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ABSTRACTION OF THE DISSERTATION 

 

Extracting and Analyzing Biochemical Features 

from Nano Bioparticles for Disease Diagnosis using Surface-enhanced 

Raman Spectroscopy and Artificial Intelligence 

 

by 

 

Tieyi Li 

Doctor of Philosophy in Materials Science and Engineering 

University of California, Los Angeles, 2023 

Professor Ya-Hong Xie, Chair 

 

Disease diagnosis has long been a basis of modern medicine, enabling early intervention 

and effective treatment strategies. Recent advancements in nanotechnology have ushered in a new 

era of diagnostic techniques, with nanoscale bioparticles emerging as powerful tools in this 

endeavor. Nanoscale bioparticles, including extracellular vesicles, viruses, and other bioactive 

entities, have gained prominence due to their unique properties that make them ideal candidates 

for biomarker detection. These tiny structures, often measuring around 100 nanometers, carry a 
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wealth of molecular information reflective of the physiological and pathological states of the body. 

Their presence, composition, and abundance in biological fluids such as blood, saliva, and urine 

hold invaluable clues for diagnosing a wide range of diseases This dissertation presents a cutting-

edge approach to disease diagnosis by integrating the analysis of nano bioparticles, Surface-

Enhanced Raman Spectroscopy (SERS), and machine learning techniques targeting disease 

diagnosis. SERS, with its unparalleled sensitivity and specificity, serves as a powerful tool for the 

characterization of biomolecules. We investigate the feasibility of SERS in capturing the intricate 

spectral signatures of nano bioparticles, revealing valuable insights into their molecular 

composition. Moreover, machine learning models are harnessed to decipher this wealth of spectral 

data, enabling the identification of disease-specific biomarkers with unprecedented accuracy. The 

article encompasses a detailed exploration of exosome biology, the principles of SERS, the 

intricacies of machine learning based data analysis methodologies applied to spectral data, 

preliminary achievements in non-small cell lung cancer diagnostic study, and feasibility of identify 

SARS-CoV-2 biomarkers for COVID detection. We present a particular subgroup of exosomes 

derived from human bronchial epithelial cells possessing distinct spectral signatures that can be a 

potential indicator of non-small cell lung cancer early metastasis, and a rapid and accurate SERS 

based platform for COVID detection using salivary specimen, superior in some cases to RT-PCR 

and antigen test. The integration of these multidisciplinary approaches represents a significant step 

toward revolutionizing disease diagnosis through the convergence of nano bioparticle analysis, 

spectroscopy, and machine learning, offering a promising avenue for early and accurate disease 

detection in clinical settings. 
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Chapter 1 Introduction 

1.1 Disease diagnosis and the requirements 

Disease diagnosis is always a critical aspect of healthcare. The importance of disease 

diagnosis has been emphasized since it is the very first step in managing patients’ conditions. 

Advances and improvements in disease diagnosis facilitate better medical treatment by doctors 

and healthcare professionals. Thanks to the rapid development of modern technologies and tools, 

diagnosis methods including laboratory test (Chernecky & Berger, 2012), imaging scans (Al-

Sharify et al., 2020; Pantanowitz et al., 2011), genetic testing (Burke, 2002; McPherson, 2006), 

endoscopy (Friedt & Welsch, 2013; Spiceland & Lodhia, 2018), biopsy (Elston et al., 2016; J. Liu 

et al., 2021), and point-of-care testing (Gubala et al., 2012; C. Wang et al., 2021) are invented and 

applied on medical cares. There are a series of metrics for evaluating a diagnostic technique. Rapid 

and accurate diagnosis is always the top priority (Knottnerus et al., 2002). In addition, complexity 

and cost of the operation, sample acquisition procedure (e.g., invasive or non-invasive), 

requirements on devices and operators are also practical considerations while trying to apply a 

novel technique into clinical application (Knottnerus et al., 2002).  

1.2 Current development of applying nano-bioparticles analyses for disease diagnosis 

Recently, diagnoses based on characterization and analyses of nano bioparticles (NBPs) 

have been showing significant potential. NBPs are a family of biological entities inside a human 

body that are much smaller than the typical cells and bacteria, which are usually in the dimensions 

of 30nm-500nm (Zhu et al., 2021). NBPs include extracellular vehicles (EVs, exosomes, 

microvesicles, apoptotic bodies etc.) (Van der Pol et al., 2012), viral-like particles (VLPs) (Zeltins, 

2013), proteins and so on. EVs have been reported to possess informative biomarkers for multiple 
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diseases such as lung cancer (Fujita et al., 2015; Ren et al., 2019; Roman-Canal et al., 2019), breast 

cancer (Fathi et al., 2023; You et al., 2019), gastric cancer (K. Y. Chung et al., 2020; G. Li et al., 

2021; Xue et al., 2023), Alzheimer's disease (Eren et al., 2022; Gallart-Palau et al., 2020), and 

Parkinson disease (C.-C. Chung et al., 2020; Vacchi et al., 2020). Immunofluorescence staining 

(Zitvogel et al., 1999), proteomics analysis (Welton et al., 2010), flow cytometry (Pospichalova et 

al., 2015), genomic analyses (Kalluri & LeBleu, 2016; Luo et al., 2019) are the commonly used 

characterization techniques to assess the contents of exosomes and study their roles in disease 

diagnosis. Viruses are invasive NBPs which exist in organs, tissue or circulating system (Zeltins, 

2013). Virus detection for disease diagnosis includes polymerase chain reaction (PCR) (Watzinger 

et al., 2006a), enzyme-linked immunosorbent assay (ELISA) (Boonham et al., 2014), sequencing 

(Boonham et al., 2014; S. Liu et al., 2011), immunofluorescence assay (IFA) (Gardner & 

McQuillin, 2014; Madeley & Peiris, 2002) and viral culture (Leland & Ginocchio, 2007). As a 

summary, conventional characterization or detection techniques are based on a portion of the 

analytes and typically require a certain level volume concentration, in other words, they are ‘bulk 

analyses of NBPs. For the purposes of improving characterization sensitivity and accuracy, single 

particle characterization techniques have been recently investigated (Kibria et al., 2016; Raghu et 

al., 2018), such as Tunable resistive pulse sensing (TRPS) (Anderson et al., 2015) and microfluidic 

resistive pulse sensing (MRPS) (J. S. Kim et al., 2023). Single particle analyses advance bulk 

analyses mostly in terms of the capability of distinguishing informative versus non-informative 

analytes. At the same time, however, much more information and variation of the signal brings in 

more complexity and usually requires powerful and robust analyzing methods. In this study, we 

applied a rather young single particle characterization technique-SERS on extracting and analyzing 
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the biochemical signatures of NBPs, specifically exosomes and viruses then show its potential in 

pathological studies and clinical diagnoses. 

1.3 SERS characterization of nano-bioparticles 

SERS is an “upgraded version” of Raman spectroscopy by incorporating metallic surface 

plasmon and Raman scattering. It is a powerful analytical technique for detection and 

characterization at low analyte concentrations (Sharma et al., 2012). When laser reaches the 

surface of a metallic surface, the interactions between the electromagnetic (EM) field of laser and 

the free electrons of metal forms localized surface plasmon resonance (LSPR) that significantly 

enhanced the electric field. Much stronger Raman scattering occurs on the analytes’ molecules that 

gives clearer representative “fingerprints” which exclusively indicates the unique biochemical 

contents. On the other hand, instead of targeting a portion of the nano particle, SERS generates 

spectroscopic signatures based on all the active molecular bonds included by the particle, therefore 

a more comprehensive picture could be drawn from the analyte, which contains the biomarker 

information on both membrane surface and inner plasm. Label-free property of SERS also greatly 

simplifies the sample preparation procedure. Considering the circulating activity of nano-

bioparticle, proper non-invasive specimen acquisition could also be realized and promotes SERS 

as a more accurate and practical technology.  

Despite all the advantages of SERS characterizing single nano particles, amplified 

variations have been observed within SERS due to multiple different modes of surface plasmon 

induced and fluctuations in Raman scattering. Moreover, tremendous spectroscopic data for every 

single nano particle is generated that lays more pressure on the data analyses. Efficient and robust 

data analysis techniques are required to extract useful biomarker information as well as eliminating 

redundant and irrelevant information. Single particle characterization typically boosts the amount 
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of work in measuring specimen since every single particle needs to be characterized. Therefore, a 

more efficient data collection procedure is needed to increase the throughput and ensure the 

integrity of the specimen characterization. We customized an automatic plus iterative particle 

scanning program and successfully boosted the spectroscopic data throughput by approximately 

ten times. Future improvements such as using multiple laser emission sources, increasing NBP 

volume concentration, improving spectrometer hardware could help overcome the data throughput 

bottleneck. 

SERS characterization of NBPs requires well-designed platforms that allow reasonably 

high electromagnetic field enhancement and compatibility to NBPs in terms of dimensions and 

safety. Platforms with various nano structures (nano particles, nano pillars, nano spheres, nano 

bowls etc.) and metallic materials (silver, gold, copper, graphene etc.) have been reported in 

literature on tons of biological studies (tissues, cells, bacteria, virus, EVs, proteins, DNA/RNA etc.) 

and demonstrate different outcomes in enhancements. Based on the typical dimensions of our 

targets (exosomes and virus), 30-150nm, we used lithography to fabricate gold substrate featured 

by quasi-periodic nano pyramidal structures with dimension of approximately 200 nm to allow 

sufficient overlapping between the “hot spots” (region located near the metallic surface with 

extremely high EM field enhancement factor) and analytes. Microscopic observations prove sparse 

distribution of NBPs on the substrate and comparison with regular Raman spectroscopy shows 

much more representative spectral features and significant enhanced signal by a factor around 109. 

Sparse distribution of NBPs ensures single nano particle characterization during scanning. 

Enhanced signal-to-noise ratio (SNR) facilitates the following spectral data analyses by presenting 

more featured peaks. Laser is another important factor in measuring NBPs. Factors including 

wavelength, power, exposure time, spot size need optimization to prevent damaging biological 
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specimens, changing analytes’ signature due to overheating. 488nm, 633nm, 785nm and 1064 nm 

are typically available for Raman spectroscopy, among the choices, 633 nm and 785 nm are most 

used in our research. Longer-wavelength laser gives less overheating and fluorescence due to lower 

energy photons. Overheating may burn the specimen especially when the analytes are sensitive to 

temperature and fluorescence always appears on the Raman spectra by smooth baselines that might 

mask the Raman scattering signal when the energy of the photon due to fluorescent emission is 

higher than that of the scattered photons. However, red laser excites weaker LSPR according to 

the gold absorption spectra. 785 nm laser turns out to be the best option which could suppress the 

fluorescence, maintain a good condition of the specimen, generate high SNR spectra.  

1.4 Artificial intelligence 

A powerful data analysis platform is essential in dealing with the tremendous amount of 

complex SERS spectral databases. During the past ten years, artificial intelligence (AI) has shown 

brilliant capabilities in analyzing data such as pattern recognition, image/video analysis, nature 

language processing (NLPs), signal processing, predictive modeling (Zhai et al., 2021). Numerous 

traditional models and neural networks (NNs) have been introduced to healthcare (Reddy et al., 

2020), finance (Cao, 2020), entertainment (Hallur et al., 2021), scientific research (Xu et al., 2021) 

etc. Machine learning (ML), as a member of AIs, has played an important role in disease diagnosis 

and biological research (Ahsan et al., 2022). People have widely applied deep learning models in 

recognizing cancers and other diseases with medical imaging (CT scanning, MRI scanning) and 

monitoring healthy conditions with electronic devices (Barragán-Montero et al., 2021; Currie et 

al., 2019). Genomics and proteomics analyses are gradually assisted by ML to allow scientists to 

generate novel discoveries (Libbrecht & Noble, 2015; Swan et al., 2013).  
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Inspired by ML’s usage in the field of healthcare, we applied multiple ML algorithms in 

analyzing SERS spectroscopic data of biomarker identification for disease diagnosis, such as 

classification, clustering, feature selection, spectral preprocessing, data collection and so on. As 

reported, regular Raman spectroscopy has large signal fluctuations due to multiple physical 

reasons, including photon statistics, shot noise, sample heterogeneity, instrumental noise etc. For 

SERS, in addition to the above reasons, the factors related to plasmon resonance also amplify the 

signal fluctuations, such as ununiform LSPR, distribution of hotspots, thermal effect (Sharma et 

al., 2012). All the above lead to highly complicated peak patterns of SERS spectrum and variations 

even for the same NBP. The target biomarker spectral features are usually overwhelmed by 

tremendous irrelevant features. A generalized, robust and representative pattern needs to be 

established as the standard “fingerprint” of the target NBP. Multiple algorithms persistent to 

variations in our research have been developed and utilized. Traditional statistical data analyses 

and processing algorithms are designed for preprocessing spectroscopic data including quality 

control, baseline subtraction, noise reduction, normalization. Hierarchical clustering analysis 

(HCA), nearest neighbors clustering etc. are applied to group and differentiate the bioparticle 

signatures. Support vector machine, AdaBoost of decision tree and NNs are put into identify and 

classify biomarker signatures for the purpose of detecting abnormal entities. Our studies indicate 

that our characterization and analytical setup could successfully identify cancers and COVID 

biomarkers (either exosomal or viral biomarkers), validated by cross-validations and blind tests. 

Correlation studies further show linkage between the properties of certain bioparticles and stages 

of diseases, which demonstrates potential capabilities in tracking patients’ conditions and early 

diagnoses. 
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1.5 Achievements  

 As mentioned previously, we utilized our platform and method in several disease diagnoses 

studies including cancers, virus caused diseases, dementia etc. The main focuses of this thesis are 

non-small cell lung cancer (NSCLC) and corona virus related diseases.  

1.5.1 NSCLC 

Early detection of cancer is always a challenging task, which is also one of our goals 

regarding NSCLC. In our investigation on NSCLC, we found a special subpopulation of exosomes 

isolated from Human Bronchial Epithelial Cells (HBECs) that possess biomarkers indicating the 

metastasis and development of patients’ NSCLC. Collected originally from patients’ MPE, specific 

subpopulation of HBECs isolated by “constricted migration” technique has higher migration 

tendency (HBEC-HM) and HBEC-HM derived exosomes were characterized by SERS. Spectral 

signatures and the corresponding analyses prove unique signatures versus other exosome 

subpopulations (named unselected HBECs or HBEC-UN derived exosomes). To validate the 

spectral features of SERS depicting the proteomic and genomic information of NSCLC, feature 

selection based on ant colony optimization (ACOFS) was conducted to select the biomarker-

informative peaks, which were then compared with exosome mass spectrometry characterization 

results. SERS features related to premalignancy were discovered to serve as the biomarker. 

Validations by exosomes derived from NSCLC patients’ malignant pleural effusion (MPE) showed 

the existence of similar exosomal biomarkers found in HBEC-HM. We have found promising 

feasibility in NSCLC monitoring and early diagnosis, more studies including a large samples scale 

and improving robustness of the analytical methods are being conducted to push it towards clinical 

application. 
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1.5.2 Corona viruses 

Since late 2019, the COVID-19 pandemic has been a hot topic for over three years. We 

have been working on improving saliva-based SARS-CoV-2 detection by incorporating our 

platform. Our SERS platform has shown great potential in achieving accurate, simple, and rapid 

testing when compared to the "gold standard" PCR test and other novel methods such as combining 

screening and tumor recognition. We established unique SERS spectral signatures of SARS-CoV-

2 against other similar nano bioparticles such as SARS-CoV-1 and EVs, based on size and contents. 

Furthermore, our platform was able to distinguish between different SARS-CoV-2 variants, 

facilitating research and the discovery of new variants. Starting with "artificial" clinical samples 

prepared by spiking SARS-CoV-2 into human saliva, our platform achieved satisfactory 

detectability with sensitivity and specificity of 90% and 80%, respectively. Subsequently, we 

conducted blind tests on clinical samples from 5 COVID-19 patients and 5 healthy controls then 

achieved 80% sensitivity and 100% specificity. Based on these preliminary results, we are 

introducing more clinical samples for further validation and practical application. 

1.6 Chapter overview 

 Chapter II explores the present and future advancements in utilizing NBP (Nanobioparticle) 

analysis for disease detection and diagnosis, encompassing exosomes, viruses, and more. Chapter 

III delves into the operational principles and the breadth of applying NBP analysis in diagnosis 

using SERS, including aspects such as specimen preparation, processing, data collection, and 

subsequent data analysis. Chapter IV furnishes an extensive overview of our materials and research 

methodologies. Lastly, Chapter V and chapter VI provide a specific showcase of our 

accomplishments in disease detection, highlighting NSCLC diagnosis and the detection of SARS-

CoV-2. 
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Chapter 2 Standard operating procedure of SERS 

platform for characterizing and analyzing nano-bioparticles 

We have been building a Standard Operating Procedure (SOP) for maintaining, upgrading, 

and applying SERS platform. As shown in Figure 2.1, the SOP is composed of four general 

sections, sample preparation, SERS characterization, data analysis, clinical usage sequentially. 

Each part has been undergoing optimization to maximize the overall performance.  
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Figure 2.1 SOP of SERS-based platform for disease diagnosis. 
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2.1 Nano-bioparticle specimen preparation 

Sample sources are typically human body fluid, which is mainly chosen by the abundance 

of the target biomarkers. There are also other factors when determining the sample sources, 

including invasiveness, complexity, time etc. For instance, we have collected bronchoalveolar 

lavage (BAL) and MPE for detecting lung cancer, cerebrospinal fluid (CSF) for dementia, serum 

or blood for breast cancer, saliva for COVID. Each of the body fluids has unique components and 

different physical properties (viscosity, density, volume etc.), according to which specially 

designed NBP isolation methods were utilized (Martins et al., 2023).  

The most commonly and well-established technique is sequential ultracentrifugation (SUC) 

combined with ultrafiltration (M. Zhou et al., 2020). Typically, UC-based NBP isolation contains 

six to seven rounds of different centrifugal forces and time, as well as several ultrafiltration (UF, 

e.g., 0.22 m column filter). UC can produce highly concentrated and pure nano bioparticles with 

optimized operation parameters, however, it usually needs complicated operations and 

professional ultracentrifuge that are rather costly. Recently, chromatography has been used in 

isolating NBPs from multiple biological fluids such as blood and urine (P. Li et al., 2017). In this 

technique, NBPs are separated by their physical properties including size, charge, and 

hydrophobicity. Typical chromatography includes size exclusion chromatography (SEC), ion 

exchange chromatography (IEC), affinity chromatography (AC). In our study, SEC (IZON 

ExoQuick columns) are used to isolate EVs from MPE, CSF, serum, and UC to isolate corona 

viruses from cell culture media, saliva. Isolated NBPs samples are resuspended in PBS with other 

special reagents.  
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2.2 SERS characterization 

 Well prepared specimens are loaded onto the SERS substrate for Raman characterization. 

The design and fabrication of SERS substrate for appropriate surface plasmon are one of the 

critical steps. Biological affinity and safety, compatibility to NBPs’ sizes, enhancement factors 

(EFs) of surface plasmon resonance, feasibility of fabrication, productivity, compatibility to single 

particle detection are the key factors that impact the ultimate performance. There are numbers of 

material choices and nano structures reported with acceptable performance. As mentioned, gold, 

silver and copper are commonly used (Sharma et al., 2012). Nano pillars, nano bowls, nano 

particles, nano spheres etc. are frequently reported (Mo et al., 2016; Shen et al., 2009; Yue et al., 

2020). Considering the size range of NBPs (30-150 nm), we utilized quasi periodic nano gold 

pyramidal structure made by lithography protocol. Each unit has dimensions of 200 nm  200 nm 

 250 nm (width  length  height). Pyramids are arranged in a hexagonal manner. The adjacent 

pyramids are spaced at 400 nm. FDTD simulation results show the “hotspots” are generally located 

at the lateral facet of each pyramid, which spread in a range of 100 nm with acceptable EFs (P. 

Wang et al., 2013). This “bottom-up gradual open” space allows NBPs fully overlapping with 

“hotspots”, generating the spectral fingerprints of the entire intact NBP. More information from a 

single NBP increases the chance of discovering the unique features for identifying meaningful 

biomarkers. More details of fabrication are given in Section 3.3.4.  

 Loading specimens onto the substrate is rather straightforward. Typically, a tiny droplet (3-

10 L) of specimen is pipetted onto a 5 mm by 5 mm area of the substrate. For common biological 

buffer like PBS, the specimen droplet forms a “coffee ring” after drying since PBS solution 

typically doesn’t wet the surface. However, other kinds of solutions (such as ethanol, DMSO) or 

specific solute added to PBS could cause changes to the contacting behavior between specimen 
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and substrate surface. In this case, grid barriers need to be placed on the surface to prevent different 

specimen mixing and control the NBPs distributions.  

 

Figure 2.2 NBPs in PBS buffer forms coffee ring. 

 Subsequently, substrate with loaded specimens is placed in Raman spectrometer for 

characterization. To improve the spectroscopic data throughput, we run arial map acquisition on 

Raman spectrometer, which is basically a “scanning-characterizing” procedure. Searching maps 

with shorter exposure time and larger scanning area serve for capturing potential NBPs positions. 

Characterizing maps with longer exposure time run targeting the recorded NBPs positions and 

generate qualified spectral data. Since this “scanning-characterizing” procedure is a rather 

repetitive task, command script on Raman spectrometer support PC enabling auto-focus, maps 

management, signal detection, auto-characterization is installed to increase the data throughput. 

Compared to manual data collection, automatic maps acquisitions could boost data throughput by 

a factor of 5-10. Collected spectral data are ensembled into large datasets for the followed by 

analyses. 
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2.3 Data analysis 

 SERS spectral data analyses generally contain quality control, data formatting, 

preprocessing, fingerprints analyses. Efficient and accurate biomarker establishment requires 

spectroscopic data above a threshold of quality. A qualified spectrum is supposed to have 

reasonable numbers of well-shaped peaks and is free of fluorescence background, random noises 

and spikes due to cosmic rays (Sharma et al., 2012). Therefore, a filtering program is used to 

remove those spectra with insufficient qualities. All the spectra passing the filter undergo 

preprocessing including background subtraction, noise reduction, normalization. They are 

designed to remove the fluorescence interference and signal random fluctuations respectively on 

the data aspect. Fingerprints analyses include multiple distinct methods for different purposes. For 

instance, dimensionality reduction algorithms such as principal component analysis (PCA), linear 

discriminant analysis (LDA) etc. are used for visualizing the general data distribution and their 

simple linear relation among Raman shifts. SVMs, decision trees, NNs and other machine learning 

models are used to investigate and learn unique features of certain types of NBPs and output a 

predictive model for later tests. HCA, K-Nearest Neighbors Clustering (KNN) are for clustering 

subpopulation in NBPs from one specimen (e.g., SARS-CoV-2) and picking out the most 

representative biomarker for a disease. We also applied generic feature selection algorithms (ant 

colony optimization, particle swarm optimization-based feature selection) to build the linkage 

between Raman peak features and bio-chemical molecules’ properties, such as up/down regulation 

of proteins or DNA/RNA mutations. With trustworthy biomarkers’ fingerprints established, we 

then validate them and try to put into disease diagnosis.  
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2.4 Clinical usage 

 Systematic validations are strictly required. We conducted cross validations and blind tests 

for the purposes of optimizing protocol, tuning parameters, and evaluating our methodology. 

Clinical samples of investigated diseases are usually involved, typically, diseased samples versus 

healthy control samples are used to obtain sensitivity/specificity. In terms of selecting samples, 

there are questions related to biostatistics that need comprehensive investigation. For example, 

what is an appropriate size of clinical sample dataset? How many NBPs are needed to draw an 

enough clear picture of specimens? The scale of our clinical sample set is in the range of 30-100. 

We have achieved good grades in lung cancer diagnosis by exosomes and saliva based COVID 

detection. More clinical samples are planned according to biostatistical theories to further improve 

the solidity.  
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Chapter 3 Backgrounds, materials, methods 

3.1 Nano-bioparticles 

As stated in previous sections, NBPs refer to any nano-sized, discrete particles with 

biological functions which are suspended in a liquid medium. They play important roles in 

numerous physiological and pathological processes, such as substance transportation, immune 

response, neural transmission, disease development and so on. As such, NBPs often contain 

biomarkers for various biological processes, for example, cancer metastasis, neurodegenerative 

disorders, respiratory diseases. Our focuses are EVs, especially exosomes, and SARS-CoV-2 

including its variant. 

3.1.1. Extracellular vesicle (exosomes) 

 EVs are a heterogeneous family of structures/bodies enclosed by lipid bilayer that are 

secreted by cells into extracellular environments (Raposo & Stoorvogel, 2013). EVs were not 

believed to play significant roles in biological processes until the findings by Raposo et al in 1996 

(Raposo et al., 1996), which proved the effect of EVs on immune responses. EVs are generally 

grouped into three classes based on size, origin and biogenesis pathways, which are exosomes, 

microvesicles (MVs), and apoptotic bodies, ranging 30-150 nm, 100-1000 nm, 1-5 m respectively 

(Raposo & Stoorvogel, 2013). As demonstrated by Figure 3.1, exosomes are produced from the 

endolysosomal pathway and secreted from cells through the fusion of multivesicular bodies with 

the plasma membrane. In contrast, MVs are formed by budding from plasma membrane directly. 

Both types of EVs have the features of containing cytoplasmic proteins, lipid bilayer and nucleic 

acids.  
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Figure 3.1 The biogenesis of EVs. EVs include exosomes, lysosomes, microvesicles, ectosomes, 

oncosomes etc. 

Exosomes are believed to be a uniform population of vesicles of endocytic origin. They are 

formed by the inward budding of the multivesicular body (MVB) membrane, and cargo sorting 

into exosomes is facilitated by the endosomal sorting complex required for transport (ESCRT) and 

associated proteins such as ALIX and TSG101 (Colombo et al., 2013; Jiang et al., 2020; 

Koritzinsky et al., 2019). Moreover, in some cells, exosome production requires ceramide and 

neutral sphingomyelinase (Guo et al., 2015; Trajkovic et al., 2008), while in others, small GTPases 

such as RAB27A, RAB11, and RAB31 are involved in the fusion of MVBs with the cell membrane, 

leading to the secretion of exosomes (C. Hsu et al., 2010). Exosomes have the same membrane 

orientation as the cell of origin, like MVs. MVs represent a more heterogeneous population of 

vesicles formed by outward budding (Camussi et al., 2010). Extracellular vesicles, including 
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exosomes, serve as signalosomes for various biological processes. They are involved in antigen 

presentation (Lindenbergh et al., 2020), immune regulation (X. Zhou et al., 2020), and can directly 

activate cell surface receptors via protein and bioactive lipid ligands, transfer cell surface receptors 

(Christianson et al., 2013), and deliver effectors such as transcription factors, oncogenes, and 

infectious particles into recipient cells (Femminò et al., 2020). In addition, they contain various 

RNA species, including mRNAs, microRNAs, and non-coding RNAs, which can be functionally 

delivered to recipient cells. 

 

Figure 3.2 Diagram of exosome composition. 

Exosomes are assumed initially as ‘trash bag’ for cells to exclude unwanted constituents 

(Van der Pol et al., 2012), however, studies have demonstrated that exosomes play significant roles 

in intercellular communication and have notably effect on both physiological and pathological 

processes in terms of the specially selected molecular components in exosomes. The biofunction 
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of exosomes is mainly determined by the host cell type and the composition of exosomes in terms 

of proteins, nucleic acids, carbohydrates. Recent studies showed a significant role of exosomes in 

alternative exclusion of proteins such as release of receptors and unwanted proteins, cell-to-cell 

signaling including antigen presentation and immune activation and suppression (Camussi et al., 

2010; Femminò et al., 2020; Van der Pol et al., 2012). Besides, exosomes are also found to be 

enriched in mRNA and miRNA, thus serving as a shuttle for RNA to confer new functions to target 

cells (Das et al., 2019). 

Proteomic and genomic studies reported that exosomes contain a specific subset of cellular 

proteins, nucleic acids and cytosol, some depend on the host cell type whereas others are found in 

most exosomes regardless of cell type (Kalluri & LeBleu, 2020; Pegtel & Gould, 2019), as shown 

in Figure 3.2 (Jan et al., 2021). Proteins from endosomes, plasma membrane and cytosol in the 

function of membrane transporters such as CD9, CD63 and CD81 are commonly found. Whereas 

those from nucleus, mitochondria and the Golgi complex mostly varied. miRNAs, as a newly 

found generic material that are exported outside cells and can serve as a communicator between 

cells, are found undergoing a specific selection of sequence during the formation of exosomes (Das 

et al., 2019). These observations reinforce the specificity of formation of exosomes that represent 

a specific subcellular portion and not a fully random process. Therefore, the molecular content of 

exosomes potentially reflects the origin and pathophysiological conditions of the releasing cells. 

Researchers claimed that exosomes contain cargo implicated in cancer, neurodegenerative, 

infectious diseases etc. (Howitt & Hill, 2016b; J.-H. Kim et al., 2018; Rangel-Ramírez et al., 2023). 

According to the public exosome content database Exocarta, over 40,000 proteins, 1000 

lipids, 7000 RNAs have been found in exosome from multiple organisms, which are indicative of 

pathophysiological conditions of their host cell (Keerthikumar et al., 2016). The enrichment of 
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diagnostic biomarkers that enables the detection of relative diseases during its early stage. Many 

protein biomarkers in circulating exosomes have been found to be potentially useful in disease 

diagnosis such as cancer and neurodegenerative diseases. Nilsson demonstrated the two known 

prostate cancer biomarkers, PCA-3 and TMPRSS2: ERG in exosomes isolated from urine (Nilsson 

et al., 2009). Exosomal amyloid peptides have also been demonstrated to accumulate in brain 

plaques of Alzheimer`s disease (AD) patients and the proven biomarker for AD, tau 

phosphorylated at Thr-181, is present at an upregulated level in exosomes from CSF of AD patients 

with mild symptoms (Xiao et al., 2017). In addition to protein biomarkers, exosomal nucleic acids 

such as mRNA and miRNA could also be diagnostic biomarkers. Fu et al found that the expression 

level of TRIM3 mRNA is notably decreased in exosomes isolated from gastric cancer patients` 

serum (H. Fu et al., 2018). In 2013, Tanaka et al. claimed that the exosomal miR-21 expression 

level is elevated in exosome isolated from patients suffering from esophageal squamous cell cancer 

(ESCC) (Tanaka et al., 2013). These findings strongly support the arguments of exosomes being 

biomarker carriers compared with conventional specimens such as serum or urine. More 

importantly, exosomes biomarkers from early obtainable biofluids such as saliva could be 

extremely suitable for clinical application (Y. Han et al., 2018). Generally, exosome biomarkers 

identification is still in the progress of investigation and their clinical value would be fully explored. 

3.1.2 Viruses 

 SERS based single NBP analyses can play an important role in other types of NBP studies 

in addition to exosome. The family of viruses also contains tremendous biological information that 

can be analyzed in a single-particle manner. Detection of viruses’ biomarkers can be more 

straightforward than exosome analysis, because as alien invader, the structure and function of 
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viruses are already exhaustively investigated, the role of SERS is more on built the standard 

signatures on known viral biomarker for the detection.  

Viruses are usually incredibly small (typically 20-200nm) and consist of two main 

components (Johnson, 2000). (1) Genetic Material: The core of a virus contains genetic material, 

which can be either DNA or RNA. This genetic material carries the instructions for viral replication 

and is typically a single or double strand; Capsid: The genetic material is encased within a 

protective protein coat called a capsid. The capsid is composed of protein subunits called 

capsomers, which self-assemble around the genetic material. Some viruses also have an outer lipid 

envelope derived from the host cell's membrane. The identification of viral biomarkers is focusing 

on those two components. The classification of viruses depends on several criteria including 

genetic material, capsid structure, host specificity, mode of replication and so on.  

SARS-CoV-2, investigated in our research, is composed of structural spike protein (S 

protein), lipid bilayer, membrane protein (M protein), envelop protein (E protein), and 

nucleocapsid protein (N protein) (Hasöksüz et al., 2020), demonstrated by Figure 3.3. Its viral 

genome length is over 30,000 bases, which is relatively longer than the typical RNA viruses. The 

SARS-CoV-2 genome also encodes 16-17 non-structural proteins (ns1 to ns17), including 3-

chymotrypsin-like protease (3CLpro), papain-like protease (PLpro), helicase etc. S protein is a 

1.273-amino acid trimetric glycoprotein composed of S1 attachment domain (1-686 residues) and 

S2 fusion domain (687-1,273 residues) (Bai et al., 2022). Part of S1, named receptor-binding 

domain (RBD, 306-545 residues), provides the main function of binding host cells by recognizing 

angiotensin-converting enzyme 2 (ACE2) and cellular protease TMPRSS2 on cells, followed by 

fusion between viral and host cells’ membranes (L. Zhou et al., 2020). The E protein is involved 

in virus assembly and release since it plays a role in maintaining the structure of the viral envelop, 
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the M protein is also located on E protein for shaping the viral structure and interacting with host 

cells. The N protein is thus responsible for binding viral RNA genome and forming the 

ribonucleoprotein complex (RNP), it is also involved in virus replication and transcription by 

interacting with other viral proteins and host cells’ proteins. The S protein and N protein are the 

main target of the immune system and are usually used for COVID diagnosis (H. Wang et al., 

2020). 

 

Figure 3.3 Diagram of SARS-CoV-2 structure and composition. 

Current SARS-CoV-2 mutations occur mostly in the spike genes, enhancing the infectivity 

by increasing its ability to enter human cells. The mutations in genome include D614G, the RBD 

mutation N501Y, the RBD mutation E484K, N-terminal domain mutations, and non-spike 

mutations (Cosar et al., 2022). These mutations change the structure and amount of SARS-CoV-2 

structural proteins, causing different variants possessing different transmissibility, disease severity 

and ability to evade human immune systems. Nowadays, SARS-CoV-2 has evolved into more than 



31 
 

50 different variants (Cosar et al., 2022; Magazine et al., 2022). Since SARS-CoV-2 belongs to the 

family of single strand RNA virus, RT-PCR has always been the most prevalent and reliable 

detection technique due to its accuracy and LOD (Kevadiya et al., 2021). Antigen detection has 

also been commonly used in the communities as a rapid self-check approach (Dinnes et al., 2022). 

We assume that mutations especially in S protein might provide SARS-CoV-2 unique discoverable 

biomarkers in terms of SERS based single NBP analysis. More investigation on its biological 

properties as well as detection approaches have been conducted to control the pandemic.  

3.2 NBPs for disease diagnosis in literature 

3.2.1 Studies on exosome-based disease diagnosis 

 Exosome-based disease diagnosis has been rapidly developed since early 2000s (Y. Zhang 

et al., 2020). As reported, exosomes play critical roles in intercellular communications mainly by 

transmitting molecules (proteins, lipids, nucleic acids etc.) (Alenquer & Amorim, 2015; Y. Zhang 

et al., 2020). Recent studies have shown that exosomes contain biomarkers for various diseases 

including cancer (W. Li et al., 2017; Soung et al., 2017), neurodegenerative diseases (Howitt & 

Hill, 2016a), infectious diseases (Fleming et al., 2014), making them a promising agent for 

diagnosis.  

Exosomes have been identified as multifaceted regulators in cancer development by 

harboring molecules from cancer cells (Alenquer & Amorim, 2015). They have the ability to alter 

the tumor microenvironment, which affects adjacent cells (Carretero-González et al., 2018). 

Specifically, exosomes play a role in tumor growth and metastasis. Studies have demonstrated that 

exosomes can transfer genes associated with cancer growth promotion, which leads to the 

proliferation of metastatic cancer cells (Carretero-González et al., 2018; K. Li et al., 2019). 

Moreover, exosomal RNAs (exRNAs), including microRNAs and non-coding RNAs, have been 
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implicated as stimulators of cancer progression, such as in breast cancer and gastric cancer (M. Fu 

et al., 2019; Lakshmi et al., 2021; Rabinowits et al., 2009). It has been found that exosomal 

miRNAs can mediate silencing of downstream genes, thus promoting tumorigenesis in non-

tumorigenic epithelial cells (Blackwell et al., 2017; Y. Liu et al., 2016). Research by J. Zhang and 

C. Chen et al revealed that exosomes derived from human umbilical cord blood derived EPCs have 

robust pro-angiogenic effects and can be incorporated into endothelial cells, significantly 

increasing their proliferation (Y. Hu et al., 2018). G. Sagar and R. Sah also found that exosomal 

adrenomedullin (AM) interacts with receptors on adipocytes, activating p38 and extracellular 

signal-regulated (ERK1/2) mitogen-activated protein kinases, which promote lipolysis in adipose 

tissue (Sagar et al., 2016). S.A. Melo et al reported that breast cancer-derived exosomes contain 

microRNAs associated with the RISC loading complex (RLC), which can initiate the formation of 

tumors in a Dicer-dependent manner in non-tumorigenic epithelial cells (Melo et al., 2014). 

Moreover, exosomes derived from highly metastatic lung cancer cells have been shown to induce 

vimentin expression and epithelial-to-mesenchymal transition (EMT) in HBECs, leading to 

migration, invasion, and proliferation in non-cancerous recipient cells (Rahman et al., 2016). 

Additionally, exosomes from different types of tumors have unique properties and are taken up by 

distinct resident cells due to integrin expression patterns (Soung et al., 2017). Therefore, exosomes 

may possess distinguishable biomarkers for various types of cancers and could serve as a bridge 

from normal cells to cancer cells, providing a possibility for cancer diagnosis. 

 Exosome specimens undergoing characterization for cancer diagnosis can be acquired from 

multiple sources. Body fluids and tissues are typical targets of collecting exosomes. Researchers 

fetch exosome specimens from blood or serum for prostate cancer (Malla et al., 2018), colorectal 

cancer (Matsumura et al., 2015), lung cancer (Taverna et al., 2016; Wu et al., 2020), from milk for 
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breast cancer (Xie et al., 2022), from malignant pleural effusion and bronchiolar lavage for non-

small cell lung cancer etc. Unlike the exosomes in circulating system, tissue derived exosomes are 

assumed to possess more abundant biomarkers. Vella et al found that exosomes derived from brain 

tissue maintain the same traits of brain homogenate (L. Vella et al., 2016; L. J. Vella et al., 2017). 

It indicates that tissue derived exosomes could be another effective resource for disease diagnosis.  

Depending on the type of exosomal biomarkers (proteins, RNAs etc.), different 

characterization technologies are applied, including immunofluorescence labeling, microscopy 

imaging, proteomics, genomics, surface plasmon resonance etc. Over the past years, proteomic 

analyses have been the most used methods to analyze exosomal protein biomarkers (Olver & Vidal, 

2007). Mass spectrometry (MS) has been widely used in exosome related cancer detection. H. R. 

Larsen and K. Lund et al developed a capillary liquid chromatography MS platform in analyzing 

exosomes from breast cancer cell lines and found 27-Hydroxycholesterol associated with 

proliferation and metastasis in estrogen receptor breast cancer (Roberg-Larsen et al., 2017). K. Iha 

et al applied an ultrasensitive Enzyme-linked immunosorbent assay (ELISA) combined with thio-

NAD cycling on detecting proteins in human cervical carcinoma derived exosomes’ lumen and 

membrane fractions (Iha et al., 2022). After identifying that 221 proteins from urinary exosomes 

are differentially expressed in prostate cancer patients by MS, L. Wang et al applied antibody-

based methods, including Western blot and ELISA, and investigated deeply on the expression of 

urinary exosomal biomarkers (flotillin 2, TMEM256, Rab3B etc.) (L. Wang et al., 2017). More 

generally, researchers always utilize western blotting to validate the standard exosomal biomarkers 

(CD63, CD9, CD81 etc.) (Y. Zhang et al., 2020). There are other aptamer-based methodologies 

emerging for overcoming the issues of MS and improving quantification. J. Webber et al used a 

novel affinity-based platform with specific protein binding reagents named SOMAmers to analyze 
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prostate cancer cells and succeeded in identifying over 300 proteins (Webber et al., 2014). 

Similarly, J. L. Welton, P. Brennan et al utilized SOMAscan assay, a multiplex aptamer-based 

protein array, to eliminate the effect of plasma proteins in order to discover unique proteins in 

prostate cancer cell derived exosomes (Welton et al., 2016).  

 Immunofluorescence-based techniques have been widely applied in analyzing proteins of 

various types of biological entities, such as cells, bacteria, viruses, EVs etc., due to its capabilities 

of specific targeting, multiplex sensing and feasibility to be integrated with microfluidic assays 

(Francisco-Cruz et al., 2020; Sood et al., 2016). It is essentially based on the antigen-antibody 

interaction between exosomal proteins and fluorescent reagents. Work carried out by Z. Zhao et al 

demonstrated tumor-derived circulating exosomes contain antigens as promising biomarker source 

for ovarian cancer diagnosis by employing ExoSearch and immunomagnetic beads (Zhao et al., 

2016). In addition, S. Fang and H. Tian developed an immunocapture and quantification platform 

using IFKine Green Donkey anti-goat IgG and Dylight 549 goat anti-rabbit IgG for examining the 

clinical application of breast cancer derived exosomes (Fang et al., 2017). Despite the advantages 

of immunofluorescence-based protein detection, it also suffers from issues such as non-specific 

binding which leads to false-positive signals, low sensitivity with low-abundance proteins, 

requirements for specialized equipment like fluorescence microscope and expensive reagents 

could also be limitations (Francisco-Cruz et al., 2020; Shakes et al., 2012). 

Compared with the diverse approaches for proteomics, genomic analyses of exosomes are 

typically based on sequencing. RNA sequencing or transcriptome sequencing (RNA seq) is a 

method using next-generation sequencing (NGS) to examine the sequences of exosomal RNA. As 

a supplemental approaches to proteomic analysis, genomics sometimes performs more sensitively 

and accurately in identifying biomarkers, especially for disease early diagnosis. Work done by D. 
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Wang et al revealed a coordinated increase in the levels of miR-146a-5p and miR-155-5p in 

colorectal cancer cells and exosomes, which promote the activation of cancer-associated 

fibroblasts through JAK2-STAT3/NR-B signaling (D. Wang et al., 2022). J. Cai, L. Gong reported 

exosomal miR-6780b-5p correlated with EMT of ovarian cancer cells by sequencing exosomal 

RNAs (J. Cai et al., 2021). There are a lot more efforts focusing on the biological functions of 

exRNAs for more diseases, such as gastric cancer (F. Li et al., 2018), breast cancer (Rykova et al., 

2008), lung cancer (Ni et al., 2023), neurodegenerative diseases (Saugstad et al., 2017). However, 

most sequencing methods are not cost effective and time consuming. It also encounters issues 

because of lacking optimized SOPs when the sample quantities are limited. Additionally, the 

biological role of exRNAs needs more sophisticated investigations (Kukurba & Montgomery, 

2015).  

3.2.2 Studies on virus and specifically COVID detection 

 Viruses are foreign invasive biological entities infecting human cells. While infecting a 

host cell, viruses hijack the host cellular machinery to produce more copies of themselves, leading 

to abnormalities. Similar to EVs, most viruses contain distinguishable biomarkers enabling early 

detection and development tracking (Alenquer & Amorim, 2015; M.-H. Zhang et al., 2023). 

Different technologies have been developed for virus detection, such as the most prevalent PCR, 

ELISA, NGS, viral culture, immunofluorescence etc. Targeting various components of viruses, 

those techniques have their own specific strength as well as drawbacks, appropriate approaches 

need to be selected for early, efficient, and accurate diagnosis. 

 The employment of PCR in investigation and detection of viruses has been regarded as the 

“gold standard”, due to its capability of rendering high sensitivity and reproducibility, as well as a 

wide dynamic range (Bustin et al., 2005; Watzinger et al., 2006b). Targeting on the viral nucleic 
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acids, PCR undergoes exponential amplification of the target sequence, which leads to a limit of 

detection (LOD) down to the range of 1-102 copies/mL (Parker et al., 2015). Quantification of 

target sequence by real-time quantitative PCR (RQ-PCR) is based on the continuous measurement 

of accumulation or reduction of fluorescence during the amplification reaction (Bustin et al., 2005). 

Real-time PCR (RT-PCR) allows quantification based on the detection of the number of amplicons 

generated during each amplification cycle in a real-time mode. RT-PCR has been the most 

important technique in detection viral infection including influenza (Chu et al., 2015), HIV 

(Rutsaert et al., 2018), hepatitis viruses (Abe et al., 1999), corona viruses (Teymouri et al., 2021), 

respiratory syncytial virus (A. Hu et al., 2003) etc. During the COVID pandemic since 2019, RT-

PCR has been playing the most important role in diagnosis and controlling infection situations 

(Teymouri et al., 2021). The tests involve collecting respiratory specimens (nasopharyngeal or 

oropharyngeal swab, sputum, saliva etc.) from suspected COVID patients then target viral RNA 

detection using specific primers and amplification. The cycle threshold value (Ct value) is then 

generated, which are inversely proportional to the viral concentration, determining the patients’ 

infection status. The validate sensitivity and specificity of RT-PCR in COVID detection can reach 

as high as 90% and 95%, together with a LOD of 10-100 copies/mL (X. Wang et al., 2020). Owing 

to those features, RT-PCR for COVID detection is currently the most reliable and widely used 

technique. Nevertheless, requirements for professional equipment and operators raise the cost of 

RT-PCR based test, the preparation of primers for different SARS-CoV-2 variant also increases the 

complexity. Additionally, RT-PCR usually takes a long time to generate the outcome, which 

impedes its application as a rapid and affordable choice.  

 As a well-known characterization approach for EVs, ELISA also performs well in COVID 

detection. ELISA works based on the interaction between viral antigen and fluorophore-labeled 
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antibody (Van Elslande et al., 2020). The enzyme catalyzes a reaction producing a detectable signal, 

such as a color change or fluorescence signal. Commercial ELISA based COVID detection kits 

have been prevalently used as daily checking methods. It has the advantages of rapidity and 

cheapness, however, the sensitivity and LOD are much lower than RT-PCR (Kasetsirikul et al., 

2020), especially when the viral load of the specimen is extremely low, leading to false negative 

for most of the early-staged patients. Therefore, ELISA is often used in conjunction with other 

diagnosis tests such as RT-PCR or serology tests, to confirm COVID cases.  

 Optical technologies have made significant progress in COVID detection (Lukose et al., 

2021), providing another possibility for rapid and early diagnosis. Optical technologies generally 

focus on the spectroscopic responses that produce distinct spectral signatures. In contrast to PCR 

and antibody-based detection techniques, optical methods are usually label-free and non-invasive. 

D. L. Kitane and S. Loukman et al achieved 97% sensitivity and 98% specificity in quantitative 

COVID detection, validated by 280 clinical patient samples, based on multivariate analysis of 

Fourier Transform Infrared Spectroscopy (FTIR) of RNA extracts (Kitane et al., 2021). SARS-

CoV-2 possesses unique spectral features located at 600-1350 cm-1, 1500-1700 cm-1 and 2300-

3900 cm-1, they are attributed mainly to the viral RNA nucleobases. Raman spectroscopy is a 

similar spectroscopic characterization method as FTIR, which extracts the molecular vibrational 

modes by Raman scattering. C. Carlomagno et al extracted SARS-CoV-2 virus Raman fingerprints 

and applied a deep learning model for pattern identification that achieves above 95% accuracy 

(Carlomagno et al., 2021). Moreover, their choice of salivary specimen makes it more rapid and 

non-invasive. Similarly, S. A. Jadhav conducted works on integrating microfluidic platform with 

SERS for COVID detection, which potentially improves the LOD by immobilizing SARS-CoV-2 

by antigen-antibody binding (Jadhav et al., 2021). Surface plasmon resonance (SPR) sensing chip 
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is also one of the approaches that will be used to diagnose SARS-CoV-2 in the near future. Work 

done by T. Akib and S. Mou fabricated a graphene-based multi-layer (Bk7/Au/PtSe2/Graphene) 

coated SPR biosensor for rapid detection of COVID. The performance of biosensors was evaluated 

numerically with different ligand-analytes and the optimized device improved sensitivity by 

adding layers of graphene (Akib et al., 2021). 

 There are a lot of novel technologies giving high sensitivity and additional advantages. G. 

Soufi and S. Iravani applies molecularly imprinted polymers on detection/recognition of a wide 

variety of viruses, they proved enough specificity, convenience, validity and reusability features 

on SARS-CoV-2, Human rhinovirus, Hepatitis A and B viruses, influenza A viruses etc. 

(Jamalipour Soufi et al., 2021). D. Haritha conducted chest X-ray imaging on COVID patients and 

designed an infection recognition model based on deep learning, CheXNet, for COVID detection. 

They successfully trained the model that detects 14 pathologies in the chestXray 14 dataset with 

99.9% accuracy (Haritha et al., 2020). NGS, viral culture and mass spectrometry are additional 

powerful methods to extract information either from viral nucleic acids or proteins. According to 

the diagnostic requirement, appropriate technologies are supposed to be chosen to achieve optimal 

performance. 

3.3 Acquisition of nano-bioparticles  

3.3.1 Exosome isolation 

Exosomes are released by most of the cells and are widely distributed in body fluids or cell 

culture media. The protocol of isolating exosomes from different sources is determined by factors 

including exosome concentration, density, viscosity, volume etc (P. Li et al., 2017). Most common 

exosome sources include serum, plasma, cell culture media, malignant pleural effusion (MPE), 

saliva, urine etc. Sequential ultracentrifugation (SUC) and size exclusion chromatography (SEC) 
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were utilized during the process, both methods rendered highly concentrated NBPs that were 

validated by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). 

We provided a common exosome isolation procedure from cell culture media as an example based 

on SUC below (Théry et al., 2006), as shown in Figure 3.4. 

 

Figure 3.4 Procedure of isolating exosomes from body fluids based on ultracentrifugation. 

Materials: 

 Cleared, conditioned medium, 

 Phosphate-buffered saline (PBS), 

 Beckman Optima TLX ultracentrifuge and TLA-100.3 fixed-angle rotor, 

 Polyallomer ultracentrifuge tubes, 

 Micropipette. 



40 
 

Steps: 

 1) Remove cells, dead cells and cell debris 

  a. Transfer the cleared, conditioned medium to centrifuge tubes, 

  b. Centrifuge 20 min at 2,000  g and 4 C, 

c. Pipet off the supernatant and transfer to ultracentrifuge polyallomer tubes, 

  d. Centrifuge 30 min at 10,000  g and 4 C, 

 2) Collect exosome fraction 

  e. Transfer the supernatant to fresh tubes as step d, 

  f. Centrifuge at least 70 min at 100,000  g and 4 C, 

g. Remove the supernatant completely and exosomes are supposed to attach on tube wall, 

 3) Wash exosomes 

  h. Resuspend the pellet in PBS using micropipette, 

  i. Centrifuge 1 hour at 100,000  g and 4 C, 

  j. Remove the supernatant completely as possible, 

  k. Repeat step j to concentrate exosomes (optional), 

  l. Resuspend the pellet in 20 – 50 L PBS and store up to 1 year at -80 C. 

 Isolation of exosomes from viscous body fluid (such as plasma, saliva etc.) is slightly 

different from other sources (cell culture media, urine etc.) due to different viscosity and chemical 

contents. 0.22 m filter devices are often needed for ultrafiltration. 
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Steps: 

 1) Dilute fluid with PBS and centrifuge 30 min at 2,000  g and 4 C, 

 2) Transfer supernatant to ultracentrifuge tubes without pellet contamination, 

 3) Centrifuge 45 min at 12,000  g and 4 C, 

 4) Transfer supernatant to fresh ultracentrifuge tubes and remove pellet, 

 5) Centrifuge 2 hours at 110,000  g and 4 C, 

 6) Remove the supernatant and resuspend pellet in PBS, 

7) Filter the suspension with 0.22 m filter and collect in fresh ultracentrifuge tubes, 

 8) Centrifuge 70 min at 110,000  g and 4 C, pour off the supernatant, 

 9) Resuspend the pellet and centrifuge 70 min at 110,000  g and 4 C, 

 10) Resuspend the pellet in 20 – 50 L PBS and store up to 1 year at -80 C. 

In addition to SUC, IZON is one of the SEC commercial products that renders high purity 

and concentration (Patel et al., 2019). Automatic fraction collector (AFC) and qEV original 500 

L columns are used. qEV SEC columns separate particles based on their size as they pass through 

a column packed with a porous polysaccharide resin. As the sample passes through the column 

under gravity, smaller particles enter the resin pores on their way down then their exit from the 

column is delayed. Sequential volumes are collected after they exit the column and particles will 

be distributed across the volumes based on their size. 

Materials:  

 Exosome specimen, 
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 Phosphate-buffered saline (PBS), 

 IZON columns, 

 Polyallomer ultracentrifuge tubes, 

 Micropipette. 

Steps: 

1) Equilibrate the column and the samples buffer to be with in the operational temperature range 

of 18 – 24 C, 

 2) Remove the top cap and attach the column to the AFC, 

3) Remove the bottom cap and allow the buffer to start running through the column, 

4) Flush the column with at least two column volumes of PBS buffer to minimize the effects of 

sodium azide, 

5) Load the prepared centrifuged sample onto the loading frit, 

6) Immediately start collecting the buffer volume, 

7) Allow the sample to run into the column, the column will stop flowing when all of the sample has 

entered the loading frit, 

8) Top up the column with buffer and continue to collect the buffer volume, 

9) Once the buffer volume is collected, continue to collect the Purified Collection Volume (PCV), 

10) After NBPs fractions have been collected, clean and sanitize the column with 0.5 M NaOH to 

remove residual proteins, 

11) Flush the column with PBS buffer and store for future usage. 
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3.3.2 SARS-CoV-2 isolation 

 SUC and SEC based protocol can also be used for SARS-CoV-2 isolation due to its similar 

size and other attributes. SARS-CoV-2 pelleting protocol is given below (Plavec et al., 2022). 

Figure 3.5 demonstrates the basic procedures.  

 

Figure 3.5 Procedure of isolating viruses from cell culture media based on ultracentrifugation. 

Materials:  

Virus infection cell culture media, 

 Phosphate-buffered saline (PBS), 

 SEC resin, 

 HN buffer, 

 100 kD filter, 
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 Micropipette. 

Steps: 

1) Layer pre-cleared virus-containing supernatant on top of sucrose cushion in buffer including 

HEPES and NaCl.  

2) Centrifuge 2 hours at 100,000  g and 4 C, 

3) Discard the supernatant and rinse the pellet with HN to remove leftover sucrose, 

4) Resuspend the visible pellet in HN and store at -80 C. 

 

The SEC protocol works in conjunction with centrifugation. 

1) Add SEC resin to pre-cleared supernatant and rotate 20 min at 4 C for mixing homogeneously, 

2) Centrifuge the resin for 3 min at 800  g and 4 C, 

 3) Collect the virus-containing supernatant, 

 4) Repeat step 1 to 3 to purify the virus-containing supernatant, 

5) Filter the supernatant using 100 kD ultrafiltration to concentrate the virus specimen. 

3.4 Surface-enhanced Raman Spectroscopy 

3.4.1 Raman scattering 

 Raman spectroscopy is an efficient spectroscopic technique applied to observe vibrational, 

rotational, and other low-frequency modes in a system (Mulvaney & Keating, 2000). The basic 

physical mechanism in Raman spectroscopy is inelastic scattering between photons and phonons 

induced by monochromatic light, usually laser. The interaction between photons from laser and 
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molecular vibrational modes results in energy (frequency) of the laser photon shifting, according 

to the energy of scattered photons, the inelastic scattering is categorized into Rayleigh scattering, 

Stokes scattering and anti-Stokes scattering. There is no frequency shift for Rayleigh scattering, 

only the direction of the scattered photon changes, which is elastic scattering. 

 

Figure 3.6 Diagram of physics process of Raman scattering. 

Stokes scattering refers to the outcome that scattered photon has lower energy than the 

incident photon, and vice versa for anti-Stokes scattering. Different from fluorescence, which 

involves molecular energy transition between excited state and ground state, Raman scattering is 

due to phonon excitation and emission by interacting with photons, as shown by Figure 3.7.  
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Figure 3.7 Energy-level diagram of that states in Raman spectra. 

 

Figure 3.8 Temporal variation of excitation, fluorescence emission, Raman scattering. 
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In Raman spectroscopy, Raman intensity is plotted against Raman shift, which refers to the 

frequency change. Frequency shift of photons are determined by the molecular structural 

configuration, therefore specific Raman spectrum peak patterns provide “fingerprint” for 

molecules. For example, Figure 3.9 shows graphene possessing fingerprint peaks at 1325 cm-1 (D 

peak), 1589 cm-1 (G peak), and 2644 cm-1 (2D peak). The specadfstral fingerprint range of organic 

molecules is 500-1500 cm-1 (Fesenko et al., 2015). 

 

Figure 3.9 Raman spectra of single-layer graphene at 633 nm. 

3.4.2 Surface enhancing mechanism 

 Since the surface enhancing phenomenon was first observed by M. Fleischmann and his 

colleagues in 1973, the theory and application have been rapidly developing in the past few 

decades (Cialla et al., 2012; Fleischmann et al., 1973). EM theory and chemical theory are 

proposed to explain the exact mechanism (Etchegoin & Le Ru, 2010). SERS has been utilized in 

many fields, such as chemical analysis and biosensing, due to its extremely high sensitivity and 

specificity (Cialla et al., 2012).  
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 SERS effect is essentially due to the oscillation of metallic electron in the background of 

ionic metal cores induced by the time-varying electric field of incident light (Etchegoin & Le Ru, 

2010). A small, isolated, illuminated metallic surface will form LSPR in response to the oscillating 

external electromagnetic field. Dipolar plasmon plays the most significant role in surface plasmon 

when the metallic particles are much smaller than the wavelength of the incident light, which can 

apply to most of the materials with free or nearly-free electron. When the dipoles are oscillating 

resonantly against the incident light, dipolar radiation occurs, as demonstrated by Figure 3.10. 

Certain positions near the metallic surface have greatly enhance EM field while others are deleted 

due to the coupling effect between the excited EM field and the incident light, this EM field reaches 

equilibrium in a few femtoseconds after the light induces. The Raman scattering is thus enhanced 

by the dipolar radiation together with the incident light. The SERS intensity is enhanced by a factor 

approximately equal to fourth power versus the local incident near field.  

𝐼𝑆𝐸𝑅𝑆 ≅ |𝐸𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡|4 ∙ 𝐼𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 3-1 
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Figure 3.10 Diagram of plasmon resonance showing oscillation of electrons excited by the 

electromagnetic field of incident light. 

 SERS enhancing factor includes both linear and nonlinear optical effects, determined by 

the power of incident light Iincident. Typical enhancement factors range from 106 to 1015, depending 

on the structure of rough surface, materials, and incident light (Le Ru et al., 2008). Additionally, 

SERS excitation is a near-field effect, which exists especially near the metallic surface, usually in 

the magnitude of nanometers. The electric field decays exponentially spatially off the metallic 

surface. Periodic nanostructures of metallic surface are currently the most widely used design for 

SERS substrate. 

 According to the mechanism of SERS, the enhancement of the electric field involves two 

parts, the plasmon resonance excitation, and the enhancement in polarizability due to chemical 

effects including charge-transfer excited states (Etchegoin & Le Ru, 2010). The first part gives an 

enhancement factor approximately equal to |E(ω)|4, E(ω) is the combination of local electric field 

enhancement factor at the incident light frequency and Stokes-shift frequency, which also depends 
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on the polarization of the dipole. The polarizability  of a small metallic surface is related directly 

to the dielectric function () and radius R, 

𝛼 = 𝑅3
𝜀 − 1

𝜀 + 2
 3-2 

 

Combined with the dielectric function of Drude model, we have 

𝜀 = 𝜀𝑏 + 1 −
𝜔𝑝

2

𝜔2 + 𝑖𝜔𝛾
 3-3 

 

Where the firm term b is due to inter-band transition and is usually wavelength-dependent, p is 

the metal’s plasmon resonance whose square is proportional to the electron density,  is the 

electronic-scattering rate which is inversely proportional to the electronic mean free path. 

Therefore, the polarizability equals to 

𝛼 =
𝑅3(𝜀𝑏𝜔2 − 𝜔𝑝

2) + 𝑖𝜔𝛾𝜀𝑏

[(𝜀𝑏 + 3)𝜔2 − 𝜔𝑝
2] + 𝑖𝜔𝛾(𝜀𝑏 + 3)

 3-4 

 

So, the dipolar surface resonance occurs for a single metal particle in the case of 

𝜔 =
𝜔𝑝

√𝜀𝑝 + 3
 3-5 

 

The effect of interparticle coupling can positively increase the enhancing effect by specially 

design rough surface. Basically, when two dipoles are close enough, the mutual interaction of the 
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two nanoparticles leads to an increase in the magnitude of the electric field. The field of the 

incident light as well as its partner’s intense field amplify the polarization for each nano-object. 

Well-engineered interacting nanostructure system can fulfill the goals of high field enhancement 

and reproducible SERS platform. Work done by Hao and Schatz shows the truncated tetrahedron 

structure with the dimension of 200 nm rendered a 4  1012 enhancement factor for single-molecule 

SERS (Hao et al., 2004). P. Wang and M. Xia demonstrated a SERS platform with hexagonally 

arranged nanopyramid resulting in enhancement factor around 1010 (P. Wang et al., 2013). J. Li 

and A. Wuethrich fabricated nanopillar array using lithographic approach made of gold-silver alloy 

which had enhancement factor approximately equal to 107 (J. Li et al., 2021). 

 The chemical mechanism first occurs by charge transfer due to the interaction between the 

enhanced electric field of localized surface plasmon and the target molecules (Morton & Jensen, 

2009). It is molecule-specific and relies heavily on the local environment of the metal surface, as 

it arises from the overlap between the molecule's wave functions and the metal nanoparticle. This 

overlap leads to the renormalization of molecular orbitals and the emergence of new mixed charge-

transfer states, both of which contribute to the chemical enhancement of the Raman signal. The 

chemical mechanism can be further classified into two types: non-resonant chemical mechanism 

(CHEM) and resonant charge-transfer chemical mechanism (CT).  

CHEM arises from the interaction between the molecule and the metal surface, leading to 

the enhancement of the Raman signal (X. X. Han et al., 2022). CHEM is generally independent of 

the excitation wavelength and does not involve any electronic transition of the molecule. The 

CHEM mechanism is believed to arise from two main effects: the EM effect and the chemical 

effect. The EM effect arises from the strong local electric field produced by the metal surface, 

which enhances the excitation and Raman scattering cross-section of the molecule. The CE effect 
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arises from the chemical interactions between the molecule and the metal surface, which modify 

the molecular vibrations and their Raman scattering cross-section. CT occurs when the incident 

photon energy matches a molecular or charge-transfer excitation of the system. In this case, the 

molecule can undergo a charge transfer with the metal surface, resulting in the formation of a new 

charge-transfer state. This new state has a different Raman scattering cross-section than the ground 

state, leading to an enhancement of the Raman signal. The CT mechanism is generally more 

specific to the molecule and the metal surface than the CHEM mechanism, as it depends on the 

resonant excitation energy and the specific electronic structure of the molecule and the metal 

surface. Overall, both the non-resonant CHEM and the resonant CT mechanisms contribute to the 

enhancement of the Raman signal in SERS, with the CHEM mechanism generally dominating 

when the excitation wavelength is far from any molecular or charge-transfer excitation. 

3.4.3 Advantages of SERS 

 SERS, as an NBPs characterization technique, provides many advantages over the other 

technologies. It serves as a complementary method to the typical proteomics and genomics to 

investigate the NBPs comprehensively. Due to the EM effect and CM effect, SERS can provide a 

million-fold enhancement to the sensitivity, making it feasible to detect trace amounts of molecules. 

Researchers have proven the capability of single-molecule detection using SERS, which has been 

a hot topic in physics, chemistry, and biology (J. Kneipp et al., 2008). K. Kneipp and Y. Wang 

exploited the scattering cross section (10-17-10-16 cm2/molecule) from SERS by studying single 

crystal violet molecule in aqueous colloidal sliver solution and observed the phenomenon of single 

molecule Raman scattering (K. Kneipp et al., 1997). S. M. Stranahan conducted more complicated 

studies on SERS hot spots using super-resolution optical imaging methods and observed the 

coupling between single molecule dipolar scattering and near-field hot spots (Stranahan & Willets, 
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2010). The investigation of single molecule can give information of its microscopic properties and 

structural transformation that help better understand the nature of molecular processes, which is 

not possible with ensemble of molecules because of averaging outcome. Enhancement of signal in 

SERS compensates the drawback of Raman scattering in characterizing single molecule-extremely 

small cross section (typically around 10-30-10-25 cm2), making it a good candidate to provide high 

degree of structural conformation of molecule. The spatial resolution of SERS can reach down to 

the scale of nanometers with appropriate substrate, it can be higher by combining with scanning 

probe microscopy techniques, such as atomic force microscopy (AFM), scanning tunneling 

microscopy (STM). Nowadays SERS opens novel perspectives in monitoring NBPs at the single 

particle level and brings exciting opportunities in biochemistry and biophysics. Given that 

tremendous amounts of particles/vesicles from different sources produced by human body, SERS 

based single vesicle technology will play a significant role in detecting biomarkers at low 

concentrations.  

Raman scattering provides vibrational information through the interaction between 

phonons and photons, which depends on the molecular bonding configuration (Mulvaney & 

Keating, 2000). This yields valuable structural information, including bond length, angles, and 

vibrational modes, allowing for the identification of unknown compounds. SERS benefits from 

this fingerprinting property, increasing its selectivity in identifying target molecules in the presence 

of irrelevant ones. Similar in NBPs characterization, SERS benefits identifying target NBPs 

containing target biomarkers according to the unique spectroscopic signature incorporated by 

single vesicle characterization. Moreover, LSPR resolves the small cross-section problem, making 

SERS highly versatile for characterizing a wide range of samples, including solids, liquids, gases, 

and biological specimens. Typically, there is usually no label specifically required during Raman 
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test, whose function is basically facilitating the target molecules to give out recognizable signals, 

such as immunofluorescence staining, molecular beacons, mass spectrometry etc. The label-free 

nature of SERS simplifies specimen preparation, eliminating the need for labeling procedures that 

are typically a key step in other experiments. Instead, research attention shifts to substrate design 

and fabrication, peak pattern classification, and establishing the link between SERS signals and 

research objectives.  

3.4.4 Substrate design and fabrication 

 The basic structure of our SERS substrate is quasi-periodic gold nano-pyramidal structure 

that is manufactured based on polystyrene sphere lithography approach. This design is determined 

through considering several factors including biological specimen compatibility, hot spot spatial 

location and enhancement factor, fabrication complexity and product quality, and repeatability.  

The fabrication process refers to the SOP published previously by our group (P. Wang et 

al., 2015), shown in Figure 3.11. SiO2/Si was washed by Piranha solution (H2SO4:H2O2 = 3:1, 

volume ratio) for 1 h at 70 C, followed by rinsing with deionized water 3 times. Polystyrene 

spheres (Thermo Fisher Scientific, USA) were then applied to construct a monolayer on SiO2/Si 

wafer (MSE Supplies, USA) surface via self-assembly to create hexagonal patterns. Subsequently, 

the substrate was dry etched by O2 plasma under 200W for 50 s to shrink the polystyrene sphere 

size. The reduced polystyrene spheres act as the mask in the plasma etching process to remove the 

SiO2 layer under exposure. Subsequently, the substrate was etched in 60% KOH solution (Sigma 

Aldrich, USA) for 2 mins to form periodic pyramidal reciprocal structures on the Si layer with 

patterned SiO2 as a mask. A 200nm Au film was deposited on the mode and finally, epoxy was 

used to peel off the Au film which was attached to a new Si wafer. On the fabricated platform, 
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quasi-periodically hexagonally arranged Au nano-pyramids with base length of 200 nm, height of 

200 nm was obtained.  

 

Figure 3.11 Procedure of fabricating periodic Au pyramidal SERS substrate based on lithography. 

Scanning Electron Microscope (SEM, FEI Nova NanoSEM 230) was applied to evaluate 

the pyramidal shape of a single unit as well as the substrate surface pattern. Rhodamine 6G (R6G) 

was used as a Raman reporter to quantify the overall enhancement factor compared with plain gold 

substrate. Figure 3.12 shows the structure and SEM imaging of substrate, it proves well-formed 

pyramidal units with hexagonal arranging pattern.  
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Figure 3.12 Au pyramidal structure. (A) Diagram of Au pyramidal SERS substrate surface structure. (B) 

SEM image of Au pyramidal SERS substrate characterization at 44043 ×. 

We implemented FDTD (Finite difference time domain) simulations on calculating the 

spatial distribution of hot spots on the pyramidal surface. FDTD is a powerful tool to solve 

Maxwell’s equations numerically to probe the EM field above the substrate surface (Zeng et al., 

2016). We conducted EM field simulation with an infinite 2-dimensional (set by periodic boundary 

conditions) gold pyramidal pattern located on a thin layer of gold. Total-field scattered-field was 

set up as the laser source that is perpendicular to the substrate, with the electric field along the 

direction of x axis. FDTD was placed covering a 1200 nm (length) × 800 nm (width) × 800 nm 

(height) space, monitors were placed perpendicular to the z axis off the substrate by 100 nm, and 

perpendicular to y axis through the apexes of pyramids. The absolute intensity of electric field is 

shown in Figure 3.13B and Figure 3.13C from two different angles. As stated previously, the 

hotspots are located at the lateral facets of every single pyramid. Lateral facets facing the direction 

of x axis or -x axis have enhanced electric field, while the ones along the y axis have no enhancing 

outcome.  
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Figure 3.13 Au pyramidal substrate FDTD simulation. (A) Diagram of FDTD simulation of 

electromagnetic field of SERS platform. (B) Demonstration of FDTD simulation setup. (C) Electric field 

intensity distribution on x-z plane according to FDTD simulation results. (D) Electric field intensity 

distribution on x-y plane 100 nm above Au surface according to FDTD simulation results. 

R6G molecule’ signals in Figure 3.14 reveal significantly enhanced peaks’ intensity as well 

as the SNR of spectrum, defined by the average peaks’ intensity divided by the average random 

noise intensity.  



58 
 

 

Figure 3.14 Raman spectra of R6G molecules on Au pyramidal substrate versus flat Au substrate. 

3.5 Spectroscopic data collection 

3.5.1 Raman map acquisition 

 Raman spectral data were immediately recorded using Raman spectrometer (Renishaw 

inVia Confocal Raman spectrometer, UK) under ambient conditions (20 °C, 1 atm), which is 

manually controlled by WiRE4.4 PC software. The map image acquisition function incorporated 

in the software was primarily used to collect numerical spectral data. A scanning then generating 

map acquisition approach is implemented in the NBP characterization to allow single particle 

detection. The setup of the maps is given in Table 3.1. The common parameters are 50× objective 

lens, laser wavelength 785 nm, Raman shift range 564-1680 cm-1. Basically, a large square map 

(scanning map) covering an area of 300 µm by 300 µm was used to search for positions with NBPs’ 

signals, which are supposed to show certain featured peaks. Those positions were recorded then 

characterized by a small square map (obtaining map), which would produce potential qualified 

spectra for followed-by data analysis. Having tested with different characterization approaches, 

we found our current method gives the most high-quality spectra in the same time duration. Figure 
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4.3(C) shows the spectra from a single NBP and Figure 4.3(D) shows the intensity map drawn 

around a recorded position at 1461 cm-1.  

 The parameter combination of laser power and exposure time were determined to prevent 

sample burning, ensure spectra quality (SNR and fluorescence background), and data collection 

efficiency. Due to the uneven surface of the specimen, the maximal scanning map length and width 

were both 300 nm to avoid out-of-focus issue. 10 nm step size was chosen to avoid NBP repetitive 

scanning by the neighboring scanning points. For obtaining map, 5 nm × 5 nm map size is large 

enough to collect all qualified spectra belonging to a single NBP. As shown in Table 3.1, the total 

time for one cycle (scanning map plus obtaining maps) ranges from 12 minutes to 30 minutes.  

Table 3.1 Parameters of scanning map and obtaining map. 

Map type Laser 

Power 

Exposure 

time 

Map 

length 

Map 

Width 

Step size Total time 

Scanning 50 mW 0.1s 300 nm 300 nm 10 nm 12 min 

Obtaining 10 mW 0.5s 5 nm 5 nm 1 nm  25 sec 

 

3.5.2 Automation of Raman measurement 

 We noticed that the repetitive style of Raman measurement could be accomplished by 

computer program engineering. To save the manpower and increase the scale of database, we made 

a python program enabling automated running scanning and obtaining maps. The basic procedure 

is demonstrated in Figure 3.15, and the cores of the program are the automated camera focusing 

section and the potential signal position selection algorithm. As the manual work, the automated 

measurement begins by several preparations including origin initialization, map acquisition map 
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initialization. Then the scanning map starts by controlling the software-hardware interaction. 

Regarding the potential signal position selection step, an algorithm calculating the numerical SNR 

was implemented to determine the keep-or-drop, the details are given in Section 3.6.1. A threshold 

of 8 was used to draw the boundary of keep-or-drop. Overall, by implementing the signal position 

selection algorithm, we could retain around 80% of the NBPs’ positions compared to the manual 

work. As shown in Figure 3.15, obtaining maps runs by moving the sample staged according to 

the pre-calibrated coordinates. Recorded positions are characterized by the obtaining map template. 

Coming to moving the scanning map, a lens focusing algorithm based on computing the image 

sharpness is applied to adjust the stage height. The sharpness calculation is given by, 

𝑮𝑥 = ∇𝑥ℒ =
𝜕ℒ

𝜕𝒙
, 𝑮𝑦 = ∇𝑦ℒ =

𝜕ℒ

𝜕𝒚
 3-6 

 

𝑆ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 =

√∑ (𝑮𝑥𝑖
2 + 𝑮𝑥𝑗

2 + 𝑮𝑦𝑖
2 +𝑮𝑦𝑖

2 )
𝑁𝐿 ×𝑁𝐻
𝑖,𝑗

𝑁𝐿 × 𝑁𝐻
 

3-7 

 

Where G stands for gradient, L is the gray scale two-dimensional matrix of the image, NL and NH 

are the row and column length of the matrix. Through the automation, we can improve our data 

collection efficiency by a factor of 5 to 10 after summarizing 200 measurements, shown in Figure 

3.16. 



61 
 

 

Figure 3.15 Workflow of automated SERS measurements. 
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Figure 3.16 Number of NBPs collected. Comparison shows NBPs characterized between manual and 

automated measurements, the data throughput is increased by a factor 6. 

 The most significant part of this algorithm is currently selecting the potential analyte 

positions from the coarse map spectra, for which we chose to use a universal SNR calculation and 

cutoff by a predefined threshold. The performance of it directly determines our efficiency of 

collecting data, thus the subsequent data analyses. The current approach may not work for the 

specimens that have remarkable baselines (or peaks) at certain Raman bands. Those baseline or 

peaks contribute a lot to the spectral SNR even though these features are not informative to the 

NBPs. The non-informative baselines or peaks can be attributed to the factoring including 

solvent/solute, sample preparation, substrate preparation etc. Therefore, the selecting algorithm 

needs to specifically customize to deal with those special cases and ensure that informative NBPs’ 

spectroscopic features are obtained to facilitate the single particle identification.  
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3.6 Data processing and analyses 

 Data processing is the final and most important step within the whole process. Given the 

enormous and complicated spectral data, well-designed and established analyzing algorithms are 

required to extract the most valuable and representative features to fulfill our purpose. Abundant 

features including relevant, irrelevant, redundant ones are usually present meanwhile. Infinite 

combinations of peak Raman band positions and intensity often requires a robust analytical 

approach that withstands unintentional variations. Conventional statistical tools (e.g., correlations, 

regressions etc.) based on bioinformatics and biostatistics are powerful techniques in data mining. 

Meanwhile, AI and machine learning demonstrate excellent capabilities in many fields, for 

example, image and voice recognition (Yuan et al., 2022), nature language processing (Mathews, 

2019) and so on. Classification, clustering, regression, feature extraction and selection are widely 

used in spectroscopic data processing and analyses (Muto & Shiga, 2020). As such, we introduced 

several machine learning tools in our studies for different tasks and customized algorithms to 

optimize the performance. At the same time, a database of NBPs SERS spectral patterns is being 

established for efficient management and query. Currently our database is in dictionary format at 

the sample level, we are working on building a structured query language (SQL) configured 

database which incorporates all the available and informative NBPs’ spectra. In addition, a succinct 

SERS spectral data processing graphical user interface (GUI) is under development. 

3.6.1 Spectroscopic data quality control and preprocessing 

 A spectrum quality evaluation algorithm based on the SNR is implemented for spectral 

data quality control, by filtering noisy spectra without informative features. The SNR of a spectrum 

is calculated by the maximal peak intensity divided by the average noise level after baseline 
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subtraction. For more details, asymmetric least square (ALS) algorithm based baseline subtraction, 

Savitzky-Golay filtering based smoothing are involved in calculating the SNR. 

3.6.1.1 Baseline (background) subtraction algorithm 

 The ALS method was used to subtract the fluorescence background of original Raman 

spectral data (Newey & Powell, 1987). A given spectrum is denoted by a vector x = {x1, x2, … xn}, 

the observed frequency (or wavelength) domain spectral intensities, typically a thousand 

components in our case. The smoothing series z = {z1, z2, … zn}is faithful to x, then the penalized 

least square’s function is defined as the loss function in order to find the optimized solution to the 

original problem, which is composed of a fitness part and smoothness part: 

 

argmin
𝑾

𝐹 = argmin
𝑾

[∑ 𝑤𝑖(𝑥𝑖 − 𝑧𝑖)2 + 𝜆 ∑(∇2𝑧𝑖)
2

𝑖

]

𝑖

 3-8 

 

∆2𝑧𝑖 = (𝑧𝑖 − 𝑧𝑖−1) − (𝑧𝑖−1 − 𝑧𝑖−2), 𝑖 = 1, 2, … , 𝑛 3-9 

 

∆ is a differential operator. The parameters wi and λ are weight-fitness vector and penalty-control 

factor to tune the balance between smoothness and fitness. The definition of wi is based on a 

parameter p typically in the range of 10-3 to 10-1, 

𝑤𝑖 = {
𝑝, (𝑥𝑖 − 𝑧𝑖) > 0
1 − 𝑝, (𝑥𝑖 − 𝑧𝑖) ≤ 0

 3-10 

 

The optimized solution to equation 3-8 leads to a linear transformation: 
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(𝑾 + 𝜆𝑫𝑇𝑫)𝒛 = 𝑾𝒙  3-11 

 

With W is the diagonal matrix for vector w, thus W = diag(w). D is the differential matrix, Dz = 

∆2z. Basically, this method can estimate the true background but at the same time might eliminate 

the signal, therefore the balance parameters (λ is usually from 10-6 to 10-1) should be finely tuned 

to minimize signal distortion. A baseline subtraction result is shown in Figure 3.17.  

 As stated, The baseline wandering problem occurs when the ALS baseline subtraction 

algorithm is confused by fluorescence background and Raman peak with large width. Residual 

baseline is observed to mask the featured peaks which could hinder the biomarker identification. 

In most of our preprocessing, fixed p and λ were used for the baseline subtraction tasks, which 

were chosen in an empirical manner. This method works for around 90% of cases, but for those 

specimens having a special baseline pattern, we need to modify the original algorithm to fit the 

rare cases. We are planning to introduce ML to learn the baseline patterns given a fluorescence 

database, then it will enable real-time adjustment of the baseline subtraction algorithm parameters. 

This adaptive capability will not only enhance the accuracy of our spectral analysis but also ensure 

that we can effectively address the outliers and special cases that were previously challenging to 

manage. Through this approach, we aim to make our spectral analysis more robust and versatile, 

ultimately advancing our capabilities in disease diagnosis and biomarker identification. 
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Figure 3.17 Demonstration of ALS based baseline subtraction. Original spectrum, baseline-subtracted 

spectrum, fitted baseline, and residual baseline are shown. 

3.6.1.2 Smoothing (denoising) algorithm  

 Savitzky-Golay filtering method was applied to reducing the uncorrelated noise in Raman 

spectral data (Press & Teukolsky, 1990). This filtering algorithm was invented by Savitzky and 

Golay and attributed to least-squares smoothing that reduces noise while maintaining the shape 

and height of waveform peaks (e.g., Gaussian shaped spectral peaks). 

 The basic idea of Savitzky-Golay filtering is to conduct a local polynomial fitting in a 

preset shortened window of the whole-observed-wavelength-domain spectral intensities, then use 

the fitted value at the center of the window as the faithful transformation of the original 

corresponding value. A given spectrum x[n] = {x1, x2, … xn}is transformed to a faithful smoothing 
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series p[n] = {p1, p2, …  pn}in the way that, for each component xi in x, considering its neighboring 

2M samples centered at xi, a polynomial function is applied to fit the 2M + 1 samples: 

𝒑[𝑖] = ∑ 𝑎𝑘𝑖𝑘

𝑁

𝑘=0

 3-12 

 

With N is the order of the polynomial function. The optimized polynomial fitting can be found by 

minimizing the mean-squared approximation error for the group of input samples centered at xi: 

 

argmin
𝑷

𝜀 = argmin
𝑷

∑ (𝑝[𝑖] − 𝑥[𝑖])2

𝑀

𝑖=−𝑀

= argmin
𝑎𝑘

∑ (∑ 𝑎𝑘𝑖𝑘

𝑁

𝑘=0

− 𝑥[𝑖])2

𝑀

𝑖=−𝑀

 3-13 

 

Where M is defined as the half-width of the approximation interval. Eventually, the smoothed 

output is obtained by evaluating p[i] at the central point, that is p[i], that is the 0th polynomial 

coefficient. An example of smoothing result shown in Figure 3.18, which effectively filters out the 

messy noise. 
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Figure 3.18 Demonstration of spectrum smoothing. (A) Original spectrum. (B) Smoothed spectrum. (C) 

Original spectrum subtracted by smoothed spectrum, i.e., noise spectrum. 

3.6.1.3 Quality control 

 The spectrum quality evaluation algorithm is built on the ALS and filtering algorithms.  

The SNR of the baseline-subtracted spectrum serves as the metrics for evaluating the quality. As 

stated previously, the SNR is defined as the maximal peak intensity divided by the average 

intensity of the noise. By Savitzky-Golay filtering, a baseline-subtracted spectrum is split into the 

pure signal as well as the noise, as shown in Figure 3.18. Obviously, the SNR is given by 
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𝑆𝑁𝑅 =
max(𝐷𝑒𝑛𝑜𝑖𝑠𝑒 𝑠𝑝𝑒𝑡𝑟𝑢𝑚)

𝐴𝑣𝑔(𝑁𝑜𝑖𝑠𝑒)
 3-14 

 

Practically, a spectrum with SNR higher than 25 has reasonable quality for presenting 

representative features, thus for data analysis. Figure 3.19 shows the SNR dropping from 120.8 to 

6.9 as the spectrum becomes nosier. 

 

Figure 3.19 Spectra SNR. Spectra SNR decreases from 120.8 to 6.9, the quality is dropping accordingly. 

3.6.2 Database 

 Considering the scale and attributes of the spectral database, we create dictionary-wise 

database to store our spectroscopic data. Each dictionary is created based on sample information 
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and type of study, which usually contains 102 to 105 spectra from NBPs. Keys and contents storing 

the sample information are given to every dictionary, including data matrix (matrix containing all 

the spectra, which are represented by one dimensional arrays), sample name, map index, label 

(numerical expression for each sample), group (high-level sample types), Raman shift (Raman 

shift range) and other auxiliary keys. Since we select a fixed Raman shift range to characterize the 

specimen, therefore the Raman shift information is the same across the samples and the spectral 

intensities are stored under a separate key-data matrix, which is intended to storage space as well 

as simplifying data analyses.  



71 
 

 

Figure 3.20 Diagram of SERS database structure. 

 With the demand for querying data in the future, SQL based data templates are being 

developed including all the samples as well as the test results. SQL is a well-known standard 

language for interacting with databases and conducting multiple operations, such as querying, 

inserting, updating, modifying database schemas, and managing user access. It will provide strong 

support for users to have access to the SERS fingerprints of NBPs and build data analysis models 

once established.  
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3.6.3 Artificial intelligence and machine learning 

 Artificial intelligence, especially machine learning, is believed to perform excellently on 

analyzing tremendous amounts of data and assist researchers for data mining and data science. 

With the rapid development of computing capabilities, such as the upgrading of AI graphic 

processing unit (GPU) by Apple Inc., Nvidia Inc and the invention of numerous analytical 

algorithms, AI based analytical methods are able to complete incredible complex and tremendous 

tasks efficiently. SERS spectra of NBPs are typically highly intricate due to a lot of different 

molecules contained within a single NBP. Unlike the small molecules such as amino acids, nucleic 

acid, NBPs’ spectrum is usually composed of various combinations of peak positions, peaks widths, 

and peaks intensities. In addition, the uncertain fluorescence baselines and random noise make it 

extremely arduous to analyze and compile. Surface plasmon also adds a lot more variations to the 

regular Raman spectroscopy, therefore, a robust, powerful, and efficient analytical technique is 

required to carry on the analytical tasks. As introduced in the previous sections, we implemented 

multiple machine learning based analytical methods and algorithms, including dimensionality 

reduction analyses, supervised learning and unsupervised learning, feature extraction and selection, 

and performance evaluation metrics for a complete model designing, building, and testing platform.  

 Studies have shown that the introduction of machine learning could enhance the scale of 

scientific research. For example, machine learning models can classify spectroscopic data for 

biomarker discovery, disease diagnosis by identifying specific types of cells or tissues, and drug 

discovery and development. N. Banaei et al integrated microfluidic chip and two machine learning 

algorithms (K-nearest neighbor and classification tree) to build a SERS-based protein biomarker 

detection platform, which help them identify five protein biomarkers (CA19-9, HE4, MUC4, 

MMP7, and mesothelin) for recognizing disorder in cancer patients (Banaei et al., 2019). P. 
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Nguyen and B. Hong applied PCA and NN model to learn and predict the composition of 200-base 

long single-stranded DNA as biomarkers characterized by SERS spectral patterns (Nguyen et al., 

2020). For evaluating the roles of machine learning models in biomarkers discovery, J. Li et al 

compared five general models including spectral decomposition, support vector regression, 

random forest regression, partial squares regression, and convolutional neural networks (CNN) to 

recognize the mixture components from a multiplexed mixture of seven SERS-active “nano-rattles” 

loaded with different dyes for mRNA biomarker detection (J. Q. Li et al., 2022). It turns out that 

CNN could successfully analyze SERS spectra from a singleplex, point-of-care assay that detects 

an mRNA biomarker for head and neck cancers. In addition to the application on spectral analyses, 

deep learning models greatly improve the interpretation of medical imaging, DNN have been 

widely used in CT-scan (Afshar et al., 2021; Al-Karawi et al., 2020; Kadry et al., 2020), X-rays 

imaging (Abed Mohammed et al., 2021; Chandra & Verma, 2020; Fusco et al., 2021; Rasheed et 

al., 2021), MRIs (Castillo T. et al., 2020; Eshaghi et al., 2021; Moradi et al., 2015) for disease 

diagnosis, treatment planning, and monitoring of diseases. As for the biological research field, 

spectra analyses or analyses of array-like data, such as mass spectrometry and sequencing, also 

provide significant information of biological properties. The involvement of machine learning 

analytical tools has been an important step forward (Hilario et al., 2003; Liebal et al., 2020; 

Petegrosso et al., 2020; Yang et al., 2020). Due to the nearly unlimited freedom of customizing 

models, machine learning can provide appropriate solutions to biological and medical problems. 

3.6.3.1 Dimensionality reduction 

 Dimensionality reduction is a family of algorithms that are used in both machine learning 

and statistical analysis to reduce the original data high dimensionality space to a much smaller 

space while preserving the most informative features (Huang et al., 2019). It is employed to 
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overcome the “curse of dimensionality”, improve computational efficiency, remove redundant or 

irrelevant features, and visualize the original high-dimensional data (Poggio et al., 2017). Well-

known algorithms include PCA, LDA, t-distributed stochastic neighbor embedding (TSNE), 

autoencoders, uniform manifold approximation and projection (UMAP) etc. Many algorithms are 

based on dimension linear transformations followed by projection or generating low-dimensional 

data distributions preserving the original high-dimensional distributions, which give succinct 

interpretations to the data from different perspectives. Dimensionality reduction can also be 

divided into supervised and unsupervised, depending on whether the data labels are involved. 

Supervised algorithms focus more on the classification by seeking transformed dimensions that 

provide the best separation of the data, while unsupervised dimensionality reductions try to group 

the data by either calculating the similarity, statistical variance etc. Research purposes are supposed 

to be clarified before choosing certain algorithms. 

 LDA is a supervised data analysis method first proposed by R. Fisher in differentiating 

flower types (Xanthopoulos et al., 2013). It determines a lower dimension space based on the 

original space that provides better separability of the data, which is computed based on the mean 

value and variance. As shown in Figure 3.21, a transformed dimension is computed to maximize 

the “distance” between two data groups. Massive data can be efficiently processed by LDA by 

simply solving a generalized eigenvalue problem and it works for both binary class and multi-class 

problems. Non-linear features can also be added by applying corresponding non-linear kernels. 
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Figure 3.21 Simplified working principle of LDA by linear transformation. 

 For binary class problems, let x1, x2, …, xN be N data points belonging to two different 

classes A and B, the mean value for each class can be given by, 

𝒙𝐴 =
1

𝑁𝐴
∑ 𝒙

𝒙∈𝐴
, 𝒙𝐵 =

1

𝑁𝐵
∑ 𝒙

𝒙∈𝐵
 3-15 

Where NA and NB are the data point number of group A and B, respectively. Similarly, the positive 

semidefinite variance matrix for each class can be written by 

𝑣𝑎𝑟(𝐴) = ∑ (𝒙 − 𝒙𝐴)(𝒙 − 𝒙𝐴)𝑇

𝒙∈𝐴
, 𝑣𝑎𝑟(𝐵) = ∑ (𝒙 − 𝒙𝐵)(𝒙 − 𝒙𝐵)𝑇

𝒙∈𝐵
 3-16 

Which represents the variance within each class. On the other hand, the scatter matrix between the 

two groups is  

𝑺𝐴𝐵 = (𝒙𝐴 − 𝒙𝐵)(𝒙𝐴 − 𝒙𝐵)𝑇 3-17 
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Standing for the distance of the means between the two groups. We are trying to find a transform 

dimension (or hyperplane) which maximizes the distance of the means between group A and B, at 

the same time minimizes the intra-class variance, therefore the loss function can be defined as 

max
Φ

ℒ = max
Φ

Φ𝑇𝑺𝐴𝐵Φ

Φ𝑇[var(A) + var(B)]Φ
 3-18 

Subject to 

Φ𝑇[var(A) + var(B)]Φ = 1 3-19 

According to the Lagrangian multiplier method, the optimal Φ can be obtained by solving the 

eigenvalue and eigenvector problem. 

𝑺𝐴𝐵Φ = λ[var(A) + var(B)]Φ 3-20 

Multi-class problem is an extension version of the binary class problem, the inter-class scatter 

matrix and the intra-class variance matrix. 

𝑺𝑖𝑛𝑡𝑟𝑎 = ∑ 𝑣𝑎𝑟(𝐶𝑖)

𝑀

, 𝑺𝑖𝑛𝑡𝑒𝑟 = ∑ 𝑚𝑖(𝒙𝑖 − 𝒙)(𝒙𝑖 − 𝒙)𝑇

𝑀

𝑖=1

 3-21 

𝒙𝑖 =
1

𝑚𝑖
∑ 𝒙

𝒙∈𝑖
, 𝒙 =

1

𝑁
∑ 𝒙 3-22 

Where M is the total number of classes, mi denotes the data point number for each class. Then the 

optimal Φ is given by  

𝑺𝑖𝑛𝑡𝑒𝑟Φ = λ𝑺𝑖𝑛𝑡𝑟𝑎Φ 3-23 

 In addition to dimensionality reduction, LDA can also be employed for classification tasks 

since it takes data labels into consideration for grouping the data points. Unknown samples can be 

assigned to preexist classes by projecting them onto the discriminant dimensions followed by 
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comparing their positions to the class boundaries. One important assumption underlying LDA is 

the multivariate Gaussian distribution of the data and equal class covariances. Violations of this 

assumption may require alternative methods like Quadratic Discriminant Analysis (QDA) or 

Regularized Discriminant Analysis (RDA). LDA also provides interpretability, as it assigns 

discriminant coefficients to each feature, indicating their relevance in the linear combination. This 

facilitates feature selection and understanding of the important factors contributing to the unique 

spectral features. 

 TSNE is another unsupervised dimensionality reduction algorithm frequently used in 

machine learning and data visualization. Unlike typical linear algorithms, TSNE tries to preserve 

the local structure of the data, rather than the global structure. It maps the original high-

dimensional data into a much lower dimensional space (typically two dimensions) by maintaining 

the pairwise similarities between data points (Laurens & Hinton, 2008). TSNE constructs a 

similarity measurement between data points and optimizes a cost function to find an embedding 

that minimizes the Kullback-Leibler divergence (KL divergence) between the high-dimensional 

and low-dimensional representations (Hershey & Olsen, 2007).  

 Using the same notations as LDA, the similarity measurement between two data points xi 

and xj is given by the conditional probability pij,  

𝑝𝑖𝑗 =
exp (−‖𝒙𝑖 − 𝒙𝑗‖

2
/2𝜎2)

∑ exp (−‖𝒙𝑙 − 𝒙𝑘‖2/2𝜎2)𝑘≠𝑙
 3-24 

In which pij will be relatively large for the data points near data points xi, while for far data point 

pij will be negligible. σ is variance determined by optimizing the Shannon entropy [ref]. This is the 

core reason that TSNE focuses more on the local structure of the data instead of global. It then 
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creates low-dimensional data points to “represent” the original data points xi. The counterparts of 

xi and xj, yi and yj, are also given a similarity measurement,  

𝑞𝑖𝑗 =
exp (−‖𝒙𝑖 − 𝒙𝑗‖

2
)

∑ exp (−‖𝒙𝑙 − 𝒙𝑘‖2)𝑘≠𝑙
 3-25 

In which the variance is set to 1/√2 for simple calculation. It is worth noting that different variance 

for data points yi only results in rescaling after dimensionality reduction. To minimize the 

mismatch between pij and qij, TSNE introduces KL divergences to measure the difference between 

the two distributions,  

ℒ = ∑ 𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖)
𝑖

= ∑ ∑ 𝑝𝑖|𝑗𝑙𝑜𝑔
𝑝𝑖|𝑗

𝑞𝑖|𝑗𝑗𝑖
 3-26 

Where Pi and Qi denote the sets of pi and qi for data point xi in the original and mapped data sets, 

respectively. Optimizing the above loss function results in the low-dimensional form of original 

data set by minimizing the gradient of L, 

𝜕ℒ

𝜕𝑦𝑖
= 4 ∑ (𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)

𝑗
 3-27 

 One potential problem of TSNE is the non-convex loss function, which leads to different 

results with different initialization states, several initializations are sometimes required to achieve 

the lowest KL divergence. TSNE is currently computationally expensive and is limited to fewer 

dimensional embeddings compared with other algorithms, moreover, it does not perverse the 

global structure well. Therefore, it is usually incorporated with other algorithms such as PCA to 

mitigate the pitfalls.  
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3.6.3.2 Classification or supervised learning 

 Classification is one of the fundamental tasks in machine learning which classifies the 

labelled data into separate predefined groups based on their features or characteristics. The goal of 

classification is to build a predictive model based on the training data (the input data) and generate 

accurate predictions to the unseen data. According to the number of classes or categories, 

classification can be divided into binary classification and multi-class classification, and the 

algorithms aim at learning decision boundaries that separate different classes within the feature 

space, the decision boundaries will be used later for unseen data predictions. Well-known 

classification algorithms include logistic regression, decision tree and its extensions (adaptive 

boosting algorithm, random forest algorithm etc.), support vector machine, naïve Bayes, and neural 

networks. Those models use different assumptions and strategies to learn from the data and have 

specific pros and cons. We have been using SVMs in our research based on the scale of dataset 

and universal performance (computational efficiency, accuracy etc.) compared with other models. 

The fundamental mathematics of SVMs is given below. 

 SVMs relies on the concepts of linear algebra and optimization then utilizes kernel tricks 

to increase its application on non-linear cases (Suthaharan, 2016). The goal of SVMs is to 

determine a hyperplane (plane in high-dimensional space) that separates the labelled data of 

different classes. It introduces the concept of margins to measure how well the hyperplane 

separates different classes, which are defined as the distance between the hyperplane and the 

nearest data points of different classes. For maximizing the margins, SVMs formulate the problem 

into a convex optimization problem solved by incorporating Lagrangian multipliers. SVMs 

classification is not limited to linear problems, for those data possessing non-linear structure, 

kernel tricks play significant roles for SVMs to learn their unique features. 
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 Let x1, x2, …, xN be N data points and y1, y2, …, yN  ∈ {+1, -1}are the corresponding labels. 

The hyperplane can be expressed by 

𝝎 ∙ 𝒙 + 𝑏 = 0, 𝜔 ∈ ℛ𝑁 , 𝑏 ∈ 𝑅 3-28 

Corresponding to the decision function 

𝑓(𝒙) = 𝑠𝑔𝑛(𝝎 ∙ 𝒙 + 𝑏) 3-29 

Among all hyperplanes, there exists a specific one yielding the maximum margin that separating 

the classes, which is represented by 

max
𝝎,𝑏

{min
𝝎,𝑏

‖𝒙 − 𝒙𝑖‖} , 𝝎 ∙ 𝒙 + 𝑏 = 0, 𝑖 = 1, 2, … , 𝑁 3-30 

As shown in Figure 3.22, the data points nearest to the hyperplane on different sides are 

the keys for determining the optimal hyperplane, which are named “support vectors”. We can make 

the following adjustment to simplify the calculation, 

𝝎 ∙ 𝒙+ + 𝑏 = +1, 𝝎 ∙ 𝒙− + 𝑏 = −1 3-31 

Which only leads to rescaled coordinates. Therefore, the distance between the support vectors can 

be expressed by 

𝑑 =
2

‖𝝎‖
 3-32 

The original problem then becomes 

max
𝝎,𝑏

2

‖𝝎‖
, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝝎 ∙ 𝒙𝒊 + 𝑏) ≥ 1, 𝑖 = 1, 2, 3, … , 𝑁 3-33 

Or  

min
𝝎,𝑏

1

2
‖𝝎‖2 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝝎 ∙ 𝒙𝒊 + 𝑏) ≥ 1, 𝑖 = 1, 2, 3, … , 𝑁 3-34 
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Which becomes a convex optimization problem by the above modifications. A common way the 

solve this problem is through its Lagrangian dual 

max
𝝀

min
𝝎,𝑏

ℒ(𝝎, 𝑏, 𝝀) 3-35 

Where  

ℒ(𝝎, 𝑏, 𝝀) =
1

2
‖𝝎‖2 − ∑ 𝜆𝑖[𝑦𝑖(𝝎 ∙ 𝒙𝒊 + 𝑏) − 1)]

𝑁

𝑖=1

 3-36 

 

Figure 3.22 Demonstration of SVMs for classifying data points. 

 



82 
 

The primal problem and dual problem are closely related, and they usually have the same 

optimal solutions under certain conditions. Therefore, solving the dual problem can yield the 

optimal hyperplane for most cases.  

 To simplify the dual problem for easier computation, since L(ω, b, λ) is convex, for any 

given λ, 

𝜕

𝜕𝑏
ℒ(𝝎, 𝑏, 𝝀) = 0,

𝜕

𝜕𝝎
ℒ(𝝎, 𝑏, 𝝀) = 0 3-37 

Render 

∑ 𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0, 𝝎 = ∑ 𝜆𝑖𝑦𝑖𝒙𝒊

𝑁

𝑖=1

 3-38 

By substituting Equation 3-38 to Equation 3-35 and 3-36, the dual proble1m can be written as 

max
𝜆𝑖

∑ 𝜆𝑖

𝑁

𝑖=1

−
1

2
∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗(𝒙𝒊 ∙ 𝒙𝒋)

𝑁

𝑖,𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜆𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0, 𝑖 = 1, 2, 3, … , 𝑁 

3-39 

And the hyperplane decision function is 

𝑓(𝒙) = 𝑠𝑔𝑛[∑ 𝑦𝑖𝜆𝑖 ∙

𝑁

𝑖=1

(𝒙 ∙ 𝒙𝒊) + 𝑏] 3-40 

Which is the typical problem in machine learning. 

 The involvement of kernel trick enables SVMs to effectively handle non-linearly separable 

data by implicitly mapping it to a higher-dimensional space where linear separation becomes 

possible. The kernel function calculates the similarity or distance between pairs of data points in 
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the original input space or the transformed feature space. It replaces the dot product between data 

points with a non-linear mapping, allowing SVMs to learn complex decision boundaries. Without 

kernel (or linear SVMs), we have 

𝑘(𝒙𝑖, 𝒙𝑗) = 𝒙𝒊 ∙ 𝒙𝒋 3-41 

Multiple kernels can be used to map the original data into higher dimensional space, 

including linear kernel (original), polynomial kernel, Gaussian kernel (or Radial Basis Function, 

RBF), sigmoid kernel etc. Then we can rewrite the dual problem into a more general format,  

max
𝜆𝑖

∑ 𝜆𝑖

𝑁

𝑖=1

−
1

2
∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝑘(𝒙𝑖, 𝒙𝑗)

𝑁

𝑖,𝑗=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝜆𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝜆𝑖𝑦𝑖

𝑁

𝑖=1

= 0, 𝑖 = 1, 2, 3, … , 𝑁 

3-42 

And the corresponding decision function is 

𝑓(𝒙) = 𝑠𝑔𝑛[∑ 𝑦𝑖𝜆𝑖 ∙

𝑁

𝑖=1

𝑘(𝒙𝑖 , 𝒙𝑗) + 𝑏] 3-43 

However, more real cases are that the hyperplane separating the classes does not exist due 

to the highly noisy data. Hereby, soft margin SVMs replaces hard margin SVMs by allowing a few 

instances violating yi(ω ∙ xi + b) ≥ 1, by introducing an extra term ζ, the constraints are relaxed to 

𝑦𝑖(𝝎 ∙ 𝒙𝒊 + 𝑏) ≥ 1 − 𝜁𝑖 , 𝜁𝑖 ≥ 0, 𝑖 = 1, 2, 3, … , 𝑁 3-44 

Therefore, the optimal classifier is established by balancing both ω and the soft margin factor ζ, 

thus the objective function becomes 
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1

2
‖𝝎‖ + 𝐶 ∑ 𝜁𝑖

𝑁

𝑖=1

 3-45 

In which C is the penalty hyperparameter controlling the margin and misclassification errors. 

Similarly, soft margin SVMs problem can be converted to dual problem and solved by quadratic 

optimization strategy (P. Chen et al., 2005).  

 In summary, SVMs offer the advantage of being effective in high-dimensional spaces, 

robust to overfitting, and versatile in handling both linear and non-linear classification tasks. SVMs 

perform over other algorithms on small and medium data set with high dimensionality. However, 

SVMs are sensitive to noise due to the concept of support vectors, computationally expensive for 

large datasets, and difficult to interpret (Suthaharan, 2016). For large and complicated datasets 

with non-linear features, even though multiple kernels are available to accommodate non-linear 

analyses, they are still based on certain assumptions on the data points distribution. Currently, 

neural networks and deep learning are believed to be better algorithms for large and complex data, 

however, their performance on SERS spectral data analyses hasn’t been fully validated. 

Understanding these advantages and disadvantages helps determine the appropriate use and trade-

offs of SVMs and other classification algorithms in machine learning applications. 

3.6.3.3. Clustering or unsupervised learning 

 Unsupervised learning or clustering is another fundamental approach in machine learning, 

which groups the data points into clusters by calculating the inherent similarities between among 

data without prior knowledge of the data labels. The goal is essentially to discover the inherent 

structures, relationships, or natural groups within the data. Clustering algorithms can be grouped 

into four types, density-based, distribution-based, centroid-based, and hierarchical-based 

clustering. Each type uses unique metrics for similarity measurements and cluster determination. 
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Commonly used algorithms include K-means clustering (centroid-based), DBSCAN (Density-

Based Spatial Clustering of Applications with Noise, density-based), Gaussian mixture models 

(GMM, distribution-based), HCA, hierarchical-based), BIRCH (balance iterative reducing and 

clustering using hierarchical, hierarchical-based), affinity propagation clustering, mean-shift 

clustering (hierarchical-based), agglomerative hierarchy clustering (hierarchical-based) etc. 

Specifically for NBPs’ SERS data analysis, we need to consider the unique features of SERS 

spectra as well as the requirements. Some prerequisites or requirements are, (1) the total number 

of clusters is unknown; (2) customizable similarity metrics need to be available; (3) no knowledge 

of statistical distribution is available. Based on those concerns, we mainly implemented HCA in 

our study with customized “shifting Euclidean distance” as similarity metrics.  

 HCA utilizes an agglomerative or divisive method for clustering, shown in Figure 3.23. 

The former means that each instance starts from its own cluster and pairs of clusters are merged if 

they are “similar”, while the latter means all instances start from one single cluster and splits 

recursively to form a hierarchy (Hubert, 2014; Köhn & Hubert, 2015). Upon the pairwise 

similarities obtained according to the predefined metrics, linkage criterion performs a critical role 

in determining pairs of clusters to be merged, or one cluster to be split. In our analysis of SERS 

spectra, “shifting Euclidean distance” is used as the similarity metrics, which is defined as, 

𝑑𝑖𝑠𝑡(𝒙, 𝒚) = min
𝑘

{∑(𝑥𝑖±𝑘 − 𝑦∓𝑘)2} 3-46 

Where x and y represent two spectra, k is the shifting steps. The essential reason of applying 

shifting is due to the horizontal fluctuation on SERS spectrum due to the systematic error in 

calibration and random noise in photon scattering. The underlying idea is searching for the 

“optimal match” by shifting the pairwise spectra horizontally. As for the linkage criteria, there are 
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many options, such as complete linkage, single linkage, weighted average linkage, Ward linkage 

etc. Based on the assumptions that all the spectra included in a single cluster are supposed to share 

remarkable similarities, we used complete linkage (or maximum linkage), which is defined as,  

𝑑(𝑋, 𝑌) = max
𝒙∈𝑋,𝒚∈𝑌

𝑑𝑖𝑠𝑡(𝒙, 𝒚) 3-47 

In which x and y are two spectra, while X and Y are two clusters being compared. dist stands for 

the similarity (or distance) function. In this case, two clusters are joined into one only if all pairs 

of spectra have similarities below the predefined threshold, which guarantees that a single cluster 

exclusively corresponds to one spectral signature.  

 

Figure 3.23 Demonstration of HCA algorithm for clustering analysis. 

 Overall, clustering analysis provides informative views of the inherent spectral features of 

NBPs, free from the knowledge of the labels. This method is very useful when multiple types of 

NBPs are present in one specimen, which helps us identify unique groups or discover new entities. 

In our study, clustering analysis serves as an auxiliary technique for classification by correcting 
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the training data labels and improving the prediction accuracy. However, it is still a challenge to 

determine the similarity metrics and the linkage, which can greatly affect the clustering results. 

HCA also assumes a hierarchical structure, which may not apply to all NBP dataset, we need to 

further increase the robustness of our SOP and give an objective interpretation of the dendrogram 

showing the hierarchical relations.  

3.6.3.4 Feature selection and feature extraction 

 SERS spectral data typically have more than 103 features represented by the Raman shift 

range. There are informative features, irrelevant features, redundant features in the original feature 

space. Large feature (or dimensionality) space requires increasing computational resources for 

analysis and sometimes causes unintentional issues due to “curse of dimensionality”. Those issues 

lead to lower efficiency in learning the spectral signatures of target NBPs as well as loss of the 

general and representative spectral features due to overfitting. To overcome these issues, 

researchers have put much effort into investigating powerful feature selection and feature 

extraction algorithms to avoid the above pitfalls. Both approaches aim to construct a reduced 

feature space that captures the essential characteristics of the data. Feature selection involves 

selecting a subset of the original features, while feature extraction transforms the original feature 

space into a more informative and compact representation, such as PCA, LDA, or autoencoders. 

Feature selection offers the advantage of interpretability and transparency and can be combined 

with other analytical tools for targeted and controlled analysis. Popular feature selection algorithms 

include recursive feature elimination (RFE), Chi-square, information gain, genetic algorithms, and 

more. Most algorithms select features based on their statistical properties such as correlation, 

variance, information gain etc., irrespective of the analysis goal. In contrast, genetic algorithms 

(GAs) search for the best feature subsets through generating many searching agents towards the 
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optimization of the analysis goal, for example, classification accuracy (Dorigo et al., 2006). GAs 

include many sub-algorithms different from the way of allocating searching agents and evaluating 

the “fitness”, which is defined as the performance of the solution domain. They offer an effective 

approach to tackle feature selection problems by mimicking the evolutionary process. The 

algorithm starts by generating an initial population of potential feature subsets, each represented 

as a chromosome. The fitness of each chromosome is evaluated based on a predefined evaluation 

metric, often classification accuracy or regression error. During each generation, a portion of the 

existing population is selected for the next generation. Individual solutions are selected through a 

fitness-based process, in which solutions with higher fitness values are typically more likely to be 

selected. Through repeated generations, GAs iteratively improve the fitness of the population, 

gradually converging towards an optimal or near-optimal feature subset. This process allows GAs 

to efficiently explore a large solution space and discover feature combinations that maximize the 

performance of the selected model. Typical algorithms such as ant colony optimization feature 

selection (ACOFS) and particle swarm optimization feature selection (PSOFS) are currently 

widely used for optimization problems, data mining, image and signal processing, neural networks 

architecture search and more (H. Peng et al., 2018; Sakri et al., 2018). 
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Figure 3.24 Diagram of ACOFS principle. Feature subsets are selected followed by evaluating fitness 

with incorporating predictive model, the optimization process keeps running until preset requirements are 

fulfilled. 

 ACOFS is a one of the GAs inspired by the foraging behavior of ants (H. Peng et al., 2018). 

While ACO is commonly used for solving optimization problems, it has also been applied to 

feature selection tasks. ACOFS starts with a population of artificial ants that traverse a search space, 

where each ant represents a potential feature subset. The goal is to find a feature subset that 

optimizes a specific objective function, such as classification accuracy or model complexity. The 

ants construct solutions by selecting features based on probabilistic decision rules and pheromone 

trails. Pheromone trails mimic the communication between ants by depositing and updating 

information about the quality of selected features. During the construction phase, ants evaluate the 
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quality of feature subsets and adjust the pheromone levels accordingly. The pheromone levels 

guide next generation ants to preferentially select features that have been previously regarded 

beneficial. As generations iteratively continue, it allows ants to explore the search space and 

converge towards the optimal feature subsets. The final feature subset is typically determined by 

selecting the best solution encountered during the iterations. 

 The detailed working principle of ACOFS is given in a series of steps below, and the 

pseudo-code is given in Figure 3.25.  

 

Figure 3.25 Pseudo-code of ACOFS. 
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 Step 1: Initialization; assume N is the original feature space of dataset M including C 

classes. Initialize the pheromone τ with equal values and the heuristic information η with Fisher 

score for all N features. Preset the number of generations of feature selection t and the number of 

ants k for each generation. 

𝜂𝑖 =
∑ (Ω𝑖,𝐶𝑗

− Ω𝐺𝑖
)𝐶𝑗

∑ 𝜎𝑖,𝐶𝑗

2
𝐶𝑗

 3-48 

In which Ωi,Cj is the centroid for class Cj on feature i, and ΩGj is the global centroid on feature i, σ 

i,Cj is variance for class Cj on feature i 

 Step 2: Determine the feature subset size r according to the theory of sample-to-feature 

ratio.  

 Step 3: Generate k artificial ants for building feature subset. 

 Step 3: Using probabilistic transition rule to calculate the chance for each feature to be 

selected by each ant.   

𝑃𝑖
𝑘(𝑡) = {

|𝜏𝑖(𝑡)|𝛼|𝜂𝑖(𝑡)|𝛽

∑ |𝜏𝑗(𝑡)|
𝛼

|𝜂𝑗(𝑡)|
𝛽

𝑗∈𝑓(𝑖;𝑘)

, 𝑖 ∈ 𝑓(𝑖; 𝑘)

0, 𝑒𝑙𝑠𝑒

 3-49 

Which gives the probability for feature i to be selected during tth generation by the kth ant. f(i;k) 

is the features that haven’t been selected.  

 Step 4: Evaluate the fitness of subset Sk(t) within each generation according to the fitness 

equation. 

𝐹 = 𝜑 ∙ 𝐴𝑐𝑐[𝑆𝑘(𝑡)] + (1 − 𝜑)(1 −
𝐿(𝑆𝑘(𝑡))

𝑁
) 3-50 
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Where Acc denotes the performance metrics (classification accuracy, clustering separation etc.), L 

is the length of subset, φ is a weighing factor controlling the balance. 

 Step 5: Select the local best feature subset Sl(t) from Sk(t). 

 Step 6: Check if the termination conditions (predefined performance, number of 

generations etc.) are satisfied. If so, select the global optimal feature subset Sg(t) from Sl(t), 

otherwise continue the generations.  

 Step 7: Update the pheromone τ and the heuristic information η according to the rules of 

updating. The pheromone decays by ρ upon entering a new generation to increase the exploitability. 

Each feature is updated by the mean of fitness, given by Δτk, the global optimal features are further 

rewarded by the last term Δτg. e is the factor measuring rewarding degree for global optimal 

features.  

𝜏𝑖(𝑡 + 1) = (1 − 𝜌)𝜏𝑖(𝑡) + ∑ ∆𝜏𝑖
𝑘(𝑡)

𝑁

𝑘=1

+ 𝑒∆𝜏𝑖
𝑔

(𝑡) 

∆𝜏𝑖
𝑘(𝑡) = {

𝐹𝑖
𝑘/𝑁, 𝑖 ∈ 𝑆𝑘(𝑡)

0, 𝑒𝑙𝑠𝑒
 

∆𝜏𝑖
𝑔

(𝑡) = {
𝐹𝑖

𝑔
, 𝑖 ∈ 𝑆𝑔(𝑡)

0, 𝑒𝑙𝑠𝑒
 

3-51 

 Step 8: Generate a new generation of ants and continue from step 3. 

 In conclusion, the basic idea behind ACOFS is selecting the optimal feature subset through 

guiding the ants to convergence with pheromone level. As a heuristic model, it has both the 

efficiency and exploitation to extract the features providing the most valuable information. Instead 

of conducting an extremely computationally expensive search on the original feature space, it is a 

hybrid search engine that combines the wrapper and filter approaches. ACOFS has been reported 
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to be able to figure out the optimal or near-optimal solutions and outperform other non-heuristic 

algorithms. S. Tabakhi et al compared the unsupervised ACOFS versus other eleven well-unknown 

univariate and multivariate feature selection methods (information gain, relevance-redundancy 

feature selection) using multiple classifiers (SVMs, decision tree, and Naïve Bayes) on different 

datasets (Tabakhi et al., 2014). Unsupervised ACOFS turned out to significantly outperform the 

other methods in terms of error rates and feature subset sizes and could be compatible with many 

classifiers (Kabir et al., 2012; Nayar et al., 2021). The parameter tuning for ACOFS is usually 

challenging and requires quite a bit of effort to optimize, and the computational complexity 

increases rapidly with the size of feature space growing. Researchers have combined multiple 

feature selection methods sequentially to save computational resources. Difference choices of 

heuristic information initialization affect the results as well, in addition to Fisher score, well-

known metrics include information gain, gain ratio, symmetrical uncertainty, Gini index, and other 

filtering-based algorithms. ACOFS provides a rather flexible approach to investigating the SERS 

spectral features in depth, which helps a lot with interpreting biological properties of NBPs and 

discovering biomarkers. In the future, feature selection will be an inevitable step for obtaining 

bioinformation from SERS characterizations, more similar algorithms such as particle swarm 

algorithms, Tabu search, can be introduced for various data analysis tasks. 

3.6.3.5 Implementation of machine learning methods 

 Machine learning methods play a pivotal role in our research, which focuses on the 

application of SERS for disease diagnosis. Specifically, in our study of early diagnosis for NSCLC, 

LDA dimensionality reduction is introduced to elucidate the spectral characteristics of exosome 

subgroups derived from HBEC. ACOFS is introduced to uncover the molecular information that 

contributes to distinguishing cancer-related exosome subgroups. Nearest Neighbors based spectral 
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matching algorithm serves as identifiers for extracting malignant signatures within clinical samples. 

Detailed explanations of these methods are provided in the subsequent chapters. Furthermore, in 

the investigation into COVID detection, SVMs serve as the primary predictive classifier for 

distinguishing SARS-CoV-2 viruses from irrelevant particles. HCA methods are employed to 

address labeling issues arising from the presence of diverse NBPs in virus specimens. 
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Chapter 4 Prospect of detecting early metastasis of Non-

small cell lung cancer by SERS plus machine learning 

4.1 Non-small cell lung cancer and role of exosomes in metastasis 

NSCLC is a major cause of cancer-related death globally and recurs in 30-55% of patients 

following surgery, most commonly as metastatic disease. Metastatic behavior, a hallmark of cancer, 

is often considered a late event, but recent findings suggest that the metastatic process may initiate 

during early-stage disease in some patients. Early-stage micrometastasis may often be present 

during surgery but below the level of clinical detection (Fontebasso & Dubinett, 2015; Salehi-Rad 

et al., 2020). Interestingly, clinical findings are consistent with laboratory-based studies indicating 

that metastatic dissemination may occur during early tumor development, particularly in the 

context of EMT in many cancers, including NSCLC (Eyles et al., 2010; Hüsemann et al., 2008; 

Podsypanina et al., 2008; Rhim et al., 2012). Exposure to carcinogens, inflammation, hypoxia, and 

aberrant genetic modulation leads to EMT activation and selection of cells within the premalignant 

lesions with metastatic potential, resulting in physiologically different and clonally linked airway 

lesions. Early migratory premalignant lesions may harbor decipherable targets that can be used to 

detect and intercept the malignant progression. Recent studies indicate a pattern of metastatic lung 

cancer disease progression (Hüyük et al., 2023; Kawano et al., 2002; Tang et al., 2021), suggesting 

that early detection and targeting of lung cancer at an early stage would dramatically enhance 

patient survival. Low-dose CT (LDCT) scan is the current standard of care for lung cancer 

screening, although fewer than 6% of the 15 million eligible high-risk US population take 

advantage of screening. Liquid biopsy techniques, which rely on cell-free DNA (cfDNA), 

circulating tumor cells (CTCs), or EVs to diagnose cancer, are being evaluated for early detection 
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and tracking tumor progression (Mukherjee et al., 2022). Thus far, cfDNA and CTC-based liquid 

biopsies appear to have their greatest utility in monitoring advanced disease. Thus, EV-based 

ultrasensitive diagnostic and screening tools have the potential to revolutionize the detection and 

treatment of lung cancer.  

Reports suggest that cancer-derived exosomes can act via inter-cellular communication to 

induce EMT and metastasis in many cancers, including lung cancer (Y.-L. Hsu et al., 2017; 

Shimada & Minna, 2017). Examining tumor-derived exosomes in the blood and other bodily fluids 

may provide potential clues, serve as promising cancer biomarkers, and have potential for cancer 

diagnosis and prognosis (S. Chauhan et al., 2022). Exosomes are relatively physiologically stable 

and have unique early migratory fingerprints. Thus, they may be potentially examined using a 

single exosome-based detection method in developing an exosome-based liquid biopsy for 

identifying early lung cancer metastasis. Single exosome-based analysis enhances the likelihood 

of discovering distinct cancer-derived exosomes, particularly when the cancer-related exosome 

subpopulation is small. In contrast, bulk analysis is hindered by a high false negative rate because 

the cancer-related exosomal signal can be readily masked by the dominant normal exosomal 

fraction. We conducted single exosome-based characterization and analysis by combining SERS 

nano-pyramidal substrate and Raman map scanning methods. 

Studying early migration/metastasis in lung cancer is a major challenge due to the paucity 

of relevant model systems. We have recently discovered a unique HM subpopulation of 

premalignant (expressing mutant KRAS-G12D and p53 knockdown), high-risk HBECs, using a 

novel “constricted migration” selection strategy with enhanced metastatic potential in vivo (Pagano 

et al., 2017). Comparative RNA-seq datasets illustrate the increased expression of key EMT genes 

in HBEC-HM compared to HBEC unselected cells. This unique subpopulation of HBEC-HM 
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offers a unique model to investigate premalignant cell migration and early metastasis (Paul et al., 

2018). Just a small percentage of cells (<1%) in the UN population are highly migratory; hence 

most HBEC-UN cells can be considered as low migratory and show poor migratory and invasive 

properties and are distinctly different from the HBEC-HM population. To undertake molecular 

detection and analysis of early lung cancer metastatic phenotype, we isolated and characterized 

exosomes from these HBEC-UN and HBEC-HM cells and then studied their spectroscopic 

fingerprints. To further evaluate our data in the context of a malignant landscape, we have used 

MPE. MPE frequently results from tumor growth and metastatic progression and occurs in 30-35% 

of lung cancer patients. We have utilized a lung cancer patient MPE-biobank for exosome isolation 

and characterization from individual patient’s MPE. Conventional methods (ELISA, PCR, SPR) 

used to identify exosomes are biomarker-driven and require labeling, making lung cancer exosome 

detection challenging, especially at the single-exosome level. Spectroscopic study of exosomes 

depends on spectral fingerprinting of molecular patterns, a new type of potential biomarker 

evaluated utilizing SERS for disease prediction.  

SERS-based single-exosomal characterization can be highly sensitive, but achieving  this 

goal is challenging and requires advanced methods (Kruglik et al., 2019). As shown in Figure 4.1, 

this technique of single-exosome fingerprinting is achieved by using quasi-periodic gold pyramids 

for enabling LSPR and spatial Raman map scanning to confirm the spectral source. The results 

have established the strength of our technology in differentiating exosomes from different 

subpopulations of premalignant cancer cells and is a potential strategy for single-exosome 

fingerprinting. This work is based on technical groundwork, and the results suggest that early lung 

metastatic cell-derived exosomes possess distinct molecular signatures and exhibit unique SERS 

scattering profiles. We utilized patient-derived MPE to confirm that these early metastatic 
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exosomal SERS signatures are also common in metastatic lung cancer-derived exosomes. ML-

assisted SERS profiling of MPE-derived exosomes revealed the existence of HBEC-HM and 

HBEC-UN derived exosomal fingerprints, and the abundance of such HBEC-HM derived 

exosomal fingerprints correlated with the metastatic potential of NSCLC. We applied to 

preliminarily visualize the spectral signature differences among exosomes from different sources. 

In view of the high dimensionality and peak complexity of the SERS spectrum, we implemented 

feature selection and nearest neighbors-based algorithm to identify exosomal biomarkers. Our 

findings suggest that the ML-based SERS analysis of single exosomes could become a label-free, 

ultrasensitive, accurate detection technology for NSCLC early metastasis. Our approach has 

promise for future clinical applications that might facilitate the detection of micrometastasis and 

alter the treatment outcome of lung cancer.  

 

Figure 4.1 Procedure of single-vesicle SERS characterization and detection of early metastasis. 

4.2 Materials and methods 

4.2.1 Exosome isolation 

Exosomes were purified by SUC as previously described. HBEC KRAS-Mut (G12D P53) 

Snail/Vector expressing HM and UN cells were cultured as described earlier (Pagano et al., 2017). 
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Cells were cultured in an FBS-free conditioned medium, pre-cleared of exosomes and protein 

aggregates prior to use for cell culture by ultracentrifugation. In brief, cell culture media were 

collected at 72 h after changing the medium for exosome isolation. Cell culture supernatants were 

first centrifuged at 300 g at 4 °C for 10 min and then at 2,000 g at 4°C for 15 min to remove 

contaminating cells and apoptotic bodies, respectively. The supernatants were then further 

centrifuged at 12,000 g at 4 °C for 45 min to remove sub-cellular debris. The clear supernatant was 

then filtered using 0.22 μm pore filters, followed by ultracentrifugation (Model, L8-M70, Beckman 

Coulter, USA) at 110,000 g at 4 °C for 70 mins. The resulting pellets were resuspended in pre-

chilled PBS and again ultra-centrifuged at 110,000 g and 4 °C for 70 min. The final suspension is 

passed through 0.1 μm pore filters and subjected to characterization. The final exosome pellet was 

resuspended in 50-100 μL PBS for qNano measurement, and in a 2% paraformaldehyde (PFA) 

solution in Milli-Q water for TEM experiments. 

4.2.2 Exosome characterization  

4.2.2.1 Transmission electron microscopy 

Formvar carbon-coated grids (FCF400-CU, Electron Microscopy Sciences) were glow-

discharged on a Pelco easiGlow instrument (Ted Pella Inc., USA) for 2 min. Drops of PFA-fixed 

exosomes were then placed on the grids and incubated for 20 min in a dry environment. The grids 

were washed by floating them upside down on drops of Milli-Q water. The exosomes were further 

post-fixed in 1% glutaraldehyde for 5 min and stained successively in freshly prepared 2% uranyl 

acetate and 2% methylcellulose/0.4% uranyl acetate. Grids were imaged using a 100CX JEOL 

electron microscope at UCLA. Images were taken using a cooled slow-scan CCD camera at a 

magnification of 80,000 × following the published protocol (Yan et al., 2019). 
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4.2.2.2 Western immunoblotting 

 Exosome markers, CD63, CD81, Alix, CD9, and TSG101 antibodies have been purchased 

for Abcam (Cambridge, United Kingdom), and flow antibodies were purchased from BioLegend. 

Western blots were performed according to standard procedures (Paul et al., 2018; Yan et al., 2019). 

Cells grew to 80% confluence in T25 flasks for 72 hrs, followed by media collection. Cell/ 

Exosomes were isolated from the collected media and lysed with RIPA buffer using standard 

methods. 10 μg of each exosomal/ cell lysate was loaded per lane, and proteins were resolved by 

SDS-PAGE and transferred to an Immobilon-P Transfer Membrane (Millipore, Billerica, MA). 

The membranes were blocked with 5% nonfat milk and then incubated with primary antibodies 

diluted in a blocking solution according to the manufacturer’s recommendations. Horseradish 

peroxidase-conjugated secondary antibodies (Bio-Rad, Hercules, CA) and enhanced 

chemiluminescence (ECL) reagent (Amersham Biosciences, Piscataway, NJ) were used for protein 

detection. Densitometry was performed in ImageJ using the “analyze gels” function. 

4.2.2.3 Exosome size determination 

The exosome pellets were resuspended in chilled PBS (Thermo Fisher Scientific, USA), 

pooled, and ultra-centrifuged at 110,000 ×g for 70 min at 4oC. The final pellet of exosomes was 

resuspended in 50-100 μL PBS and stored temporarily at 4°C until use. As previously described, 

the exosome size and particle number were analyzed using the TRPS technology, qNano IZON 

system (Izon, Cambridge, MA, USA) (Greenberg et al., 2021; Maas et al., 2014). Standard beads 

were used to calibrate the system for voltage, stretch, pressure, and baseline current. The diluted 

exosome sample was passed through the NP100 nanopore (for a 50-200 nm size range), and the 

qNano IZON Control Suite software was used for data processing (Maas et al., 2014). The final 

exosome pellet was resuspended in PBS, and protein concentration was measured by BCA (Pierce, 
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Thermo Fisher Scientific). The integrity and time-dependent cellular uptake of exosomes were 

analyzed using fluorescently labeled with Dil dye (1,1’-Dioctadecyl-3,3,3’,3’-

Tetramethylindocarbocyanine Perchlorate) (Thermo Fisher Scientific, USA) and LSM880 

confocal microscopy. 

4.2.3 Cell lines and clinical samples 

The HBEC cell line was generated from a patient's large airway and immortalized in the 

absence of viral oncogenes, as previously reported (Pagano et al., 2017). Typically, the HBEC-

parental cells are non-tumorigenic (Grant et al., 2014; Ramirez et al., 2004); with the 

overexpression of KRAS G12D and P53 downregulation (HBEC-P53/KRAS or HBEC mut), cells 

begin to resemble "at-risk" epithelia. P53 silencing and KRAS activating mutations are strongly 

associated with NSCLC, and with the progressive accumulation of mutations like Snail, the at-risk 

cells gain anchorage-independent growth (AIG) in vitro and develop tumors and metastases in 

vivo (Grant et al., 2014; M. Sato et al., 2013). HBEC-based human carcinogenesis model is 

characterized by its potential for malignant conversion into cancer cells with metastatic capacity. 

We recently described the isolation of a highly migratory HBEC subpopulation and characterized 

them (Pagano et al., 2017; Paul et al., 2018). This unique bronchial subpopulation is isolated using 

our “constricted migration” based migration model and selected for their deformability by using 

cutting-edge physomic techniques, including deformability cytometry and Atomic Force 

Microscope. HBEC lines were cultures in keratinocyte serum-free media (Life Technologies) with 

30 μg/mL bovine pituitary extract and 0.2 ng/mL recombinant EGF (Life Technologies). Cell 

culture maintenance and creation of HBEC-parental, -vector, and -Snail lines are described 

elsewhere (Pagano et al., 2017; Paul et al., 2018). Clinical samples and IRB information for use of 

MPE (patients’ MPE) were provided by UC Davis, Department of Internal Medicine. Healthy 
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human serum specimens were purchased from STEMCELL Technologies Inc. Exosomes were 

isolated following the protocol in Section 3.3.1. 

4.3 Results 

4.3.2 SERS substrate and single-exosome fingerprinting 

Scanning Electron Microscopy (SEM) images are collected to demonstrate the aerial 

arrangement of the Au-nano-pyramid and the exosome specimens on the top layer, as shown in 

Figure 4.3A and Figure 4.3B. Exosomes are located mainly on the lateral facet of the pyramids, 

highlighted by red circles, at which the SERS ‘hot-spots’ are located. Moreover, the impact of 

buffer crystallization is also shown by the ‘cloudy’ areas (white arrows) that blur the SEM imaging 

and decrease SERS spectral yield. Single vesicle identification is one of our platform's key 

advantages. The laser spot size of around 1 μm x 1 μm during the obtaining map step ensured 

single exosome characterization. Compared with bulk EV/exosomal analysis, the individual 

exosome-derived signature is measured by Raman map scanning on our platform, therefore, the 

cancer-derived exosomes can be studied explicitly for molecular signature biomarker extraction 

instead of being ‘buried’ by other exosome subpopulations. To demonstrate the spectral response 

of the exosomes on Raman map measurements, the Raman band of lipids (around 1450 cm-1) (H. 

Sato et al., 2019) is selected for visualizing the intensity distribution around an exosome, as shown 

in Figure 4.3C. Figure 4.3D shows the Raman intensity profile of a single EV, and the circular 

outline agrees with the typical shape of EVs.  The spatial spread of individual EV shown on 

intensity map (Figure 4.3D) is larger than the actual size due to the convolution of the laser beam 

of 1 um with and EV of 150 nm in size. According to Figure 4.3B, the average spacing between 

EVs is approximately several micrometers, which makes it possible for obtaining SERS signals 

from one single EV despite the laser beam convolution.  
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Figure 4.2 Microscopy characterization of SERS Au periodic pyramidal substrate. (A) SEM image of 

blank SERS substrate (magnification of 44043x). (B) SEM image of SERS substrate with EVs 

(magnification of 46534x, EVs are marked by red circles, crystals are marked by white arrows), while 

arrows mark the buffer crystallization. (C) SERS spectra from the center and margin of a single EV 

according to the intensity map (peak assignments are given in Table S1). (D) Raman intensity map of a 

single EV. 
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4.3.3 Exosome subgroups differentiation 

We have established a “constricted migration” based selection strategy to isolate HBEC-

HM and HBEC-UN cells (Figure 4.3A), which are premalignant cells (expressing KRAS-G12D 

and p53 knockdown: mutant (M)) (Pagano et al., 2017). Previous studies have shown that the 

overexpression of SNAIL is associated with increased motility and migration in NSCLC. We 

utilized genetically engineered HBECs to over-express SNAIL and compared Snail-modified vs. 

Snail-unmodified (Vector-modified) HBECs to assess their differences in migration. We found that 

the overexpression of SNAIL in HBEC-HM cells resulted in enhanced migration (Pagano et al., 

2017). HBEC-M-S-HM cells show a significant difference in their actin cytoskeletal structure 

(Figure 4.3B) and exhibit enhanced EMT features and migration (Pagano et al., 2017). This 

subpopulation of HM-HBECs offers a unique model to investigate premalignant cell migration 

and early metastasis. Exosome samples derived from four different gene-modified cell lines were 

evaluated, including HBEC-M-S-HM (M stands for mutant, S stands for Snail-modified), HBEC-

M-V-HM (V stands for vector, i.e., Snail-unmodified), HBEC-M-S-UN and HBEC-M-V-UN.  

Our previous paper compared the ExoQuick kit vs. the SUC for exosome isolation. Though 

ExoQuick-mediated exosome isolation yielded a higher concentration of exosomes, the exosomes 

were more heterogeneous (Yan et al., 2019). Because we isolated exosomes from HBEC culture 

media and MPE, and the sample volume was not limited,  the SUC method was utilized (Figure 

4.3C) (Paul et al., 2018). We confirmed the presence, integrity, and size distribution of our isolated 

exosomes using TEM (Figure 4.3D). We verified that the preparation contained exosomes using 

western immunoblotting for EV/exosome markers, including CD63, CD81, Flotillin, and Hsp70. 

Calnexin was utilized as a negative marker. The western immunoblotting confirmed that the 

isolated exosomes were enriched with exosomal markers. Exosome size was characterized by 
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using a qNano Gold, which measures particles following the principle of Tunable Resistive Pulse 

Sensing (TRPS). The isolated exosome population showed a size distribution ranging from around 

50-150 nm with a mean diameter of ~ 80-90 nm (Figure 4.3F). No significant differences were 

identified in the size of the exosomes isolated from HBEC-HM and the HBEC-UN exosomes 

(Figure 4.3F). The process was repeated with the MPE-derived exosomes. The exosomal protein 

concentration showed that the HBEC-M-S-HM had higher protein concentrations compared to the 

HBEC-M-V-UN cells, as measured by the BCA method (Figure 4.3G). In contrast, the HBEC-M-

V-HM and HBEC-M-S-UN cells showed higher protein concentrations but were not statistically 

significant compared to HBEC3-UN-derived exosomes (Figure 4.3G). LC-MS/MS analyses and 

unsupervised hierarchical clustering revealed a clear distinction between HBEC-HM and HBEC-

UN exosome proteomic profiles (data not shown), suggesting the HBEC-HM-derived exosomes 

are distinct from the HBEC-UN-derived exosomes, reminiscent of the parent cell types. 
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Figure 4.3 Isolation and characterization of HBEC-derived exosome. (A) Schematics showing the ex-vivo 

micropore selection technique-assisted isolation of the HBEC-HM. Cells were grown on the transwell, 

and cells that migrated through to the bottom well were propagated, and the process repeated. The UN 

contain a very tiny fraction (<1%) of cells that are HM, so the other UN cells do not pass through the 

membrane. (B) HBEC-HM display enhanced EMT positive phenotype with the profound actin 

cytoskeleton (stress fibers shown with yellow arrow) as studied using confocal images (Dronpa-Actin, 

DAPI-nucleus). (C) Schematics show the process of exosome isolation using sequential SUC. (D) 

Transmission electron microscopic characterization of exosomes derived from HBEC-M-S/V-HM/UN 

cells. (E) Western immunoblotting was used to probe for exosome markers on exosomal and respective 

cell lysates. (F) The exosome size was characterized using a qNano Gold instrument which measures 

particle size based on the principle of Tunable Resistive Pulse Sensing (TRPS). (G) Exosome protein 

concentration was measured and compared. 

Raman map scanning SOP was used to characterize the samples and collect spectral data. 

Following the single NBP scanning protocol (the protocol details are given in the Methods section), 

we measured approximately 50 exosomes for each sample. Upon obtaining exosome spectra, we 

found heterogeneous signatures existing within and across the samples, indicating that the 

exosomes are from different sources. After obtaining qualified spectral data, we used statistical 

analysis and machine learning to differentiate the HBEC-HM-derived exosomes from the HBEC-

UN-derived exosomes. 

To visualize the spectral signatures of the exosomes attributed to the four cell lines, we 

plotted the representative spectra shown in Figure 4.4A. We then applied dimensionality reduction 

operation using LDA to visualize the differences of fingerprints. As a supervised learning 

algorithm, LDA searches for transformed dimensions that maximize the inter-group distance, 

representing the differences in spectral signatures between groups (Xanthopoulos et al., 2013). The 
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spectral features were further illustrated by projecting the data points to the first two dominant 

dimensions, i.e., LD1 and LD2. LDA analyses were performed using the Linear Discriminant 

Analysis package of the Python Scikit-learn module.  

 

Figure 4.2 Statistical analyses of HBECs derived exosomal SERS fingerprints. (A) Averaged spectrum of 

exosomal fingerprints from each cell line (peak assignments are given in Table S1). (B) Clustering of 

exosomal fingerprints from four cell lines with LDA dimensionality reduction. (C) LD1 values of four 

cell lines’ clusters. (D) LD2 values of four cell lines’ clusters. 
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Interestingly, the overexpression of Snail adds special spectral features to exosomes, which 

may be due to their migratory properties as evident after data analyses. Additionally, Snail-

overexpression decreases the dissimilarities between HBEC-M-S-UN and HBEC-M-S-HM 

exosomal signatures as indicated by their closer datapoints. The gene-modified group gives higher 

scores along the LD1 axis with positive mean values, while the control group is negative. 

Additionally, the HBEC-M-S highly migratory subgroup (HBEC-M-S-HM) oversteps the lower 

migratory subgroup (HBEC-M-S-UN) slightly, shown by the mean score of 3.7 and 1.7, however, 

they share an overlapping score range from 2.2 to 3.0. On the LD2 dimension, the higher migratory 

HBEC-M-V-HM group indicates a clearly lower value than the lower migratory HBEC-M-V-UN 

group by 3.8 versus -3.7, while the snail overexpressed exosome groups show nearly no difference. 

We can find that LD1 may extract the Snail modification features and slightly indicate the 

migratory difference among HBEC-M-S. LD2 shows on the different migratory properties of the 

Snail-unmodified exosomes. Therefore, the spectroscopic signature of exosomes derived from four 

cell types could be distinguished by statistical analyses, based on which we could identify 

exosomal fingerprints and the source cells. This raised the possibility that the exosomal fingers 

could be utilized in clinical biospecimen.  

4.3.5 Illustration of SERS spectral signatures by feature selection 

SERS signatures are reported to contain bio-molecular bonding information. In the 

previous section, we noted a small overlap between HBEC-HM and HBEC-UN-derived exosomes, 

given the results of LDA. To further investigate the signature differences, we applied feature 

selection analysis to investigate the principal spectral differences between the HM and UN groups. 

The process of feature selection is shown in Figure 4.5. Specifically, we used ACOFS and 

supervised learning (classification) for evaluating the differentiation. Within the original 
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spectrum’s 1011 Raman shifts (features), there are redundant and irrelevant features that have no 

(or negative) contribution to the differentiation. Therefore, we implemented ACOFS to extract the 

top important features that provide the best differentiation between HBEC-HM and HBEC-UN 

derived exosomes. These features were evaluated for classification accuracy. As a heuristic 

algorithm, ACOFS gradually approaches the optimal feature subsets through generations of 

searching. Figure 4.6A demonstrates that the classification accuracy steadily increases as the 

searching generation grows, indicating that this feature selection procedure gradually removes the 

useless features while keeping only those that contribute to the differentiation, as shown in Figure 

4.6B.  
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Figure 4.3 Procedure of feature selection. Two example feature subsets are compared in terms of the 

differentiation between HBEC-HM and HBEC-UN, the second subset gives a better outcome composed 

of peaks of protein, DNA, and lipid. 
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We conducted three rounds of feature selection to average the statistical fluctuations. After 

each round, every feature was given an importance score by running permutation importance 

(Altmann et al., 2010), which denoted the contribution to the differentiation. Figure 4.6C presents 

the importance of the top 20 features. According to the result, the most dominant Raman band 

differences between different migratory exosome subtypes lay approximately from 1200 cm-1 to 

1600 cm-1, similar feature Raman bands for NSCLC have been reported (Leng et al., 2023; Shin 

et al., 2018; H. Wang et al., 2018). The molecular information is listed in Table 4.1. The analysis 

results indicate genomic differences such as Guanine (1335 cm-1) and Cytosine (1605 cm-1, 1610 

cm-1). The Raman band at 1241 cm-1 is reported to be a nucleic acid biomarker for malignant 

tissues (Cheng et al., 2005). Besides, the results also reveal proteomic differences, namely glycine 

(1335 cm-1), tyrosine (1605 cm-1), Tryptophan (1624 cm-1), proline (1547 cm-1), phenylalanine 

(1581 cm-1), β-carotene (1395 cm-1) as well as amide I and III (1598 cm-1, 1600 cm-1, 1231 cm-1). 

The molecules included in this Raman shift range are responsible for a variety of active biological 

processes, the differences on which may suggest different metabolism during cancer development 

(Leng et al., 2023). We anticipated that the HBEC derived exosomes may contain NSCLC 

metastatic molecular signatures, therefore studies involving patient specimens were conducted.  
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Figure 4.4 Classification accuracy changes during feature selection. (A) Differentiation between HBEC-

HM and HBEC-UN (classification accuracy) gradually increases, which indicates that the optimal feature 

subsets are being extracted. (B) Comparison of the number of features among three rounds of feature 

selection and the original state. (C) Average importance scores of each feature (Raman shift) after feature 

selection. The top twenty important features are plotted and analyzed. 



135 
 

Table 4.1 Molecular information of the top twenty important features. 

Top features 

(cm^-1) 

Peak assignments 

1335 Guanine, CH3CH2 wagging in nucleic acid and glycine 

backbone 

1241 PO2- (asym.) belonging to nucleic acids (suggest an increase 

in nucleic acid in the malignant tissues) 

1231 Amide III and CH2 wagging vibrations from glycine backbone 

and proline side chains 

1575, 1573 Ring breathing modes in DNA; G, A 

1363 Guanine (N7, B, Z-marker) 

1598, 1600 C=O in Amide I 

1306 CH3/CH2 twisting or bending mode of lipid/collagen 

1424 Deoxyribose (B, Z-marker) 

1610 Cytosine (NH2) 

1624 Tryptophan 

1348, 1349 Carbon particle 

1547 Proline 

1384, 1387 CH3 band 

1590 Carbon particle 

1581 δ(C=C), phenylalanine 

1395 β-carotene 
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4.3.6 Elucidating High Migratory and Unselected exosomal features in patient samples 

  Upon establishing premalignant HBEC cell line derived exosomal signatures, we 

investigated whether the HBECs derived exosomal signatures could indicate the presence of 

metastasis in patients. Premalignant exosomal signatures were sought within exosome specimens 

derived from patients’ MPE, subsequently correlation between the amount of premalignant 

exosomal signatures versus the status of NSCLC metastasis was studied. Patient information is 

given in Table S2. Characterization of these exosomes using TEM and western immunoblotting 

are presented in Figure 4.7. We used exosome specimens isolated from NSCLC patients’ MPE as 

the test group to investigate the premalignant cell derived exosomes. 

 

Figure 4.5 Characterization of patients’ MPE exosomes. (A) TEM characterization of three example 

patients’ exosome samples. (B) Western immunoblotting was used to probe for exosome markers. 

  It is well known that advanced stages of cancer in general and NSCLC (the majority of the 

MPE samples used in the current study) in specific are associated with significantly elevated 

presence of lymphocytes. Consequently, the possibility of lymphocyte derived exosomes 

dominating the exosome population in MPE must be considered. To this end, the single-exosome 
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characterization capability of our SERS-based biomolecular fingerprinting technique possesses 

unique advantages. It allows us to characterize exosomes individually, allowing for the 

premalignant exosomal biomarkers to not be masked by other exosome subpopulations. Extracting 

the unique SERS spectral signatures from HBEC-derived exosomes and combining these with our 

spectral data analysis algorithms enables the exclusive identification of premalignant exosomal 

SERS spectral features. 

 Our experimental studies shown in the next section indicate the power of such combination 

of biomolecular fingerprinting combined with machine learning. We examined exosomes from 

MPE of other metastatic cancer patients, i.e., individuals diagnosed with cancers of types other 

than NCSLC including small cell lung cancer (SCLC), tongue cancer, mesothelioma, as well as 

healthy human serum to assess the specificity of our assay. These experimental studies aim to 

determine whether our SERS-based platform could discriminate NSCLC-related exosomes in the 

presence of exosomes released by other types of cells. 

SERS spectral datasets were subsequently collected for further analyses. A spectral 

signature matching program was used to query the spectral dataset for the HM and UN exosomal 

spectral signatures, shown in Figure 4.8. The nearest neighbors-based algorithm (Taunk et al., 2019) 

was used to identify the MPE/serum exosomes that have the same signature as the HBECs-derived 

exosomes. Specifically, the class of spectrum i in the patient-derived exosome dataset is 

determined by 

𝐶𝑖 = {
𝐶𝑎𝑟𝑔𝑚𝑖𝑛𝑗;𝑗∈𝐻𝐵𝐸𝐶𝑠 𝑆𝑖𝑚(𝑖;𝑗), 𝑆𝑖𝑚(𝑖; 𝑗) < 𝑇

𝑛𝑢𝑙𝑙, 𝑒𝑙𝑠𝑒
 4-1 

Where the similarity score Sim(i;j) is given by modified Euclidean distance 
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𝑆𝑖𝑚(𝑖; 𝑗) = ∑ √∑ (𝑋𝑖+𝑡 − 𝑌𝑖)2
𝑅𝑎𝑚𝑎𝑛 𝑠ℎ𝑖𝑓𝑡𝑠

𝑖=0

𝑡

𝑜𝑓𝑓𝑠𝑒𝑡=−𝑡
 4-2 

X and Y are two different spectra, t is the spectral shifting offset. T is the threshold factor. The 

introduction of t is to neutralize the random errors during measurement.  

The similarity between HBEC cell-derived exosomal spectrum and MPE-derived exosome 

spectrum was quantified. Successful matching was determined if the similarity score was within 

the predefined threshold. Modified Euclidean distance was used for calculating the similarity score, 

details are given in the Methods section. Figure 4.8B and 4.8C demonstrate the successful spectral 

matching of both the HBEC-HM-derived and HBEC-UN-derived exosomal signatures with MPE-

derived signatures. Most spectral peaks belonging to the HBEC cell-derived exosomes and 

exosomes isolated from the patient MPE are colocalized, including the peak location, intensity, 

and width. 
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Figure 4.6 Spectral matching procedure. (A) Schematic procedure of Nearest Neighbors-based algorithm 

for identifying exosomal spectroscopic signatures. (B) Example of matched spectroscopic signatures 

between HBEC-HM exosomes and patient’s MPE-derived exosomes (peak assignments are given in 

Table S1). (C) Example of matched spectroscopic signatures between HBEC-UN exosomes and patient’s 

MPE-derived exosomes. 

Table 4.2 and Figure 4.9 show the characteristic exosome counts in patients’ samples. 

NSCLC patients show enrichment with highly migratory exosomal signatures, with an average of 

3.4 exosomes per individual; Nearly no highly migratory exosomal signatures were found within 

patients’ MPE with other metastasis, except only one HBEC-M-S-HM cell derived exosome is 
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found in patient LG1863, which is recognized as an outlier according to the box plot in figure 

4.10B; Highly migratory exosomal signature does not exist in healthy human serum, indicating 

the high specificity of our exosomal biomarker based on single-exosome-fingerprinting technique. 

Compared to HBEC-UN derived exosomes, HBEC-HM-derived exosomes demonstrated more 

informative correlations among the three specimen groups-more explicit separations of three 

groups in terms of HBEC-HM-derived exosome count, which the counts of HBEC-UN derived 

exosomes haven’t show meaningful correlations. We then evaluated the results by investigating 

the distribution counts for each group and the diagnostic ability by plotting receiver operating 

characteristics (ROC) curves, as shown in Figure 4.10. Figure 4.10A and Figure 4.10B show a 

clear distinguishment of NSCLC versus the other two groups. Focusing on diagnostic capability 

evaluation, areas under the curve (AUC) of 0.98, 1.00 were obtained for distinguishing NSCLC 

versus other metastasis, NSCLC versus healthy human serum respectively. Those results indicate 

that patients diagnosed with NSCLC possess clearly upregulated exosomes having highly similar 

signatures with HBEC-HM derived exosomes. One-group-versus-rest ROC curves (Figure 4.10E) 

were plotted as well for analyzing the prominence of a single group. ROC curve with 0.99 AUC 

was achieved after combining other metastasis and healthy human serum to a single group, and 

similar conclusions can be derived. 

The limited number of characterized exosomes introduces statistical uncertainty that 

cannot be disregarded, hindering the ability to draw definitive conclusions. A larger sample dataset 

is required to further investigate the correlation between the number of HBEC-HM-derived 

exosomes and the severity of NSCLC. We are developing an automatic SERS characterization of 

single vesicle by modifying the Raman spectrometer controlling software, a higher throughput of 

spectral data (approximately increased by 10 times) is expected to be realized in the near future. 
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Consequently, our preliminary results indicate the presence of lung premalignant high migratory 

exosomal biomarkers (micrometastatic signatures) in patients’ body fluid (metastatic disease) and 

could help indicate early NSCLC development.  

Table 4.2 Counts of matched exosomal signatures. 

Patient label Type of Cancer 

Unselected High Migratory 

M-V M-S Total M-V M-S Total 

LG1946 NSCLC 1 0 1 1 1 2 

LG1730 NSCLC 0 0 0 0 1 1 

LG1848 NSCLC 2 0 2 1 4 5 

LG1263 NSCLC 0 0 0 2 2 4 

LG1724 NSCLC 1 0 1 2 3 5 

LG1697 NSCLC 1 1 2 0 3 3 

LG1014 NSCLC 0 0 0 1 1 2 

LG1014_A5 NSCLC 1 1 2 1 2 3 

LC3 NSCLC 0 1 0 1 1 2 

LG0782 NSCLC 1 0 1 3 0 3 

LG1028 NSCLC 1 0 1 3 4 7 

LC17 NSCLC 0 1 1 3 2 5 

LG1085 NSCLC 1 1 0 0 1 1 

LG1863 SCLC 0 1 1 1 0 1 

LG1384 SCLC 0 0 0 0 0 0 
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Note: Patients suffering from different types of cancer are labeled with different colors (NSCLC 

Adenocarcinoma Stage IV with red, NSCLC with green, and other types with blue). NSCLC, Stage IV 

stands for NSCLC, Adenocarcinoma Stage IV; SCLC stands for Small-cell Lung Cancer; Total number of 

HBEC-UN and HBEC-HM derived exosomes are marked with yellow and red if detected.  

LG1258 Mesothelioma 0 1 1 0 0 0 

LC14 SCLC 0 1 1 0 0 0 

LC5 Tongue cancer 0 0 0 0 0 0 

CTRL01 Healthy human serum 0 0 0 0 0 0 

CTRL02 Healthy human serum 0 0 0 0 0 0 

CTRL03 Healthy human serum 1 0 1 0 0 0 

CTRL04 Healthy human serum 0 2 2 0 0 0 

CTRL05 Healthy human serum 0 0 0 0 0 0 
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Figure 4.7 Summary of characteristic exosome counts. 
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Figure 4.8 Summary and evaluation of NSCLC characteristic exosome identification. (A) Violin plot of 

characteristic exosome count shown in chart 1. (B) Box plot of characteristic exosome count shown in 

chart 1. (C) ROC curve of binary classification between groups NSCLC and the rest. (D) ROC curve of 

binary classification between groups NSCLC and other metastasis. (E) ROC curve of binary classification 

between groups NSCLC and healthy human serum. 

4.4 Conclusion 

 Our results highlight the promising feasibility of HBEC-HM (early metastatic) cell line-

derived exosomes possessing potential biomarker signatures corresponding to metastatic disease 

in NSCLC. The differences in SERS signatures amongst the HBEC-M-HM and other group-

derived exosomes and the existence of HBEC-M-HM cell-derived exosomal SERS signature in 

multiple advanced-stage NSCLC patients MPE supports our assumptions. Though highly 

promising, to further establish the importance of label-free single exosomal SERS-based 

biomarkers for clinical application in the early detection and interception of metastatic lung cancer, 

additional controlled studies designed to exclude irrelevant biological variations and uncertain 

statistical fluctuations need to be performed. Exosomes inherit biological features reminiscent of 

their parent cells, and therefore confounding factors, including sex, age, personal habits, other 

diseases, etc., might add uniqueness to the exosomal spectroscopic features. Besides, a limited 

sample size could also lead to ambiguous conclusions. Therefore, after establishing the preliminary 

feasibility, we plan to carry out repetitive experiments to evaluate our assumptions. In the future, 

more patient and healthy control samples will be characterized to further investigate and alleviate 

the effects of confounding factors. 

 LDA was implemented to visualize the spectroscopic signature differences among four 

exosome groups. We did find unique features of HBEC-HM cells derived exosomes versus HBEC-
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UN cells derived exosomes. Even within the HBEC-HM cells, Snail-modified cell-derived 

exosomes show more uniqueness than Snail-unmodified. However, Snail overexpression did not 

change much on HBEC-UN cells derived exosomes. This observation implies the presence of non-

metastatic premalignant cell subtypes and their inherent limited ability to metastasize, even after 

Snail overexpression. Based on our assumption that cells migrating through the transwell in the 

“constricted migration” process have unique features and are relevant to cancer propagation, 

HBEC-M-V-HM and HBEC-M-S-HM derived exosomal spectral signatures were combined to 

form the HBEC-HM group and compared to the HBEC-UN group. ACOFS ran a heuristic process 

to select the features on which the HBEC-HM group differs from HBEC-UN, which means the 

results are not decisive due to the “probabilistic moving” procedure in ACOFS. Therefore, a large 

number of feature selection rounds and a reasonable performance metric are critical components 

for increasing the reliability of the selected features. We ran three rounds of feature selection 

followed by averaging based on our dataset size and found negligible changes with increased 

rounds. Original features (1011) were reduced to approximately 380 according to the general 

optimal ratio between the number of features and the number of samples (spectra) (Hua et al., 

2005). The top 20 features ranging from 1231 to 1610 were presented and given the molecular 

assignments for more explicit results demonstration. Current molecular information of Raman 

peaks are mostly the bonding within amino acids, nucleic acids, amide, lipids, etc. (Talari et al., 

2015); no direct link to the proteomic/genomic compositions such as structural and functional 

proteins is established. Proteomics and genomics characterizations are essential to elucidate the 

exosomal biomarkers further and validate the molecular information agreements with SERS 

signatures. Accordingly, we have been planning Mass Spectrometry characterization on the 

exosome samples to extract the proteomic compositions and compare with spectral data.  
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 We subsequently designed a nearest neighbors-based spectral matching algorithm to 

identify similar exosomal spectroscopic signatures, in which the number of neighbors is set to one 

and similarity metrics is modified Euclidean distance based on selected feature subset by ACOFS. 

A threshold of 0.07 was chosen empirically to determine the boundary between similar and 

dissimilar patterns, mainly based on the peaks’ positions and intensities. We found that the spectra 

below 0.07 show reasonable overlapping peaks (shown in Figure 4.8B and 4.8C), and the ones 

over 0.08 start demonstrating visual differences. Therefore, we chose a stringent threshold to make 

our spectral matching more reliable. Nevertheless, the optimal algorithm and the threshold are 

supposed to be ultimately determined by well-designed cross-validations or even blind tests. Given 

our preliminary findings, we have planned studies with a large sample set and blind tests, as stated 

before. A standard pattern identification system is expected to be established. Preliminary 

informative correlations were found in the HBEC-HM-derived exosome signature counts in 

clinical samples, at the same time, larger datasets are being collected to render more evident 

conclusions. 

This study demonstrates how single-exosome label-free spectroscopic signatures based on 

SERS and subsequent analyses supported by machine learning may predict early migratory 

phenotypes and aid in the early-stage detection, diagnosis, and interception of metastatic lung 

cancer. The technological platform comprises of an Au-graphene-plasmonic hybrid substrate for 

the increased collection of Raman spectra from individual exosomes. Single exosome SERS 

signatures were collected, characterized, and information-rich SERS spectra were examined using 

Nearest Neighbors algorithm to identify unique molecular "fingerprints." These fingerprints 

include abundant biological data and serve as the basis for this novel liquid biopsy approach. By 

refining the SERS platform fabrication protocol to increase the homogeneity of the pyramidal gold 
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patterns and introducing more powerful machine learning algorithms (neural networks etc.) 

persistent to statistical fluctuations, we will be able to make our biomarker fingerprints more robust 

and reliable. 

Numerous peer-reviewed studies have shown that our proposed platform has an 

exceptionally high label-free specificity, regardless of the biological variability inherent in the 

patient data. As a result, we have developed a minimally invasive liquid biopsy approach with a 

single exosome detection capability, which is a significant advancement in the field of liquid 

biopsy for early cancer detection. This platform can become more efficient by introducing high-

speed SERS single-particle data acquisition. Furthermore, by identifying human EVs/exosomes in 

MPE, we illustrate the clinical potential of our method. Using this research as a foundation, we 

anticipate that this method will provide precise measurement of unique EV subpopulations for 

extensive biological applications. To extend the span of our protocol, a less invasive patient 

specimen acquisition method can be introduced instead of extracting patients’ MPE for detection. 

EVs are reported to circulate around human body fluid, which theoretically provides the possibility 

of using common medical test specimens, such as blood, plasma, serum, or sputum. This study 

raises a promising strategy to clinically detect NSCLC early metastasis and may be extended to 

other types of cancers (gastric cancer, breast cancer) with considerable enhancements implemented 

in the future. 
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Chapter 5 Saliva-based COVID-2019 Detection by SERS 

and SVMs 

5.1 Introduction to SERS detection of COVID 

Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2) in December 2019, more than 620 million cases and 6 million deaths have been reported till 

November 2022, as declared by World Health Organization (WHO) (Allan et al., 2022). The 

typical symptoms include fever, fatigue, severe respiratory illness, pneumonia as well as dyspnea. 

Recently, long-term damage to brain and heart have also been reported (Adjei et al., 2022). More 

SARS-CoV-2 variants have been emerging globally, such as the ones in the United Kingdom 

(B.1.1.7), the United States (B.1.429, Washington, B.1.1.529 or Omicron and Omicron BA.2) and 

India (B.1.617.2 or Delta) causing more rapid and wider spread of the pandemic around the world 

(Vasireddy et al., 2021). Currently, the SARS-CoV-2 strain Omicron BA.5 makes up around 62% 

of the COVID cases (Grewal et al., 2022). Though the mortality of the more recent variants has 

been much lower than the original strains (Adjei et al., 2022), the transmissibility has significantly 

increased (Araf et al., 2022; Challen et al., 2021).  

SARS-CoV-2 belongs to the family of coronavirus of 60-140nm in vesicle size. It is 

composed of single-strand RNA, lipid bilayer membrane and structural proteins (spike protein, 

envelop protein, membrane protein and nucleocapsid protein) (Vasireddy et al., 2021). Currently 

the prevalent diagnostic technologies are RT-PCR and antigen test, which detect the viral RNA and 

the protein biomarkers (e.g., spike protein) (Chau et al., 2020). As SARS-CoV-2 belongs to the 

family of the single-stranded RNA viruses, RT-PCR is the most widely used detection tool due to 

its high accuracy, sensitivity, and Limit of Detection (LoD). The LoD of around 100 particles/mL, 
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sensitivity above 80% and specificity above 95% have been reported (Chau et al., 2020; Y.-S. 

Chung et al., 2021). It is worth noting that there are drawbacks of RT-PCR preventing it from 

becoming the optimal diagnostic technology for targeting highly mutable and contagious viruses. 

For most of the nucleic acid-based tests, highly specific primers are required in the reverse 

transcription step, therefore specific new primers are needed to deal with the mutated variants 

(Freeman et al., 1999). RT-PCR is also extremely sensitive to the viral load of the samples thus the 

viral concentration fluctuation of Nasopharyngeal swab specimens or salivary specimens could 

result in false positive/negative cases (Tahamtan & Ardebili, 2020). Moreover, sophisticated 

equipment, costly regents as well as professional operators are required for collection and analysis, 

which inevitably increases the time and consumption cost. In contrast, the faster test tool, antigen 

test, could generate results in 15-30 minutes. However, it is less reliable due to worse sensitivity 

and specificity (around 50% and 90%, respectively) (Yamayoshi et al., 2020). Fast, accurate and 

non-invasive detection tools are still needed to monitor the pandemic and potentially identify other 

highly infectious viruses in the future. In this report, we present the feasibility of applying SERS 

for rapid identification of viruses. A schematic procedure is provided in Figure 5.1. 

 

Figure 5.1 Schematic of SERS-based biosensing platform for virus detection. 
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Compared to antigen tests, SERS extracts SARS-CoV-2 biomarkers from multiple 

components, including structural protein, lipid bilayer and RNA strand (Sharma et al., 2012). 

Hereby, SERS has the advantages of drawing a more thorough picture over antigen test. Unlike 

nucleic acid based detecting technologies, SERS does not require complicated primers and regents 

nor special specimen treatment, therefore the estimated cost per test would be lower. Besides, 

SERS specimens can be isolated from different biofluids such as saliva, serum, urine and 

bronchoalveolar fluid, allowing for simple and non-invasive sample harvesting. Furthermore, 

SERS characterization for each sample requires a maximum of 1 to 6 hours, which makes it a more 

feasible “rapid-testing” method for SARS-CoV-2 compared to RT-PCR (Y.-S. Chung et al., 2021; 

Sharma et al., 2012). The Label-free feature of SERS-based test also makes it more amenable to 

scale up and adapt to more SARS-CoV-2 variants study. 

SERS-based detection has been implemented for COVID detection. Improved detecting 

efficiency and limit of detection have been reported with uniquely designed biosensor setup (H. 

Chen et al., 2021). To prepare highly concentrated virus samples for SERS characterization, 

Sequential centrifugation and filtration are typically applied to isolate viruses from cell culture 

media (Stelzer-Braid et al., 2020). It has been reported that exosomes have similar size and density 

as viruses (30-150nm, 1.08–1.19 g/ml) (Bar-On et al., 2020; P. Zhang et al., 2019), therefore It is 

inevitable to exclude exosomes during virus isolation, which could lead to confusion in 

fingerprinting viruses. To establish the genuine fingerprint, exosomes’ signatures need to be 

subtracted during either sample preparation or data processing. 

This section demonstrates the feasibility of our SERS and machine learning- based 

fingerprinting and signature identification platform as being a potentially accurate and rapid saliva-

based SARS-CoV-2 detection technique that could replace the current antigen test as a pandemic 
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monitoring tool. Figure 5.2 demonstrates the basic workflow. Briefly, SARS-CoV-2 virus samples 

were compared with SARS-CoV-1 virus and Vero-TMPRSS2 cell line- derived exosome samples 

and were successfully identified with 80% accuracy. We subsequently evaluated the diagnostic 

capabilities by comparing SARS-CoV-2 spiked human salivary samples versus healthy control. 10 

SARS-CoV-2 spiked human salivary samples and 10 healthy controls salivary samples were 

applied to build the identifier. 90% sensitivity and 80% specificity were achieved afterward in 

blind test with the 20 samples. Using the above identification model, 5 COVID patients versus 5 

healthy controls saliva samples were tested, 9 out of the 10 individuals are identified correctly. 

Detailed estimation of the advances and theoretical analysis of the feasibility of our platform is 

also provided.  

 

Figure 5.2 Schematic working flow of SERS characterization of SARS-CoV-2 specimens. 

5.2 Methods and materials 

5.2.1 Virus Sample preparation 

The virus samples were produced, inactivated, and validated by the Institutional Biosafety 

Committee (IBC) for the University of California, San Diego following SARS-CoV-2 specimen 
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preparation(Carlin et al., 2023). All work with SARS-CoV-2 was conducted in biosafety level-3 

conditions at the UCSD following the guidelines approved by the Institutional Biosafety 

Committee. Vero-TMPRSS2 cells are infected with viruses (either SARS-CoV-2 or SARS-CoV-

2). Sequential centrifuge and filtration were used to isolate and purify the virus from cell culture 

media then the viruses were diluted in cell culture media (DMEM + 1% FBS + 10mM HEPES + 

50 units/ml Penicillin and 50 µg/ml Streptomycin). Virus samples were then inactivated by heat 

(65°C for 30 minutes) (Pastorino et al., 2020) or UV (400 mJ/cm2 delivered at UV 254nm) (Biasin 

et al., 2021). After inactivation, 108 to 1010 viruses per ml were estimated by ddPCR (RNA). Figure 

5.3 shows a typical TEM (FEI TF20 High-resolution EM, USA) image of the specimen. Individual 

virus particles of about 50 nm diameter with the characteristic corona are clearly visible. 

 

Figure 5.3 TEM image of SARS-CoV-2 specimen. 

5.2.2 SARS-CoV-2 spiked human salivary samples preparation 

The isolated and purified virus samples were used for preparing the SARS-CoV-2 spiked 

human salivary samples. The virus samples and salivary samples of healthy control were mixed 
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with the volume ratio that keeps the viral concentration around 108 particles/mL. Then the spiked 

salivary samples were aliquoted for multiple SERS testing. 

5.2.3 SARS-CoV-2 clinical samples preparation 

 Archived saliva samples were obtained from an observational cohort study of hospitalized 

patients with COVID-19 from April 2020 until February 2021. The study was approved by the 

UCLA Institutional Review Board (#20-000473). Informed consent was obtained from all study 

participants. Patients with confirmed positive SARS-CoV-2 RT-PCR nasopharyngeal swabs were 

enrolled in an observational cohort study within 72 hours of admission. Exclusion criteria included 

pregnancy, hemoglobin < 8g/dL, or inability to provide informed consent. Blood specimens, 

nasopharyngeal swabs, and saliva were collected throughout hospitalization for up to 6 weeks. 

Demographic and clinical data, including laboratory results and therapeutics, were collected from 

the electronic medical records. Clinical severity was scored using the NIAID 8-point ordinal scale. 

A total of 10 samples were included in this study. Whole saliva was collected by passive drool into 

a cryovial. Samples were transported to the laboratory and immediately placed in -80 °C freezer 

for storage. 

5.2.4 SERS characterization 

SERS substrate fabrication follows the SOP described in Section 3.4.4. Spectra collection 

is similar to the single-particle-scanning methods stated in Section 3.5.1. For more details, a 

droplet of about 5 μL of the liquid sample was pipetted onto the surface of the SERS platform and 

dried under room ambient or in a vacuum desiccator typically within 15 minutes. The obtaining 

map yielded candidate spectra through which a spectra-selecting program traverses for establishing 

the spectral database. The rate of characterizing analytes is around 10-40 analytes/hour. According 

to our current spectral dataset size, approximately 1-6 hours are needed. As demonstrated by Figure 
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5.4, the spectra obtained have explicit Raman ranges with high signal-to-noise ratios. Peak 

assignments are given in Table S1.  

 

Figure 5.4 Spectra of Vero-TMPRSS2 exosome, SARS-CoV-1, SARS-CoV-2. Highly uniform spectra 

from the particles (gray lines) and averaged spectra (blue lines) demonstrate different patterns of different 

particles. 

5.2.5 Method of spectral processing and data analysis 

According to the preprocessing approaches stated in Section 3.6.1, Approximate 50 to 300 

signal spots (depending on the particle concentration) were obtained for each sample to produce 

spectra that have 1023 Raman shifts in the range from 553 to 1581 cm-1. Preprocessing steps are 

applied to alleviate the spectral signature fluctuations caused by sample variations, SERS platform 

heterogeneity, and instrument fluctuation. To elaborate, Fluorescence background subtraction and 

noise reduction are performed by batch processing based on asymmetric least square fitting (J. 

Peng et al., 2010) and Savitzky-Golay filtering (John et al., 2021), followed by min-max 

normalization that proportionally compresses the original intensity range to [0, 1]. A predictive 

model established by supervised learning or classification is the core of the proposed technology. 

It requires appropriate complexity of the classifier to prevent both underfitting and overfitting for 

the purpose of generalizing the characteristic signature effectively. We used SVM for the 
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classification tasks. Unsupervised learning or clustering analysis by HCA was also used as an 

auxiliary tool. Cross-validations are then applied to pre-evaluate our methodology given the labels 

and optimize the model settings, followed by tests for evaluating diagnostic capability. All the 

analyses are realized with Python using NumPy, SciPy and Scikit-learn modules. 

5.3 Results 

5.3.1 Single-vesicle techniques for viral detection 

The single-vesicle detectability of SIM brings advantages in COVID detection. There are 

also several challenges originating from the working principle of single-vesicle detection. Most 

importantly, the feasibility of single-vesicle detection is determined by the standard signature of 

the target analyte (e.g., SARS-CoV-2) that we can refer to. The presence of EVs could potentially 

impact the procedure of obtaining the standard SERS spectral signature of SARS-CoV-2, as shown 

in Figure 5.5. The sample preparation step, the sample loading step, and the characterization step 

are all supposed to be conducted rigorously to prevent any possibility of contamination. The 

subsequent data processing step is also needed to get rid of irrelevant target analyte signatures. 

Secondly, though SERS dramatically increases the signal intensity of the analyte which facilitates 

much more sensitive detection, the inherent biological variabilities are also amplified. The 

signatures of SARS-CoV-2 from different SERS characterizations instances might fluctuate to 

some extent. Therefore, the intra-class (such as SARS-CoV-2) fluctuations versus the inter-class 

(such as SARS-CoV-2/EVs) differences must be validated to support the decision boundary. In 

addition, Single-vesicle characterization is usually performed in the manner of individual 

scanning, which greatly limits the data throughput. Much effort needs to be made to boost the data 

harvest rate and determine the characterization data size to make a sufficiently reliable diagnosis 
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conclusion. Due to the above concerns, we have performed the following experiments to establish 

the capability of SIM for SARS-CoV-2 detection. 

5.3.2 Differentiation of SARS-CoV-2 versus SARS-CoV-1 virion in mixture of cell lysate 

As a prerequisite step for establishing SIM identification of SARS-CoV-2 signature, we 

first evaluated the proposed platform in differentiating SARS-CoV-2 from other closely related 

virus types, including other types of virions and extracellular vesicles, of which the dimensions 

are close to the SARS-CoV-2 virus. SARS-CoV-1 is reported to share more than 70% genetic 

similarity with SARS-CoV-2 (Z. Cai et al., 2021), leading to highly similar structural components 

such as single-stranded RNA and spike protein, while the mutations make the latter less deadly but 

much more transmissible. With SARS-CoV-1 as a candidate, 10 SARS-CoV-1 specimens and 10 

SARS-CoV-2 specimens were prepared and then characterized by SERS following our SERS map 

protocol. 50 to 70 spots rendering spectral signatures with high signal-to-noise ratio were collected 

for each sample, multiple spectra were saved per spot to account for the information of spectral 

intensity fluctuations, which allows for comprehensive training of the model by making it less 

sensitive to the slight changes.   

In total, 1929 spectra from SARS-CoV-1 samples and 1559 from SARS-CoV-2 samples 

were recorded. Figure 5.4 are three examples of spectra set belonging to a single particle of Vero-

TMPRSS2, SARS-CoV-1, SARS-CoV-2, respectively, in which multiple Raman ‘snapshots’ on 

different positions of a single particle and the average spectrum are presented. The peak assignment 

information is given in the supplementary material. Peaks in the spectra typically originate from 

the molecular bonds within amino acids, nucleic acid, Amide, C-C stretching or CHn deformation 

etc. Multiple spectral patterns were discovered within each type of specimen (e.g., SARS-CoV-1) 

though the spectral signatures from a single particle are uniform, therefore a standard 
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representative signature is lacking. A possible reason is that SERS platform renders a superior 

sensitivity in detecting particles with extremely low concentration, the spectral signature is also 

prone to fluctuate due to the minor structural change of the molecule and the analyte-hotspot 

interaction. Hereby, we implemented the supervised and unsupervised learning model for building 

viral fingerprints, which would be used as a standard for virus identification. 

The virus samples were purified from Vero-TMPRSS2 cells by sequential centrifugation, 

other biological particles with a similar dimension as the virus might be retained, leading to the 

non-ideal purity which could confuse the identifying model. Therefore, we implemented a control 

sample of Vero-TMPRSS2 cells under the same preparation manner expecting infection. The 

spectral signatures from the control act as background signals of the SARS-CoV-1 and SARS-

CoV-2 spectral datasets. LDA was implemented to reduce the dimension of the spectra for clearer 

visualization of the datapoints distribution, in which the original spectra dataset was transformed 

into points with two-dimensional coordinates. LDA tries to group the spectra by maximizing the 

distance between the centroid of each group to the global centroid meanwhile minimizing intra-

group variance. The inter-group distance conceptually represents the similarity between the 

corresponding spectra, as shown in Figure 5.5. It can be concluded that SARS-CoV-1 and SARS-

CoV-2 clouds overlap with the Vero-TMPRSS2 in small portions, which are believed to be the 

non-virus particles examined in virus samples. Subsequently, HCA was used to cluster similar 

particles in Vero-TMPRSS2 and virus samples. Based on the groups clustered, we label the 

particles originally belonging to virus samples but clustered into Vero-TMPRSS2 as negative (i.e., 

non-SARS-CoV-2). We call this “label-correction process”, as shown in Figure 6.6A, 6.6B. Figure 

5.6C, 5.6D, 5.6F present three similar SERS spectral signatures from different particles belonging 
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to the same cluster. The spectrum in Figure 5.6C was originally mislabeled by SARS-CoV-2 which 

would be corrected. Peak assignments are given in Table S1. 

 

Figure 5.5 Linear Discriminant Analysis for dimensionality reduction. Spectral signatures of SARS-CoV-

1, SARS-CoV-2, exosomes are processed by dimensionality reduction and visualized in the 2-dimensional 

plot. 
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Figure 5.6 HCA for correcting the mislabeled exosomes. (A) Colored ovals are the clusters generated by 

HCA. Those clusters mixed by SARS-CoV-2 and exosome denote the existence of exosomes in SARS-

CoV-2 specimen. (B) Exosomes’ labels in the mixed clusters are corrected. (C), (D), (E) are three spectra 

attributed to different particles from the same cluster, where similar patterns are shown. 

A binary classification model using support vector machines (SVM, RBF kernel, soft 

margin applied) was used in learning the characteristic fingerprints of SARS-CoV-1 and SARS-

CoV-2. Due to the binary learning and predicting manner, the testing or validation spectra were 

either recognized as SARS-CoV-1 or SARS-CoV-2, based on the relative population ratio of 

SARS-CoV-1 and SARS-CoV-2 for each sample. Without loss of generality, we chose SARS-CoV-

2 percentages (e.g., 50 found among 200 thus, 40.0%) as the score. Considering the various viral 

concentrations and non-virus particles in the specimens, we assigned the binary labels to non-

SARS-CoV-2 (or negative) and SARS-CoV-2 (or positive) to avoid confusion and applied a 

threshold to draw the boundary between the score of two types of virions. It is important to mention 
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that the threshold was determined practically to maximize the cross-validation performance, also 

the sample threshold will be further applied or updated whenever more learning and predicting 

duties come.  

During the training process, as more training instances are input, the model gradually learns 

the distinguishable features between the positive and the negative. Figure 5.7 shows the training 

error starts from 35% when 10% of the training process is done, and finally ends up with less than 

5% after the training process is finished. Additionally, Figure 5.8 demonstrates a gradual separation 

between the scores of negative instances and positive instances.  

 

Figure 5.7 Model training process of training error. Training error gradually decreases as training 

instances being input. 
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Figure 5.8 Model training process of datapoints separation. Scores of negative and positive instances 

gradually segregate. 

We incorporated cross-validation for optimizing the classifier hyperparameters as well as 

choosing an appropriate threshold that generates the best predictive capability. Furthermore, to 

genuinely evaluate the predictive capability by alleviating the overfitting problem during 

validation, we applied ‘leave pair of samples out’ (LPSO) cross-validation. Demonstrated by 

Figure 5.9, In each round of validation, a pair of samples, one each from positive and negative 

groups respectively, are left out as the validation set while the remaining are the training set. The 

‘pair’ manner is to ensure the sample balance in both training and validation. This process 

continues until every sample is traversed once as the validation set. A sample score (positive 

vesicle rate of a sample) list for all the samples is built once the cross-validation is completed, then 

the ROC curve is plotted together with the information of the true labels by adjusting the threshold. 
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Figure 5.9 LPSO cross validation. Five rounds of cross-validation are conducted; In each round, training 

folds (unfilled blocks) and validation folds (filled blocks) are assigned for training and validating 

respectively. 

 

Following the above protocol, the ROC curve is calculated and shown in Figure 5.10, 

which demonstrates an overall good pattern recognizing capability across all types of viruses. 

Accordingly, the scores of the samples were shown in the box plot of chart 1, based on the 

statistical properties of each cross-validation round, we applied the mean of positive sample 

quantile Q1 and negative sample quantile Q3 as the threshold to maximize the ‘margin’. Figure 

5.11 shows the fluctuations of the threshold (mean of Q1 and Q3) in cross validations. As indicated 

in Figure 5.11 and Table 5.1, a threshold of 0.300 was finalized which maximizes the average 

margin in cross-validations.  
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Figure 5.10 Individual and mean ROC curves of cross validations. 

 

 

Figure 5.11 Sample scores distribution in the validation folds of cross validation rounds. 
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Table 5.1 Q1 and Q3 values of cross validations. 

Cross-validation Non-SARS-CoV-2(Q3) SARS-CoV-2(Q1) Q1&Q3 Mean 

R1 0.290 0.316 0.303 

R2 0.299 0.281 0.290 

R3 0.293 0.312 0.302 

R4 0.295 0.282 0.289 

R5 0.314 0.322 0.319 

AVE. - - 0.300 

 

 

Figure 5.12 Fluctuations of threshold versus cross validation rounds. 

Blind tests were subsequently performed after the classification model is optimized. 5 

SARS-CoV-2 virus specimens versus 5 SARS-CoV-1 virus specimens were blinded to be given 
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predictions. Promising performance was given by the threshold equal to 30.0% and the 

sensitivity/specificity turned out to be 80%/80%. Table 5.2 shows the test results and Figure 5.13 

shows the positive ratio generated by the classifier. This result combined with the LDA grouping 

demonstrates the feasibility of utilizing machine learning classifier and SERS to build a SARS-

CoV-2 identifier, given that the specimen has a low diversity of the content (i.e., viruses and 

extracellular vesicles from Vero-TMPRSS2) and high viral load (108 – 1010 particles/mL). 

 

Table 5.2 Blind test results of SARS-CoV-1 versus SARS-CoV-2. 

Sample ID Negative Positive P.R. Predictions Labels 

1 50 10 16.7 Non-CoV-2 Non-CoV-2 

2 54 12 18.2 Non-CoV-2 Non-CoV-2 

3 38 14 26.9 Non-CoV-2 Non-CoV-2 

4 39 12 23.5 Non-CoV-2 Non-CoV-2 

5 39 24 38.1 Cov-2 Non-CoV-2 

6 43 19 31.1 Cov-2 Cov-2 

7 48 8 14.3 Non-CoV-2 Cov-2 

8 33 15 31.2 Cov-2 Cov-2 

9 40 24 37.5 Cov-2 Cov-2 

10 38 18 32.1 Cov-2 Cov-2 

Note: Negative, predicted Non-SARS-CoV-2 particles; Positive: predicted SARS-CoV-2 particles; P.R., 

Positive ratio (%) 
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Figure 5.13 Sample scores of the blind test in distinguishing SARS-CoV-1 versus SARS-CoV-2. 

5.3.3 Detection of SARS-CoV-2 in virus spiked human saliva 

Given the capability of identifying SARS-CoV-2, we further evaluated our SERS 

fingerprinting plus SVMs protocol on the specimens with higher biological content complexity 

and closer to the clinical specimens, i.e., virus spiked saliva samples. Specifically, we introduced 

SARS-CoV-2 virus spiked saliva samples and healthy controls saliva samples as negative control. 

The preparation protocol of virus spiked saliva samples is given in the Materials and Methods 

section. A new SVMs classifier was trained using 10 SARS-CoV-2 virus spiked saliva samples 

versus 10 healthy control saliva samples. Around 50 analytes are collected for each sample, 

therefore the training dataset is composed of 999 analytes with 9689 spectra.  

Like the data cleaning step in SARS-CoV-1 and SARS-CoV-2 study, the non-SARS-CoV-

2 particles were subtracted from the SARS-CoV-2 spiked saliva training set by finding the spectral 

signatures overlapping between healthy control and SARS-CoV-2 spiked saliva. HCA was again 
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implemented in this background removal process. To ensure the objectivity of the classification 

and avoid information leakage, background removal is only done to the training set, excluding 

both the validation set and blind test set. The training set compositions before and after background 

removal were compared and shown in Figure 5.14. 

 

Figure 5.14 Number of training instances before and after label correction by clustering analysis. 

Before launching into the blind test, LPSO cross-validation was done with SARS-CoV-2 

spiked saliva (or positive) and healthy control (or negative) as the binary groups. As indicated by 

the ROC curve in Figure 5.15, 0.83 AUC was achieved in cross-validation, which showed 

reasonable performance. As the previous cross validations, the statistical analyses of the sample 

scores of cross-validations were presented in Figure 5.16 and Table 5.3, and the mean of positive 

quantile Q1 and negative quantile Q3 was chosen as the threshold that maximizes the margin 

between the two types. Figure 5.17 shows the threshold fluctuation. The trained model by ten virus 
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spiked saliva and ten healthy control individuals were used as classifier, together with a 0.259 as 

the score threshold. 

 

Figure 5.15 Individual and mean ROC curves of cross validations. 
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Figure 5.16 Sample scores distribution in the validation folds of cross validation rounds. 

 

Table 5.3 Q1 and Q3 values of cross validations. 

Cross-validation Virus Spiked Saliva Healthy Control Q1&Q3 Mean 

R1 0.259 0.235 0.247 

R2 0.240 0.283 0.262 

R3 0.254 0.233 0.244 

R4 0.360 0.228 0.294 

R5 0.230 0.271 0.251 

AVE. - - 0.259 
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Figure 5.17 Fluctuations of threshold versus cross validation rounds. 

Having trained the classifier, a blind test round with ten virus spiked saliva samples and 

ten healthy control saliva samples was then conducted. The virus spiked saliva samples were 

prepared following the same protocol as the cross-validation round, but with different healthy 

saliva backgrounds for mixing. This process is to simulate the various non-virus contents in human 

salivary specimens. The predictions and unblinding results are shown in Table 5.4 and Figure 5.18, 

and the corresponding decision matrix is presented in Table 5.5. 90% sensitivity and 80% 

specificity were achieved with one virus spiked individual and two healthy control individuals 

predicted incorrectly. The blind test outcome indicates a reasonable performance while trying to 

apply our platform in diagnosis.  

We do also notice some potential pitfalls. First, samples 16, 17, 20 are right at the threshold 

decision line as shown in Figure 5.18, which decreases the robustness of the platform since the 

tolerance for statistical fluctuations is limited. Second, a blurrier decision boundary between the 
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positive/negative groups is present in the spiked saliva study compared to the virus in cell lysate 

study. This is demonstrated by the more positive/negative group scores overlapping, making it 

harder to draw an unambiguous decision boundary. The above potential pitfalls are due to the 

higher bioparticle complexity after spiking virus in the human salivary specimens. Therefore, 

decisive SARS-CoV-2 signatures are indispensable in improving the accuracy and robustness of 

our platform. 

 

Table 5.4 Blind test results of SARS-CoV-2 spiked saliva versus healthy control saliva samples. 

Sample ID Negative Positive P.R. Predictions Labels 

1 41 12 22.6 Control Control 

2 38 16 29.1 Virus Virus 

3 34 16 30.2 Virus Virus 

4 53 14 20.6 Control Control 

5 42 16 26.7 Virus Virus 

6 42 7 13.7 Control Control 

7 38 12 23.1 Control Control 

8 41 7 13.7 Control Virus 

9 25 11 29.7 Virus Control 

10 32 13 27.7 Virus Virus 

11 36 16 30.8 Virus Virus 

12 28 18 39.1 Virus Control 

13 35 10 22.2 Control Control 
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14 35 15 30.0 Virus Virus 

15 38 11 22.4 Control Control 

16 37 13 26.0 Virus Virus 

17 37 13 26.0 Virus Virus 

18 36 13 26.5 Virus Virus 

19 40 11 21.6 Control Control 

20 35 12 25.5 Control Control 

 

 

Figure 5.18 Sample scores of the blind test in distinguishing SARS-CoV-2 spiked saliva versus healthy 

control saliva. 
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Table 5.5 Confusion matrix of blind test with SARS-CoV-2 spiked saliva samples. 

 Predicted Virus Predicted Healthy Control 

True Virus 9 1 

True Healthy Control 2 8 

 

5.3.4 Detection of SARS-CoV-2 in human saliva 

All the studies are the prerequisites for successfully utilizing our platform in clinical 

diagnosis. Besides, the SARS-CoV-2 purified from Vero-TMPRSS2 cell media or SARS-CoV-2 

spiked salivary specimens are simpler laboratory cases compared to the COVID patients’ salivary 

specimens. Therefore, an additional test with clinical samples is necessary to evaluate the practical 

diagnostic capability.  

Since SARS-CoV-2 spiked saliva samples can serve as a ‘standard’ repository for building 

the training set due to the presence of both SARS-CoV-2 virions and non-SARS-CoV-2 

bioparticles (e.g., proteins, EVs), we applied the same trained classifier in the virus spiked saliva 

study based on the already proven predicting performance. The same threshold of 0.259 is used as 

well.  

The detailed sample scores are shown in Table 5.6 and Figure 5.19. The final sensitivity 

and specificity turn out to be 100% and 80%, with only one healthy control predicted incorrectly. 

Among the correctly predicted samples, SN36’s score is right at the decision boundary which will 

be sensitive to the whole training-predicting system, the remaining are clearly far from the decision 

boundary, as shown in Figure 5.19. Even though the small test set might be prone to statistical 

fluctuations, the preliminary success presents a promising application of the SERS platform in 
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SARS-CoV-2 diagnosis. Table 5.7 is the confusion matrix of the clinical test and Figure 5.20 shows 

the corresponding ROC curve. 

 

Table 5.6 Results of blind test with clinical samples. 

Sample ID Negative Positive P.R.  Predictions Labels Ct Value 

CLE92 177 77 30.3 Patient Control ND 

CLE103 241 77 24.2 Control Control ND 

HOS192 190 75 28.3 Patient Patient 33.43 

SN36 107 37 25.6 Control Control ND 

HOS167 306 137 30.9 Patient Patient ND 

HOS182 285 118 29.3 Patient Patient 31.84 

SN33 137 46 25.1 Control Control ND 

HOS161 159 80 33.5 Patient Patient 36.42 

HOS189 118 47 28.5 Patient Patient 29.36 

SN34 244 67 21.5 Control Control ND 

ND: Not detected 

 

Table 5.7 Confusion matrix of blind test with clinical samples. 

 Predicted Virus Predicted Healthy Control 

True Virus 5 0 

True Healthy Control 1 4 
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Figure 5.19 Sample scores of the clinical test in distinguishing COVID patients versus healthy controls. 

 

 

Figure 5.20 ROC curve of clinical sample blind test. 
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5.4 Conclusion 

In this study, we utilized support vector machine incorporated with Radial Basis Function 

(RBF) kernel and soft margin regularization. To illustrate the fundamental working principle in 

identifying SARS-CoV-2 SERS spectral signatures, we consider the mathematical definition of the 

RBF and the training process under the hood. Within the RBF expression given in equation 5-1, 

𝑘(𝒙𝑖, 𝒙𝑗) = exp (−𝛾‖𝒙𝑖 − 𝒙𝑗‖
2

) , 𝒙𝑖 𝑎𝑛𝑑𝒙𝑗  𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 5-1 

Where γ is a constant. The SERS spectrum term ‖𝒙𝑖 − 𝒙𝑗‖
2
  is recognized as the square of 

Euclidean distance. The exponential term allows for attenuation to assign a higher weight to 

closely separated training samples, and to normalize the original squared Euclidean distance to 

zero and one. Therefore, the SVM algorithm essentially searches for an optimal decision boundary 

that minimizes the intra-group distance score (given by the kernel function), and at the same time 

maximizes the inter-group distance score. Consequently, the fundamental principle is essentially 

to analyze the similarity represented by the spectral peak property, which is determined by the 

biochemical content of the analyte. The final classifier is trained to build a distinguishing criterion 

to identify SARS-CoV-2 presence versus other non-SARS-CoV-2 content such as SARS-CoV-1 

or extracellular vesicles. 

In addition to the working principle of support vector machine classifier, one more 

prerequisite for successful classification is the need for intra-SARS-CoV-2 group spectral 

differences to be less prominent than the ones between SARS-CoV-2 group and non-SARS-CoV-

2 group. SARS-CoV-2 is believed to have developed many variants with slightly different 

components. Among our studies, Washington strain was used to prepare virus spiked saliva 

samples while clinical samples were introduced without considering the mutant variant. The 

preliminary test performance provides indirect proof of our assumption. 
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Additionally, we translated the spectrum-level predictions given by the support vector 

machine classifier to a sample-level prediction by summarizing the instances belonging to each 

group. Then we chose a rather practical way to set up the decision boundary, which is based on 

cross-validation performance. The implicit reason is that we have quite limited knowledge about 

the viral load as well as the ratio of SARS-CoV-2 versus other particles. Fortunately, we could 

make the initial assumption that the genuine target (i.e., SARS-CoV-2) is present and only present 

in the virus spiked saliva specimens and patient specimens. Therefore, the positive group is bound 

to give a higher score than the negative group if enough analytes are characterized, due to the 

presence of the extra distinct SARS-CoV-2 group compared with the control group. This initial 

conclusion ensures that we can find the approximate position of the decision threshold via ‘big 

data strategy’, which is the one that optimizes the validation performance including 20 specimens 

in our study. Correspondingly, the threshold contains the information on the implicit ratio of the 

target particles versus non-target particles. It is believed that a larger sample set is more 

advantageous to diagnostic accuracy. 

In conclusion, we demonstrated the feasibility of applying SERS and machine learning 

pattern recognition on SARS-CoV-2 detection by harvesting and analyzing SARS-CoV-2 isolated 

from cell culture media and virus spiked saliva samples. Clinical testing with 5 patients versus 5 

healthy controls was completed with only one false positive, rendering 100% sensitivity and 80% 

specificity.  

In terms of the advantages of our platform, firstly the label-free manner in fingerprinting 

and identifying SARS-CoV-2 greatly simplifies the reagent, equipment, and specialist requirement. 

Our well-established SERS platform fabrication protocol and automatic Raman characterization 

allow for less human involvement. Therefore, a simpler COVID test procedure and lower cost test 
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could be expected compared with RT-PCR. Additionally, like rapid antigen tests, the saliva-based 

specimen harvest protocol is fast and non-invasive. Virus isolation and purification are also not 

needed, which makes the preparation procedure for characterization simpler. The whole test 

duration using our platform is between 1-6 hours, mainly due to Raman scanning. Consequently, 

our platform offers a more accurate test performance than antigen test and a more rapid result yield 

than RT-PCR, those features could enable it to be a better pandemic monitoring technique.  

Having demonstrated the feasibility in identifying SARS-CoV-2 Washington strain, SERS 

shows potential in contributing to distinguishing different variants. Multiclass classification will 

be conducted in place of binary classification. We have prepared multiple SARS-CoV-2 variants 

samples including B.1.351, B.1.1.7, BA.1, BA.5.1 etc. and are working on designing a supervised 

learning model appropriate to the multiclass classification task. Many algorithms have been 

reported to be efficient and accurate, such as Random Forest (Chaudhary et al., 2016), K-nearest 

Neighbors (Haixiang et al., 2016), Neural Networks (Minlong Lin et al., 2013). Foreseeing the 

challenges in differentiating SARS-CoV-2 variants with high similarity and the uniqueness of 

SERS spectrum, the collection of representative spectral data, the choice of classifier, model’s 

parameters and even feature selections are supposed to be carefully organized. 

As we mentioned, the clinical test sample size is small, which could only provide a 

preliminary indication of the potential of our platform’s application for COVID tests. More 

COVID patient samples are particularly required, and appropriate rounds of double-blind tests are 

needed to validate the feasibility. More importantly, due to training data consideration, the 

classifier is built mainly on simulated samples - SARS-CoV-2 spiked saliva samples. Model 

parameters might vary while we are using clinical sample data for the training. Another key metrics 

to evaluate a detection technology is the Limit of Detection, repetitive studies of samples with 
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different viral loads have been planned. As a single particle characterization technique, a reliable 

throughput of data collection is needed to ensure the rate of capturing the target analyte. We are 

working on customizing the Raman spectrometer hardware and designing computer controlling 

software to enable automatic single particle characterization. All the above factors present 

challenges along the path of implementing SERS’s advantages in COVID tests.  

The current diagnostic methods for SARS-CoV-2 and its variants primarily rely on RT-

PCR, with antigen tests as a convenient and rapid alternative testing. With the development of 

more diagnostic platforms, the limitations of the standard methods are expected to be addressed, 

for example, flexibility and point-of-care detectability. We introduced a SERS platform that could 

potentially be used for efficient diagnosis of SARS-CoV-2 and its future variants. It is expected 

that further advancements in high-throughput manufacturing techniques and modular design will 

enable the large-scale production of SERS-active substrates for virus detection. This scalability 

will play a pivotal role in meeting the increasing demand during outbreaks and ensuring timely 

and accurate diagnostics. 
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Chapter 6 Summary and prospects 

In this dissertation, we delve deeply into the frontier of extracting and analyzing 

bioinformation from NBPs for disease diagnosis. NBPs exhibit unique formation processes and 

properties that allow certain types to serve as early indicators even before the onset of diseases. 

NBPs rich in bio-information hold great promise for future disease diagnosis and prognosis. 

Leveraging SERS technology's capability to characterize single NBPs, we achieve enhanced 

accuracy, selectivity, and specificity in detecting informative NBP biomarkers. SERS-based single 

NBP analysis captures spectral signatures stemming from the collective Raman scattering of all 

enclosed biomolecules, providing a comprehensive view compared to labeled techniques focusing 

on specific NBP biomarkers. The tremendous signal enhancement by surface plasmon also 

contributes to the amount of bioinformation from NBPs, as well as the level of complexity of 

information. However, this inherent complexity presents challenges in extracting disease-relevant 

information. We introduce a systematic SOP that combines SERS-based single NBP 

characterization with ML-based analyses for disease diagnosis. We lay the groundwork by 

providing fundamental insights into NBPs, with a special focus on exosomes and SARS-CoV-2, 

the NBPs studied in this dissertation. We also delve into the mathematical principles of data 

analysis methods, encompassing signal processing algorithms, generic algorithms, and machine 

learning techniques. This thesis highlights the application of our technique in diagnosing NSCLC 

and detecting SARS-CoV-2, demonstrating its feasibility in the medical field. This paves the way 

for investigating a wide array of NBPs. It's important to note that our achievements in this thesis 

represent preliminary feasibility demonstrations. Future research will encompass diverse NBPs, 

various diseases, robust diagnostic assessments, and the establishment of sophisticated platforms, 

ultimately propelling our technology towards clinical applications. 
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6.1 data throughput and labeled SERS methods 

 As stated previously, the development of single NBP characterization for disease 

significantly relies on accurate establishment of disease related standard spectral patterns and 

successful capture of informative NBP, which pave the path for the following steps such as data 

analyses, database building, clinical predictions and so on. These two prerequisites will become 

extremely challenging especially when the population of characteristic NBP is relatively low, such 

as in our study regarding NSCLC, the presence of lymphocytes derived exosomes will become a 

serious interference for the detection of cancer related exosomes. Failing to maintain the 

preconditions will lead to false positives due to wrong standard fingerprints building and false 

negatives due to missing informative NBPs in SERS scanning. In other words, data throughput 

issues will occur due to the limited NBP characterization rate and low concentration of informative 

NBPs, therefore it is pivotal to escalate the throughput of target disease specific NBPs within the 

allowance of time and resources. 

Labeled SERS methods hereby show advantages. These techniques involve the use of 

engineered SERS-generating nanoparticles or substrates that are labeled with specific biomarker 

identifier or targeting agents. When these labeled entities interact with biological samples, such as 

blood or tissue, they provide a means to detect and identify disease-related molecules with 

remarkable precision and sensitivity (Y. Chen et al., 2023; Davis et al., 2018). In labeled SERS 

technologies, the labeled SERS platforms act as signal amplifiers. By attaching to specific disease 

markers, such as proteins or nucleic acids, it generates a highly specific and recognizable signal 

when analyzed using Raman spectroscopy. This allows for the detection of even trace amounts of 

disease biomarkers within a complex biological matrix. Another key advantage of labeled SERS 

in disease diagnosis is its ability to provide multiplexed detection (Gellner et al., 2009; Y. Wang et 
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al., 2016). Multiple identifiers labeled platforms can be used simultaneously, enabling the 

detection of multiple disease markers within a single sample. This makes it a valuable tool for 

diagnosing complex diseases, including cancer, infectious diseases, and neurological disorders. 

However, labeled SERS methods work only if the disease biomarkers are known and the 

corresponding “counterpart” (e.g., antibodies, receptors etc.) of the biomarker is available, which 

is still in development for the majority of diseases.  

The advantages of labeled methods can effectively address potential data throughput 

challenges. As depicted in Figure 6.1, specific molecules can be immobilized onto the SERS 

substrate, facilitating the selective capture of NBPs from specific sources. In this instance, human 

ACE2 is affixed to the substrate, enabling the interaction and immobilization of viruses carrying 

the S protein, including SARS-CoV-2 and its variants. This functionalization of the SERS 

platform's surface essentially acts as a filter, preselecting informative NBPs based on their sources 

or attributes. This preselection process sets the stage for subsequent SERS scanning, substantially 

increasing the likelihood of capturing genuine disease biomarkers. Traditional virus isolation or 

purification techniques, like SEC, may inadvertently retain NBPs of similar dimensions as the 

virus within biopsy specimens (e.g., saliva, serum). By employing preselection, extraneous 

elements like exosomes, protein molecules, RNA/DNA fragments, and cell debris can be 

eliminated, reducing the risk of false biomarker identification. 

This preselection step becomes even more crucial in the context of EV-based diagnostics 

since the specimen may contain EVs derived from a diverse array of cell types, with the target 

biomarker representing only a fraction of this population. By narrowing down the search space 

through preselection, the chances of successfully identifying disease-related biomarkers are 

significantly enhanced. The critical steps in this process involve the selection of functionalization 
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molecules and the method of immobilizing these molecules. It is imperative that the chosen 

functionalization molecules exhibit a strong affinity for the target NBPs and maintain reasonable 

stability when exposed to laser light. Additionally, immobilization techniques must secure the 

attachment of functionalization molecules without interfering with the biomarker signatures. 

Current methodologies often employ the use of cross-linkers, acting as a bridge between the 

metallic surface and protein molecules. Examples of such cross-linkers include DSP 

(Dithiobis[succinimidyl propionate], or Lomant's Reagent) (Xiang, 2004), Glutaraldehyde 

(Webster et al., 2007), Ethylene glycol bis (succinimidylsuccinate) (EGS) (Ding et al., 2016), N-

Hydroxysuccinimide (NHS) esters (Mädler et al., 2009) and so on. Given that the surface plasmon 

hotspots are concentrated within 50 nm above the metallic surface, careful consideration must be 

given to factors such as the length of the cross-linker, the types of molecular bonds involved, and 

the Raman reactivity. These considerations are vital to ensure the successful capture and generation 

of NBP biomarkers. 
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Figure 6.1 SOP of SERS surface functionalization by cross-linking. 

6.2 reconstruction of molecular information from SERS spectral features 

Our efforts have been directed towards promoting SERS as an alternative technique for 

proteomic characterization, because in many medical conditions, disorders are often indicated by 

abnormal levels of specific biomarkers, such as upregulated or downregulated proteins or RNAs. 

It becomes imperative to establish a clear connection between the spectral features observed in 

SERS and the composition and status of these biomolecules. This linkage is essential for advancing 

the application of SERS technology in pathology, medical diagnostics, medical treatment, and 

therapeutic interventions. 
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Raman or SERS spectroscopy is known for its ability to reveal molecular vibrational modes, 

with typical spectral peaks often associated with characteristic chemical bonds. However, when it 

comes to complex biomolecules like proteins, DNA, RNA, and lipids, these molecules share many 

of these characteristic chemical bonds. Consequently, it becomes highly challenging to deduce the 

specific status of biomolecules that are responsible for crucial biological activities (Sitjar et al., 

2021). In other words, the level of information provided by SERS is lower than the information 

required by pathology. NBPs are composed of a collection of biomolecules and will produce 

increasingly complicated spectral features, making it harder to extrapolate the pathology. 

 Fortunately, primitive biomolecules including amino acids, nucleotides, lipids, phosphate 

are reported to produce highly uniform spectral features. Figure 6.2 shows the signatures of several 

types of amino acids. It provides us a chance to apply AI to learn the standard signatures and 

predict the primitive molecular composition given a random spectrum. A database consisting of 

the standard signatures is required and AI-driven models are expected to be trained to predict the 

molecular composition. Sophisticated algorithms and well-established evaluations metrics are also 

crucial. The successful execution of this research will promote SERS from molecule fingerprinting 

technology to another proteomic technique that investigates the structures, functions, and 

interactions of proteins within a biological system.   
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Figure 6.2 Standard spectra of primitive molecules. 

 

Figure 6.3 Anticipated workflow of molecular information reconstruction from SERS spectra. Primitive 

molecule composition is firstly predicted, followed by large biomolecules such as proteins, nucleotides 

composition is predicted. 
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