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RESEARCH ARTICLE
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Abstract

Cardiovascular diseases (CVD) and type 2 diabetes (T2D) are closely interrelated complex

diseases likely sharing overlapping pathogenesis driven by aberrant activities in gene net-

works. However, the molecular circuitries underlying the pathogenic commonalities remain

poorly understood. We sought to identify the shared gene networks and their key intervening

drivers for both CVD and T2D by conducting a comprehensive integrative analysis driven by

five multi-ethnic genome-wide association studies (GWAS) for CVD and T2D, expression

quantitative trait loci (eQTLs), ENCODE, and tissue-specific gene network models (both co-

expression and graphical models) from CVD and T2D relevant tissues. We identified path-

ways regulating the metabolism of lipids, glucose, and branched-chain amino acids, along

with those governing oxidation, extracellular matrix, immune response, and neuronal sys-

tem as shared pathogenic processes for both diseases. Further, we uncovered 15 key driv-

ers including HMGCR, CAV1, IGF1 and PCOLCE, whose network neighbors collectively
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account for approximately 35% of known GWAS hits for CVD and 22% for T2D. Finally, we

cross-validated the regulatory role of the top key drivers using in vitro siRNA knockdown, in

vivo gene knockout, and two Hybrid Mouse Diversity Panels each comprised of >100

strains. Findings from this in-depth assessment of genetic and functional data from multiple

human cohorts provide strong support that common sets of tissue-specific molecular net-

works drive the pathogenesis of both CVD and T2D across ethnicities and help prioritize

new therapeutic avenues for both CVD and T2D.

Author summary

Cardiovascular disease (CVD) and type 2 diabetes (T2D) are two tightly interrelated dis-

eases that are leading epidemics and causes of deaths around the world. Elucidating the

mechanistic connections between the two diseases will offer critical insights for the devel-

opment of novel therapeutic avenues to target both simultaneously. Because of the chal-

lenging complexity of CVD and T2D, involving numerous risk factors, multiple tissues,

and multidimensional molecular alterations, few have attempted such an investigation.

We herein report a comprehensive and in-depth data-driven assessment of the shared

mechanisms between CVD and T2D by integrating genomics data from diverse human

populations including African Americans, Caucasian Americans, and Hispanic Ameri-

cans with tissue-specific functional genomics information. We identified shared pathways

and gene networks informed by CVD and T2D genetic risks across populations, confirm-

ing the importance of well-established processes, as well as unraveling previously under-

appreciated processes such as extracellular matrix, branched-chain amino acid metabo-

lism, and neuronal system for both diseases. Further incorporation of tissue-specific regu-

latory networks pinpointed potential key regulators that orchestrate the biological

processes shared between the two diseases, which were cross-validated using cell culture

and mouse models. This study suggests potential new therapeutic targets that warrant fur-

ther investigation for both CVD and T2D.

Introduction

Cardiovascular disease (CVD) and type 2 diabetes (T2D) are two leading causes of death in the

United States [1]. Patients with T2D are at two to six times higher risk of developing CVD com-

pared to those without T2D [2], indicating the importance of targeting common pathogenic

pathways to improve the prevention, diagnosis, and treatment for these two diseases. While

decades of work has revealed dyslipidemia, dysglycemia, inflammation, and hemodynamic dis-

turbances as common pathophysiological intermediates for both CVD and T2D [3–5], very few

studies have directly investigated the genomic architectures shared by the two diseases. While

genetic factors are known to play a fundamental role in the pathogenesis of both CVD and T2D

[6], a direct comparison of the top risk variants between these diseases has revealed few overlap-

ping loci in genome-wide association studies (GWAS) from multiple large consortia. Aside

from the speculation that the strongest genetic risks may be disease-specific, the agnostic

approach requiring the application of strict statistical adjustment for multiple comparisons also

increases false negative rate because of the lack of “genome-wide significance”.

To meet these challenges, we and others have previously shown that hidden disease mecha-

nisms can be unraveled through the assessment of the combined activities of genetic loci with
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weak to moderate effects on disease susceptibility by integrating GWAS with functional geno-

mics and regulatory gene networks [7–11]. Importantly, such high-level integration

approaches are able to overcome substantial heterogeneity between independent datasets and

extract robust biological signals across molecular layers, tissue types, and even species [8, 12–

14]. This advantage is mainly conferred by the aggregation of genetic signals from individual

studies onto a comparable ground–molecular pathways and gene networks, before conducting

meta-analysis across studies [14, 15]. In other words, even if the genetic variants and linkage

architecture can be different between studies, the biological processes implicated are more

reproducible and comparable across studies [16]. In the current investigation, we employed a

systematic data-driven approach that leveraged multi-dimensional omics datasets including

GWAS, tissue-specific expression quantitative trait loci (eQTLs), ENCODE, and tissue-specific

gene networks (Fig 1). GWAS datasets were from three well-characterized and high-quality

prospective cohorts of African Americans (AA), European Americans (EA), and Hispanic

Americans (HA)—the national Women’s Health Initiative (WHI) [8], the Framingham Heart

Study (FHS) [17], and the Jackson Heart Study (JHS) [18]. To maximize the reproducibility of

our findings across different populations, we also incorporated meta-analyses of CVD and

T2D genetics from CARDIoGRAMplusC4D [19] and DIAGRAM [20]. Further, we compre-

hensively curated functional genomics and gene networks derived from 25 tissue or cell types

relevant to CVD and T2D. A streamlined integration of these rich data sources using our Mer-

geomics pipeline [14, 15] enabled the identification of shared pathways, gene subnetworks,

and key regulators for both CVD and T2D across cohorts and ethnicities. Finally, we validated

the subnetworks using adipocyte and knockout mouse models, and confirmed their associa-

tions with cardiometabolic traits in the Hybrid Mouse Diversity Panel (HMDP) comprised of

>100 mouse strains [21–23].

Results

Identification of co-expression modules genetically associated with CVD

and T2D across cohorts

We first investigated whether genetic risk variants of CVD and T2D from GWAS of each

cohort/ethnicity were aggregated in a functionally coherent manner by integrating GWAS

with tissue-specific eQTLs or ENCODE information and gene co-expression networks that

define functional units of genes (Fig 1A). Briefly, co-expression networks were constructed

from an array of transcriptomic datasets of various tissues relevant to CVD and T2D (details

in Methods). These modules were mainly used to define sets of functionally related genes in a

data-driven manner. Genes within the co-expression modules (a module captures functionally

related genes) were mapped to single nucleotide polymorphisms (SNPs) that most likely regu-

late gene functions via tissue-specific eQTLs or ENCODE information. SNPs were filtered by

linkage disequilibrium (LD) and then a chi-square like statistic was used to assess whether a

co-expression module shows enrichment of potential functional disease SNPs compared to

random chance using the marker set enrichment analysis (MSEA) implemented in our Mer-

geomics pipeline (details in Methods) [14]. Subsequently, meta-analyses across individual

MSEA results at the co-expression module level were conducted using the Meta-MSEA func-

tion in Mergeomics to retrieve robust signals across studies. Among the 2,672 co-expression

modules tested, 131 were found to be significant as defined by false discovery rate (FDR) < 5%

in Meta-MSEA across studies (Table 1, S1 Table). Moreover, the majority of the disease rele-

vant tissues or cell types included in our analysis yielded informative signal, supporting the

systemic pathogenic perturbations known for CVD and T2D (S1 Fig). Of the significant mod-

ules identified, 79 were associated with CVD and 54 with T2D. Two modules were associated

Shared gene networks and regulators for CVD and T2D
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Fig 1. Framework of network-driven integrative genomics analyses. (A) Integration of genetics and functional genomics datasets to identify CVD and

T2D associated co-expression modules. The GWAS studies for CVD and T2D were derived from three independent cohorts representing three ethnic

populations: WHI (AA, EA, HA), FHS (EA), and JHS (AA). These independent datasets were supplemented with GWAS of coronary artery disease from

CARDIoGRAMplusC4D and T2D from DIAGRAM to increase power. We also curated a comprehensive list of tissue-specific functional genomics datasets,

including 2672 co-expression modules, human eQTLs of various tissues, and ENCODE based variants annotation. The significant modules were identified

by MSEA and Meta-MSEA, and then annotated to reveal shared pathways for CVD and T2D. In MSEA, the co-expression modules were used to define

data-driven gene sets each containing functionally related genes, tissue-specificity was determined based on the tissue-origins of the human eQTLs, and

ethnic specificity was determined based on the ethnicity of each GWAS cohort. (B) Identification of disease key drivers and subnetworks. We utilized multi-

tissue graphical networks to capture key drivers for disease associated co-expression modules using wKDA, then prioritized KDs based on consistency and

disease relevance of the subnetworks. (C) Validation of the top key drivers and their subnetworks via intersection with known human CVD and T2D genes

from DisGeNET and GWAS catalog, in vitro adipocyte siRNA experiments, and cross-validation at both transcriptomic and genomic levels in the hybrid

mouse diversity panels (HMDP).

https://doi.org/10.1371/journal.pgen.1007040.g001
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with both diseases, with one enriched for “carbohydrate metabolism” genes and the other

over-represented with “other glycan degradation; known T2D genes” (Fig 2A, S1 Table).

Examination of these two shared modules showed that the genetic signals driving the module

significance were largely different between CVD and T2D, with 14.8% lead SNPs overlapping

for the carbohydrate metabolism module and 5.8% lead SNPs overlapping for the glycan deg-

radation module between diseases. These results indicate that the GWAS signals for the two

diseases in each module do not necessarily overlap, but the CVD and T2D genes are likely

functionally connected since they are co-expressed in the same modules and annotated with

coherent functions. Additionally, the majority of the CVD modules and T2D modules were

identified in more than one ethnic group based on MSEA analysis of individual studies, sup-

porting consistency across ethnicities (Fig 2B).

Table 1. Summary of top co-expression modules associated with CVD or T2D (FDR < 1% in Meta-MSEA, in column FDRmeta).

Disease Module ID Tissue Annotation Gene No. CAR+C4D/ DIAGRAM JHS FHS WHI WHI WHI Pmeta FDRmeta

Mixed AA EA EA AA HA

CVD 4406 O1, O2, O5 NA 154 3.32E-10 NS - 2.83E-02 4.41E-03 NS 5.73E-09 <0.01%

4522 Adp, Lv, T Signaling by FGFR mutants 2072 1.03E-04 1.62E-02 - 3.80E-02 5.53E-03 2.86E-02 3.39E-08 <0.01%

4540 O4, O5 NA 1233 9.72E-04 NS - NS 1.50E-02 5.52E-04 5.07E-07 0.06%

5242 Adr Cholesterol Biosynthesis 306 4.19E-06 4.71E-02 - NS 2.31E-02 NS 2.64E-06 0.08%

4087 Adp, Dg Carboxylic acid metabolic process 158 2.34E-06 NS - NS 8.63E-03 2.17E-02 4.24E-06 0.09%

4019 Ly Transmembrane transport of small molecules 2876 1.89E-03 4.46E-02 - NS NS 6.85E-04 7.91E-06 0.20%

4941 O4, O5 Establishment of localization 908 8.97E-06 1.52E-02 - NS NS 3.94E-02 2.72E-06 0.21%

5023 Ly TCA cycle and respiratory electron transport 2890 NS 6.37E-05 - 1.53E-03 NS 1.50E-02 1.15E-05 0.22%

blue O2, O4 Cell cycle 657 1.08E-02 NS - NS NS 1.77E-04 3.85E-06 0.30%

5329 Adr Biological oxidations 1028 NS 2.32E-02 - 5.01E-03 3.26E-02 2.26E-02 2.21E-05 0.35%

124 O3, O4 NA 14 NS 1.48E-03 - NS 7.05E-07 NS 4.86E-06 0.55%

4656 O3, O4 Cellular protein complex assembly 371 NS NS - NS 3.64E-03 2.27E-04 8.85E-06 0.67%

4147 O5 NA 111 1.55E-02 2.06E-04 - NS 8.85E-03 NS 5.72E-06 0.68%

4989 Adr Metabolism of amino acids and derivatives 453 1.86E-03 7.41E-03 - NS 3.71E-04 NS 7.81E-05 0.82%

T2D 5323 Mn NA 38 8.68E-04 NS NS 2.25E-04 1.05E-03 NS 1.58E-07 0.02%

5250 Adp, Dg, Mn NA 37 4.78E-05 NS NS 3.01E-02 3.46E-07 NS 4.32E-07 0.03%

4880 Mn NA 141 8.96E-03 NS 1.18E-02 5.06E-04 NS NS 1.61E-06 0.06%

6872 Mn NA 119 NS 1.26E-03 7.44E-03 7.79E-03 NS NS 1.26E-06 0.06%

4879 Ms NA 376 3.18E-02 NS 5.88E-04 NS 2.66E-03 2.20E-03 1.19E-06 0.14%

6533 Mn Cholesterol biosynthesis 48 NS 5.02E-03 NS NS NS 1.26E-06 1.06E-05 0.25%

6977 Bld, O3 NA 40 3.66E-02 NS 4.01E-05 NS 1.81E-02 4.05E-02 1.71E-06 0.39%

6675 Mn Cholesterol biosynthesis 152 3.72E-03 3.35E-02 NS NS NS 2.06E-05 2.56E-05 0.52%

37 O2 NA 34 1.94E-03 5.53E-03 NS NS 9.38E-04 NS 4.95E-06 0.57%

4302 Adp NA 40 2.07E-03 NS NS 4.80E-03 4.05E-06 NS 9.89E-06 0.71%

6690 Adr Complement and coagulation cascades 641 1.93E-02 1.01E-04 NS 2.24E-02 NS NS 1.36E-05 0.86%

4059 Dg SLC mediated transmembrane transport 51 NS 3.05E-02 5.80E-03 NS 1.50E-02 NS 1.29E-05 0.86%

4937 Dg Amino acid metabolic process 80 9.21E-03 NS 5.88E-03 NS 1.37E-03 NS 2.11E-05 0.89%

5059 Ve TCA cycle and respiratory electron transport 164 7.31E-04 NS 2.74E-02 8.66E-04 NS NS 6.64E-06 0.95%

Module IDs were randomly assigned IDs to co-expression modules. The annotation refers to the top functional category enriched in the co-expression

modules (Bonferroni-corrected p< 0.05 based on Fisher’s exact test, number of direct overlapping genes > 5). Numbers in scientific format were p-values

from MSEA or Meta-MSEA analysis, and those reaching FDR < 20% in individual cohort analysis via MSEA (not the FDRmeta in Meta-MSEA) are

highlighted in bold. CAR+C4D: CARDIoGRAMplusC4D; Mixed: mixed ethnicities; JHS: Jackson Heart Study; FHS: Framingham Heart Study; WHI:

Women’s Health Initiative; AA: African Americans; HA: Hispanic Americans; EA: European Americans; Pmeta and FDRmeta: p and FDR values from Meta-

MSEA analysis across cohorts. Adp–adipose tissue; Adr—adrenal gland; Bld–Blood; Dg—digestive tract; Lv–liver; Ly–lymphocyte; Mn-monocyte; Ms–

muscle; O1 –chromosomal distance mapping based on a 50kb window; O2 –ENCODE-based Regulome SNPs; O3 –combining all tissue-specific eQTLs

into a single multi-tissue eSNP set; O4 –merging eQTL sets with Regulome data; O5 –combined mapping (distance, eQTLs, ENCODE); T–thyroid gland;

Ve–vascular endothelium.

https://doi.org/10.1371/journal.pgen.1007040.t001
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Shared biological processes among the CVD/T2D-associated co-

expression modules

Apart from the two directly overlapping modules, between the CVD- and T2D-associated

modules there were many overlapping genes, indicating additional shared functions that con-

tribute to both diseases (S2 Fig). Upon annotating the disease-associated modules using func-

tional categories curated in Kyoto Encyclopedia of Genes and Genomes (KEGG) and

Reactome while correcting for the overlaps between pathways (method details in S1 Text; S3

Fig; S2 Table), we found significant functional overlaps between the CVD and T2D modules

(overlap p = 3.1e-15 by Fisher’s exact test, Fig 2C). We further ranked all the enriched func-

tional categories by the number of CVD/T2D modules that were annotated with each func-

tional term (Fig 3), which showed a wide spectrum of biological processes shared by both

CVD and T2D across ethnicities and cohorts. Of the top ranked processes for the significant

co-expression modules identified, we observed well-established pathogenic processes such as

lipid and fatty acid metabolism [24], glucose metabolism [25], oxidation [26], and cytokine sig-

naling [27]. Pathways previously implicated mainly for T2D such as beta-cell function were

also found to be shared for both CVD and T2D. Interestingly, our completely data-driven

approach also identified extracellular matrix (ECM) and branched chain amino acids (BCAA)

metabolism as top functional categories whose roles in the development of cardiometabolic

disorders have only been implicated in recent experimental work [28–30]. Furthermore, our

Fig 2. Venn diagrams of overlap in significant co-expression modules and functional categories

between diseases and ethnicities. A) Count of module overlaps by disease based on Meta-MSEA; B)

Count of module overlaps for each disease by ethnicity based on MSEA of individual studies. Co-expression

modules captured in CARDIoGRAMplusC4D and DIAGRAM were not counted due to uncertain ethnic origin;

C) Count of independent functional category overlaps by disease based on results from Meta-MSEA in panel

A.

https://doi.org/10.1371/journal.pgen.1007040.g002
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analysis also revealed under-appreciated processes involving the neuronal system and trans-

port of small molecules.

Fig 3. Summary of 41 independent functional categories enriched in both CVD and T2D co-expression modules (Bonferroni-corrected p< 0.05

based on Fisher’s exact test, number of direct overlapping genes > 5). Independent functional categories were defined as the categories with pair-wise

overlapping ratio < 10%. Red and blue block indicates that the significant CVD or T2D co-expression modules identified from the study and ethnicity origin are

enriched for the particular functional category term. CAR+C4D: CARDIoGRAMplusC4D; M: mixed ethnicities; AA: African Americans; HA: Hispanic

Americans; EA: European Americans.

https://doi.org/10.1371/journal.pgen.1007040.g003
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Identification and prioritization of key drivers (KDs) and subnetworks for

the CVD/T2D-associated modules

The coexpression networks used above mainly served to capture coexpression patterns

between genes and to define data-driven gene sets that contain functionally related genes, but

they do not carry detailed topology information on gene-gene regulatory relationships. To dis-

sect the gene-gene interactions within and between the 131 disease-associated modules, and to

identify key perturbation points shared for both CVD and T2D modules, we used the GIANT

networks [31] and Bayesian networks (BNs) from 25 CVD and T2D relevant tissue and cell

types, which provide detailed topological information on gene-gene regulatory relationships

necessary for the downstream network analysis. The BNs used in our study were generated

using similar sets of mouse and human gene expression datasets as used for the co-expression

networks, but additionally incorporated genetic data to model causal gene regulatory net-

works, whereas the GIANT networks were derived based on independent gene expression

datasets and protein interaction information. We included both types of gene regulatory net-

works to increase the coverage of functional connections between genes and only considered

KDs identified in both to enhance the robustness of KD prediction.

Specifically, all genes in each of the co-expression modules genetically associated with

CVD or T2D as identified in our study were mapped onto the GIANT and BN graphical

networks to identify KDs using the weighted key driver analysis (wKDA) implemented in

Mergeomics [14], where KDs were defined as genes whose local network neighborhoods

demonstrate significant enrichment of genes from disease-associated modules (details in

Methods; concept depicted in S4 Fig). Of note, wKDA gives higher weight to network

edges that are consistent across network models constructed from independent studies,

therefore alleviating potential bias caused by dataset heterogeneity. We identified 226 KDs

that were consistently captured in Bayesian and GIANT network at Bonferroni-corrected p-

value < 0.05 (Fig 1B), among which 162 were KDs for both CVD and T2D associated mod-

ules. Bonferroni-correction was used here to focus on the strongest KDs for prioritization

purposes. To further prioritize these 162 shared KDs, tissue-specific subnetworks of these

KDs were evaluated using Meta-MSEA to rank the magnitude of their genetic association

with CVD and T2D across cohorts, yielding 15 top-ranked KDs at FDR<10% in Meta-

MSEA for CVD and T2D separately (combined FDR<1% for both diseases simultaneously)

(Fig 1B, Table 2). The top KD subnetworks were related to similar pathogenic processes

highlighted in the previous section, including cholesterol biosynthesis, respiratory electron

transport, immune system and ECM. We further inferred the directionality of the effects of

each specific KD on both diseases using GWAS signals mapped to each KD based on eQTLs

or chromosomal distance (details in Methods; results in S5 Fig). This analysis differentiated

the KDs into those showing consistent direction of association for both CVD and T2D

(ACLY, CAV1, SPARC, COL6A2, IGF1), inverse directions with CVD and T2D (HMGCR,

IDI1), and uncertain directions (Table 2). Therefore, the shared KDs do not necessarily

affect the risks for the two diseases in the same direction.

Shared KDs and subnetworks orchestrate known CVD and T2D genes

The KDs and subnetworks were identified based on the full spectrum of genetic evidence

(from strong to moderate and subtle) from the various GWAS datasets examined in the cur-

rent study. To assess whether the top KD subnetworks were enriched for previously known

disease genes that mostly represent the strong and replicated genes as a means of cross-valida-

tion, we manually curated previously reported genes associated with CVD, T2D, and interme-

diate metabolic traits related to CVD, T2D (glucose, insulin, lipids, obesity) from DisGeNET

Shared gene networks and regulators for CVD and T2D
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[32] and the NHGRI GWAS Catalog [6] (Fig 1C, genes listed in S3 Table). The connection

between the top 15 KDs and known genes for CVD, T2D and relevant cardiometabolic traits

was confirmed by the significant over-representation of the known disease genes in KD sub-

networks, with fold enrichment as large as 8, confirming the strong biological importance of

these KDs (Fig 4A). Further, the top 15 KDs showed direct connections to 28 GWAS hits

Table 2. Summary of the 15 key drivers and their corresponding subnetworks shared by CVD and T2D.

Key

drivers

Gene name Sub-

net

size

Tissues PCVD FDRCVD PT2D FDRT2D No. of

CVD

module

No. of T2D

module

Suggestive genetic

effect direction

(CVD/T2D)

Subnetwork

function

ACAT2 Acetyl-CoA

Acetyltransferase 2

192 Adp, Dg, Lv,

Ms, T

1.24E-03 5.32% 5.37E-03 4.35% 6 7 uncertain Cell cycle;

Cholesterol

biosynthesis

ACLY ATP Citrate Lyase 129 Adp, Dg, Lv,

Ms

5.96E-04 6.17% 5.78E-05 0.47% 5 6 consistent Cholesterol

biosynthesis;

Steroid biosynthesis

CAV1 Caveolin 1 954 Adp, Adr,

Art, Dg, Ms,

T, Ve

1.24E-05 0.20% 3.96E-05 0.32% 7 4 consistent Immune system;

Focal adhesion

COL6A2 Collagen Type VI Alpha

2 Chain

294 Adp, Adr,

Dg, Ms, T

2.47E-03 4.45% 4.97E-05 0.40% 2 1 consistent Extracellular matrix

COX7A2 Cytochrome C Oxidase

Subunit 7A2

152 Adp, Adr,

Art, Bld, Dg,

Lv, Ly

2.34E-04 3.79% 1.31E-04 1.85% 1 4 uncertain Respiratory electron

transport

DBI Diazepam Binding

Inhibitor

181 Adp, Art, Bld,

Dg, Is, Lv,

Ly, Ms

1.57E-03 7.70% 1.33E-02 6.75% 5 5 uncertain Respiratory electron

transport

HMGCR 3-Hydroxy-

3-Methylglutaryl-CoA

Reductase

75 Art, Dg, Lv,

Ms

7.53E-03 9.09% 7.28E-03 4.87% 1 5 opposite Cholesterol

biosynthesis;

Steroid biosynthesis

IDI1 isopentenyl-

diphosphate delta

isomerase 1

89 Adp, Art, Dg,

Is, Lv, Ms, T

6.77E-03 8.95% 2.13E-03 3.46% 3 4 opposite Cholesterol

biosynthesis;

Steroid biosynthesis

IGF1 insulin like growth

factor 1

993 Adr, Ms 2.65E-03 5.37% 3.71E-04 1.20% 7 2 consistent Immune system;

Focal adhesion

MCAM melanoma cell

adhesion molecule

183 Adp, Adr,

Art, Ms, T

2.65E-03 7.16% 1.93E-03 5.22% 4 2 uncertain Extracellular matrix

MEST mesoderm specific

transcript

132 Adp, Adr, Lv,

Ms

1.66E-03 3.36% 6.84E-04 1.58% 4 2 uncertain Fibroblast growth

factor signaling

MSMO1 methylsterol

monooxygenase 1

133 Adp, Art, Dg,

Lv, Ms, T,

2.38E-03 7.70% 4.34E-05 0.63% 1 4 uncertain Cholesterol

biosynthesis;

Steroid biosynthesis

PCOLCE procollagen C-

endopeptidase

enhancer

307 Adp, Adr,

Art, Hy, Lv,

Ms

1.14E-03 6.17% 1.71E-06 0.03% 2 2 uncertain Extracellular matrix

SPARC secreted protein acidic

and cysteine rich

482 Adp, Adr,

Art, Dg, Lv,

Ms, Ve

1.81E-03 9.63% 2.02E-03 8.18% 5 3 consistent Extracellular matrix

ZFP36 ZFP36 ring finger

protein

176 Adp, Adr,

Art, Lv, Ly,

Ms

1.42E-03 8.45% 1.64E-02 7.69% 3 3 uncertain Hypoxia-inducible

factors; CD40

signaling

P and FDR values were based on Meta-MSEA analysis of the KD subnetworks for enrichment of CVD or T2D GWAS signals across cohorts. The

subnetwork size indicates the number of neighboring genes directly connected to a KD when all the tissue-specific networks where the KD was found are

combined. No. of module columns indicate the number of CVD or T2D–associated co-expression modules from which each KD was identified. Suggestive

genetic effect direction was designated “consistent” or “opposite” if the proportion of variants having consistent or opposite effect direction in CVD or T2D

was statistically significant in either eQTL mapping or chromosomal distance mapping. Otherwise, “uncertain” was called. Subnetwork function was

annotated based on KEGG and Reactome databases. Adp–adipose tissue; Adr—adrenal gland; Art–artery; Dg—digestive tract; Is–Islet; Hy–

hypothalamus; Lv–liver; Ly–lymphocyte; Ms–muscle; T: thyroid gland; Ve: vascular endothelium.

https://doi.org/10.1371/journal.pgen.1007040.t002
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reaching genome-wide significance (p< 5e-8) for CVD and 16 for T2D, which account for

35% (fold = 3.35, p = 7.18e-10) and 22% (fold = 2.16, p = 8.08e-4) of all reported significant

GWAS signals for CVD and T2D in GWAS catalog, respectively. Two of the 15 top KDs,

namely HMGCR and IGF1, were previously identified as signals of genome-wide significance

for obesity, lipids and T2D, all risk factors of CVD. Additionally, network visualization

revealed tissue-specific KDs and interactions of CVD and T2D genes in many disease-relevant

tissues including adipose, adrenal gland, artery, blood, digestive tract (small intestine, colon),

hypothalamus, islet, liver, lymphocyte, skeletal muscle, thyroid, and vascular endothelium (Fig

4B). PCOLCE represents an intriguing hypothalamus KD that interacts with important energy

homeostasis genes like leptin receptor LEPR, suggesting a role of neurohormonal control in

CVD and T2D pathogenesis. In contrast, CAV1 appeared to interact extensively with other

KDs in peripheral tissues, especially in the adipose tissue.

Fig 4. Subnetworks of the top 15 shared KDs orchestrate known genes for CVD, T2D, obesity and lipids. A) Fold enrichment of KD subnetwork genes

for known genes related to cardiometabolic traits reported in DisGeNET. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. B) Top KD subnetworks with

GWAS hits (p < 1e-5 as reported in GWAS Catalog) for cardiometabolic traits. KDs are large nodes. Edge color denotes tissue-origin. Only high-confidence

edges (those with weight score in the top 20%) are visualized.

https://doi.org/10.1371/journal.pgen.1007040.g004
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Experimental validation of CAV1 subnetworks using an in vitro adipocyte

model and in vivo knockout mouse model

CAV1 is a robust KD for CVD- and T2D-associated modules across multiple tissues, with the

adipose tissue subnetwork of CAV1 containing the largest number of neighboring genes (Fig

4B). In addition, adipose tissue is the only tissue where CAV1 is a KD in both the Bayesian net-

works and GIANT networks. These lines of evidence implicate the potential importance of

CAV1 adipose subnetwork in the shared pathogenesis for both diseases. Indeed, Cav1-/- mice

have been shown to alter the lipid profile, susceptibility to atherosclerosis, and insulin resis-

tance [33, 34]. To assess whether perturbation of this potential KD induces changes in the sub-

network genes as predicted by our network modeling, we performed validation by conducting

siRNA-mediated knock down of Cav1 in differentiating mouse 3T3-L1 adipocytes and by eval-

uating the whole transcriptome alteration in mouse gonadal adipose tissue between wild type

and Cav1-/- mice [33] (Fig 1C; details in Methods). Of the 12 adipose network neighbors of

Cav1 that were tested in vitro, 6 exhibited significant changes in expression level on day 2 after

~60% Cav1 knockdown using two siRNAs against Cav1. In contrast, none of the 5 negative

controls, which were randomly selected among adipocyte genes that are not connected to

Cav1 or its first level neighbors in the adipose network, were affected after Cav1 perturbation

(Fig 5A). Cav1 knockdown also led to decreased expression of Pparg, a major adipocyte differ-

entiation regulator (S6 Fig), supporting a role of Cav1 in adipocyte differentiation as previ-

ously observed [35].

In 3-month-old Cav1-/- mice which showed perturbed lipid and insulin sensitivity profiles,

we observed 1,474 differentially expressed genes (DEGs) at FDR<1%. We found that the first

and second level neighbors of CAV1 in our predicted subnetwork showed significant enrich-

ment for DEGs in adipose tissue induced by Cav1 knockout, with the degree of fold enrich-

ment increasing as the statistical cutoff used to define DEGs became more stringent (Fig 5B;

subnetwork view with DEGs in S7 Fig). On the contrary, the third and fourth level neighbors

of CAV1 in our predicted subnetwork did not exhibit such enrichment of DEGs (Fig 5B).

These experimental findings support that CAV1 is a key regulator of the subnetwork and the

network structure predicted by our network modeling is reliable, although it is difficult to dis-

cern whether the network changes are related to alterations in adipocyte differentiation status.

We also observed strong enrichment for the focal adhesion pathway in both the predicted

Cav1 adipose subnetwork (p = 9.6e-14 by Fisher’s exact test, fold enrichment = 6.0) and the

differential adipose genes in Cav1-/- mice (p = 6.9e-9, fold enrichment = 3.5).

Shared KDs are associated with CVD and T2D traits in experimental

mouse models

We further assessed the transcriptomic profiling in adipose (relevant to T2D and CVD) and

aorta tissue (main site of CVD) in relation to 7 cardiometabolic phenotypes including adi-

posity, lipid levels (triglyceride, LDL, HDL), fasting glucose, fasting insulin and HOMA-IR,

across >100 mouse strains in two HMDP panels [21–23]. HMDP is a systems genetics

resource that comprises more than 100 commercially available mouse strains differing in

genetic composition, and has emerged as a power tool to study complex human diseases [22,

36]. The biological relevance of HMDP to human pathophysiology has been reproducibly

demonstrated [37–39]. Moreover, HMDP data was completely independent of the human-

focused genetic datasets and the network datasets used in our primary integrative analysis (Fig

1C). Here we selected two specific HMDP panels, high-fat (HF) and atherogenic (ATH), in

which mice were either fed with a high-fat high-sucrose diet or underwent transgenic expres-

sion of human APOE-Leiden and CETP gene as a pro-atherogenic background, respectively.

Shared gene networks and regulators for CVD and T2D
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These two panels were chosen for their representativeness of human T2D (the HF panel) and

CVD (the ATH panel) pathology. First, we investigated the correlation between the expression

of 14 top KDs (no probe for KD MSMO1 in HMDP) and cardiometabolic traits in the adipose

and aorta tissues assessed in HMDP. All 14 KDs displayed significant trait association in

HMDP, with the association for 11 KDs replicated in both the HF and ATH HMDP panels

(Fig 6A). Next, we retrieved the adipose and aorta gene-trait correlation statistics for the top

KD subnetwork genes, and used MSEA to test whether genes in the KD subnetworks displayed

an overall overrepresentation of strong trait association in HMDP. Again, the 14 KD subnet-

works showed significant trait association after Bonferroni correction (Fig 6B). These findings

support that the close involvement of the KDs in cardiometabolic trait perturbation we pre-

dicted based on human datasets can be cross-validated in mouse models.

Fig 5. Validation of CAV1 subnetwork using in vitro siRNA knockdown (A) and in vivo knockout mouse model

(B). A) Fold change of expression level for CAV1 subnetwork and negative control genes 2 days after Cav1

knockdown using two siRNAs separately. Twelve CAV1 neighbors were randomly selected from the first and

second level neighboring genes of CAV1 in adipose network. Five negative controls were randomly selected

from the genes not connected to CAV1 or its first level networks in adipose network. Statistical significance of

genes was determined by linear model, adjusting for batch effect and siRNA differences. N = 6/siRNA group,

mean ± SEM, *p < 0.05, **p < 0.01, ***p<0.001. B) Overlap of CAV1 neighboring genes in the adipose tissue

subnetwork at various distance levels with the differentially expressed genes in the gonadal adipose tissue in

Cav1 knockout mice (N = 3/group). Overlap p-value is determined by Fisher’s exact test. *Overlap p < 0.05 after

Bonferroni correction.

https://doi.org/10.1371/journal.pgen.1007040.g005

Shared gene networks and regulators for CVD and T2D

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007040 September 28, 2017 12 / 25

https://doi.org/10.1371/journal.pgen.1007040.g005
https://doi.org/10.1371/journal.pgen.1007040


Causal implication of the shared KD subnetworks in experimental mouse

models

Cav1 knockout in mice led to dysreuglation of the predicted subnetwork (Fig 5B) and signifi-

cant alterations in cardiometabolic phenotypes [33, 34], supporting the causal role of CAV1 in

both CVD and T2D. To further investigate the potential causal role of the top KDs and their

subnetworks in CVD and T2D, we conducted integrative analysis of the KD subnetworks to

assess their disease association using GWAS results for the 7 cardiometabolic traits from

HMDP and tissue-specific cis-eQTLs (Fig 1C). By mapping GWAS signals to genes using adi-

pose or aorta eQTLs and testing for enrichment of genetic association with cardiometabolic

traits within the KD subnetwork genes using MSEA, we found consistent and significant asso-

ciation between cardiometabolic traits and the subnetworks of KDs ACAT2, CAV1, COL6A2,

IGF1, PCOLCE, and SPARC across adipose and aorta (Fig 6C). These results informed by

mouse GWAS support a potential causal role of these top KDs in perturbing gene networks in

multiple tissues to trigger CVD and T2D.

Fig 6. Associations of KDs and subnetworks with cardiometabolic traits in mice. (A) Association between KD expression and cardiometabolic traits in

adipose tissue from HF-HMDP (HF) and aorta tissue from atherogenic-HMDP (ATH) as determined by Pearson correlation. *p< 0.05; **p< 0.05 after

Bonferroni correction for the KD number; ***p< 0.05 after Bonferroni correction for the number of KDs and traits. (B) Transcriptomic-wide association of KD

subnetworks and cardiometabolic traits in adipose tissue from HF-HMDP, and aorta tissue from atherogenic-HMDP, as evaluated by MSEA. (C) Genome-

wide genetic association of KD subnetworks and cardiometabolic traits based on adipose eQTL mapping in HF-HMDP, and aorta eQTL mapping in

Atherogenic-HMDP, as determined by MSEA. p<0.05, p<3.3–3, and p<4.8e-4 correspond to uncorrected and Bonferroni-corrected p-values (correcting for

the number of KDs or for the number of KD and trait combinations).

https://doi.org/10.1371/journal.pgen.1007040.g006
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Discussion

CVD and T2D are highly correlated complex diseases and share many common risk factors.

Multiple genetic variants may individually exert subtle to strong effects on disease pathogene-

sis, and in aggregate perturb diverse pathogenic pathways [8, 9, 13, 19, 20, 40]. In this systems-

level, data-driven analysis of GWAS from several large and high-quality cohorts of diverse eth-

nicities, integrated with functional data (from ENCODE, eQTLs, tissue-specific co-expression

and regulatory networks constructed from human and mouse experiments), we identified

both known and novel pathways and gene subnetworks that were genetically linked to both

CVD and T2D across cohorts and ethnicities. Further, KDs in tissue-specific subnetworks

appear to regulate many known disease genes for increased risk of CVD and T2D. Lastly, we

experimentally validated the network topology using in vitro adipocyte and data from in vivo
gene knockout models, and confirmed the role of the top KDs and subnetworks in both CVD

and T2D traits in independent sets of mouse studies.

The data-driven nature of the current study offers several strengths. First, we incorporated

the full-scale of genetic variant-disease association from multiple cohorts, ethnicities and dis-

ease endpoints, allowing for the detection of subtle to moderate signals, as well as comparison

and replication of results across diseases and populations. More importantly, by focusing on

results that demonstrate consistent significance at pathway and network level, we overcome

the difficulties in harmonizing independent datasets that are complicated by substantial het-

erogeneity due to platform differences and population substructure. This is because disease

signals across populations are more conserved at pathway level than at individual variant and

gene levels [12, 14, 16]. Second, the comprehensive incorporation of tissue-specific eQTLs,

coupled with the use of tissue-specific networks, enhances our ability to achieve better func-

tional mapping between genetic variants and genes, and uncover systems-level regulatory cir-

cuits for CVD and T2D in a tissue-specific fashion. Third, data-driven modules and networks

used in this study increase the potential for novel discovery as gene-gene interactions are

defined by data rather than prior knowledge. As the network models were from many inde-

pendent studies reflecting diverse physiological conditions, leveraging these datasets and net-

work models offers more comprehensive coverage of biological interactions than any given

dataset can provide and has proven a valuable approach to unveil novel biological insights [9,

13, 41]. While some of our findings confirmed those from previous canonical pathway-based

analysis on disease processes including ECM-receptor interaction and cell-adhesion, and KDs

such as SPARC [8], our data-driven approach in the current study uncovered numerous novel

genes, pathways, and gene subnetworks. A likely reason for the enhanced discovery potential

of co-expression modules is that several interacting pathways could be co-regulated in a single

module, or a pathway could interact with other poorly annotated processes in a module to

together confer disease risk. The use of modules capturing such interactions improves the sta-

tistical power, in contrast to testing the pathways individually. Lastly, we conducted cross-vali-

dation studies in support of the functional roles of specific KDs and subnetworks in CVD and

T2D using independent experimental models.

We acknowledge the following limitations in our study. First, our analyses were constrained

by the coverage of functional datasets that are currently available, which causes uneven tissue

coverage between data types and statistical bias towards more commonly profiled tissues such

as adipose and liver, making it difficult to achieve precise inference for all relevant tissues.

Although we believe this does not necessarily undermine the validity of the main findings from

our study, we acknowledge that we likely have missed relevant biology from tissues with fewer

studies and smaller sample sizes. Further investigation is needed when additional relevant data-

sets become available. Secondly, our FDR estimates in MSEA do not take into consideration the
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gene overlap structure among co-expression modules, due to the challenge in accurately adjust-

ing for the various degrees of overlaps between module pairs. To alleviate this limitation, we

focus on modules and pathways demonstrating consistency across datasets and merge overlap-

ping modules subsequently. Thirdly, although we conducted validation experiments on the

CAV1 subnetwork in both in vitro and in vivomodels and cross-validated the importance of the

predicted top key drivers and subnetworks in two independent large-scale mouse population

studies, further experiments are warranted to thoroughly test the causality of the predicted KDs

and elucidate the detailed tissue-specific mechanisms of the KDs on CVD and T2D. This is par-

ticularly important considering the limited overlaps in the modules and KDs identified from

our study and the ones identified in two recent multi-tissue network analysis of cardiometabolic

diseases [10, 11]. Only 7 KDs overlapped including APOA1,CD2,CEBPD,CENPF, CSF1R,

CTSS,UBE2S. Methodological differences in network inference and key driver analysis and dif-

ferences in the pathophysiological conditions of the study populations could explain the dis-

crepancies. Lastly, ethnic-specific and sex-specific mechanisms await future exploration.

There are several direct implications that can be drawn from the results of our integrative anal-

yses of both observational and experimental data. First, it appears that pathogenic pathways for

CVD and T2D are indeed common in ethnically diverse populations. These shared pathways cap-

ture most of the critical processes that have been previously implicated in the development of

either T2D or CVD, including metabolism of lipids and lipoproteins, glucose, fatty acids, bile

acids metabolism, biological oxidation, coagulation, immune response, cytokine signaling, and

PDGF signaling. Second, BCAA metabolism and ECM are among the top and common pathways

identified. Our finding on BCAA is consistent with recent work relating serum levels of BCAA to

risk of CVD and T2D in large prospective cohorts [42, 43], although whether BCAA is a “patho-

phenotype” or strong pathogenic factor has been debated [28, 44]. Our findings support a causal

role of BCAA because 1) both CVD and T2D risk variants were enriched in the co-expression

modules related to BCAA degradation, and 2) 15 genes in the BCAA pathway were part of the top

KD subnetworks, representing a significant enrichment of BCAA genes (fold enrichment = 3.02,

Fisher’s exact test p = 1.4e-5). Of note, BCAA genes themselves carry few genetic risk variants for

CVD and T2D, albeit their network neighboring genes are highly enriched for disease variants,

which may result from negative evolutionary pressure due to the critical role of BCAA. More

recently, Jang and colleagues have shown BCAA catabolism can cause insulin resistance, provid-

ing further support for the causal role of BCAA for both CVD and T2D [45]. Our finding on the

role of ECM in both CVD and T2D is also in line with recent reports [8, 13, 29, 30, 46]. In the top

enriched subnetworks, ECM genes appear to exert strong effect (Fig 4B) coordinating other pro-

cesses such as cholesterol metabolism, energy homeostasis, and immune response across a wide

range of peripheral tissues and endocrine axis. This substantiates the importance of ECM model-

ing as a mechanistic driver for CVD and T2D.

Secondly, our comprehensive network modeling identified critical disease modulators and

key targets whose functional roles were subsequently supported by multiple cross-validation

efforts. This supports the use of network modeling to unravel and prioritize promising top tar-

gets that may have high pathogenic potential for both CVD and T2D. The KDs we identified

can be considered as “highly confident” for the following reasons: 1) they are KDs for both

CVD and T2D associated modules, 2) the tissue-specific subnetworks of these KDs show sig-

nificant and replicable association with both diseases, 3) their subnetworks are highly enriched

with known CVD and T2D genes, 4) in vitro siRNA knockdown and in vivo knockout mouse

experiments confirm the role of a central KD CAV1 in regulating the downstream genes as

predicted in our network model, and 5) both the expression levels of KDs and the genetic vari-

ants mapped to the KD subnetworks are significantly associated with CVD and T2D relevant

traits in independent mouse populations with naturally occurring genetic variations.
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Thirdly, most KDs are not GWAS signals reaching genome-wide significance, nor are they

rare-variant carrying genes, indicating that standard genetic studies miss important genes that

orchestrate known CVD and T2D genes. The phenomenon may reflect a negative evolutionary

pressure experienced by the KDs due to their crucial functions. In support of this hypothesis,

we found a significant enrichment of human essential genes lacking functional variations

among the 162 KDs identified in our study [47] (Fold = 1.41, p = 9.02e-3). This is consistent

with previous findings [8, 9, 13] reaffirming the power and reliability of our approach in

uncovering hidden biological insights particularly in a systematic integrative manner.

The connections between KDs and other disease genes revealed by our study warrant future

investigation into the potential gene-gene interactions. Indeed, a closer examination of the bio-

logical functions from the top shared KDs further corroborates their disease relevance. For

instance, our network modeling identified HMGCR as a top KD, consistent with its primary

role as the target for cholesterol-lowering HMG-CoA inhibitors, namely statins. Our direc-

tionality inference analysis indicates that HMGCR is associated with CVD and T2D in opposite

directions. This is consistent with the recent findings that genetic variations in HMGCR that

decrease CVD risk cause slightly increased T2D risk, and statin drugs targeting HMGCR
reduces CVD risk but increases T2D risk [48–50]. CAV1 and IGF1 represent two tightly con-

nected multi-functional KDs. CAV1 null mice were found to have abnormal lipid levels, hyper-

glycemia, insulin resistance and atherosclerosis [33, 34]. Consistent with these observations,

we found strong association of CAV1 expression levels as well as CAV1 network with diverse

cardiometabolic traits in both human studies and mouse HMDP panels. Our data-driven

approach also revealed the central role of CAV1 in adipose tissue by elucidating its connection

to a large number of CVD and T2D GWAS genes and to genes involved in focal adhesion and

inflammation (Fig 4), which could drive adipocyte insulin resistance [51, 52]. The regulatory

effect of CAV1 on neighboring genes was subsequently validated using in vitro adipocyte and

in vivomouse models. Moreover, our network modeling also captured the central role of

CAV1 in muscle and artery tissues, suggesting multi-tissue functions of CAV1 in the patho-

genic crossroads for CVD and T2D. The other multi-functional KD, IGF1, is itself a GWAS hit

for fasting insulin and HOMA-IR. Despite being primarily secreted in liver, in our study IGF1
demonstrated an adrenal gland and muscle specific regulatory circuit with CVD and T2D

genes, suggesting that it may confer risk to these diseases through the adrenal endocrine func-

tion and muscle insulin sensitivity. The three ECM KDs we identified, SPARC, PCOLCE and

COL6A2, were especially interesting due to their consistent and strong impact on diverse car-

diometabolic traits shown in our cross-validation analyses in HMDP (Fig 4, Fig 6). SPARC
encodes osteonectin, which is primarily circulated by adipocytes. It inhibits adipogenesis and

promotes adipose tissue fibrosis 50. SPARC is also associated with insulin resistance and coro-

nary artery lesions 51, 52. PCOLCE (procollagen C-endopeptidase enhancer) represents a novel

regulator for hypothalamus ECM that could potentially disrupt the neuroendocrine system.

COL6A2, on the other hand, provides new insights into how collagen may affect cardiometa-

bolic disorders: in adrenal tissue COL6A2 is connected to IGF1R, the direct downstream effec-

tor for KD IGF1. Importantly, our directionality analysis suggests that while some KDs such as

CAV1 may have similar directional effects on CVD and T2D, cases like HMGCR that show

opposite effects on these diseases are also present. Therefore, it is important to test the direc-

tional predictions to prioritize targets that have the potential to ameliorate both diseases and

deprioritize targets with opposite effects on the two diseases.

In summary, through integration and modeling of a multitude of genetics and genomics

datasets, we identified key molecular drivers, pathways, and gene subnetworks that are shared

in the pathogenesis of CVD and T2D. Our findings offer a systems-level understanding of

these highly clustered diseases and provide guidance on further basic mechanistic work and
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intervention studies. The shared key drivers and networks identified may serve as more effec-

tive therapeutic targets to help achieve systems-wide alleviation of pathogenic stress for cardio-

metabolic diseases, due to their central and systemic role in regulating scores of disease genes.

Such network-based approach represents a new avenue for therapeutic intervention targeting

common complex diseases.

Methods

Identification of qualified SNPs from GWAS of CVD and T2D

Detailed GWAS information including sample size, ethnicity and genotyping platform was

described in S4 Table and S1 Text. Briefly, p-values of qualified single nucleotide polymor-

phisms (SNPs) at minor allele frequency > 0.05 and imputation quality > 0.3 for CVD and

T2D were collected for all available GWAS datasets (WHI-SHARe, WHI-GARNET, JHS, FHS,

CARDIoGRAMplusC4D [19], and DIAGRAM [20]). SNPs meeting the following criteria were

further filtered out: 1) ranked in the bottom 50% (weaker association) based on disease associ-

ation p-values and 2) in strong linkage disequilibrium (LD) (r2> 0.5) according to ethnicity-

specific LD data from Hapmap V3 [53] and 1000 Genomes[54]. For each GWAS dataset, LD

filtering was conducted by first ranking SNPs based on the association p values and then

checking if the next highest ranked SNP was in LD with the top SNP. If the r2 was above 0.5,

the SNP with lower rank was removed. The step was repeated by always checking if the next

SNP was in LD with any of the already accepted ones.

Curation of data-driven gene co-expression network modules

Using the Weighted Gene Co-expression Network Analysis (WGCNA)[55], we constructed

gene co-expression modules capturing significant co-regulation patterns and functional relat-

edness among groups of genes in multiple CVD- or T2D-related tissues (including aortic

endothelial cells, adipose, blood, liver, heart, islet, kidney, muscle and brain) obtained from

nine human and mouse studies (S5 Table). Modules with size smaller than 10 genes were

excluded to avoid statistical artifacts, yielding 2,672 co-expression modules. These coexpres-

sion modules were used as a collection of data-driven sets of functionally connected genes for

downstream analysis. The potential biological functions of each module were annotated using

pathway databases Reactome and KEGG, and statistical significance was determined by Fish-

er’s exact test with Bonferroni-corrected p< 0.05.

Curation of functional genomics from eQTLs and ENCODE

eQTLs establish biologically meaningful connections between genetic variants and gene

expression, and could serve as functional evidence in support of the potential causal role of

candidate genes in pathogenic processes[56, 57]. We therefore conducted comprehensive

curation for significant eQTLs in a total of 19 tissues that have been identified by various con-

sortia (including the Genotype-Tissue Expression (GTEx) [58], Muther [59] and Cardiogenics

[60], and additional independent studies; S6 Table). Additional functional genomics resources

from ENCODE were also curated to complement the eQTLs for SNP-gene mapping (S1 Text).

Identification of genetically-driven CVD and T2D modules using Marker

Set Enrichment Analysis (MSEA)

MSEA was used to identify co-expression modules with over-representation of CVD- or T2D-

associated genetic signals for each disease GWAS in each cohort/ethnicity in a study specific

manner. MSEA takes into three input: 1) Summary-level results of individual GWAS (WHI,
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FHS, JHS, CARDIoGRAM+C4D, DIAGRAM) for the LD-filtered SNPs; 2) SNP-gene map-

ping information, which could be determined by tissue-specific cis-eQTLs, ENCODE based

functional annotation and chromosome distance based annotation. Cis-eQTLs is defined as

eQTLs within 1MB of the transcription starting sites of genes. For ENCODE, we accessed the

Regulome database and used the reported functional interactions to map SNPs to genes by

chromosomal distance. Only SNPs within 50kb of the gene region and have functional evi-

dence in Regulome database were kept; 3) Data-driven co-expression modules from multiple

human and mouse studies as described above. Tissue-specificity was determined by the tissue

origins of eQTLs and ethnic specificity was determined by the ethnicity of each GWAS cohort,

since the human disease genetic signals and human eQTL mapping were the main driving fac-

tors to determine the significance of the modules. MSEA employs a chi-square like statistic

with multiple quantile thresholds to assess whether a co-expression module shows enrichment

of functional disease SNPs compared to random chance [14]. The varying quantile thresholds

allows the statistic to be adoptable to studies of varying sample size and statistical power. For

the list of SNPs mapped to each gene-set, MSEA tested whether the SNP list exhibited signifi-

cant enrichment of SNPs with stronger association with disease using a chi-square like statistic:

w ¼
Pn

i¼1

Oi � Eiffiffiffi
Ei
p

þk
, where n denotes the number of quantile points (we used ten quantile points

ranging from the top 50% to the top 99.9% based on the rank of GWAS p values), O and E

denote the observed and expected counts of positive findings (i.e. signals above the quantile

point), and κ = 1 is a stability parameter to reduce artefacts from low expected counts for small

SNP sets. The null background was estimated by permuting gene labels to generate random

gene sets matching the gene number of each co-expression module, while preserving the

assignment of SNPs to genes, accounting for confounding factors such as gene size, LD block

size and SNPs per loci. For each co-expression module, 10000 permuted gene sets were gener-

ated and enrichment P-values were determined from a Gaussian distribution approximated

using the enrichment statistics from the 10000 permutations and the statistics of the co-expres-

sion module. Finally, Benjami-Hochberg FDR was estimated across all modules tested for each

GWAS.

To evaluate a module across multiple GWAS studies, we employed the Meta-MSEA analy-

sis in Mergeomics, which conducts module-level meta-analysis to retrieve robust signals across

studies. Meta-MSEA takes advantage of the parametric estimation of p-values in MSEA by

applying Stouffer’s Z score method to determine the meta-Z score, then converts it back to a

meta P-value. The meta-FDR was calculated using Benjamini-Hochberg method. Co-expres-

sion modules with meta-FDR < 5% were considered significant and included in subsequent

analyses.

Identification of key drivers and disease subnetworks

We used graphical gene-gene interaction networks including the GIANT networks [31] and

Bayesian networks (BN) from 25 CVD and T2D relevant tissue and cell types (S7 Table, S1

Text) to identify KDs. If more than one dataset was available for a given tissue, a network was

constructed for each dataset and all networks for the same tissue were combined as a union to

represent the network of that tissue, with the consistency of each network edge across datasets

coded as edge weight. The co-expression modules genetically associated with CVD or T2D

identified by Meta-MSEA were mapped onto these graphical networks to identify KDs using

the weighted key driver analysis (wKDA) implemented in Mergeomics [14]. wKDA uniquely

consider the edge weight information, either in the form of edge consistency score in the case

of BNs or edge confidence score in the case of GIANT networks. Specifically, a network was

first screened for suitable hub genes whose degree (number of genes connected to the hub) is

Shared gene networks and regulators for CVD and T2D

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007040 September 28, 2017 18 / 25

https://doi.org/10.1371/journal.pgen.1007040


in the top 25% of all network nodes. Once the hubs have been defined, their local one-edge

neighborhoods, or “subnetworks” were extracted. All genes in each of the CVD and T2D-asso-

ciated gene sets that were discovered by meta-MSEA were overlaid onto the hub subnetworks

to see if a particular subnetwork was enriched for the genes in CVD/T2D associated gene sets.

The edges that connect a hub to its neighbors are simplified into node strengths

(strength = sum of adjacent edge weights) within the neighborhood, except for the hub itself.

The test statistic for the wKDA is analogous to the one used for MSEA: w ¼ O� Effiffi
E
p
� k

, except that

the values O and E represent the observed and expected ratios of genes from CVD/T2D gene

sets in a hub subnetwork. In particular, E ¼ NkNp
N is estimated based on the hub degree Nk, dis-

ease gene set size Np and the order of the full network N, with the implicit assumption that the

weight distribution is isotropic across the network. Statistical significance of the disease-

enriched hubs, henceforth KDs, is estimated by permuting the gene labels in the network for

10000 times and estimating the P-value based on the null distribution. To control for multiple

testing, stringent Bonferroni adjustment was used to focus on the top robust KDs. KDs shared

by CVD and T2D modules are prioritized based on the following criteria: i) Bonferroni-cor-

rected p< 0.05 in wKDA, ii) replicated by both GIANT networks and Bayesian networks, and

iii) the genetic association strength between the KD subnetworks (immediate network neigh-

bors of the KDs) and CVD/T2D in Meta-MSEA. Finally, Cytoscape 3.3.0 [61] was used for dis-

ease subnetwork visualization.

Inference of the direction of genetic effects of KD subnetworks

We used the genetic effect direction of KDs as a proxy for probable effect direction of the KD

subnetworks. For each KD, we retrieved their tissue-specific eQTLs as well as variants within

50kb of the gene region, whose genetic association information was available in both CARDIo-

GRAMplusC4D and DIAGRAM, the two large meta-consortia of GWAS for CVD and T2D.

CVD/T2D association beta-values of mapped variants of KDs were then extracted, and the

signs of beta-values were examined to ensure they were based on the same reference alleles

between GWAS. Lastly, for all mapped variants on each KD, the signs of the beta-value for

CVD and T2D were compared and statistical significance of the proportion of variants with

similar or opposite effect direction between diseases was determined by z-test.

Validation of KD subnetwork topology using siRNA knockdown in

adipocytes

We chose to validate the predicted adipose subnetwork of a top ranked KD of both CVD and

T2D, Cav1, in 3T3-L1 adipocytes. Cells were cultured to confluence and adipocyte differentia-

tion was induced using MDI differentiation medium (S1 Text). Two days after the initiation

of differentiation, cells were transfected with 50 nM Cav1 siRNAs (3 distinct siRNAs were

tested and two of the strongest ones were chosen) or a scrambled control siRNA. For each

siRNA, two separate sets of transfection experiments were conducted, with three biological

replicates in each experiment. Two days after transfection, cells were collected for total RNA

extraction, reverse transcription and quantitative PCR measurement of 12 predicted Cav1 sub-

network genes and 5 random genes not within the subnetwork as negative controls (S1 Text).

β-actin was used to normalize the expression level of target genes.

Validation of KD subnetwork topology using Cav1 null mice

We accessed the gonadal white tissue gene expression data of 3-month-old wild type and

Cav1-/- male mice (N = 3/group) from Gene Expression Omnibus (GEO accession:
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GSE35431). Detailed description of the data collection procedures has been described previ-

ously [33]. Gene expression was profiled using Illumina MouseWG-6 v2.0 expression beadchip

and normalized using robust spline. Differentially expressed genes (DEGs) between genotype

groups were identified using linear model implemented in the R package Limma and false dis-

covery rate was estimated using the Benjamini-Hochberg procedure [62]. DEGs at different

statistical cutoffs were compared to CAV1 subnetwork genes at different levels (i.e., 1, 2, 3, or 4

edges away from CAV1) to assess overlap and significance of overlap was evaluated using Fish-

er’s exact test.

Validation of KD subnetworks using mouse HMDP studies

To further validate the role of KD subnetworks in CVD and T2D, we incorporated genetic,

genomic and transcriptomic data from HMDP (comprised of>100 mouse strains differing by

genetic composition) [21–23]. HMDP data was from two panels, one with mice fed with a

high-fat diet (HF-HMDP)[22], and the other with hyperlipidemic mice made by transgenic

expression of human APOE-Leiden and CETP gene (ATH-HMDP)[23]. For HF-HMDP, we

retrieved gene-trait correlation data for adipose tissue (due to its relevance to both CVD and

T2D) and 7 core cardiometabolic traits including adiposity, fasting glucose level, fasting insu-

lin level, LDL, HDL, triglycerides and homeostatic model assessment-insulin resistance

(HOMA-IR). For ATH-HMDP, we retrieved aorta gene-trait correlation (aorta tissue is the

main site for CVD in mice) for all 7 traits. In addition to assessing the trait association

strengths of individual KDs, we also used MSEA to evaluate the aggregate association strength

of the top CVD/T2D KD subnetworks with the traits at both transcription and genetic levels

through transcriptome-wide association (TWAS) and GWAS in HF-HMDP and ATH-HMDP

(S1 Text).
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