugs that were developed in the 1990s became more available, new infections in 

developed nations declined [1]. However, worldwide, particularly in Sub-Saharan Africa, 

the disease remained prevalent and the number of new infections has risen [1,2].  

 

Several anti-viral drugs are currently available but the treatments are chronic, 

expensive, and are often not readily available in lesser-developed countries [3]. Drug 

treatments usually involve a cocktail of 3 or more drugs that target specific proteins or 

stages of the viral life cycle. For example, the first such drug, azidothymidine (AZT), is an 

inhibitor that targets the viral protein reverse transcriptase. As a cocktail of multiple drugs, 

which has been reduced to a single pill, these drugs have advanced to reduce serum virus 

to low or undetectable levels [4]. In addition, treatment can be used as a preventative tool, 

and those under a drug regimen against HIV have a significantly reduced chance of 

transmitting the disease [5]. Despite significant advances in drug treatment, invariably, on 

cessation of treatment, the virus resurges, and the patient must continue to take the drugs 

for life [6, 7]. 
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The progression of HIV in a patient is variable but the stages of the disease are well 

known. The initial phase presents with mild symptoms and patients are considered to be 

the acute phase that is characterized by high viral loads in the blood. The acute phase 

typically lasts for weeks until patients enter an asymptomatic phase that typically last 5-10 

years in a majority of patients. During this period, serum virus levels are lower compared 

to the acute phase. However, the virus is not inactive during this time – it is constantly 

replicating and the immune system is constantly combatting it, as shown by the rapid viral 

turnover during the asymptomatic phase [8, 9]. Since the asymptomatic phase is measured 

in years, it can be considered a dynamic steady state for the purpose of mathematical 

modeling. After the asymptomatic phase, if left untreated, patients enter the AIDS phase of 

the disease. The AIDS phase is characterized by a reduction of CD4+ T-cell levels below 200 

cells per microliter or the presence of characteristic opportunistic infections. At this point, 

bacterial, fungal, or viral infections that are normally under control by the immune system 

can develop and these diseases ultimately kill the infected individual. 

 

HIV primarily targets immune cells including CD4+ T lymphocytes, dendritic cells, 

and macrophages, ultimately weakening the immune system and allowing for opportunistic 

infections. The virus uses the CD4 receptor found on these cells to enter and begin 

replication. Susceptible cells have different half-lives: productively infected cells have half-

lives on the order of hours or days while latently infected memory CD4+ T cells can survive 

for months or years [10-13]. However, CD4+ T lymphocytes are the largest population of 

cells that are susceptible to the disease and are the focus of this dissertation.  
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 The HIV-1 virion includes two copies of single-stranded RNA, together with key 

proteins inside a viral envelope. Among the proteins are integrase, reverse transcriptase, 

protease, and others that enhance viral replication through interactions with the target cell. 

Reverse transcriptase is responsible for transcribing RNA to DNA inside the nucleus. The 

reverse transcriptase enzyme can switch between available transcripts, creating new 

permutations that may have a selective advantage in the presence of an immune response 

or drug regimen [14]. The intregrase enzyme is responsible for integrating the newly 

created viral DNA transcript into the host genome. Once a viable copy of HIV is inserted 

into the genome, it can be expressed with the host machinery to create new viral 

transcripts.  

 

The molecular biology of infection of HIV-1 is complicated and there has been much 

research devoted into elucidating the proteins and pathways involved in transmission [15]. 

For the purpose of this dissertation, a simplified model of HIV transmission is used that 

captures the relevant details without needless complication. In free virus transmission, the 

virus binds to a cell with an available CD4+ receptor and co-receptor such as CCR5 or 

CXCR4 [16, 17]. The contents of the viral envelope are released, including viral RNA and the 

enzymes necessary to begin production of progeny virus. Viral RNA is reverse transcribed 

into DNA, and forms a pre-integration complex with viral proteins [18]. The pre-integration 

complex enters the nucleus and the viral DNA is then integrated into the host genome via 

viral integrase. In productive infection, the integrated virus is expressed and produces 

progeny viral RNA which is translated into viral proteins. Viral RNA and proteins are then 
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packaged into new virions that can be released from the infected cell. The entire process 

can occur in the order of days but the provirus can also remain unexpressed and dormant 

within the cell as long as the cell remains alive. 

 

 Although many HIV+ patients have the disease managed, a permanent and universal 

cure for HIV remains elusive due to a variety of factors inherent to the disease. The first is 

the high rate of mutation due to the recombinatorial and error-prone nature of reverse 

transcriptase [19]. Reverse transcriptase has no error-correcting mechanism and 

mutations can occur during the transcription process. More importantly, reverse 

transcriptase can switch between different viral templates, amplifying the diversity of HIV. 

The virus evades the adaptive immune response by constantly mutating within a patient. 

These mutations can cause the virus to replicate faster or use different co-receptors [20, 

21]. Secondly, HIV remains latent in the infected individual and, invariably, these latent 

viruses resurface after drug therapy is stopped [23-24]. Latent viruses include unexpressed 

provirus that replicates as the infected cell replicates, remaining in perpetuity for as long as 

the cell line continues to exist [25]. In addition, anatomical reservoirs of immune cells can 

be untouched by drug therapy and can persist during the chronic phase of the disease.  

   

 This dissertation explores the in-host population dynamics of HIV, particularly in 

the context of three relatively recently discovered characteristics – multiple infection of 

HIV, viral spread via synaptic transmission, and the activity of unintegrated viral genomes. 

It has been shown that a single cell can be infected with multiple copies of HIV. This has 

been shown to occur in vitro but there have been differing reports on the prevalence of in 
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vivo multiple infection [19, 26-28]. Some reports suggest that multiple infection is common 

[29-32] while others suggest that multiple infection is rare [33, 34]. Multiple infection by 

free virus transmission must occur prior to the down-modulation of surface receptors 

following initial infection of the cell [35]. During this window, multiple HIV viruses can 

potentially infect the cell. These viruses, if genetically distinct due to previous 

recombination or mutation, can potentially recombine inside a single cell and increase 

overall genetic diversity [36]. The presence of multiple viruses competing for the same 

cellular resources can potentially have an effect on viral dynamics. In addition, multiple 

viruses can potentially be detrimental to each virus due to increased cellular or immune 

responses. If different viral epitopes, from different quasispecies of the virus, are presented 

on the cell surface, then a more efficient immune response may be mounted, which can 

have a detrimental effect on each virus inside the cell. The dynamics of multiple infections 

can be complex and has not been explored in detail. 

 

 In addition to free virus transmission, HIV can also transmit directly to other 

susceptible cells via a viral synapse [37-41]. The exact mechanism is unclear, but is 

believed to involve the same receptors that are used in T-cell communication [38]. This 

process is clearly density dependent, and is therefore not likely to occur in regions where 

CD4+ cells are sparse. The infected cell can transmit hundreds of immature virus particles 

to the target cell. It is unclear how many of these viruses are viable but due to the number 

of viruses transferred per synapse it may be a significant mode of transmission. The 

relative strength of synaptic and free virus transmission is unknown, may depend on 

individual and viral factors, and may change as the disease progresses.   
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 It was recently shown that unintegrated viruses can potentially produce progeny 

viruses [42, 43]. Integrase negative mutants can still produce viruses, albeit at a slower rate 

[43]. However, the cells infected with these viruses have a longer lifespan and may be more 

efficient at evading the immune response due to their slower virus production rate. These 

unintegrated viruses exist as stable episomes within the nucleus [44]. These episomal 

viruses can be transcribed and new virions can be produced. In addition, it would not be 

surprising that, in the presence of productive integrated virus, the episomal RNA is more 

likely to be packaged into a virion [42]. The unintegrated viruses can potentially employ 

the machinery used by the integrated viruses and can add to viral diversity.  

 

In general, the mathematical modeling of population dynamics has provided insights 

into complicated biological and ecological systems [45-51]. In a system with many factors 

that interact in non-linear ways, it may be difficult to understand and pinpoint the key 

components. Mathematical models simplify the complex biological systems and allow us to 

present reasonable hypotheses based on these models. Once formulated, we can adjust the 

model to explore the effects of modifying the system in specific ways. Mathematical models 

also allow us to estimate key parameters like growth and death rates, which are necessary 

to understanding the dynamics of any population, including the progression of HIV [8-9, 11, 

52]. 

 

Mathematical modeling has specifically been used successfully to model the in vivo 

population dynamics of HIV. These models have allowed us to identify key characteristics 
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of the virus, including lifespan, rate of replication, and rate of clearance of the virus [45-49, 

52]. Estimating these parameters is essential to understanding the progression and 

evolution of the virus in the host. Models have also given us insight to viral evolution, 

immune escape, and the emergence of drug-resistant forms [49,53-55]. In addition, 

mathematical modeling has been invaluable in the formulation of new hypothesis and as a 

guide for clinical and laboratory experiments [49]. 

 

Each chapter in this dissertation explores a different aspect of HIV through 

mathematical modeling and analysis. Chapter 1 focuses on the effect of unintegrated 

genomes on viral dynamics at the start of infection. Chapter 2 expands on this by examining 

unintegrated genomes during the dynamic asymptomatic phase and in the context of an 

immune response. Finally, chapter 3 explores a series of two-compartment models to 

attempt to explain the difference in multiplicity of infection between the peripheral blood 

and lymphoid system. 
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CHAPTER 1: Effect of HIV replication from unintegrated genomes    

On basic virus dynamics 

Abstract 

 

 Recent experimental data has shown that T-cells with unintegrated viral DNA 

(uDNA) can successfully produce virus. We use mathematical models to estimate the effect 

of these unintegrated viruses on the in vivo basic reproductive ratio. Our model includes 

synaptic and free-virus transmission, as well as multiple infection of target cells. We find 

that, with preliminary parameter estimates, uDNA can contribute up to 20% to the total 

reproductive ratio. If more than one uDNA is required for productive infection, then uDNA 

does not contribute to R0 for free virus transmission. For synaptic transmission, uDNA 

contributes to R0 regardless of the number of uDNA required for replication. The more 

viruses transferred per synapse, the lower the contribution of uDNA because this increases 

the chance that at least one virus integrates. Similarly, the higher the probability of 

integration, the lower the effect of uDNA. If uDNA contributes 20% to the total R0, then we 

estimate that R0=1.6 from uDNA only.. This would suggest that viral production from cells 

infected with uDNA alone is enough to establish infection. This has potential implications 

on the effectiveness of integrase inhibitors as a prophylactic treatment. This work also 

serves as a mathematical framework for the measurement of critical parameters necessary 

to understand importance of uDNA in HIV progression. 
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Introduction 

 

Human immunodeficiency virus-1 (HIV-1) infects cells of the immune system, 

mainly CD4+ T cells and antigen presenting cells, such as dendritic cells and macrophages. 

The virus has an RNA genome, which upon infection is copied into DNA through reverse 

transcription. The DNA genome of the virus can subsequently integrate into the host 

genome, and this forms the template for transcription and translation, eventually leading to 

the formation of new virus particles that are released from the infected cell. This cycle of 

infection and replication allows the virus to spread from cell to cell, leading to the extensive 

growth of the HIV population in vivo during the acute phase of the infection before the virus 

population settles around a post-acute steady state, the level of which can be indicative of 

speed with which the infection progresses from the asymptomatic phase to AIDS.  

 

Extensive clinical and experimental data exist that document these dynamics both in 

vivo and during in vitro experiments [46-49]. Mathematical models have been very useful 

to help interpret those data, to measure crucial parameters, and to generate hypotheses. 

One of the most fundamental measures is the basic reproductive ratio of the virus, defined 

as the average number of newly infected cells generated by a single infected cell at the 

beginning of the infection [56]. It has been estimated for HIV in a variety of settings, and 

has important implications for understanding disease progression as well as the response 

to anti-viral drug therapy [57]. 
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During the replication cycle of the virus, the step of integration is prone to failure, 

leading to the generation of unintegrated viral DNA genomes (uDNA). According to the 

literature, while viral uDNA can be expressed to a certain degree, it is a replicative dead 

end and does not lead to the production of infectious offspring virus. Recent data, however, 

indicate that the situation could be more complex [42-43, 58]. If a cell is co-infected with 

integrated and unintegrated virus, viral uDNA has been shown to successfully produce 

infectious offspring virus, suggesting cooperative interactions [43]. Even more striking, a 

recent study has shown that cells that only contain viral uDNA can successfully produce 

infectious offspring virus. They do so at a rate that is small compared to the rate of virus 

production from integrated genomes. At the same time, however, cells infected only with 

uDNA also live significantly longer than iDNA-infected cells, thus increasing the total 

amount of virus produced by those cells during their life span [43]. Successful uDNA 

replication, however, does not seem to occur under all conditions. It is observed most 

readily in resting cells that become infected and subsequently activated, which could be 

especially relevant to the initial stages of the infection following virus transmission [43]. 

 

For the first time we present mathematical model that accounts for successful virus 

replication both from cells containing integrated virus and from cells that only contain 

unintegrated virus. The aim is to quantify the contribution of viral uDNA to the basic 

reproductive ratio of the virus, and thus to the ability of the virus to establish a persistent 

infection. We start with a standard virus dynamics model and include the possibility of 

uDNA replication. This model assumes that the virus spreads through the target cell 

population via the release of free virus particles. In this model, iDNA and uDNA replication 
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contribute additively to the basic reproductive ratio of the virus, and their relative 

contributions are determined by the parameters describing the rate of virus production 

and the rate of death in the respective cells. In our model, a cell with a single productive 

copy of viral uDNA can produce offspring virus. While data indicate that this can indeed 

occur, it cannot currently be discounted that multiple uDNA copies are required to 

successfully produce offspring virus. In this case, uDNA replication does not contribute to 

the basic reproductive ratio of the virus, because multiple infection is a very unlikely event 

in the context of free virus transmission at relatively low virus loads. In addition to this 

model we also consider the assumption that the virus can spread directly from cell to cell, 

through the formation of virological synapses. In this model, uDNA can contribute to the 

basic reproductive ratio of the virus even if multiple uDNA copies are required for 

successful replication. The reason is that the generation of multiply infected cells is a likely 

event in the context of synaptic transmission. The exact contribution of uDNA to the basic 

reproductive ratio of the virus depends on the number of viruses that get transferred 

through the synapse. The larger this number, the higher the likelihood that a virus will 

integrate into the host genome, and thus the lower the contribution of uDNA to the basic 

reproductive ratio. 
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Figure 1.1: Diagram of HIV models 1 and 2. Model 1 has cell-free transmission and model 2 has both 
cell-free and cell-to-cell transmission. In Model 1, CD4+ T-cells (represented by larger circles) with i 
unintegrated and j integrated viruses are infected and gain an unintegrated (top cell) or integrated 
(bottom cell) virus. In Model 2, cell-free infection occurs, but now two cells, one with i unintegrated 
and j integrated viruses and another cell with k unintegrated and l integrated viruses can interact. 
The source cell transmits r integrated and s unintegrated viruses, creating a cell with i + r 
integrated and j + s unintegrated viruses. 

 

The basic model of virus dynamics with free virus transmission 

First, we briefly review a basic model of virus dynamics that has been analyzed 

extensively in the literature. It assumes transmission of free virus released from cells. For a 

review, see [45-48]. It considers the populations of susceptible, uninfected cells, x, infected 

cells, y, and free virus, v. It is given by the following set of ordinary differential equations 

(Eq 1.1). 
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(Eq. 1.1)      

dx
dx xv

dt

dy
xv ay

dt

dv
ky uv

dt

 



  

 

 

 

Uninfected cells are generated with a rate λ, die with a rate d, and become infected 

by virus with a rate β. Infected cells die with a rate a, and produce free virus particles with 

a rate k. Free virus decays and is cleared with a rate u. This model is characterized by two 

equilibriums. If the virus fails to establish a persistent infection, the system converges to 

the following equilibrium: x(0)=λ/d; y(0)=0; v(0)=0. If the virus population successfully 

establishes a persistent infection, the system converges to equilibrium. Which outcome is 

observed depends on the basic reproductive ratio of the virus, R0=λβk/dau. A persistent 

infection is established if R0>1.  For further details of this model, see [45] and references 

therein and table 1.1. 
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Parameter Units Notes 

N (max unint) none Maximum unintegrated per cell 

M (max int) none Maximum integrated per cell 

λ  Cells ml-1day-1 Uninfected production rate 

d day-1 Uninfected death rate 

ai day-1 Provirus infected death rate without / with immune response 

au day-1 Unintegrated infected death rate 

ki day-1 Prod. rate of free virus from provirus infected cells 

ku day-1 Prod. rate of free virus from unintegrated infected cells 

u day-1 Clearance rate of free virus 

γ ml Cells-1 day-1 Base infectivity for synaptic transmission 

β ml Cells-1 day-1 Infectivity for free virus transmission 

h none Average cells successfully transferred per synapse 

p none Chance of integration 

c none Number of unintegrated viruses required for productivity 

Table 1.1 : Parameter and definitions used in Eq. 1.1-1.3.  

 

Free virus transmission and uDNA Replication 

 

Here, we consider an extension of the basic model that includes multiple infection of 

cells and takes into account the replication of both integrated and unintegrated viral 

genomes. Thus, we denote cells infected with i unintegrated and j integrated viruses by yij. 

Consistent with this notation, the variable y00 represents the population of uninfected 

target cells. The model is thus given by the following set of ordinary differential equations.  

 (Eq. 1.2) 

dy0,0

dt
= l - dy0,0 - by0,0v

dyi, j

dt
= (1- p)bvyi-1, j + pbvyi, j-1 - ai, jyi, j - bvyi, j

dv

dt
= kij

j=0

M

å
i=c

N

å yij - uv
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As in the previous model (Eq. 1.

integration of the viral genome occurs with a probability p, while uDNA capable of 

replication is generated with a probability 1-p. Note that not all types of uDNA is capable of 

replication [44] and that the uDNA taken into account in the model only includes viral 

genomes that can replicate. The rest of the model is the same as the basic model discussed 

above. Kinetic parameters, such as the rate of virus production of infected cells and the rate 

of infected cell death can depend on the number of integrated and unintegrated viruses. 

Data indicate that cells infected with uDNA only replicate the virus with a slower rate but 

also die with a slower rate than cells infected with iDNA. However, beyond this, there is no 

experimental evidence that the number of iDNA and uDNA copies in cells influences these 

parameters. Thus, we make the simplifying assumption that kij and aij can each have only 

two values. Cells with only unintegrated viruses produce virus at rate ku and die at rate au. 

Cells with any amount of integrated viruses produce virus at a rate ki and also die at a rate 

of ai (whether uDNA is present or not). 

 

As in the basic model of virus dynamics, this system is also characterized by two 

equilibriums. In the absence of infection, the system converges to the trivial equilibrium, 

given by is y00= λ/d, yij=0, and v=0. If the virus establishes a persistent infection, the system 

converges to the internal equilibrium where all populations are greater than zero. In the 

current model, the equilibrium expressions are difficult to obtain and are thus not written 

out here. 
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Using standard methods (see Appendix for details), we can calculate the threshold 

for a successful infection from (Eq 1.2), defined by the stability of the virus-free steady 

state. This gives rise to the basic reproductive ratio of the virus in model (Eq. 1.2), which is 

given by 

 R0 = p
lbki
aiud

+ (1- p)
lbku
auud

 

This is similar to the expression for R0 in the basic model (Eq. 1), but has contributions 

from virus replication originating from iDNA (p) and uDNA (1-p). If we assume that 

integrated and unintegrated viruses contribute equally to virus replication and cell death, 

we can sum the terms and arrive at same expression for R0 as in the basic model of virus 

dynamics, model (Eq. 1.1). The same would be true if the burst size, defined as the average 

number of viruses produced per infected cell, was the same for both unintegrated and 

integrated viruses.  

 

The analysis so far has assumed that a single copy of uDNA alone can lead to 

successful virus replication. Let us now assume a more complex situation in which more 

than one uDNA copy needs to be present in a cell for virus replication to be possible in the 

absence of iDNA. While there is currently no evidence that this is a requirement, this 

scenario also cannot currently be discounted. In this case, the basic reproductive ratio of 

the virus becomes: 

 R0 = p
lbki
aiud
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In other words, unintegrated viruses do not contribute to establishing infection anymore. 

Intuitively, this can be explained as follows. At the beginning of infection, the number of 

uninfected cells is high while the number of viruses is relatively low. Thus, the chance that 

a cell is multiply infected is negligible. Since it requires multiple unintegrated viruses in a 

cell to start viral production, the cells infected with a single unintegrated virus are not yet 

productive at the very early stages of infection. 

 

Synaptic virus transmission and uDNA Replication  

 

Here, the model is further expanded to include not only free virus transmission, but 

also synaptic transmission of the virus. The model is given by the following set of ordinary 

differential equations, which are based on previous work [59-62]  

 (Eq1.3)        
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  for i £ N, j £M ,i + j £ N  

This model with synapsing is modified from a model by [32], which did not consider 

unintegrated viruses. Compared to model (Eq. 1.2), it has one additional parameter: γrskl, 

which describes the probability that a cell with k unintegrated and l integrated viruses 

transmits r unintegrated and s integrated viruses. The γ term is an analog of the infectivity 

used in free virus transmission and is composed of 3 parts. Incorporated in this constant is 
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the probability that a synapse is formed when two cells interact, the probability that r+s 

total viruses are successfully transmitted and the probability that r viruses are 

unintegrated while s viruses become integrated provirus. 

 

The equation describing the dynamics of uninfected cells, x, is identical to model 

(Eq. 1.2) except with an added term for cell-to-cell transmission from other cells. The extra 

term describes cells with k and l unintegrated and integrated viruses transferring r 

unintegrated and s integrated viruses. The equation for infected cells is also identical to 

that used in model (Eq. 1.2) with the addition of terms that describe cell-to-cell 

interactions. The first term for cell-to-cell interactions describes other cells gaining viruses 

to form cells of type yij. The second term for cell-to-cell interactions describes cells of type 

yij gaining viruses by cell-to-cell transmission.  

 

In the above equations, we place a limit on the number of viruses allowed per cell to 

be N. We also further limit the number of integrated viruses to be M. Thus, we only model 

yij for indexes such that i+j ≤ M. For simplicity, we did not explicitly write the equations for 

the endpoints, i.e. yiM, yNj, yNM. The equations for these species do not have a sink term from 

the addition of viruses via free virus transmission or cell-to-cell transmission. 

 

In order to arrive at an analytic result for R0 for the system with cell-to-cell transmission, 

we use some simplifying assumptions. We first explore the system with synaptic 

transmission only by simplifying and separating the infectivity term, γrskl, to its constituent 

parts.   
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 We assume that the rates of cell-to-cell transmission are determined by the presence of 

iDNA in the source cell. If a cell contains one or more integrated viruses, the kinetics of 

virus production and cell death are dictated by the integrated virus, and the potential 

presence of uDNA in the same cell is not assumed to make a difference. On the other hand, 

in the absence of iDNA, virus production by infected cells and the death rate of infected 

cells are determined by the parameters of the uDNA infection. It is assumed that the rate of 

virus production depends only on the type, but not the number, of viruses in the infected 

cell. Under this assumption, the parameter γrskl can be simplified to ĝ r,s
u and ĝ r,s

i , for any k 

and l. Here, ĝ r,s
u is the reduced transmission rate from cells with only unintegrated viruses, 

which we set ashĝr,s
i , η < 1.With these assumptions, we can find the new threshold for 

establishing an infection to be: 

 

R0 =
bsil

aid
+

bsul

aud

bsu = ĝ r,0
u  

r=c

N

å , bsi = ĝ r,s
i

s=1

M

å
r=0

N

å
 

Details are given in the Appendix. This expression is similar to the one for free virus 

transmission in model (Eq. 1.2), consisting of two components, one stemming from uDNA 

replication, the other from iDNA replication.   Note that, in contrast to model (Eq. 1.2), 

unintegrated viruses are now a factor in this expression, even when we require multiple 

unintegrated viral genomes to begin infection. Here, c is the threshold number of 

unintegrated viruses required to start cell-to-cell transmission. The term βsu is the sum of 
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the ĝ r,s
u  for synapses where at least the threshold number of viruses become unintegrated 

and none become integrated. The term βsi is the sum of the ĝ r,s
i for synapses where at least 

one transferred virus becomes an integrated provirus.  

 

The parameters ĝ r,s
i and ĝ r,s

u (equal to hĝr,s
i ) in the above expression is a composite of 

different events, including the probability that r+s viruses are transmitted, and what 

proportion of these viruses become integrated. To relate ĝ r,s
i to more tangible parameters, 

we express ĝ r,s
i as a function of the probability of integration and distribution of viruses 

transferred per synapse. There is little known about the factors that determine what 

proportion of viruses become integrated but if we assume that each virus integrates 

independently at probability p then ĝ r,s
i and ĝ r,s

u can be replaced with more explicit formulas, 

and the threshold for successful infection is now: 

 R
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Here, 𝛾ℎis the probability that h viruses are successfully transferred by iDNA infected cells, 

where h=r+s, and η is the reduction in the rate of synapse formation of cells infected with a 

threshold number of unintegrated viruses. We can see from this expression that, if viruses 

integrate independently, as the average number of viruses transferred per cell increases, 

the relative contribution by unintegrated viruses decreases. Intuitively, if a cell transfers a 

larger number of viruses per synapse, the chance that at least one virus becomes integrated 

approaches certainty. Note that there need not be complete independence of integration 

between viruses for this trend to hold. 
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The last unaddressed variable in the above equation is how 𝛾ℎ, the probability of 

transferring h viruses, is distributed. Little is known about the distribution of the number 

of viruses transferred per synapse so we explore different commonly occurring 

distributions (Normal, Uniform, or Poisson). For example, if the number of successfully 

transmitted viruses follows a Poisson (h ) distribution and each virus independently 

integrates,𝛾ℎ can be expanded and the R0 for synaptic transmission is given by: 

 R
0

=
l

a
i
d

h r+s exp-h

(r+ s)!
s=1

M

å
r=0

N
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With this formulation, we can arrive at a first order estimate of the effect of unintegrated 

viruses on establishing a successful infection for synaptic transmission under the above 

assumptions (See figure 1.3). With estimated the parameter values (c=1, p=0.5, η=0.25), a 

maximum of 50% of R0 is due to unintegrated viruses. In contrast, with only free virus 

transmission, the contribution to R0 by uDNA is 100*(1-p)r/(p+(1-p)r)%, where r is the 

ratio (ku/au)/(ki/ai). With estimated parameter values, the contribution to R0 by uDNA is 

20%. Roughly, for synaptic transfer, if the R0 of HIV is approximately 7 new infections per 

infected cell less than 3.5 of these new infections are due to cells that are only infected with 

unintegrated viruses [57]. As the threshold for the number of unintegrated viruses 

required for infected cells to begin producing viruses (the parameter c) increases, the 

contribution to R0 by uDNA decreases. As the probability of integration (p) increases, the 

contribution by uDNA decreases. 
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Figure 1.2: Fraction contribution to R0 by cells with uDNA-only for synaptic transmission. Lines are 
different distributions of the number of viruses transferred per synapse. The contribution to R0 by 
uDNA depends on average number of viruses transmitted but remains relatively constant with 
respect to the distribution of viruses transmitted. We assume that viruses integrate independently. 
Parameters are η=0.25, p=0.5, c=1, au=0.25ai.  

 

Combining free virus and synaptic transmission 

 

Finally, we can combine the results from free virus and synaptic-only transmission 

to arrive at the following value for R0 for a system with both synaptic and cell-free 

transmission: 
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Note that this expression is simply the sum of the R0 from the cell-free and synaptic 

transmission models. Although we can estimate the contribution of unintegrated viruses to 

R0 for both cell-free and synaptic transmission independently, little is known about the 

relative importance of synaptic and cell-free transmission at the start of infection. In our 

models, if cell-free transmission is the significant mode of transmission for HIV-1 at the 

beginning of infection, then cells with only unintegrated virus do not contribute 

significantly towards virus production at the start of HIV-1 infection. If synaptic 

transmission is the significant mode of transmission then unintegrated viral DNA has a 

Figure 1.3 left) Contribution of uDNA towards R0 of synaptic transmission with varying threshold of 
uDNA required for productive infection. (Right) Contribution of uDNA towards R0 of synaptic 
transmission versus the average number of viruses transferred successfully per synapse. As the 
average number of viruses transmitted per synapse increases, the probability that all transmitted 
viruses remain unintegrated approaches zero and the contribution of unintegrated viruses 
decreases. We assume that viruses integrated independently and number of viruses transmitted 
follows a Poisson distribution. Default parameters are η=0.25, p=0.5, c=1, au=0.25ai. 

 



 25 

larger, but still relatively small effect at the start of HIV infection.   

 

Discussion 

 
 
 Recent experimental studies have shown that viral DNA can be expressed even 

without integrating into the host genome. This is a potential source of genetic diversity and 

can have an effect on in vivo dynamics. Although unintegrated viruses are less productive 

than integrated virus, they can contribute towards establishing infection. Based on the 

models we presented here, unintegrated viruses can contribute towards the in vivo R0 of 

the virus. Under free virus transmission, we found that, with our best estimates of 

parameter values, replication from uDNA can contribute about 20% to R0. Under synaptic 

transmission, the contribution to the reproductive ratio depends on average number of 

viruses transferred per synapse and probability of integration. 

 

The models used in this paper can serve to estimate critical parameters. It is clear 

from the analysis that the average number of viruses successfully transferred and 

integration probability are critical parameters to understand the effect of unintegrated 

virus. In addition, the relative strengths of synaptic and free-virus transmission are 

important to understanding the effect of unintegrated virus. If the probability of successful 

integration is low, then unintegrated virus will have a larger effect toward establishing the 

disease and will likely have a larger effect on the progression of the disease in an 

individual.  
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Understanding the effect of unintegrated virus on initial viral dynamics can have 

important clinical significance. For example, productive, unintegrated virus can contribute 

towards the failure of recent clinical trials of the integrase inhibitor Raltegravir [63, 64]. 

The R0 of HIV in vivo has been estimated to be around 4-8 [57]. If unintegrated virus 

contributes 20% towards R0, then unintegrated virus alone can potentially establish 

infection in some individuals, although the infection will proceed at a slower pace initially.  

The analysis presented here can suggest that prescribing an integrase inhibitor in a 

prophylactic capacity, as has been suggested for high risk groups, may be ineffective due to 

productive unintegrated virus.  

 

The results here are dependent on parameters that are precisely known but this 

analysis serves as a starting point for the exploration of the effect of unintegrated HIV. This 

analysis also provides a mathematical framework and identifies key parameters that 

should be estimated to understand the effect of uDNA on establishing HIV-1 infection.  
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CHAPTER 2: Unintegrated HIV and immune responses 

Abstract 

 

 Recent experiments has shown that cells infected with unintegrated HIV DNA 

(uDNA) can successfully produce virus. We explore the effect of these unintegrated viruses 

on asymptomatic phase viral dynamics with a mathematical model. Our model includes 

synaptic and free-virus transmission, the multiple infection of target cells, and an immune 

response. We find that uDNA can both increase or decrease set point viral loads and 

provirus levels, depending on the strength of viral production by cells infected with just 

uDNA and the strength of the immune response versus these cells. If the viral production 

by uDNA-only cells is strong and the immune response versus them is weak, then viral 

loads and provirus levels are higher than if uDNA was inert. This is due to viral production 

by previously inert cells. However, if viral production by uDNA-only cells is weak and the 

immune response versus them is strong, then viral loads and provirus levels are lower than 

if uDNA was inert, despite viral production from a new population of cells. This is due to a 

form of apparent competition between cells with provirus and cells with only uDNA. 

 

Introduction 

 

 Chapter 1 of this dissertation explored the basic reproductive ratio, which is critical 

at the initial stage of infection, but unintegrated viruses may have an effect on viral 

dynamics long after the onset of infection. Previous models have ignored unintegrated 
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viruses altogether because it is assumed that unintegrated viruses are a replicative dead-

end. Integration is a complex, multi-stage process and a majority of viruses that enter a cell 

do not undergo all the steps required to integrate [65]. The relatively large population of 

cells with uDNA can potentially change infection dynamics. In this chapter, we explore the 

effect of uDNA on steady states and in the context of an immune response.  

 

 In order to study the effect of uDNA we also consider multiple infection of cells and 

different modes of transmission. Multiple infection is an important factor because it is 

likely that, in the presence of provirus, episomal uDNA can be more efficiently packaged 

into new virions. The proteins expressed from the integrated provirus can be packaged 

along with a transcript from an episomal uDNA in a new virion. Since synaptic and free 

virus transmission affects the multiplicity of infection, we also include mode of 

transmission in our analysis.  

  

 We employ an ordinary differential equation model similar to the model used in 

Chapter 1. The description and assumptions of the model apply here. This includes the 

assumptions in our treatment of synaptic transmission, free-virus transmission, and co-

infection. The parameter definitions and estimates are also the same and the analytical 

results from Chapter 1 still apply to the model that will be used in this chapter. 

 

T-cell effectors, or cytotoxic T-lymphocytes (CTL), are a major component of the 

immune response and is particularly relevant to HIV because they are the targets of 

infection. At the start of infection, antigen presenting cells consume virus at the site of 
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infection, travel to the lymph nodes, and present them to CD4 T helper cells. The helper 

cells activates the antigen presenting cells, which in turn can activate resting CTL [66, 67]. 

Originally, there are very few T-cell effectors that are specific to a particular viral epitope 

but activated CTL increases this population in a process called clonal expansion.  Once 

activated, T-cell effectors can remove infected cells through a variety of mechanisms 

including cell lysis [68-71]. 

 

 Immune response dynamics has been studied extensively with mathematical 

models [46, 72-75]. This includes complex models of antibodies, T-cell responses, 

immunological memory, and different immune cells [48].  As an initial step, we consider the 

effect of uDNA in the context of a saturating T-cell effector response. This is an initial linear 

response that plateaus at some level based on a saturation constant and is more realistic 

than a simple linear response [75]. In the following model, we represent T-cell effectors as 

a species that is activated in the presence of virus. 

 

Model 
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We employ the same model used in chapter 1 of this dissertation but add a species 

to represent the immune response. The actual immune response is complex and there have 

been many models built to account for it that is beyond the scope of this dissertation. We 

will focus on a simple immune response with just a single species. The new species, 

denoted z, represents CTL effectors. The results presented in chapter 1 of this dissertation 

still applies to this model because, at the start of infection, the immune system has not 

mounted a response and the population of CTL effectors is effectively zero. The CTL 

effectors are activated at rate waij and kills infected cells at rate wkij. In this work, waij and 

wkij are identical for all cells with more than one provirus and identical for all cells with just 

unintegrated viruses. The death rate of infected cells (aij) now represents removal by 

mechanism other than CTL effectors. We use a saturating activation function to better 

model immune response and to reduce unrealistic oscillations. Our choice of the 

parameters w determines the response the immune system to uDNA-infected cells.  

 

For our simulations, the parameter values were chosen based on literature values as 

cited above. If the values are unavailable, they were varied in our numerical simulations. 

For figures, the exact parameter values used are stated in the captions. The computational 

costs rises as N3 due to the higher number of species and cross interactions between each 

species as N increases. Due to high computational costs, the maximum number of viruses 

per cell (N and M) was reduced in simulations after it was determined that lower values of 

N and M produced qualitatively similar results.  
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Parameters 

Parameter Value Units Notes Source 

N (max unint) 10 none Maximum unintegrated per cell  

M (max int) 10 none Maximum integrated per cell [29] 

λ  [10-1E5] Cells ml-1day-1 Uninfected production rate [76] 

d 0.01 day-1 Uninfected death rate [76] 

θ  [3-15] none Viral production advantage of provirus [43] 

ai 0.7, 0.1 day-1 Provirus infected death rate without / with immune response [11,76] 

au 0.7/ θ  day-1 Unintegrated infected death rate  

ki [10-100] day-1 Prod. rate of free virus from provirus infected cells [11,76] 

ku ki/θ  day-1 Prod. rate of free virus from unintegrated infected cells  

u 3 day-1 Clearance rate of free virus [11] 

γ [1E-3  1E-7] ml Cells-1 day-1 Base infectivity for synaptic transmission  

β [1E-3  1E-7] ml Cells-1 day-1 Infectivity for free virus transmission [76] 

h [1 25] none Average cells successfully transferred per synapse  

δ  0.3 day-1 Chance of competence of unintegrated viruses UD 

p 0.1 none Chance of integration UD 

c [1-5] none Number of unintegrated viruses required for productivity [61] 

wki [1E-4 1E-6]  ml Cells-1 day-1 Clearance rate by immune system of cells with provirus [76] 

wku wku/θ  ml Cells-1 day-1 Clearance rate by immune system of cells with uDNA only  

wai [1E-4 1E-6] ml Cells-1 day-1 Activation rate of immune system by cells with provirus [76] 

wau wai/θ ml Cells-1 day-1 Activation rate by immune system of cells with uDNA only  

ϵ  100 Cells ml-1 Saturation constant for immune response  

Initial Uninfected 1E6 None Initial uninfected  

Initial infected 100 none Initial singly infected cells (with integrated virus)  

Initial virus 100 none Initial free virus  

Table 2.1 : Parameters used in steady state simulations. If no source was found then the parameter 
was varied. UD: from unpublished data.   

 

 Initial conditions for the number of initial infected and initial free virus vary widely, 

based on the mechanism and source of initial infection. For example, a blood transfusion 

from an infected patient would have initial values that are orders of magnitude higher than 

from sexual transmission. Initial values were chosen based on a moderate number of initial 

viruses but numerical simulations show that steady state values were unaffected by 

varying the initial conditions. 
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 We also set a number of rules for the parameters described in Table 1. We assume 

that activation is more difficult to trigger than immune-mediated clearance. That is, the 

number of cells required to activate an equivalent CTL response is always greater or equal 

to the number required to be targeted by the that CTL response (ηkij ≥ ηaij ). This is generally 

true since, after the immune response is initially mounted and activated, due to 

mechanisms such as affinity maturation and clonal expansion, the immune response 

becomes more efficient. We assume that the production rate of free virus by uDNA-only 

cells is always less than the production rate of cells infected with a provirus by a factor of θ, 

unless otherwise specified. This assumption is based on experimental results on the 

reduced strength of infection from integrase negative HIV [43]. We also assume that the 

immune clearance rates, death rates, and transmission rates are independent of the 

number of viruses in the cell (as long as they reach a threshold for production) and are only 

dependent on the type of virus in the cells.  

 

To ascertain the effect of uDNA in the context of the immune response, we vary the 

strength of uDNA-only transmission and the immune response versus cells with just uDNA. 

In the base case, cells with only uDNA do not produce virus and do not activate the immune 

response. This is case where uDNA-only cells are completely inert until it is infected by a 

provirus and is standard in other mathematical treatments of HIV. Previous work generally 

do not explicitly consider uDNA and combines all infected cells into a homogenous 

population with a single death rate and virus production rate. From the base case, we vary 

the strength of the immune response relative and viral production rate. 
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At one extreme, uDNA-only cells produce virus and invokes an immune response 

that is proportional to the amount of virus produced. For example, uDNA-only cells that 

produce 1/5th of the virus as cells with iDNA will invoke an immune response that is 1/5th 

as strong. This is reasonable if the strength of the immune response depends on how 

productive the infected cell is.  

 

On the other extreme, uDNA-only cells produce few virus and activates 

disproportionately strong immune response. In this case, uDNA is marginally productive 

but still activates an immune response that is as strong as cells infected with a provirus. For 

example, uDNA-only cells produce 1/5th of the virus as cells with iDNA will still invoke an 

immune response that is equally as strong. Since the production of viable virions is 

significantly more difficult than initial infection, it is reasonable to assume that a non-

productive cell with uDNA can still trigger an immune response as viral epitopes are 

displayed on the infected cell. Not enough is known about the strength of transmission by 

uDNA-only cells or the immune response versus them. We explore the effect varying these 

parameters on the dynamics of HIV.  
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Figure 2.1: Typical simulations at steady state with immune response to uDNA proportional to the 
amount of virus produced by uDNA-only cells. The ratio of the production disadvantage and 
clearance rate advantage is 1. Solid lines have productive uDNA, dashed lines are unproductive 
uDNA – uDNA infected cells do not produce virus, does not die at an increased rate, and is not 
targeted by the immune system. A) The T-cell count is lower due to increased death rate of active 
cells with uDNA only.  B and C) The uDNA active simulation has a higher free virus load and 
immune effector count because there is more cells that produce virus and activate the immune 
system, respectively. D) The number of cells with provirus remains constant despite increased free 
virus, suggesting most of the new virus production from uDNA-only cells. Parameters are as 
follows: c=2, β  = 1E-6, γ  =  2E-7, λ  = 10000, u=5 , θ=4 ai=0.03, au=0.03/θ, d=0.004, ki=10,ku= ki/θ , 
b=0.01, wai=5E-5, wau= wai/θ , wki=5E-5, wku= wki/ θ, p=.1, δ=.5, havg=2, y00(0) = 1E6, y10(0) = 100, 
v(0) = 10, z(0) = 1 

 

A B 

C D 
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Contribution of uDNA towards set-point viral load 

 

To assess the relative contribution of uDNA to the total viral load, we compare the 

total number of viruses in the system with productive uDNA versus one without productive 

uDNA.  We vary the immune response and viral production rate of cells with just 

unintegrated viruses. We find that, if cells with just uDNA produce viruses at a reduced rate 

and are cleared at an equivalently reduced rate, the total viral load increases as compared 

to the case with inert uDNA (Fig 2.1 top right). This is simply because there is a population 

of cells that produce viruses that did not produce virus in the base case. Increasing the 

strength of uDNA transmission also increases the number of viruses in the system, and 

therefore increases the number cells infected by proviruses. However, the increase in free 

virus concentrations cannot be fully explained by an increase in provirus since cells with 

provirus are only changed by a slight amount (figure 2.1D). There are parameter regions 

where there is a decreased provirus level but the total free virus concentration increases 

due to production from uDNA-only cells, which indicates that the increased set-point virus 

levels is due to production from uDNA-only cells.  

 

When we compare scenarios with active and inactive uDNA, it should be of no 

surprise that the presence of active uDNA-infected cells could increase set point viral load 

because more cells are available to produce virus, both through synaptic and cell-free 

transmission. The magnitude of increase of the viral load depends on the probability of 

integration and multiplicity of infection. As these factors increase, there are fewer cells 
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infected with only uDNA and the contribution to viral load at steady state of uDNA-only 

cells decreases.  

 

As the rate of uDNA-only cell immune clearance increases relative to the strength of 

virus production by these cells, virus loads decreases. In the extreme case, the virus loads 

become lower than the case with inert uDNA. (Figure 2.3B) In this case, the immune 

response is augmented to a degree that, despite increased viral production, the total viral 

load is lower. 

 

Effect of uDNA on cells with provirus  

 

With a proportional immune response, the number of T cells at equilibrium is lower 

when uDNA is active versus non-active due to immune-induced clearance of cells with only 

uDNA (figure 2.1A). When uDNA is not active, the cells that are infected with just 

unintegrated viruses do not incur an immune response, is not targeted by the immune 

system, and live longer as a result. When uDNA-only cells are active, the effective infectivity 

of the entire system is higher and the effective death rate of cells is higher. The death rate 

of T-cells is higher, on average, and therefore the total T-cell count is lower.  

 

  



 37 

 

  

In addition to changes in free virus and total T-cell counts, when uDNA is active, the 

cells with only uDNA engage in apparent competition with cells that have integrated 

viruses. In figure 2.1, the number of cells with provirus remains relatively constant 

compared to the case with inactive uDNA despite increased free virus. As the strength of 

the immune response against uDNA-only cells increases, as measured by activation and 

killing rates of infected cells, the number of cells infected with provirus decreases, 

supporting the idea that apparent competition is occurring (Figure 2.2C). As a consequence 

of this apparent competition, as the strength of the immune response against uDNA-only 

cells increases, the total provirus levels decreases.  

 

In this system, there are some confounding factors that can mask apparent 

competition in the presence of active cells with uDNA only. With active uDNA, we see an 

A B C 

Figure 2.2: Adjusting the immune strength versus cells infected with just uDNA when uDNA is active. 
Immune strength is measured by immune response (both activation and killing by CTL effectors) relative 
to virus production. Black lines represent concentration with uDNA inactive. Points marked are 
proportional immune responses towards cells with uDNA only. A) As the immune response to uDNA 
becomes stronger, less free virus is produced, B) there are more immune effectors, and C) Provirus is 
reduced due to apparent competition. Parameters are as follows: c=2, β  = 1E-6, γ  =  2E-7, λ  = 10000, u=5 
, θ=5 ai=0.1, au=0.1/θ, d=0.01, ki=10,ku= ki/θ , b=0.01, wai=5E-5, wau= varies, wki=5E-5, wku= varies, p=.1, 
δ=.5, havg=2, y00(0) = 1E6, y10(0) = 100, v(0) = 10, z(0) = 1 
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increased free virus count (Figure 2.1B) and intensity of cell-to-cell transmission, which 

will tend to increase the number of cells with provirus. However, despite these factors, the 

presence of active uDNA can be detrimental to cells with provirus, lowering steady state 

concentrations below what they would be with only active provirus. In our model, this can 

only be explained by the increased immune response and apparent competition.  

 

Apparent competition has been studied extensively with two or more prey species 

and a predator [85]. However, in this case, the two types of cells benefit each other when 

production by uDNA-only cells is active. Without apparent competition, in the absence of 

an immune response, the presence of active uDNA-only cells increases provirus levels 

because uDNA-only cells can release and transmit viruses that become proviruses. The 

reverse is also true – the presence of cells with provirus increases uDNA-only cells. 

Apparent competition only offsets the increased production if the immune response versus 

the uDNA-only cells is relatively strong. This would be the case if the total number of 

viruses produced by uDNA-only cells throughout their lifetimes were significantly less than 

those of cells infected with provirus. For example, this would be the case if cells with uDNA-

only produce viruses at a tenth the rate of iDNA cells, but activates the immune response at 

a rate that is a half of the rate of iDNA cells. This is also plausible because the requirements 

for an immune response versus a particular cell are far less than the requirements for 

active production. A cell infected with uDNA-only can be unproductive but still elicit an 

immune response due to viral epitopes displayed on the infected cell.  
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The effect of uDNA as a competitor to iDNA is most clearly seen when uDNA is 

nonproductive but incurs an immune response (figure 2.3). This is the most extreme case, 

but the immune response and the number of viruses produced by cells infected with uDNA 

Figure 2.3: Typical simulations at steady state comparing a system where uDNA-only cells cannot 
produce virus and is ignored by the immune system (inert) versus a system where uDNA-only 
cannot produce virus but still activates the immune system.  A) T-cell counts are equal because there 
are more uninfected cells in the activated scenario  B and C) If uDNA activates the immune system 
while producing no virus, the free virus levels decrease and the immune effectors increase D) Cells 
with provirus decrease due to apparent competition from uDNA-only cells. Parameters are as 
follows: c=2, β  = 1E-6, γ  =  2E-7, γ(udna) =  0, λ  = 10000, u=5 , θ=5 ai=0.1, au=0.1/θ, d=0.01, 
ki=10,ku= 0, b=0.01, wai=5E-5, wau= wai/θ or 0 , wki=5E-5, wku= wki/ θ or 0, p=.1, δ=.5, havg=2, y00(0) = 
1E6, y10(0) = 100, v(0) = 10, z(0) = 1 

 

A B 

C D 
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are not known. It is possible that a cell can be unproductive but, due to the presence of 

viruses, incur an immune response due to the display of viral antigens on the surface of the 

cell. In this case, cells with uDNA-only produce a negligible amount of viruses but incur an 

immune response. Compared to the inert case, the total number of T-cells remains the 

same (2.3A) but the proportion of productively infected cells decreases (2.3D). uDNA-only 

cells elicit an immune response, leading to an increase in immune effectors (2.3C) that also 

target cells with iDNA. In this case, cells infected with uDNA-only decreases the viral load 

(2.3B) since the immune response is elevated due to nonproductive cells.  

 

The overall effect of uDNA can be summarized in Figure 2.4. If the immune response 

versus uDNA is low, then cells infected with uDNA will increase the number of infected 

cells and set point viral load. As the immune response versus uDNA increases, apparent 

competition is more likely and cells with provirus may decline. Conversely, if viral 

production rate by uDNA is high, there will be a higher viral load and the infection would 

be stronger than in the case if uDNA were inert. 

Figure 2.4: Summary of the effect of uDNA. 
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Discussion and Conclusions 
 

Starting from the system we used in Chapter 1, we add an immune response and we 

explore the interaction between uDNA and iDNA in the context of predatory-prey 

dynamics. We find that uDNA can potentially increase or decrease viral loads, depending on 

the productivity of uDNA-only cells and the strength of the immune response versus them. 

If cells with uDNA-only are highly productive and the immune response versus it them is 

relatively weak, then set point virus loads are higher than they would be with inactive 

uDNA. If cells with uDNA-only are marginally productive and incur a relatively strong 

immune response, then set point virus loads can be lower than they would be with inactive 

uDNA.  We also find that the presence of uDNA can decrease or increase provirus levels, 

depending on the strength of the immune response versus uDNA. If cells with uDNA are 

productive and incur a weak immune response, then the number of cells with provirus will 

increase. Conversely, if cells with uDNA are marginally productive and incur a strong 

immune response, then the number of cells with provirus will decrease.  

 

If uDNA is entirely non-productive and yet incur an immune response, it may have 

an effect similar to vaccination in the host. However, depending on the strength of 

replication, it may limit their usefulness in that regard. It is possible, even likely, that cells 

with uDNA incur strong immune response relative to the amount of virus they produce 

because they are less efficient at producing virus, while still presenting viral antigens that 

can invoke an immune response. The case of greater than proportional immune response is 

even stronger if more than one uDNA is required for production. The requirements for 
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production are higher while cells infected with a single uDNA may still present antigens. As 

the threshold number of uDNA required for production increases, the uDNA is more likely 

to act as a competitor to iDNA rather than enhancing infection.  

 

It should be clear that these are preliminary explorations on the effect of uDNA. Too 

many parameters are unknown and unmeasured to be able to present a precise description 

of the dynamics involved. In addition, the parts of the immune system are represented by a 

single species for simplicity and the true interactions are more complex. However, this 

work serves to show the theoretical effects of uDNA that has not been explored elsewhere. 

It also serves as a mathematical framework for the identification of parameters that are key 

in determining the degree of importance of uDNA in the progression of HIV. 
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CHAPTER 3 : Multiplicity of HIV infection in the peripheral blood versus 

lymph 

 

Abstract 

 

We introduce a two compartment HIV model of T-cell dynamics to explain the 

observed discrepancy in the number of multiply infected cells in the peripheral blood and 

lymphoid system. Most T lymphocytes in the peripheral blood originate from the lymphoid 

system, but recent experimental results show that there is few multiply infected T 

lymphocytes in the blood. Our ordinary differential equation model suggests that the 

absence of strong synaptic transmission in the peripheral blood tends to create many 

singly infected cells – reducing the relative proportion of multiply infected cells in the 

blood. Although this simple mechanism can explain much of the difference between the two 

systems, we also conclude that there must be some additional mechanism that removes or 

prevents highly multiply infected cells from entering the peripheral blood. We employ an 

agent-based model and determined that increased death rates of highly multiply infected 

cells, increased death rates for older T-cells, and spatial differences in release rates can 

preferentially reduce the number of highly multiply infected cells in the peripheral blood 

system.  
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Introduction 

 

 HIV targets and infects cells with the CD4 marker including helper T cells, 

macrophages, and dendritic cells. These cells reside both in the peripheral blood and in the 

organs of the lymphoid system including the thymus, lymph nodes, and spleen. In this 

paper, the lymphoid system is considered the lymphoid organs including the lymph nodes 

and spleen but excludes free-flowing lymph fluid. Many cells in the lymphoid system are 

infected with multiple copies (average of 3.2 and up to 8) of HIV-1 provirus during 

infection [29, 77]. Recently, a paper has been released with seemingly contradictory results 

– most infected CD4+ cells in the blood have only 1 virus per cell [33]. The results are 

summarized in figure 3.1, taken from Jung 2002 and Josefsson 2011. Although the two 

studies were performed in cells from different organs, these two locations are connected - 

the organs of the lymphoid system (including the spleen) releases mature CD4+ T 

lymphocytes into the blood. This work seeks to determine what may cause the observed 

disparity between the multiplicity of viruses in cells of the blood and lymphoid system. 

 

HIV in CD4+ T cells can spread in two different ways. The first mode of transmission 

is free virus or cell-free transmission, where productively infected cells release HIV virions 

that infect other cells. This is the typical method considered in most mathematical models 

of HIV. A productively infected cell releases thousands of virions before it is cleared but 

each infected cell only infects about 8 other cells, on average [57]. Thus, free virus infection 

is an inefficient process and a majority of viruses released are degraded or cleared prior to 

producing a productive offspring cells. The second mode of transmission is via a viral 
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synapse that can form between two T-cells [39, 78]. Instead of a single virus entering 

targets, a productively infected cell can transmit many viruses directly into a target cell, 

avoiding the humoral response. In contrast to free virus transmission, most of the viruses 

that are produced enter a susceptible cell and this may be more efficient than free virus 

transmission. The exact mechanism of viral synapse formation is unclear, but studies have 

shown that it takes approximately 30 minutes for a synapse to form and viruses to be 

transferred between cells [39]. Clearly, the cells must remain in close proximity to each 

other during this process.  

 

There are distinct morphological differences between the peripheral blood and the 

lymphoid system that may lead to different infection dynamics [79]. Key differences 

include the number, density, and mobility of T-cells in the two compartments. 

Approximately 98% of of CD4+ T lymphocytes and precursors are found in the lymphoid 

system so we would expect that the multiplicity of infection in the blood would mirror that 

in the lymphoid system [80-81]. CD4+ cells in the peripheral blood are more mobile and 

are sparser than in the spleen. Since mobile cells are less likely to engage in efficient 

synaptic transmission, synaptic transmission would be less efficient in the blood [82]. We 

use mathematical models to explore the effect of these modes of transmission on HIV 

dynamics and multiplicity of viruses in infected cells. 

 

Mathematical models of HIV infection have traditionally treated the infected 

environment as a single, homogenous system. Here, we use a two-compartment ordinary 
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differential equation model with synaptic and free virus transmission to understand the 

observed disparity between the multiplicities of HIV proviruses in cells.  

 

 

 

Two Compartment ODE model 
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Figure 2.1: Distributions of multiplicity of infectivity in the spleen (left) and blood (blood). The 
distributions are qualitatively different – a majority of cells in the spleen are multiply infected while 
a majority of the cells in the blood are singly infected. Data summarized from [15] and [30] 
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In the lymph: 
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Parameters: 

d : Death rate of uninfected CD4+ T cells, can also be called a00 

λB : birth rate of uninfected cells in the blood 

λL : birth rate of uninfected cells in the lymph 

βB : Infectivity – A measure of the effectiveness of free-virus transmission in the blood 

βL: Infectivity - A measure of the effectiveness of free-virus transmission in the lymph 

Ki : Virus replication parameter – rate that an infected cell releases free virus 

u: Clearance rate of free virus 

ai Clearance rate of infected cells 

r: release rate from lymphoid system to peripheral blood 

γkl the probability that a cell with k viruses successfully transfers l viruses 

 

 The model seeks to explain the following observed phenomenon: 

1. A majority of the infected cells in the lymphoid system are multiply infected 
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2. A majority of the infected cells in the peripheral blood is singly infected 

3. There are very few highly multiply infected cells in the blood 

4. There are significantly more cells in the lymphoid compartment 

5. Parameters must be close to experimentally determined values, if known. 

6. Very few maximally infected cells 

 
We model the entire peripheral blood system and the lymphoid system as separate 

compartments. Although this can be converted to concentrations, it would require 

renormalizing the parameters in each compartment due to the differences in size of 

compartments, and therefore, the concentration of the species in each system. 

 

 The average number of viruses per cell is an extremely poor measure of the 

differences between compartments. The observed average number of viruses per cell can 

br obtained by increasing or decreasing the infectivity (k, β, γ, death rates, λ) in each 

compartment. However, this often leads to unrealistic numbers of maximally infected cells 

in the lymphoid system.  
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Parameter Values 

 

Parameter Definition 
Value 

(Blood) 
Value 

(Lymph) 
Notes Source 

N Max # of provirus per cell 8 8 1 [15] 

u Free virus removal rate 0.5 0.5 1 [7] 

d Uninfected death rate 0.01 0.01 1 [7] 

a Infected death rate 0.7 0.7 1 [7] 

k Free virus production rate 20 20 1 [37] 

λ Uninfected birth rate 5E8 2E10 2 [36] 

r T-cell release rate N/A 0.03 1  

γ Synaptic Infectivity N/A 1E-10 1  

β Cell-free Infectivity 1E-11 1E-12 1  

Initial Uninfected 1E10 1E11  [36] 

Initial Infected 100 0  [36] 

Table 3.1 : Parameters used in two compartment ODE model. Notes: 1: Always equal between compartments. 2: Varied 
Paramete. Uncited parameters were varied. 

 

As in all models of complex biological systems, we take some simplifying 

assumptions. We assume that the efficiency of synaptic transmission is independent of the 

number of viruses in either the infected cell or the target. That is, γs, the probability of 

successfully transferring s viruses, is constant all cells. This is a simplifying assumption that 

we take as a first step towards understanding the system. A non-constant infectivity does 

not change the qualitative results of this work. The parameter γs is the probability of 

transferring viruses that eventually become integrated proviruses. In fact, dozens or 

hundreds of viruses can be transferred per synapse, but very few become active proviruses 

[29, 83]. We also assume that the number of viruses transferred successfully per synapse is 

normally distributed. The distribution of the number of viruses transferred is unknown, 
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but a non-normal distribution of the number of viruses per cell has not been observed in 

the lymph. 

 

Hypotheses on cause of differences between compartments 
 
 

 There can be many explanations for the observed disparity between the number of 

infected cells in the lymph and in the blood. For example, increased immune response in 

the blood against multiply infected cells, increased free virus infectivity rates for cells that 

have already been infected, and morphological differences between stationary and mature 

T-cells that are released from the lymph. These possibilities are unexplored and any or all 

of them may be in effect during HIV infection. We present another plausible explanation for 

the observed distributions that we explore through our models. We compare the simulated, 

steady-state distributions of multiply infected cells in the blood and lymph to the observed 

data to show that the characteristics present in our model is sufficient to reproduce the 

data. 

 

Relative frequency of singly versus multiply infected cells 

 

The first observation we wish to address is that a majority of infected cells in the 

lymph are infected with multiple viruses while a majority of infected cells in the peripheral 

blood is infected with just one virus. One might expect that both the lymph and blood 

systems would contain relatively equal ratio of multiply and singly infected cells. Our 

simulations suggests that, except for highly multiply infected cells, it is possible to produce 

the observed ratio of multiply infected versus singly infected without invoking any 
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additional multiplicity-induced mechanisms. For example, increased death rates, increased 

infectivity, or reduced susceptibility of multiply infected cells is not necessary to reproduce 

the observed ratio between singly and multiply infected cells (Figure 3.2).  

 

 The observed ratio of singly and multiply infected cells in the spleen and the 

peripheral blood can be explained as follows. Uninfected, singly infected, and multiply 

infected T-cells are released from the lymph into the blood. Uninfected T-cells are also 

released directly from the bone marrow, where they are produced, into the blood. In the 

blood, the dominant mode of transmission is cell-free transmission and, since a majority of 

the cells are uninfected, most cells that are infected become singly infected. Since these 

singly infected cells in the blood vastly outnumber the multiply infected cells that originate 

from the spleen, any sample of peripheral blood T-cells would have a majority of singly 

infected cells.  

 

 The above analysis provides a few testable predictions. If sample sizes were large 

and the assay sensitive, we would expect to see some multiply infected cells in the blood. In 

addition, as the immune production falls, we would expect to see a relatively higher 

proportion of multiply infected cells in the blood since there are fewer uninfected cells for 

cell-free transmission. We can also use the fitted parameters to estimate some unknown 

parameters of synaptic transmission. 
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Figure 3.2: Best parameter fit reproduces the distributions observed. Here, r=0.03, u=.5, kb=kl=20, 
βL=1.8E-13, βB=1.3E-13, γ=6E-11, average number of viruses successfully transferred: 2.35, λb = 
2E8, λl = 1E9.  

 

 

 

 Meaning Value (Blood) Value (Lymph) 

γ  Synaptic Transfer Infectivity  2.8E-11 cells-1 day-1 

β  Free Virus Infectivity 1.14E-11 cells-1 day-1 3.5E-11 cells-1 day-1 

λ  Uninfected cell production rate 5.7E8 cells-1 day-1 2.5E9 cells-1 day-1 

 Viruses Transferred Per Synapse  2.35 

 StdDev of Viruses Transferred  0.78 

Table 3.2: Parameter estimates based on least squares fitting Under these parameters, R0 is 
approximately 3, which is within the range of published values [37]. 

 

Average number of viruses transferred per synapse 

 

 Under the assumption that the number of viruses transferred successfully per 

synapse is normally distributed, we can estimate the average number of viruses 
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transferred per synapse in the lymphoid system. We fit the parameters of our ODE system 

to the observed distributions. Based on this method, the average number of viruses 

successfully transferred per synapse was 2.35 with a standard deviation of 0.78. To ensure 

that this method is independent of any error in parameter estimation, we varied each of the 

parameters β, γ, λb, and λl by an order of magnitude around the optimum value and 

determined the best-fit value for the average number of viruses transferred. These 

simulations were all consistent with an average virus transferred of between 2.5 and 3.5, 

with standard deviation of approximately 0.8. In hindsight, this value can be estimated 

from the graph in figure 3.1. The average number of viruses per multiply infected in figure 

3.1 is 3.2. However, the average of 3.2 includes any multiply infected cells that may have 

been created by cell-free transmission and the mean number of viruses transferred via the 

synapse will likely be lower. 

 

Strength of synaptic versus free virus transmission in the lymph 

 

 One question of interest is the strength and importance of free virus and synaptic 

transmission towards viral loads. To measure the strength of transmission we look at 2 

different metrics. The first measure is simply the total number of new infections of 

uninfected cells produced by each mode of transmission since the start of infection. The 

second measure is the total number of viruses produced by each mode of transmission that 

successfully enters a cell. For the latter two measures, we pick a time point after 

equilibrium has been reached and compare the total number of new infections and viruses 

produced since the start of infection. In our model, both metrics will monotonically 
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increase over time. However, the ratio of these measures for synaptic versus free-virus 

transmission remains constant. 

 

 Each measure of the strength of transmission yields the same result: synaptic 

transmission is stronger than cell-free transmission in the lymphoid tissue. The number of 

new infections suggests that the strength of synaptic transmission in the lymphoid tissue is 

approximately an order of magnitude stronger than free virus transmission. The number of 

viruses successfully transferred agrees: synaptic transmission transfers approximately 30x 

the number of successful viruses as the free virus transmission (See figure 3.3). Since the 

fitted parameters are based on steady-state data, these rough estimates of the strength of 

transmission are only valid after the acute phase of HIV infection. 

 

Dependence on parameters 

 
A key question in modeling is the dependence of the results on any parameter 

values. We varied parameters individually within estimated physiological ranges. If these 

ranges were unknown, we varied the parameter by approximately an order of magnitude 

in either direction. We then fit our model to the data to estimate the unknown parameters. 

Regardless of the parameters we chose, the relative strength of transmission and average 

number of viruses transferred remained consistent (See figure 3.4). Based on the first 

measure, synaptic transmission was between 7 and 15x stronger than free-virus 

transmission at equilibrium in the lymph. The average number of viruses transferred per 

synapse was between 2.3 and 2.7 in all parameter ranges. Thus, our results are relatively 

robust against variation in parameter values.  
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Figure 3.3: Relative strength of each mode of transmission. (left) Metric is the total number of new 
infections (right) Metric is the total number of viruses successfully transferred. Based on these 
metrics, the strength of synaptic transmission is approximately an order of magnitude stronger 
than  cell-free transmission in the lymph at equilibrium.  
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Figure 3.4: Changing parameters does not change the average number of viruses transferred per 
synapse or the relative strength of each mode of transmission significantly. The parameters were 
varied based on physiological ranges, if known. Otherwise, the parameters were varied by 
approximately an order of magnitude. 

 

 

Distribution of highly multiply infected cells 

 

Despite explaining the ratio between singly and multiply infected cells in both 

systems, it is not possible to produce the observed distribution for highly multiply infected 

cells without invoking any additional mechanisms.  In figure 3.2, the distribution of 

Number of viruses per cell 
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multiply infected cells in the lymph is not statistically different from experimental values 

(Kolmogorov Smirnov test, p-value = 0.63). However, the distribution of multiply infected 

cells in the blood is statistically different from experimental values (KS test, p-value < 

0.0025). This is partially because the sample size for those experiments was large and any 

mathematical model cannot account for all phenomena in a biological system. The 

difference between the simulated and experimental distributions in the blood is due to the 

presence of highly multiply infected cells. If we remove these highly multiply infected cells 

from the blood, the distribution of multiply infected cells in the blood from our model is not 

significantly different from experimentally observed distributions (KS test, p=0.15).  

Investigators were not able to find any T-cells in the blood with more than 3 viruses in a 

sample of over 6000 T-cells [33]. In our model, if we assume that the lymph is at 

equilibrium, it can be shown that show that there will always be highly multiply infected 

cells in the blood if there is a source of these cells from the lymph. Thus, there must be 

some other mechanism where highly multiply infected cells are either removed from or 

prevented from entering the peripheral blood system.  

 

There are a few plausible mechanisms that may contribute to the lack of highly 

multiply infected cells in the blood. These cells may be cleared at a higher rate, both 

through immune and apoptotic mechanisms. In addition, highly multiply infected cells may 

not survive the release from the lymphoid system. There may be spatial differences in 

release rates of T-cells from the spleen that favors the release of singly infected cells. We 

explore these possibilities in a stochastic model that will be introduced later. 
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Reduced / Steady State Model 

 

 A constant concern with mathematical models and data is over-fitting. We explored 

a simplified model with fewer parameters to address the issue. In the following model, we 

ignore the initial stages of infection and only consider the steady state, which is most 

relevant to the experimental distributions we observe. The new model also does not 

explicitly track free virions, further reducing the number of parameters in our model.
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In the lymph: 
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Parameter Values: 
 

Parameter Definition 
Value 

(Blood) 
Value 

(Lymph) 
Source 

N Max # of provirus per cell 8 8 [15] 

a Infected death rate 0.5 0.5 [7] 

rB Blood to lymph release N/A Varied  

rL Lymph to blood release N/A rB/100  

γ Synaptic Infectivity N/A Varied  

βB Cell-free Infectivity 1E-11 Varied  

βL Cell-free Infectivity 1E-11 Varied  

Table 3.2 : Parameters used in two-compartment steady state ODE model. Uncited parameters were 
varied. 

 
 

We assume that the total number of cells in the system remains constant. Infected 

and uninfected cells that die are replaced at a commensurate rate. This is approximately 

the case during the chronic phase of HIV infection. Cell-to-cell infectivity is assumed to 

follow a normal distribution and the infectivity values for each number of viruses 

transferred is determined by the mean and standard deviation. 

 

The parameter rB was varied randomly and the optimal parameters were 

determined via a steepest descent algorithm. The release rate was fixed in each set of 

simulations because an optimal fit would always tend to minimize the release rates. For 

each rB, we performed a series of simulations with random initial parameter estimates and 

random initial conditions for the number of uninfected and infected in each compartment. 

The best fit to the data was determined by a least squared criterion alone. A minority of the 

simulations produced negative optimal parameter estimates and was discarded. 

Simulations are coded in Matlab and C++.  
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Figure 3.5: Sample optimal fits to data. Bimodal distribution is preserved. Units on y-axis are as a 
fraction of cells in the entire system. 

 

Parameter Estimates 

The exact optimal values for free virus infectivity in the blood can vary as the values 

for the release rates vary. However, there are some trends that are consistent throughout 

all the simulations.   

Parameter Average Min Max StdDev 

Free-Virus Infectivity in Blood 30.6 2.04 94 33.92 

Free-Virus Infectivity in Lymph 0.12 0.05 0.17 0.03 

Cell-to-cell infectivity 0.40 0.33 0.52 0.05 

Mean viruses transferred per synapse 2.37 2.34 2.47 0.04 

Standard deviation of virus transferred 0.83 0.77 1.03 0.09 

     

Ratio of Viruses transferred 8.38 6.13 15.11 2.49 

Table 3.3: Parameter estimates from steady state model. Parameter estimates are from 813 
simulations with varying initial conditions. 
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In all the simulations, the number of viruses transferred via cell-to-cell transmission 

in the lymph is about an order of magnitude higher than number of viruses transferred via 

free virus transmission. This suggests that, at steady state, the strength of cell-to-cell 

transmission is stronger than free virus transmission. This is consistent with the more 

complicated model explored previously. If free virus transmission tends to create singly 

infected cells then the distribution of multiply infected cells in the lymph suggests that a 

majority of infections are via cell-to-cell transmission. 

 

The estimates of the parameter representing free virus infectivity in the blood are 

high and can be misleading. Our steady state simplification of the above model does not 

account for free virus explicitly. We use the simplification that the number of infected cells 

in a compartment is a reasonable proxy for the free virus levels. However, since there is an 

exchange of virions between the lymph and blood, the true virus levels in the blood is 

higher than the number of infected cells would suggest. Since the lymphoid system 

contains approximately 50 times the CD4+ T-Cell population then in the peripheral blood, 

the cells in the lymph likely produce many of the virions in the blood. Since our model does 

not account for this, the estimates for free virus infectivity in the blood is likely high since it 

assumes all the new infections in the blood are due to other cells in the blood, rather then 

from the free virus flowing from the lymph. We believe the estimates for the strength of 

infection in the lymph is more accurate because transfer of free virus from the blood to the 

lymph is less likely since the population of infected cells in the lymph is much higher. New 

free-virus infections in the lymph are likely caused by virions produced by infected cells in 

the lymph, rather than from virions produced in the blood. In addition, infectivity 



 62 

parameters may seem high because they are dependent on cellular density and volume, 

and can’t be compared directly to infectivity parameters in different environments. 

 

The mean number of viruses transferred is approximately 2.37 while the standard 

deviation is 0.83. This is consistent with the more complicated model and is evident from 

the distribution of multiply infected cells observed. 

 

Effect of Release Rates 

 

rL rB rB /rL βB βL γ γ /βL 

5E-4 5E-3 10 6.74 0.13 0.40 7.22 

5E-4 0.01 20 12.8 0.12 0.39 7.28 

5E-4 0.05 100 62.76 0.10 0.36 8.74 

5E-3 0.05 10 6.82 0.10 0.39 9.30 

1E-3 0.01 10 6.71 0.13 0.40 7.27 

Table 3.4: Parameter estimates from varying release rates. The relative strength of synaptic and 
free virus transmission remains approximately the same regardless of release rates. 

 
Regardless of release rate, the model fits the data fairly well. The multiplicity of 

infection in the lymph and blood, the relative size of the compartments, and the bimodal 

distribution in the lymph are replicated with the simulations. Although the parameters 

estimates do vary, some attributes are consistent throughout all the simulations. Release 

rates control the number of cells in each compartment at steady state. Since infectivity is a 

complex parameter, it is affected by many factors including the number of viruses and cells 
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in each compartment and varies with the ratio of release rates. However, the relative 

strength of each mode of transmission in the lymph is consistent regardless of the both the 

relative and absolute magnitude of the release rates. 

 

The explanation for the difference in multiplicity of infection in the blood and lymph 

remains the same as in the more complex model. Multiply infected cells are released from 

the lymph but free virus infection creates more singly infected cells in the blood.  

 
Cellular Automaton Model 

 

To explore possible mechanisms for the absence of highly infected cells in the blood, 

we use a cellular automaton model to explore the effects of increased death rates, cellular 

longevity, and space. With this model, we can explore any spatial effects and any effects due 

to the age of the cells. The cells were modeled in two different compartments and, at the 

onset, small portions of the cells are seeded with viruses. For each time step and at each 

grid point, there is a probability that a cell infects another cell through cell-free 

transmission, a probability of death, and, in the case of the lymph compartment, a 

probability of release into the blood and synaptic infection. Synaptic infection is modeled as 

a release of viruses into cells that are neighbors to an infected cell. Since the lymph is a 

dynamic system, we allowed synaptic transmission between cells in a certain 

neighborhood, not only to nearest neighbors. If a grid point is empty, there is a probability 

that a new cell is born into that grid point. Since this system is stochastic, the probability of 

each event was estimated by fitting the average of the steady states of multiple simulations 



 64 

to the experimental distributions. With this system, we can explore the effects of space and 

cellular longevity. 

Figure 3.6: Diagram of cellular automaton model. The probabilities of each event at each time step 
were roughly fitted to the experimental distributions. Synaptic transmission was modeled as the 
movement of viruses between an infected source cell within a defined distance. 

 
Higher death rates, lower release rates, and effect of cellular longevity 

 

Starting from the base system, we introduce higher death rates for multiply infected 

cells. Although this assumption is not necessary to reproduce distributions similar to the 

ones in both compartments, it may be the case in reality. The average death rate of all 

infected cells, which has been measured extensively, remains approximately the same but 

multiply infected cells have a higher death rate than singly infected cells. Unsurprisingly, 

this selects against highly multiply infected cells and produces a distribution of multiply 

infected cells that is closer to the observed distributions. If we assume that death rates 
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increase with the number of viruses per cell, then as we increase the death rates of highly 

multiply infected cells, we see less of these cells in the blood. 

 The journey from the lymph the blood may select against cells that are already 

compromised by multiple infections. Not surprisingly, if we preferentially lower the release 

rates of highly multiply infected cells then we see less highly multiply infected cells in the 

blood. The effect of this is similar to the effect of increasing death rates.  

 

If we increase the death rates for older cells, we also select against highly multiply 

infected cells in the blood. Although older cells are rarer in our base simulation because cell 

death is a Poisson process, we add an additional increase in death rate for multiply infected 

cells. Older cells tend to be more highly multiply infected because they have survived long 

enough to undergo more than one infection event.  If older cells die at a faster rate, then 
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Figure 3.7 Increased probability of death of multiply infected cells decreases their 
proportion in the blood. Here, death rates vary linearly with the number of viruses 
in the cell. Each bar is the average of 100 simulations 
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this could help contribute to why we do not observe highly multiply infected cells in the 

blood. 

 
 Spatial Effects 

 

Finally, we explore spatial effects that reduce the number of highly multiply infected 

cells in the blood. Although the cells in the lymph move dynamically, it is not a perfectly mixed 

system and there is some spatial structure. For example, cells near efferent blood vessels may 

have a higher chance to be released than the ones that are further away. These cells may be less 
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Figure 3.8: Increased death probability of older cells decreases the proportion of 
highly multiply infected cells in the blood. Here, the probability of death for any 
single cell is a linear function of the age of the cell. Since older cells tend to be more 
multiply infected, this selects against highly multiply infected cells. Each bar is the 
average of 100 simulations. 
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multiply infected because they are not surrounded by as many infected cells and may be less 

stationary. To explore this effect, we can vary release rates in the lymphoid compartment. Cells 

closer to the center of the lymphoid compartment will have a lower release rate than the cells at 

the edge.  The cells closer to the center of the compartment may be more multiply infected 

because they remain in the lymphoid system for a longer period of time and are surrounded by 

more infected cells, on average. 

  
 Our simulations show that spatial differences can cause the observed differences (figure 

3.9). Parameters are the same between multiply and singly infected cells but the release 

probability at each grid point. By varying release rates, we can reduce the number of multiply 

infected cells in the blood without increased death rates for multiply infected or older cells. 
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New Distribution of Singly Infected Cells in the Lymph 
 
 

Recent experiments on the multiplicity of infection of HIV have found that, in lymph 

nodes, cells may be singly infected [34]. This is somewhat contradictory with other results 

in the literature, which suggest that cells in the spleen, which have a similar anatomical 

structure and function as the lymph nodes, are multiply infected. Our models suggest a 

potential cause of this disparity is a change in strength of synaptic transmission. This can 

be due to differences in viral strains or host factors such as T-cell density mobility in the 

spleen versus the lymph nodes. 

 

 Starting from optimal parameters to fit the Jung et. al data in the steady state model, 

we refit to the data available on singly infected cells to determine the magnitude of change 

required to switch between the two types of distributions. This was done for a variety of 

initial conditions and initial parameter guesses. We assume that the mean and standard 

deviation of the number of viruses transferred have the same values as the optimal fits for 

the high MOI data. Our models suggest a decrease in synaptic transmission of 

approximately 2/3rds produces a majority of singly infected cells versus a majority of 

multiply infected cells in the lymph. Decreasing the number of viruses transferred per 

synapse has the same effect as reducing the strength of synaptic transmission. 

  

 Starting from optimal fits for the high MOI data, our model requires a drastic change 

(approximately a 30 times decrease) in synaptic transfer strength to reach the optimal fits 

for the low MOI data. However, as stated above, an approximate fit only requires a 
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relatively small decrease in synaptic transmission strength. We believe that an optimal fit 

isn’t required or even reasonable, since the datasets are from different individuals and it is 

not unsurprising that one set of parameters will not perfectly fit data from multiple 

sources. In addition, the sample size for singly infected cells is large and any comparison 

between sample and simulated distributions will produce a statistically significant 

difference if our models do not describe the system perfectly.  

 

 We also used our stochastic models to explore the reduction of synaptic strength 

required to switch between multiply infected and singly infected regimes in the lymph. 

Stochastic models also suggest the same as our deterministic ones – decreasing the 

strength of synaptic transmission brings us closer to a majority of singly infected cells.  

Decreasing the density of cells, or decreasing the probability of successful synaptic 

transmission can bring us closer to the number of singly infected cells but is not sufficient 

to  switch from one regime to another alone. Another possibility is reducing the number of 

susceptible cells to synaptic transmission. Although the mechanisms of synaptic 

transmission are not well understood, target cells may not be susceptible to synaptic 

transmission due to the complexity required to form a viral synapse. Decreasing the 

number of susceptible cells can also decrease the strength of synaptic transmission and 

produce a singly infected regime in the lymph.    
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Discussion and Conclusion 

 

 In experimental studies, a majority of CD4+ T cells in the blood are infected with a 

single virus while a majority of the CD4+ T cells in the lymph are infected with multiple 

viruses. We find that this difference can be partially explained by population dynamics 

rather than any special mechanism. Uninfected, singly infected, and multiply infected cells, 

as well as free viruses, are released from the lymph to the blood. Since cell-to-cell 

transmission is less likely in the blood, the infected cells can only transfer viruses through 

cell-free transmission. This produces singly infected cells in numbers that dwarf the 

number of multiply infected cells in the blood and masks the number of multiply infected 

cells. 

 

 Through parameter fitting to the observed distributions, we estimate that 

approximately 2.3 viruses are transmitted per synapse in the lymph. In addition, we 

estimate that the strength of synaptic transmission at equilibrium is approximately an 

order of magnitude stronger than free-virus transmission. This relies on the assumption 

that the number of viruses successfully transferred per synapse follows a normal 

distribution. There has been suggestion that a few cells successfully transfer hundreds of 

viruses while most cells do not. However, we do not observe any cells with such a high 

number of viruses. Cells that receive dozens or hundreds of viruses may not survive to be 

measured in experimental conditions. Further experimental work will be necessary to 

measure the number of viruses successfully transferred per synapse and the relative 

strength of each mode of transmission. 
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 Although population dynamics can explain much of the observed differences in the 

distribution of singly and multiply infected cells in the blood and lymph, there are more 

multiply infected cells in the blood than expected in our model than observed. This can be 

because the sample size is not large enough to detect the small number of highly multiply 

infected cells in the blood. Another explanation would be bias in the assay against cells that 

are multiply infected cells. Multiply infected cells may be older or more fragile and less 

likely to be found by most assays. If the lack of multiply infected cells in the blood is true in 

vivo, then there are several mechanisms that can account for this. We found that higher 

death rates in highly multiply infected cells, higher death rates in older cells, and spatial 

release differences can contribute to the lack of multiply infected cells in the blood. We 

cannot establish the relative contribution of these different factors but show that they are 

all plausible mechanisms to reduce the number of multiply infected cells in the blood while 

retaining the number of multiply infected cells in the lymph.  

 

 A recent experimental study on infected cells in the lymph node suggests that, 

contradictory to established data from the spleen, a majority of cells in lymph nodes are 

singly infected. Our models suggest that this can be due to a reduction in the strength of 

synaptic transmission, which can be caused by a reduction in the number of susceptible 

cells. Another possible explanation that we did not explore is faster movement of cells in 

the lymph nodes versus the spleen. The latter hypothesis is reasonable since the lymph 

nodes are distributed throughout the body, are closer to the sites of infection, and will 
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respond to an infection faster than the spleen. Cells in the lymph nodes may be more 

mobile than those in the spleen.  

 

 The work here provides a plausible explanation for the observed difference in 

multiplicity of infection between the peripheral blood and the spleen. It also provides 

estimates of key parameter values, including the relative strength of synaptic and free virus 

transmission. Further experimental work is necessary to measure these parameter values 

directly and verify the mechanisms predicted in this paper. 

 

SUMMARY AND CONCLUSIONS 

 
 This dissertation presents a series of mathematical models that explore different 

facets of the population dynamics and ecology of HIV within the host. Chapter 1 examines 

the effect of unintegrated but productive virus on initial viral dynamics. Chapter 2 furthers 

this by adding an immune response and analyzing the effects of uDNA during the chronic 

phase of infection. Chapter 3 presents a potential explanation for the observed difference in 

multiplicity of infection between the lymphoid system and the peripheral blood and 

provides estimates of key parameter values based on experimental data. 

 

 In chapter 1, we develop an ODE model for the effect of unintegrated but productive 

virus on initial viral dynamics. We derive the expressions for the effect of unintegrated 

virus on the basic reproductive ratio and determine how factors such as death rate, 

probability of integration, and infectivity contribute to the basic reproductive ratio of the 
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virus. We explore the effect of uDNA in the context of free virus transmission and synaptic 

transmission separately, and combine them to form an overall model for the effect of uDNA 

on the basic reproductive ratio. We also examine the scenario where multiple unintegrated 

viruses are required for successful production. Finally, we examine different distributions 

on the number of viruses transferred per synapse.  

 

 We estimate that uDNA can contribute about 20% to the overall basic reproductive 

ratio of the virus. This figure assumes that a small number of viruses are transferred per 

synapse, that free and synaptic transmission is equally strong, and the burst size of uDNA 

infected cells is approximately 1/5th that of cells with provirus. Since the reproductive ratio 

of HIV has been estimated at 4-8, expression from uDNA-only can potentially allow the 

virus to establish in the host. We also show analytically that if more than one unintegrated 

virus is required for productive infection, uDNA does not contribute toward the 

reproductive ratio by free virus infection, but does contribute towards the reproductive 

ratio by synaptic transmission.  

 

 Our model suggests that uDNA can have an effect on initial viral dynamics and can 

potentially sustain and start infection in the absence of uDNA. This can inform us on the 

potential efficacy of integrase inhibitors as a prophylactic treatment. In some individuals 

where the reproductive ratio of HIV is naturally high, integrase inhibitors as a preventative 

treatment may be ineffective due to production by uDNA-infected cells.  
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 In chapter 2, we employ the same model used in chapter 1, but add an immune 

response and explore late stage dynamics rather than initial dynamics. We find that that 

effect of uDNA on steady-state viral loads depends on the strength of viral production from 

uDNA cells and the strength of the immune response versus these cells. If uDNA-only cells 

produce high levels of virus and invoke a weak immune response then set point viral loads 

increase despite an increased immune response.  If uDNA-only cells produce relatively low 

level of virus and invoke a strong immune response, then set point virus levels can actually 

decrease due to apparent competition. This may be the case in vivo since uDNA produce 

virus at a lower rate yet can present additional viral epitopes that will invoke a stronger 

immune response versus a particular infected cell. However, no data is available on the 

strength of the immune response versus productive cells with unintegrated viruses and the 

case of increased set point viral loads cannot be discounted. 

 

 In chapter 3, we use a two-compartment ODE model to try and explain the 

difference in multiplicity of infection of HIV in the blood and the spleen. A majority of cells 

in the spleen have more than one virus, while a majority of the cells in the blood have a 

single virus. However, these systems are connected and we would expect that the cells in 

both compartments have the same multiplicity of infection. Our models consider multiple 

infection as well as different modes of transmission. With our ODE model, we show that the 

observed difference in multiplicity can be explained by a movement of multiply infected 

cells from the lymph that participate in free virus infection in the blood, producing many 

singly infected cells.  

 



 75 

Our model reproduces the data in the lymph but fails to produce a statistically 

identical distribution of singly infected cells in the blood. We find that this difference is due 

to a small number of highly multiply infected cells in our simulations that are not found in 

the data. Our model predicts that multiply infected cells are rare, but should still be present 

in the blood in small quantities that was not observed experimentally. This can be due to 

sampling effects or bias against multiply infected cells in the assay. Under the assumption 

that there are no multiply infected cells in the peripheral blood in vivo, we use a stochastic 

model to show that an increased death rate of highly multiply infected cells or higher death 

rate of older cells can all reduce the number of highly multiply infected cells in the blood. 

Spatial differences in release rates can also favor singly infected cells in the blood if densely 

packed cells in the interior of the spleen are released at a lower rate. Our models show that 

population dynamics can explain much of the observed difference in multiplicity but there 

is likely some other mechanism that reduces the number of highly multiply infected cells in 

the blood even further.  

  

 Our ODE models also suggest that the source of higher multiplicity of infection is 

synaptic transmission. In the lymph, where cells are dense and relatively immobile, we see 

a high multiplicity of infection. In the blood, where cells are highly mobile, synaptic 

transmission is less likely and the multiplicity of infection decreases. We find that by 

reducing the strength synaptic transmission, we reduce the number of multiply infected 

cells in the lymph and skew the distribution towards singly infected cells. 
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 Our models also allow us to estimate the average number of viruses transferred per 

synapse and the strength of synaptic versus free virus transmission. The original ODE 

model suggests that, on average, 2.3 viruses are transferred per synapse and synaptic 

transmission is stronger than free virus transmission in the lymph. We use a reduced, 

steady-state model with less parameters and the results are the same as in our more 

complicated model.  The strength of synaptic transmission and average number of viruses 

transferred per synapse are fundamental parameters that should be investigated to 

understand the progression of HIV. If, as our models suggest, synaptic transmission is 

responsible for more infections than free virus transmission, we should revisit our 

descriptions of the HIV life cycle. In addition, multiplicity of infection should be explored 

and understood because it is fundamentally tied to recombination and evolution of the 

disease within the host. 

 

 This dissertation provides a mathematical framework for the study of different 

aspects of HIV that can serve as a basis for experimentation.  We have identified that key 

parameters in the strength of uDNA infection are the probability of integration and average 

number of viruses transferred per synapse. These parameters should be directly measured 

experimentally to quantify the importance of uDNA. We also presented first-order 

estimates for many parameters based on data from previous experiments. The analysis 

presented here can serve to guide future experimental work to measure parameters critical 

for our understanding of the dynamics and progression of HIV.  
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Appendix A
Mathematical details of the models discussed in Chapter 1

Introduction

This document presents the model and derivation of the various R0 presented
in the paper. First, we introduce the overall model with both synaptic and
free-virus transmission. We calculate R0 for the sub-model which only includes
free-virus transmission. Then, we calculate R0 for the model with just synaptic
transmission. We provide numerical results to support the combined R0 for
the complete model. Finally, we explore different formulations for the rate of
synaptic transmission.

Complete Model with Synaptic and Free Virus Transmission

dy0,0
dt

= λ− dy0,0 − βy0,0v − y0,0
N∑
k=0

M∑
l=0

ykl

N∑
r=0

M∑
s=0

γklrs

dyi,j
dt

= (1−p)βvyi−1,j+pβvyi,j−1−ai,jyi,j−βvyi,j+
N∑
k=0

M∑
l=0

ykl(

i∑
r=0

j∑
s=0

γklrsyi−r,j−s−yij
N−i∑
r=0

M−j∑
s=0

γklrs)

dv

dt
=

N∑
i=0

M∑
j=0

kijyij − uv

Notation:

yij A cell with Unintegrated (i), Integrated (j) viruses
N, maximum number of unintegrated viruses per cell
M, maximum number of integrated viruses per cell
k,r: dummy variables used as counters for integrated viruses
l,s: dummy variables used as counters for unintegrated viruses

Parameters:

λ : Birth rate of uninfected CD4+ T-cells
d : Death rate of uninfected CD4+ T-cells.
β : Free Virus Infectivity - effectiveness of the interaction between virus and a
CD4+ T cell
p : Probability of integration.
ki,j : Virus replication parameter - rate of free virus production by an infected
cell
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u : Clearance rate of free virus
ai,j : Clearance rate of infected cells

ai,j can be defined as:

aij =


d if j = 0, i < c

au if j = 0, i ≥ c
ai if j > 0

ki,j can be defined as:

kij =


0 if j = 0, i < c

ku if j = 0, i ≥ c
ki if j > 0

c : the threshold number of uDNA viruses necessary for uDNA-only cells to
begin production.

γklrs : the probability that a cell with k integrated, l unintegrated viruses trans-
fers r integrated and s unintegrated viruses. We set γkl00 = 0 and γ00rs = 0∑N
k=1

∑M
l=1 ykl(

∑i
r=1

∑j
s=1 γ

kl
rsyi−r,j−s) Represents cells transmitting to other

cells to create yij . The second set of summations only reach i and j because a
cell can only transmit up to i and j viruses to an empty cell to get yij . The ykl
term represents the transmitting (source) cell. Any productively infected cell
can be a source cell. yi−r,j−s represents the target cell that accepts viruses.∑N
k=1

∑M
l=1 ykl(yij

∑N−i
r=1

∑M−j
s=1 γklrs) :Represents cells transmitting to yij

Note that γ00rs , γkl00, and k00 are all zero. These are synaptic transmission rates
and viral production, respectively.

R0 Calculation: Free-Virus Transfer Alone

dy0,0
dt

= λ− dy0,0 − βy0,0v

dyi,j
dt

= (1− p)βvyi−1,j + pβvyi,j−1 − ai,jyi,j − βvyi,j

dv

dt
=

N∑
i=1

M∑
j=1

kijyij − uv
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The virus-free equliibrium of the above system is y00 = λ/d, yij = 0, v = 0. With
standard methods, we can calculate the Jacobian of this system at this steady
state to arrive at R0. Below is the Jacobian of the system with the assumption
that there are two distinct death rates and two distinct virus production rates.
Cells infected with only unintegrated viruses produce virus and die at a lower
rate then the cells infected with provirus.

JNM+1×NM+1 =



−d 0 0 ... 0 0 ... 0 −βλd
0 −aun 0 ... 0 0 ... 0 − (−1+p)βλ

d
0 0 −aun ... 0 0 ... 0 0

0 0 0
. . . 0 0 ... 0 0

0 0 0 ... −ain 0 ... 0 pβλ
d

0 0 0 ... 0 −ain ... 0 0

0 0 0 ... 0 0
. . . 0 0

0 0 0 ... 0 0 ... −ain 0
0 kun kun ... kin kin ... kin −u



All but 3 of the eigenvalues for this system are −d,−ai and −au. The remaining
eigenvalues are the roots of the 3rd degree polynomial:

p(x) = a3x
3 + a2x

2 + a1x+ a0

Where

a3 = d

a2 = du+ dain + daun

a1 = duaun + dain (u+ aun)− βλ (pkin − (p− 1)kun)

a0 = pβλaunkin − ain (duaun + (−1 + p)βλkun)

These eigenvalues are nonnegative when they satisfy the Routh-Hurwitz crite-
rion, which occurs whenever the following inequality is satisfied:

R0 Free Virus Only, No Threshold :
pβλki
uaid

+
(1− p)βλku

uaud
> 1

R0 Calculation: Free-Virus Transfer with threshold for active uDNA

If a cell without an integrated provirus requires more than one unintegrated
virus to begin production then the system of ODE remains the same, except
the virus production rate (ku) is zero for cells without integrated viruses and
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below a threshold number of unintegrated viruses. In addition, these cells have
a clearance rate equal to that of uninfected cells.

The Jacobian for this system becomes:

JNM+1×NM+1 =



−d 0 ... 0 ... 0 0 ... 0 −βλd
0 −d ... 0 ... 0 0 ... 0 − (−1+p)βλ

d

0 0
. . . 0 ... 0 0 ... 0 0

0 0 ... −aun ... 0 0 ... 0 0

0 0 ... 0
. . . 0 0 ... 0 0

0 0 ... 0 ... −ain 0 ... 0 pβλ
d

0 0 ... 0 ... 0 −ain ... 0 0

0 0 ... 0 ... 0 0
. . . 0 0

0 0 ... 0 ... 0 0 ... −ain 0
0 0 ... kun ... kin kin ... kin −u



With the requirement that more than one uDNA virus is necessary to begin
virus production, all but 2 of the eigenvalues are −d,−ai or −au. The last
remaining eigenvalues are:

1

2

(
−u− ain ±

√
du2 − 2duain + da2in + 4pβλkin√

d

)
which is non-negative whenever:

R0 Free Virus Only, With Threshold =
pβλki
uaid

> 1

R0 Calculation: Synaptic Transfer Alone

dy0,0
dt

= λ− dy0,0 − y0,0
N∑
k=0

M∑
l=0

ykl

N∑
r=0

M∑
s=0

γklrs

dyi,j
dt

= −ai,jyi,j +
N∑
k=0

M∑
l=0

ykl(

i∑
r=0

j∑
s=0

γklrsyi−r,j−s − yij
N−i∑
r=0

M−j∑
s=0

γklrs)

The virus-free equliibrium of the above system is y00 = λ/d, yij = 0. With
standard methods, we can calculate the Jacobian of this system at this steady
state to arrive at R0. Below is the Jacobian of the system with the assumption
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that there are two death rates: death rates for cells infected with uDNA only and
a separate death rate for iDNA infected cells. Note that we make no assumption
about the values of γ.
The Jacobian for the system with synaptic transfer alone is an NM by NM
matrix:

J =



−d −λd
∑

λ
dγ

01
ij

∑
λ
dγ

02
ij ...

∑
λ
dγ

10
ij

∑
λ
dγ

11
ij ...

∑
λ
dγ

NM
ij

0 −au + λ
dγ

01
01

λ
dγ

02
01 ... λ

dγ
10
01

λ
dγ

11
01 ... λ

dγ
NM
01

0 λ
dγ

01
02 −au + λ

dγ
02
02 ... λ

dγ
10
02

λ
dγ

11
02 ... λ

dγ
NM
02

0 ... ... ... ... ... ... ...
0 λ

dγ
01
10

λ
dγ

02
10 ... −ai + λ

dγ
10
10

λ
dγ

11
10 ... λ

dγ
NM
10

0 λ
dγ

01
11

λ
dγ

02
11 ... λ

dγ
10
10 −ai + λ

dγ
11
11 ... λ

dγ
NM
11

0 ... ... ... ... ... ... ...
0 λ

dγ
01
NM

λ
dγ

02
NM ... λ

dγ
10
NM

λ
dγ

11
NM ... −ai + λ

dγ
NM
NM


where ,

∑
=
∑N
i=0

∑M
j=0:

The first eigenvalue of the system is -d. To determine the remaining eigenvalues
we look at the remaining NM-1 by NM-1 sub matrix:

Ĵ = Au +



λ
dγ

01
01

λ
dγ

02
01 ... λ

dγ
10
01

λ
dγ

11
01 ... λ

dγ
NM
01

λ
dγ

01
02

λ
dγ

02
02 ... λ

dγ
10
02

λ
dγ

11
02 ... λ

dγ
NM
02

... ... ... ... ... ... ...
λ
dγ

01
10

λ
dγ

02
10 ... q + λ

dγ
10
10

λ
dγ

11
10 ... λ

dγ
NM
10

λ
dγ

01
11

λ
dγ

02
11 ... λ

dγ
10
10 q + λ

dγ
11
11 ... λ

dγ
NM
11

... ... ... ... ... ... ...
λ
dγ

01
NM

λ
dγ

02
NM ... λ

dγ
10
NM

λ
dγ

11
NM ... q + λ

dγ
NM
NM


where q = au − ai and Au = auI.

This matrix has (NM-1)(NM-1)+3 different variables and to simplify it we as-
sume that the transfer rate γrs is constant for all iDNA-infected cells, but for
uDNA-infected cells the rate is ηγrs, where η < 1

Under these assumptions, we can replace the above Jacobian by:

Ĵ = Au +



λ
dγ01

λ
dγ01 ... λ

dγ01
λ
dγ01 ... λ

dγ01
λ
dγ02

λ
dγ02 ... λ

dγ02
λ
dγ02 ... λ

dγ02
... ... ... ... ... ... ...
λ
dγ10

λ
dγ10 ... q + λ

dγ10
λ
dγ10 ... λ

dγ10
λ
dγ11

λ
dγ11 ... λ

dγ10 q + λ
dγ11 ... λ

dγ11
... ... ... ... ... ... ...

λ
dγNM

λ
dγNM ... λ

dγNM
λ
dγNM ... q + λ

dγNM


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Note that if we require a threshold number (c) of uDNA viruses to start pro-
duction, the leftmost c columns become zero.
All but 2 eigenvalues of this matrix is q or 0. The remaining two eigenvalues
are:

1

2
∗ (λ
d
βsu +

λ

d
βsi + q ±

√
−4 ∗ λ

d
βsuq + (

λ

d
βsu +

λ

d
βsi + q)2)− au

Where βsu =
∑N
r=1 ηγr,0 (zero integrated, r unintegrated, r ≥ c) and βsi =∑N

r=0

∑N
s=1 γr,s . This accounts for the reduction in transmission from uDNA-

only cells.

These eigenvalues are exactly 0 when:

λ

d
auβi +

λ

d
aiβu = aiau

And the new R0 is now:

R0 Synaptic Only :
βsiλ

aid
+
βsuλ

aud

R0 Calculation: Combined Cell Free and Synaptic Transmission

Although the analytical solution of R0 of the combined system of ODEs is
unknown, numerical simulations (See figure) show that the critical value is:

R0 Complete Model, No Threshold :
pβλki
uaid

+
(1− p)βλku

uaud
+
βsiλ

aid
+
βsuλ

aud

If more than one integrated viruses are required to begin infection, this becomes:

R0 Complete Model, Threshold :
pβλki
uaid

+
βsiλ

aid
+
βsuλ

aud
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Figure 1: Simulation of the combined system show R0 approximately as pre-
dicted analytically - all parameters randomized. As R0 approaches 1 from below,
the system requires more time to approach equilibrium. There is a sharp tran-
sition between zero steady states and non-zero steady states when the proposed
R0 is above 1.

Expanding γrs

If we assume that viruses integrate independently, then for any number of viruses
transferred, h = r+s, the chance of any one of these viruses becoming integrated
is p and the chance of any single one of these viruses becoming unintegrated
is (1-p). If we assume that these are independent events, then the resulting
distribution of these h viruses follows a binomial distribution. In addition,
each γ is can be decomposed to the probability to transfer h viruses and the
probability that some portion of the h viruses become integrated.

Then we can define a set of transfer rates for any given number of cells:

γ̂h for h = 1....max(N,M)

Note that for transfer from cells with only unintegrated viruses, the transfer
rate is reduced by η. This defines the transfer rate of h viruses that become r
unintegrated and s integrated viruses, where the transfer rates are:
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γr,0 = γ̂r(1− p)r

γr,s = γ̂r+s
(
r + s

r

)
(1− p)rps

The first represents r viruses being transferred and all r becoming unintegrated.
The second represents a total of r+s viruses transferred through the synapse
and s viruses becoming integrated while r viruses are unintegrated.

Then:

βsu = η

N∑
r=c

γ̂r(1− p)r

βsi =

N∑
r=0

M∑
s=1

γ̂r+s
(
r + s

r

)
(1− p)rps

Which can be simplified to:

βsu = η

N∑
r=c

γ̂r(1− p)r

βsi =

N∑
r=1

γ̂r(1− (1− p)r)

Therefore R0 of the model with synaptic transfer only is:

R0 =
λ

aid

N∑
r=1

γ̂r(1− (1− p)r) + ηλ

aud

N∑
r=c

γ̂r(1− p)r

And R0 of the complete model is:

R0 =
pβλki
uaid

+
λ

aid
γ̂r

N∑
r=1

(1− (1− p)r) + ηλ

aud
γ̂r

N∑
r=c

(1− p)r

Finally, we explore different distributions for γ̂h, for h=1....N. It is unclear how
many viruses are transferred per synapse, so we explore different distributions
for the number of viruses transferred.

Uniform: γh is the same for all h

Normal: γh ∼ 1

σ
√
2π

exp−
(h−ĥ)2

2σ2

Poisson: γh ∼ ĥh exp−ĥ

h!
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For example, for the poisson distribution, the final value for R0 becomes:

R0 =
pβλki
uaid

+
λ

aid

ĥr exp−r̂

r!

N∑
r=1

(1− (1− p)r) + ηλ

aud

ĥr exp−ĥ

r!

N∑
r=c

(1− p)r
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