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Abstract

Traditional Cognitive Science has studied various
cognitive components 1n isolation. OQur project at-
tempts to alleviate some of the problems with this
separation by focusing on the role of problem solv-
ing in language comprehension. Specifically, the
KA project integrates six areas of current investi-
gation in Cognitive Science: knowledge represen-
tation, memory organization, language compre-
hension, knowledge acquisition, problem solving,
and control architectures. We are developing a
model-based tezt interpretation and knowledge ac-
quisition system which, when completed, will be
able to read and interpret descriptions of physical
devices, construct models of the devices, and use
the acquired models to solve novel design prob-
lems. This paper presents three areas in which we
use problem solving to constrain natural language
understanding: (1) the use of mental models as
a foundation for both problem solving and natu-
ral language understanding, (2) the use of design
experience to influence the understanding process,
and (3) the use of the design process to establish
the cost of linguistic decisions.

Goals and Motivations

The cognitive abilities which comprise “human in-
telligence” are surely more than a collection of
independent functions (e.g., perception, learning,
problem solving, language comprehension). They
are a set of faculties which combine to form a
tightly integrated system in which each compo-
nent relies on others in order to function most
effectively. Traditional Cognitive Science, how-
ever, has primarily studied them in isolation, with-
out regard to how the individual components may

*This work has been supported by research grants
from the National Science Foundation, the Office of
Naval Research (contract N00014-92-J-1234), North-
ern Telecom, Georgia Tech Research Corporation, and
computer equipment and software grants and dona-
tions from IBM, Symbolics, and NCR.
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use the knowledge or processes commonly associ-
ated with other components. For example, much
of the research on problem solving has focused
on knowledge-based methods for solving complex
problems without regard to the perceptual or lin-
guistic processes involved. Similarly, work on nat-
ural language understanding typically views the
language understander as an entity unto itself and
ignores how language is used. We believe that
robust theories will only emerge by studying sev-
eral areas together, thereby sufficiently constrain-
ing our theories.

Our research attempts to alleviate the artificial
separation between cognitive components by in-
tegrating problem solving and language under-
standing in terms of the knowledge representations
and reasoning methods they use. Problem solv-
ing plays a crucial role in understanding natural
language. Specifically, understanding requirement
specifications written in natural language requires
a problem solving context in which reasoning de-
cisions can be linguistic decisions. Our work ex-
plores how the introduction of a problem solving
task changes the linguistic problems encountered
by the understander.

Our theory contends that (1) the use of mental
models in the task of design forms a well-defined
target space for linguistic output, (2) design ex-
perience provides exemplar interpretations which
reatly influence the understanding process, and
3) the design process establishes the utility (cost)
of linguistic decisions. The KA project is cur-
rently addressing three issues: ambiguity reso-
lution, compensation for underspecification, and
the removal of irrelevant details from considera-
tion. We predict that (1) people prefer familiar
interpretations even though alternative interpre-
tations are plausible, (2) people select interpreta-
tions which entail the least reasoning effort, and
(3) people pass over irrelevant information and ex-
tract only the details necessary to complete their
mental models.
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The Communication Gap

Research in natural language understanding has
created a number of potentially artificial tasks
(e.g., syntactic parsing) because the work has been
performed 1n isolation. Real world tasks provide
a context which refocuses many of the linguistic
problems that have been central to the field.

Nevertheless, the general problem still remains:
written language produces a communication gap
because the author of a text often provides some
of the details and expects the reader to fill in the
rest. The author’s omissions are typically unin-
tentional and result from the inherent difficulties
of communicating in natural language. This prob-
lem is further complicated when dealing with re-
quirement specifications. Three characteristics of
this general problem are of particular interest: (1)
specifications written in natural language are 1n-
complete, (2) the well-formed structures that lan-
guage provides are ambiguous in the target do-
main, and (3) irrelevant information is given. The
KA project addresses the following specific prob-
lems.

1. Ambiguity may occur at several levels. There-
fore, requirement specifications written in natu-
ral language may specify a set of devices, rather
than a single, unambiguous device, because am-
biguity allows for several interpretations.

2. Natural language may underspecify the device
to be designed. Coherent understanding re-
quires inferring a significant amount of infor-
mation which is left unspecified by the natural
language surface form.

3. Natural language specifications contain irrele-
vant information which can detract from a clear
understanding of what is to be provided by the
device being described. Consequently, irrele-
vant details can lead to inefficiencies in the de-
sign process.

The Task for KA

The long term goal of our work is to develop a
model-based text interpretation and design system
called KA [Goel and Eiselt, 1991}, which accepts
a requirement specification written in English and
produces a design which meets the specification.
The design is expressed as a structure-behavior-
function (SBF) model that specifies how the struc-
ture achieves 1ts function [Chandrasekaran et al.,
1993]. This paper focuses on the problem of inter-
preting input specifications.

Figure 1 shows an oversimplified nput specifica-
tion which illustrates some of the problems ad-
dressed by the KA project.

This specification is lexically ambiguous. The
word “input” is used to describe an external stim-
ulus (i.e., a small force on the switch) rather
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Consider a flashlight circuit. The function of
the circuit is to produce light. The input is a

small force on the switch. The output is light
of eighteen lumens intensity and blue color.

Figure 1: Example Requirement Specification

than some entity (e.g., a substance like electric-
ity) which is consumed by the device. Linguistic
knowledge alone is insufficient to resolve such am-
biguity. In the context of a design task, however,
a problem solving reasoner, using its knowledge of
devices, could determine that “a small force” 1s an
external stimulus. Specifically, the use of mental
models based on an ontology of devices effortlessly
guides the understander to the correct interpreta-
tion. Therefore, the target space of SBF device
models, the design process, and previous design
experience all contribute to resolve ambiguity.

The example above is incomplete because there
i1s no mention of how the device is to be pow-
ered. Therefore, the description actually specifies
a design which uses batteries as well as a design
which plugs into an outlet. Given a rich set of
exemplars, however, it is possible to exploit previ-
ous experience and select a familiar interpretation
(namely, flashlights use batteries). Furthermore,
should simulation of the desired device produce in-
consistencies, the interpretation can be modified.
Such evaluation is not possible without problem
solving capabilities.

Some of the information in the example text is ir-
relevant and/or redundant. Stating that the func-
tion of the circuit is to produce light is redundant
given the more complete specification of the out-
put which follows further in the text. Such infor-
mation can be filtered from consideration if the
mental models being used do not address these
details.

The output of KA i1s a design expressed as an
SBF model. As mentioned above, we are inter-
ested here only in the interpretation of the de-
sign specification, not in design problem solving.
KA'’s interpretation of the example specification i1s
a functional description shown in Figure 4.

In order to map requirement specifications to func-
tional descriptions, KA applies both linguistic and
problem solving knowledge to mutually constrain
the understanding process. This effectively re-
solves ambiguity, fills in missing details, and filters
irrelevant information from consideration. In this
way, the KA system provides a robust context in
which to effectively communicate in natural lan-
guage.



KA Architecture

The architecture of KA is shown in Figure 2.
The Capsulizer, Proposer, Filter, and Semantic
Network have been modified from a natural lan-
guage understander called ATvLAsT [Eiselt, 1989].
The Retriever, Adapter, Storer, and Case Memory
have been modified from a problem solving design
system called KRITIK [Goel, 1991].

functional
interpretation specification
Translator
differences relrieved cases
syntactic
capsules
1 Filter Proposer Retriever
path od | | memory
decisions cases | | probes
Se j =
mantic fe=e Case
Memory | Adapter Memory
decisions
initial new
markers case
| Capsulizer L@t Storer
— =

Figure 2: KA System Architecture

ATLAST

Eiselt’s ATLAST language understanding model
(Eiselt, 1989)] is shown on the left side of Figure
2. The Capsulizer 1s an Augmented Transition
Network (ATN) parser which produces syntactic
structures. These units are sent to the Filter and
initial markers are placed in the semantic network
(see Charniak, Hendler, and Norvig [Charniak,
1981; Hendler, 1986; Norvig, 1989] for a discus-
sion of marker passing in semantic networks). The
Proposer generates paths through the network and
the Filter uses a set of metrics (heuristics) to se-
lect an interpretation; a subset of paths from those
which have been proposed.

The semantic network allows ATLAST to make in-
ferences and provides the medium for KA to in-
tegrate linguistic and design knowledge. ATLAST
has been designed to promote error recovery which
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allows KA to construct alternative interpretations
when KRITIK identifies problems with ATLAST’s
output.

KRITIK

Goel’s KRITIK [Goel, 1991] is a problem solver ca-
pable of designing devices. The system is based on
mental models—topographic models of physical
spaces, structure-behavior-function (SBF) models
of physical devices, and causal models of physi-
cal processes. KRITIK integrates model-based rea-
soning with case-based reasoning by grouping the
various models of a device into a case. Cases are

indexed by a functional specification of the device
[Goel, 1992].

The right side of Figure 2 shows the functional
components of KRITIK. Given a functional speci-
fication of a desired design, the Retriever returns
a set of cases which at least partially match the
specification. These cases are given to the Adapter
which modifies the retrieved design to produce the
desired design. The Storer saves this design in the
case memory thus acquiring a model of the new
device for later reuse.

The KA System

Both ATLAST and KRITIK have been modified for
the KA system so that they can communicate
with each other; the two are no longer stand-alone
systems. Because the two systems use different
forms of representation (ATLAST uses a seman-
tic network and KRITIK uses frames), ATLAST has
been modified to produce its output in the form of
frames and KRITIK has been modified to produce
networks. These changes have been achieved by
using a translator (shown in Figure 2) which per-
forms a formal translation without affecting the
content of the representations.

Control in the KA system is shared between AT-
LAST and KRITIK. In addition, ATLAST’s original
semantic network based on an ontology of events
and actors has been replaced by KRITIK’s ontology
of physical devices. As the system develops, we
expect the translator to gradually disappear and
the KA system to evolve into a seamless, tightly
integrated system.

In the current version of KA, the semantic network
reflects KRITIK’s ontology of devices (e.g., struc-
ture, behavior, function, substances, components,
fields). Figure 3 shows a portion of the network.
This knowledge allows KA to resolve ambiguities
and filter irrelevant details. KRITIK contributes to
the understanding process through its knowledge
of devices, which is grounded in the target domain,
but this does not prevent KA from constructing
all possible interpretations. Those which fit best
with KRITIK’s ontology are selected first, but oth-
ers may be chosen later depending on feedback
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Figure 3: Partial Semantic Network in KA

from the Retriever. KA is able to do this by using
ATLAST’s error recovery capabilities. Therefore,
KRITIK adds content and biases for understand-
ing devices without limiting the understander.

KA Processing

The KA system provides a partial solution to the
three problems discussed in section 2: ambiguity,
incompleteness, and irrelevancy of information. In
short, ambiguity is resolved using KRITIK’s ontol-
ogy along with feedback from the design process,
incomplete specifications are filled in by recalling
previous designs from KRITIK’s memory, and ir-
relevant information is removed by applying KRI-
TIK’s ontology with ATLAST’s metrics.

Using a set of six metrics (heuristics used to de-
termine the “goodness” of a path), the Filter eval-
uates the paths identified by the Proposer. The
paths which are selected by the Filter constitute
KA’s interpretation of the text. These paths are
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given to the Translator which produces a func-
tional specification to be used as a memory probe
by the Retriever. Figure 4 shows the functional
specification for the example text shown in Figure
1. This translation is performed by traversing the
paths of the interpretation and filling in the slots
of a frame.

GIVEN: NIL
SUBSTANCE: Light
MAKES: Color: blue
Intensity: 18 lumens

Figure 4: KRrITIK Functional Specification

The Retriever searches KA’s case memory and re-
trieves a set of cases which at least partially match
the given functional specification. The differences
between the desired specification and those of
the retrieved cases are returned to the Transla-
tor which uses the differences to add new markers
to the semantic network. The Proposer and Filter
use the new information to produce an alternative
interpretation which is given to the Translator and
the cycle repeats. The retrieved cases are given to
the Adapter which tries to modify them to meet
the desired specification. Once the Adapter con-
structs a model of the desired device, the Storer
saves the model as a new case.

Related Work

Language understanding systems have tradition-
ally used knowledge structures to guide the un-
derstanding process (e.g., Schank and Abelson’s
scripts [Schank and Abelson, 1977]). In addition,
several attempts have been made to integrate nat-
ural language and problem solving using a com-
mon representation for both language compre-
hension and reasoning [Rieger, 1976; Simon and
Hayes, 1979; Charniak, 1981; Wong, 1981]. Our
work continues in this direction by applying Kri-
TIK’s content theory to the understanding process.
The same mental models are used for comprehen-



sion and to reason about devices. In addition, the
project focuses on redefining traditional linguistic
problems based on the hypothesis that problem
solving contributes to language understanding.

This research is inspired in part by Winograd’s
SHRDLU system [Winograd, 1972]. SHRDLU
formed plans for actions in a simulated blocks
world based on its interpretation of external com-
mands expressed in English. It explored certain
interactions between language understanding and
planning, and demonstrated the methodological
usefulness of exploiting the constraints imposed
by planning on language understanding, and vice
versa. Of course, SHRDLU also suffered from a
number of well-known problems. For example, it
assumed a closed world, it represented knowledge
procedurally, it lacked the capability of abstract
reasoning, and it also lacked sufficient control over
processing.

The PROTEUS system [Ksiezyk and Grishman,
1989]. comprehends device failure reports. PRO-
TEUS. however, did not implement diagnosis and
repair. Also, language understanding in PRO-
TEUS is mainly driven by stored templates. KA
uses a more general theory of language, embod-
ied in ATLAST, and also does problem solving via
KRITIK.

Lebowitz’s RESEARCHER [Lebowitz, 1983] reads
natural-language texts in the form of patent ab-
stracts, specifically disk drive patents, and up-
dates its long-term memory with generalizations
made from these texts. RESEARCHER stores a
generalized representation in its memory consist-
ing of a topographic model of the disk drive. RE-
SEARCHER’s emphasis on components and to-
pographic relationships leaves it unable to build
causal models of the mechanisms described. In
other words, RESEARCHER effectively knows
how a disk drive is constructed, but not how it
works. KA explicitly uses SBF models that cap-
ture teleological and causal relationships in addi-
tion to topographical ones. In addition, along with
mental models, KA uses KRITIK’s episodic knowl-
edge of particular design cases.

Dyer, Hodges, and Flowers [Dyer et al., 1987] de-
scribe EDCA, a conceptual analyzer which serves
as a natural language front-end for EDISON, a de-
sign problem solver. EDCA uses knowledge of the
function of physical devices to produce an episodic
description of a device’s behavior as described by
an input text. This episodic description can then
be used to generate a new device model to be in-
tegrated into long-term memory. The result is a
much more comprehensive understanding of the
device’s functionality than was possible with RE-
SEARCHER, but EDCA’s analysis of the device
description 1s not fully integrated with the pro-
cesses for generating new device models and in-
corporating them into memory. EDCA, in other
words, is but a front end to EDISON.
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As Selfridge [Selfridge, 1989] notes, separating the
process of analyzing the input from generating and
incorporating the new model is misguided — the
process of understanding a device description is
the process of building and incorporating a causal
model of that device. This is the approach that
we have followed in our work, and we believe that
this approach will lead to a system which cor-
rects the shortcomings of previous efforts like RE-
SEARCHER and EDCA.

Conclusion

Robust theories of cognition will only emerge after
the artificial boundaries between cognitive com-
ponents have been removed. By integrating sev-
eral areas of current research, the KA project is
attempting to bring together previously isolated
abilities in order to sufficiently constrain our theo-
ries. This focus has enabled us to redefine several
linguistic problems as we consider the contribu-
tions that problem solving makes to understand-
ing natural language.

Specifically, the KA project currently addresses
three problems: ambiguity, incompleteness, and
irrelevancy of information. By using linguistic
knowledge provided by ATLAST and KRITIK’s
knowledge of design, we have been able to partially
solve these problems by allowing these two areas
to mutually constrain the understanding process.
Mental models provide the foundation for both
language comprehension and reasoning, and KRI-
TIK’s case memory allows previous design knowl-
edge to resolve ambiguity and fill in missing de-
tails.

This work is a natural extension of our earlier re-
search on model-based design problem solving and
device knowledge acquisition [Goel, 1992]. When
completed, the new system will be able to read and
interpret device descriptions, construct SBF mod-
els of the devices, and use the acquired models
in solving novel design problems [Goel and Eiselt,

1991].
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