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Abstract

We apply “value-added” models to estimate the effects of teachers on an outcome they cannot 

plausibly affect: student height. When fitting commonly estimated models to New York City data, 

we find that the standard deviation of teacher effects on height is nearly as large as that for 

math and reading, raising potential concerns about value-added estimates of teacher effectiveness. 

We consider two explanations: non-random sorting of students to teachers and idiosyncratic 

classroom-level variation. We cannot rule out sorting on unobservables, but find students are 

not sorted to teachers based on lagged height. The correlation in teacher effects estimates on 

height across years and the correlation between teacher effects on height and teacher effects on 

achievement are insignificant. The large estimated “effects” for height appear to be driven by 

year-to-year classroom by teacher variation that is not often separable from true effects in models 

commonly estimated in practice. Reassuringly for use of these models in research settings, models 

which disentangle persistent effects from transient classroom-level variation yield the theoretically 

expected effects of zero for teacher value added on height.

1 Introduction

The increased availability of data linking students to teachers has made it possible to use 

various strategies to estimate the contribution teachers make to student achievement. By 

nearly all accounts, estimates of this contribution are large. Widely-reported estimates of 

the impact of a one standard deviation (σ) increase in teacher “value-added” on math 

and reading achievement typically range from 0.10 to 0.30σ, which suggest that a student 

assigned to a more effective teacher will experience nearly a year’s more learning than a 

student assigned to a less effective teacher (Hanushek & Rivkin 2010; Harris 2011; Jackson, 

Rockoff, & Staiger 2013; Koedel, Mihaly, & Rockoff 2015). These estimates—and evidence 

that teacher value-added measures (VAMs) are predictive of long-run outcomes (Chetty et 
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al. 2014b)—provide the basis for the oft-cited assertion that teachers are the most important 

school input into student learning.

In addition to being used in research, several forms of VAMs are increasingly widely used 

in policy and practice. In these settings, in which VAMs may be used to make high-stakes 

decisions about teacher hiring, retention, or compensation (e.g., Dee & Wyckoff 2015; Mead 

2012), it is desirable that the modeling strategies employed return teacher effectiveness 

estimates that are both unbiased and precise. However, prior research has raised important 

questions about the VAM modeling strategies for evaluating individual teachers (e.g., Baker 

et al. 2010; Braun, Chudowsky, & Koenig 2010). Because teachers are not randomly 

assigned to students, VAMs as estimated in observational data may be biased by student, 

classroom, or school influences on achievement that vary with teacher assignment (Dieterle 

et al. 2014; Kane 2017; Horvath 2015; Porvath & Amerein-Beardsley 2014; Rothstein 

2010). Even if specific VAM modeling strategies return unbiased estimates, they may be 

imprecise if a large share of their variability is attributable to student and classroom-level 

error (McCaffrey et al. 2009; Schochet & Chiang 2013), and this issue may be more 

important for teachers with fewer students contributing to their estimates.

In this paper, we re-visit these questions of bias and precision in value-added modeling 

by estimating the effects of teachers on an individual-level outcome they cannot plausibly 

affect: student height. When fitting value-added models without classroom-by-teacher level 

error adjustments—a model specification that is often used to estimate annual value-added 

in educational practice—to data from 4th and 5th graders enrolled in New York City public 

schools between 2007 and 2010, we find that teacher “effects” on height are nearly as large 

as those on math and reading achievement. For instance, we find a 1σ increase in “value-

added” on the height of New York City 4th graders is about 0.22σ, or 0.65 inches. This 

compares to 0.29σ and 0.26σ in math and English language arts, respectively. Moreover, 

the standard deviations of these teacher effects on height are statistically significant 

when measured using permutation tests. Models that control for school effects reduce the 

dispersion in effects on height, although the effects remain large and comparable to those on 

achievement at 0.16σ – 0.17σ.

On their face, findings of teacher effects on height raise concerns about what these models 

are capturing. We consider two possible explanations for this surprising rejection of the null 

that teachers do not affect height that we can test in our data. The first is that they reflect 

sorting, in which students differ systematically across teachers on unobserved factors related 

to height or changes in height. To the extent that these unobserved factors are also related 

to achievement or achievement gains, this finding might raise concerns of bias in VAMs for 

achievement. The second possible explanation is that non-zero estimates of teacher effects 

on height which do not account for year to year classroom-by-teacher shocks come about 

because student and/or classroom-level error (shocks) are improperly attributed to teachers, 

raising concerns about the precision and/or magnitude of VAM estimates. The appeal of 

using individually-measured height as an outcome is that we can explore these questions 

with real, as opposed to simulated, data in a setting in which true effects are implausible, we 

believe ex ante the null that effects should be zero, and where the outcome, height, is likely 

measured with less error than is student achievement.
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We first consider bias due to sorting on height or unobservables correlated with height 

as an explanation for estimating non-zero teacher effects on height. We do this first by 

testing for systematic sorting of students within schools—which might indicate sorting on 

an unobserved variable—using a simple teacher fixed effects model to predict students’ 

prior-year outcomes. While more than 60% of NYC schools appear to track students to 

classrooms on prior achievement, we find little evidence of such sorting on height. Second, 

we estimate intertemporal correlations in teacher effects for height using multiple years of 

classroom data for each teacher. While this correlation across years for the same teachers 

is positive for achievement, the correlation for value added on height is close to zero, 

suggesting there is no systematic sorting of students to teachers on factors related to height 

gains across time, and no “persistent” effect on height. We also examine the correlation 

between teachers’ estimated effect on height and their effect on achievement. If height 

effects were to reflect sorting on unobservables that were related to achievement, one might 

expect these to be correlated. Instead, we find a correlation near zero.

We address the role of idiosyncratic or other variation in explaining “effects” of teachers on 

height in several ways. First, we perform a series of permutation tests that randomly allocate 

students to teachers without replacement in our data set and re-estimate each VAM model. 

This approach eliminates any potential for sorting, peer effects, systematic measurement 

error (e.g., at the classroom or school level), and/or true effects in the permuted data; it 

provides a benchmark for what teacher “effects” look like simply due to sampling variation 

in a model without classroom-level error adjustments (what we later refer to as a “2-level” 

model). Using this benchmark, we can reject the null hypothesis of a zero standard deviation 

in teacher effects on height (and on achievement), suggesting the presence of at least some 

systematic unexplained variation across teachers. Second, we estimate several variations of 

“3-level” models that are designed to disentangle the persistent component of teacher effects 

from transitory classroom shocks; one prominent implementation of this model uses the 

covariance in effects from successive years of teacher data to “shrink” estimated effects 

(Kane & Staiger 2008; Kane, Rockoff, & Staiger 2008; Chetty et al. 2014a). In our context, 

this is the only approach that results in the theoretically expected effects of zero for value 

added on height. These models estimate the persistent component of teacher contributions 

to height and achievement and thus by their nature do not estimate the year to year changes 

that could reflect teacher effort or negative shocks to teacher performance. Unfortunately, 

such models are not common in educational practice, raising the risk that transitory shocks 

are misinterpreted as signals of teacher effectiveness. These 3-level models are also limited 

in that they require multiple years of classroom data to estimate the cross-year correlation 

in teacher effectiveness, and teachers without multiple years of data are not used to estimate 

the shrinkage factor. The 3-level model also fails to capture real year-to-year differences in 

teacher effectiveness that are relevant for teacher evaluation, performance incentives, and 

professional development.

In the next section, we provide the framework for our analysis and ground our work in 

the context of a large literature on teacher value-added models. Then, in Sections 3 and 4 

we describe our data sources and empirical approach. Section 5 presents our main results 

and a set of robustness checks, and Section 6 concludes with a discussion and lessons for 

researchers and policymakers.
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2 Background: estimation and properties of VAMs

Teacher effects are defined as the systematic variation across teachers in student test 

performance that remains after accounting for the effects of other observed inputs, such 

as prior achievement, and economic or educational disadvantages. The most basic model is 

one like the following:

Y ijt = αY ijt − 1 + Xijt
′ β + ujt + eijt .

(1)

In this model, Yijt and Yijt–1 are test scores for student i in classroom j in years t and t 
– 1, respectively, Xijt is a vector of student-level covariates related to achievement (and 

potentially, teacher assignment), and ujt is the teacher effect for teacher j in period t, 
modeled as either a fixed or random effect. eijt is a student-level error term. As written in 

(1), the same teacher may have different effects in different years; another implementation 

uses multiple years of student data to estimate a pooled effect for each teacher (uj). The 

standard deviation in teacher effects (σu) is often interpreted as the variation in teacher 

quality, and ranges from 0.10 to 0.30σ, depending on model specification and setting, with 

effects usually larger in mathematics than in reading.1

The use of VAMs in educational settings is controversial. For example, many oppose their 

use to evaluate individual teachers (e.g., American Statistical Association 2014). The most 

raised concern about VAMs is that they are biased; that is, that teacher effect estimates 

reflect systematic unmeasured student, school, or other inputs beyond the teacher’s control. 

A second concern is that they are noisy and imprecise; even if VAMs are unbiased, they 

are estimated from small samples and deviate from a teacher’s “true” effectiveness for 

idiosyncratic reasons. We briefly summarize the existing evidence on these concerns below.

2.1 Bias in VAMs for academic outcomes

A large literature has investigated whether and to what extent VAMs are biased. For 

example, a number of studies have asked whether model specification—the inclusion or 

exclusion of student or classroom controls, for example—affects VAM estimates (e.g., 

Ballou, Sanders, & Wright 2004; Ballou, Mokher, & Cavalluzzo 2012; Ehlert et al. 2013; 

Goldhaber, Goldschmidt, & Tseng 2013; Sass, Semykina, & Harris 2014; Kane et al. 2013). 

Apart from a control for prior achievement, these studies tend to find that the choice of 

covariates has only modest effects on the relative rankings of teachers. Rankings tend to be 

more sensitive to the inclusion of school fixed effects, which allow for systematic variation 

in achievement across schools due to sorting or other school-level inputs. Because school 

effects also absorb real differences in mean teacher effectiveness across schools, however, 

they are rarely used in practical applications such as school district estimates of teacher 

value added (Ehlert et al. 2014; Goldhaber, Walch, & Gabele 2013; Gordon, Kane, & Staiger 

2006; Kane & Staiger 2008).

1For extensive reviews of this literature, see Hanushek & Rivkin (2010), Harris (2011), Jackson, Rockoff, & Staiger (2013), and 
Koedel, Mihaly, & Rockoff (2015). Some of these variance estimates are adjusted for sampling error, while others are not.
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A more worrisome concern is that students are assigned to teachers on the basis of time-

varying factors observed by schools but unobserved by the analyst. The available evidence 

on possible bias in VAMs due to non-random sorting is mixed. In a notable test of bias 

of this type, Rothstein (2010) showed that teachers assigned to students in the future had 

statistically significant “effects” on contemporaneous achievement gains when using several 

commonly-estimated VAM specifications with school fixed effects. Because such effects 

cannot be causal, Rothstein argued that these VAMs inadequately account for the process 

by which students are assigned to teachers.2 However, Kane and Staiger (2008) randomly 

assigned teachers to classrooms within Los Angeles schools and found non-experimental 

VAM estimates were generally unbiased predictors of experimental VAMs, suggesting 

little bias (at least within schools in Los Angeles). This finding was replicated in the 

larger Measures of Effective Teaching (MET) project (Kane et al. 2013). Finally, a quasi-

experimental study by Chetty et al. (2014a) that focused on teachers switching between 

schools found little evidence of bias compared to using all teachers (see also Bacher-Hicks, 

Kane, & Staiger 2014; Bacher-Hicks et al. 2017); although Rothstein (2017) and Chetty 

et al., (2017) differ in their views of the importance of any such bias.3 While these 

examples of randomization found consistency between VAM estimates in experimental or 

quasi experimental and non-experimental settings, outside of the randomized evaluations, we 

cannot be certain that these estimate the true effects of teachers. This suggests there is some 

benefit to applying commonly used VAMs to an outcome in which there is a strong prior 

expectation of a null effect.

2.2 Statistical imprecision and noise

Even if some specifications of VAMs are unbiased, their utility in evaluating individual 

teachers could be limited by statistical imprecision and instability, or “noise” (McCaffrey 

et al. 2009; Schochet & Chiang 2013). Imprecision stems not only from sampling error—

a consequence of, for example, the small number of students used to estimate teacher 

effects—but also from classroom-level shocks and poor model fit, particularly for teachers 

with students in the tails of the distribution or with otherwise hard-to-predict achievement 

(Herrmann et al. 2016; Kane 2017). A practical implication of statistical imprecision is that 

annual VAM estimates vary from year to year, sometimes substantially, with within-teacher 

correlations ranging from 0.18 to 0.64, such that some seemingly effective teachers in one 

year are judged ineffective in the next, and vice versa.4

A common adjustment for imprecision in value-added estimates is Empirical Bayes 

shrinkage, which multiplies the VAM for each teacher by a shrinkage factor λj which ranges 

from zero to one (see Equation (2) below; Guarino et al. 2015; Hermann et al. 2016; Kane, 

Rockoff, & Staiger 2008; Koedel, Mihaly, & Rockoff 2015) and reflects the imprecision 

2Several subsequent papers have argued the “Rothstein test” may not be robust (Goldhaber & Chaplin 2012; Kinsler 2012; Koedel & 
Betts 2011).
3Another potential source of bias is test scaling. See, for example, Kane (2017), Soland (2017), and Briggs & Dominigue (2013). This 
should not be an issue in our setting using height as the outcome.
4Studies that report cross-year correlations include, for example, Aaronson, Barrow, & Sander (2007), Chetty et al. (2014a), and 
Goldhaber & Hansen (2013). Stability depends a great deal on model specification, for example, whether student or school fixed 
effects are used (Koedel, Mihaly, & Rockoff 2015). Of course, teachers could also experience health or other shocks, reducing the 
correlations across years; and teachers with limited tenure might have weaker correlations across years.
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with which the teacher effects are measured. λj depends on nj (the number of student 

observations for teacher j), and the overall fraction of variation in student achievement that 

is between as opposed to within teachers. Intuitively, a VAM estimate is “shrunk” toward 

the mean of zero when it is estimated with fewer students, or when the “signal” share of the 

variation in teacher effects is small.

Whether and how VAMs are “shrunk” depends in part on the structure and availability of 

data. Equation (1) above can be described as a “2-level” model, deployed in a setting in 

which teacher effects are estimated separately by year or multiple years of classroom data 

are pooled to improve precision in the estimation of a teacher effect (replacing ujt with uj). In 

both cases there are two dimensions of variation, between (σu
2) and within (σe

2) teachers, and 

the shrinkage factor is:

λj = σu
2

σu
2 + σe

2/nj

(2a)

With multiple years of classroom data, one can also estimate a “3-level” model, allowing for 

a classroom-level error component vjt. In this case the shrinkage factor is:

λj = σu
2

σu
2 + σv

2 + σe
2/nj

(2b)

where σv
2 is the within-teacher, between- classroom variance component. Importantly, vjt is 

assumed to be idiosyncratic error uncorrelated with the “persistent” teacher effect uj. In 

the 2-level model, however, real time-varying differences in teacher effectiveness cannot be 

separately identified from classroom-level shocks.5

Applications of value-added estimation models vary in whether they estimate annual teacher 

effects or effects pooled over years, whether they use shrinkage at all, whether they employ a 

2- or 3-level model to separate “persistent” teacher effects from classroom shocks, and their 

procedure for estimating variance components (Guarino et al. 2015; Schochet & Chiang 

2013). We describe these decisions in more detail in Section 4, where we discuss our 

analytic approach. For now, it is important to note that outside of research, the 3-level 

model is relatively rare. Multiple years of classroom data are not always available, and 

even when they are, policymakers and practitioners are often interested in annual measures 

of performance, rather than a time-invariant teacher effect (e.g., American Institutes for 

Research 2013; Isenberg & Hock 2010; VARC 2010).

5Some 3-level value-added models allow for “drift” in teacher effectiveness over time; for example, see Chetty et al. (2014a). We 
include the drift model among our estimated value-added models.

Bitler et al. Page 6

J Res Educ Eff. Author manuscript; available in PMC 2024 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 Data

Our primary data source for estimating teacher effects on height and achievement is a 

panel of more than 360,000 students enrolled in grades 4–5 in New York City public 

schools between 2007 and 2010. These data are well-suited to our purposes, for several 

reasons. First, each student is linked to their mathematics and English Language Arts 

(ELA) teacher(s) and to annual measurements of their height from the city’s “Fitnessgram” 

physical fitness assessment. Second, the data represent a large population of students and 

teachers over four years. The number of students observed per teacher is large for some 

teachers, allowing for more precise estimates of teacher effects in 2-level models and for 

estimating 3-level models with multiple years of classroom data. Third, these data are 

typical of those used to estimate teacher VAMs in practice and were in fact used by the NYC 

Department of Education to evaluate teacher effectiveness in math and ELA (Rockoff et al., 

2012). The Fitnessgram data include measures of student weight. We do not report results 

using weight in the interest of brevity, and because teachers may have real “effects” on 

weight (e.g., through their practices related to physical activity, such as recess participation 

and school meals/snacks) but are more unlikely to affect child height in the U.S. context.

We began with an administrative panel data set for students enrolled in grades 3–5 between 

2005–06 and 2009–10. Among other things, this panel included student demographics (birth 

date, gender, race/ethnicity), program qualification and/or participation (Limited English 

Proficient, recent immigrant status, special education, and participation in the free and 

reduced school meals program—a measure of eligibility among those who apply for the 

program), and scaled scores in math and ELA, which we standardized by subject, grade, and 

year to mean zero and standard deviation one. These administrative data were matched to 

teacher-student linkages in math and ELA from 2006–07 to 2009–10.6 Third grade records 

and 2005–06 data were retained only to provide lagged values of the outcome measures.

The Fitnessgram has been conducted annually in NYC public schools since 2005–06 and 

relies on school staff—usually the physical education teacher—to measure students’ height, 

weight, and physical fitness. School personnel are trained to collect height and weight using 

a common procedure and a recommended digital beam scale.7 Measurements are taken 

throughout the school year, and the date of measurement is recorded in the Fitnessgram 

data. To parallel the estimation model and measures used in our achievement models, we 

standardized height by grade and year to mean zero and standard deviation one, with 

outlying values more than 4σ from the mean set to missing before standardization. We 

experimented with other methods for standardizing height, such as by gender and age in 

months. The reference group for standardization had little to no effect on our results. In 

all cases, we standardized using all available data, not the analytic sample, which was 

more restrictive. Our main results use standardized scores, but in one robustness check we 

6Linkages were also available for 2010–11, but teacher codes changed in that year as a result of the NYCDOE’s switch to a new 
personnel system. This change prevented us from matching teachers in 2010–11 to earlier years. Although students in grades 6–8 
could also be linked to teachers, we restricted our analysis to elementary school students, who are predominately in self-contained 
classrooms with one teacher for core subjects, making estimation more straightforward. This approach allowed us to avoid issues of 
proper attribution to middle school teachers.
7See https://vimeo.com/album/4271100/video/217670950 [last accessed June 15, 2020].
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used height gains measured in inches as the dependent variable (with no control for lagged 

height).

Descriptive statistics for students in our analytic sample are reported in Table 1, alongside 

statistics for the full population of students who could be linked to classroom teachers. 

Students in the analytic samples for height, math, and ELA were required to have a 

non-missing lagged dependent variable, non-missing covariates, and a teacher with seven 

or more students in the same grade with enough data to be included in the VAM models. 

Seven is a common minimum group size requirement used in other studies and in state 

teacher evaluation systems. For our baseline models which combine all four years of data, 

this minimum group size of 7 is not that restrictive. Table 1 shows the average 4th and 5th 

grader in our analytic sample was somewhat higher-achieving and smaller in stature than the 

full population of students linked to classroom teachers, with marginally higher ELA and 

math scores. The average 4th and 5th grader in NYC was 54.7 and 57.1 inches in height, 

respectively, with standard deviations of 3.0 and 3.2 inches. For later reference, the average 

5th grader grew 2.5 inches between 4th and 5th grade, with a standard deviation of 1.8.

Table 2 reports the number of unique teachers and classrooms in our analytic samples, as 

well as descriptive statistics for the number of students per teacher (pooling all years) and 

per classroom (teacher-year). The full distributions are shown in supplemental appendix 

Figures A.1 and A.2. The analytic sample for the height analyses included approximately 

4,300 4th grade teachers and 3,700 5th grade teachers; the math analysis included 4,700 

4th grade teachers and 4,200 5th grade teachers; the ELA analysis included 4,400 4th grade 

teachers and 4,000 5th grade teachers. Some teachers were observed with 80 or more 

students over four years, although the average teacher was observed for only two years with 

grade-subject means ranging from 36 to 42 students. The average number of students per 

classroom was 20–21 for all outcomes. Teachers in our math sample represent about 82–84 

percent of all 4th-5th grade NYC teachers who could be linked to students during these 

years. Similarly, the teachers in our height and ELA samples represent 73–74 and 80–82 

percent of all grade level teachers, respectively.

Figures A.3 and A.4 in the supplemental appendix show histograms of student height and 

math achievement in the 4th and 5th grade analytic samples. For height, we show both the 

original measure in inches and the standardized measure. The distributions of both measures 

are roughly bell-shaped, although not normal: Kolmogorov-Smirnov tests reject normality, 

and there are a few low-scoring outliers in math. A small mass of students also scored at 

or near the test ceiling in math. We also benchmarked our height data to national norms, 

using CDC percentiles for height by sex and age (see Figure A.5 in the appendix). While 

students in our sample appear to be taller than the national norms—at all points in the 

distribution—year to year changes in height are comparable.

Table 3 reports pairwise correlations between student height, math, and ELA measures, 

between year-to-year changes in these measures, and between each measure and its lag. 

While the z-scores for math and ELA are strongly correlated (0.69 and 0.59 in 4th and 

5th grade), achievement has only a weak bivariate correlation with height. The small 

negative correlation could be due to grade repeaters, who would be tall for their grade. 
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In a multivariate regression model for achievement that includes height as a predictor with 

controls for lagged achievement, age, and other standard covariates, height is a statistically 

significant predictor of achievement in math and ELA for both grades 4 and 5. The implied 

effect size is small, however, with a 1σ increase in height associated with a 0.011σ to 0.015σ 
higher test score. See supplemental appendix Table A.1 for details. All three measures are 

strongly correlated with their lagged values, with correlations ranging from 0.65–0.68 in 

ELA and math to 0.79–0.80 in height. The intertemporal correlations in students’ height 

gains and in students’ achievement gains are very low.

4 Empirical methods

4.1 Value-added model specifications

For each grade level and outcome (math achievement, ELA achievement, and height) we 

estimated teacher effects using a standard “dynamic OLS” value-added regression model 

that conditions on the prior year’s outcome and a set of student-level covariates:

Y ijt = αY ijt − 1 + Xit
′ β + γt + uj + eijt

(3)

This model—in contrast to Equation (1)—pools all available years of classroom data for 

each teacher to estimate the teacher effect uj. The covariates in Xit include a three-way 

interaction of gender, race, and age; recent immigrant status; limited English proficiency 

(LEP) and an indicator for a language other than English spoken at home; special education 

status; participation in free or reduced-price lunch (a measure of eligibility among those who 

apply for the program); and NYC borough of residence.8 γt is a year effect. We selected 

these covariates because they are commonly used in value-added models. The three-way 

interaction of gender, race, and age is atypical, but was thought to be appropriate in the 

model for height given variation in growth rates of children in this age range. Results 

are nearly identical with non-interacted controls. The height model includes an additional 

control for days elapsed between annual Fitnessgram measurements, the timing of which can 

vary between and within schools. We also estimated models including school fixed effects 

ϕs. While school effects are seldom used in practical applications, in our context height 

measurement or reporting practices could vary at the school level. The school fixed effect 

will absorb time-invariant effects of this type, but not time-varying differences.9

To represent the variety of ways in which teacher effects are estimated in practice, we 

estimated the uj under both random and fixed effects assumptions.10 All of our estimates 

are shrinkage-adjusted, which we obtained using several alternative approaches. The first 

approach fit a random effects model using maximum likelihood and obtained the best linear 

8Free or reduced-price lunch indicators are missing for some students, typically those enrolled in universal free meals schools, where 
schools provide free meals to all students regardless of income eligibility. We coded these students with a zero but included an 
indicator equal to one for students with missing values.
9When estimating models with both teacher and school effects, we used the two-step approach in Master, Loeb, & Wyckoff (2017). 
First, we regressed the outcome Yit on all regressors, including school effects, but excluding teacher effects uj Residuals from this first 
step were then used in the second to estimate the teacher effects as either random or fixed effects. Results were shrunken.
10Estimated coefficients from our 2-level value-added models are reported in supplemental appendix Tables A.2–A.4.
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unbiased predictor (BLUP) of each teacher effect, which is mathematically equivalent to 

an Empirical Bayes shrinkage estimate. The second approach fit a fixed effects model and 

then multiplied the estimated fixed effect by the shrinkage factor in (2) calculated using 

the variance components from this model. The third approach follows Kane, Rockoff, and 

Staiger (2008) and Chetty et al. (2014a) by estimating Equation 3 without teacher effects 

and calculating the mean residual for each teacher. Each teacher mean was then multiplied 

by the shrinkage factor λj.

As shown in Equations 2a–2b, the shrinkage factor differs for 2- and 3-level models. In a 

2-level model with teacher and student variance components, teachers are observationally 

equivalent to a large classroom and σu
2 is the between-teacher variance. In a 3-level 

model with teacher, classroom, and student error components, there is an idiosyncratic 

classroom error with variance σv
2. These variance components can be estimated directly in 

a maximum likelihood model. Kane, Rockoff, and Staiger (2008) use a different approach 

and estimate between-teacher variance (σu
2) as the covariance between estimated classroom 

effects u jt for the same teacher in successive years, for teachers with multiple years of data. 

Between-classroom variance σv
2 is estimated using the total variance in the residuals less 

the withinclassroom and between-teacher components. The “drift” model used by Chetty 

et al. (2014a, b) is like this approach in that it uses covariance in mean residuals across 

classrooms to estimate the between-teacher variance. The main difference is that the drift 

model does not assume a fixed correlation between two classroom years; the correlation in 

annual teacher effects weakens as time between measurements increases. We report results 

using all of these varied approaches.

4.2 Testing for sorting on prior characteristics

To assess the extent to which students are non-randomly sorted to classrooms within 

schools on prior characteristics, including height, we followed the approach used in Horvath 

(2015).11 We identify schools with seemingly non-random sorting by height or achievement 

by testing for systematic variation in lagged student characteristics across classrooms within 

schools, grades, and years. For example, for each school s the following regression is 

estimated for the lagged outcome Y it − 1:

Y ijt − 1 = ujt + ϕgt + wijt

(4)

The ujt are teacher effects for year t and ϕgt are grade-year effects. Schools in which the null 

hypothesis of no systematic differences across classrooms is rejected are presumed to exhibit 

sorting on dimensions associated with their lagged value of Y it H0:ujt = 0∀jt .

Schools may exhibit non-random sorting of students within grades and years, but not 

persistently “match” groups of students to specific teachers over time. To test for persistent 

teacher matching, we further regress mean lagged outcomes on school-grade-year indicators 

and teacher, rather than classroom dummies. Schools in which the null hypothesis of 

11For related approaches, see Dieterle et al. 2015; Aaronson, Barrow, & Sander 2007; and Clotfelter, Ladd, & Vigdor 2006.
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no teacher matching is rejected (the teacher dummies are jointly zero) are presumed to 

persistently match students to teachers.

Using this method, Horvath (2015) found more than half of all schools in North Carolina 

exhibited sorting within grade and year on prior achievement. Additionally, she found a 

somewhat smaller share appeared to actively balance the gender and race composition 

of classrooms, and a larger share exhibited within-school sorting by parental education. 

Moreover, she found roughly 40% of North Carolina schools persistently matched similar 

students to teachers across years. While not a definitive test for omitted variables bias, in our 

case this exercise sheds light on whether classrooms within schools are grouped on height 

(and thus possibly unobserved factors related to height) that might explain teacher effects on 

this outcome.

4.3 Permutation tests

To provide a benchmark for what the 2-level teacher “effects” look like in our data due to 

sampling variation, we performed permutation tests. For these tests, we randomly allocated 

students to teachers in our data set within grade and year, without replacement, and re-

estimated each model. This random permutation was repeated 499 times, maintaining the 

actual number of students assigned to each teacher in each permutation. On each iteration, 

we saved the estimated standard deviation of teacher effects (σu) and then examined the 

distribution of these estimates across all 499 iterations.12

These results were used as a Fisher exact randomization test to assess whether our estimates 

of the dispersion in teacher effects in the observed data differ from what one would expect 

under the null of no effects. Through randomization of students to teachers in our data, we 

effectively impose the null hypothesis of no sorting, no true teacher effect, no peer effects, 

and no systematic measurement error. If the estimated standard deviation from the observed 

data is larger than the 95th percentile of standard deviations from the permutations, we 

conclude that the standard deviation is statistically different from the null of zero.13

5 Results

5.1 Teacher effects on achievement and height

Our estimates of various specifications for models of teacher effects on the achievement and 

height of 4th and 5th graders in NYC are summarized in Table 4. Each cell represents the 

estimated standard deviation of teacher effects for a given outcome, grade, and value-added 

model specification. We organize this table into “2-level” and “3-level” models, where the 

latter allow for an idiosyncratic classroom effect. We focus first on the 2-level models, as 

they are the most common, and later turn to the 3-level models. As explained previously, 

12Note that the various 3-level models cannot easily be estimated with a permutation design. Children are sorted to different peers 
each year, they do not appear for the same number of years within the same schools, and teachers change. Because permutation tests 
require sampling without replacement, we cannot estimate them and allow for correlation across time in effects.
13For comparison purposes, we also report the results from permutation tests within schools. In this case we randomly allocated 
students to teachers within the same school and year. This imposes the null hypothesis of no sorting within schools, but between-
school sorting remains possible. In this approach, there is a greater possibility that students are randomly allocated to their actual 
teacher, especially in smaller schools.
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random effects estimates are either best linear unbiased predictors from a maximum 

likelihood random effects model (MLE) or shrinkage-adjusted mean residuals following 

Kane, Rockoff, and Staiger (KRS) or the Chetty et al. (2014a) drift model, as indicated in 

the table. For comparison, fixed effects estimates have also been shrinkage-adjusted.

The standard deviations of teacher effects on math and ELA achievement reported in Table 

4 are largely consistent with those estimated elsewhere in the research literature. Beginning 

with the 2-level model reported in the first two rows of Table 4, we find a 1σ increase in 

teacher value-added to be associated with a 0.29σ – 0.34σ and 0.25σ – 0.26σ increase in 

math achievement for 4th and 5th graders, respectively. In ELA, the variation in effects is 

closer to 0.26σ – 0.28σ in 4th grade and 0.21σ – 0.24σ in 5th grade. These estimates are on 

the upper end of the range of those found in other studies, but close to those estimated by 

others using NYC data (e.g., Rockoff et al., 2012).

The standard deviations of teacher effects on height are smaller, but not substantially 

different in standard deviation units, from those estimated for mathematics and ELA 

achievement. We find the standard deviation of teacher effects on height is substantial in 

NYC. For instance, a 1σ increase in teachers’ “value-added” on height is associated with a 

0.21σ – 0.22σ increase in height in the random effects model. The shrinkage-adjusted fixed 

effects yield somewhat larger values, from 0.25σ in 4th grade to 0.32σ in 5th grade. In every 

case, a test of the null hypothesis that the teacher effects are jointly zero is soundly rejected 

at any conventional level. To put these effects in perspective, a 0.22σ increase in height 

amounts to a 0.68-inch gain in stature for 4th graders and an 0.72-inch gain for 5th graders. 

This is roughly a third of a standard deviation in year-to-year growth for children of this age.

Figure 1 provides full pictures of the distribution of teacher effects on height and 

mathematics from the 2-level random and fixed effects models (see supplemental appendix 

Figure A.6 for ELA). Both distributions are approximately symmetric around zero, and there 

is generally less dispersion visible in the effects on height than in the effects on math. 

Comparing the 10th, 25th, 75th, and 90th percentiles of random effects in 4th grade, the 

centiles of teacher effects on height tend to be closer to zero (−0.22, −0.10, +0.10, and 

+0.21) than the same centiles for math (−0.31, −0.19, +0.15, and +0.34). The distribution 

of height effects is somewhat left-skewed, and the distribution of math effects somewhat 

right-skewed. There are a handful of relatively extreme values (>1.5σ) in the distribution of 

height effects—more so than in the distribution of math effects—but fewer than 10 in total 

(out of 4,262 teachers). Recall that a small number of students with outlier values for height 

were omitted from the analytic sample. The standard deviation of teacher effects on height, 

therefore, does not appear to be inflated by influential outliers.

The next two rows of Table 4 report similar estimates of dispersion in teacher effects 

for models with school effects. The inclusion of school effects should account for 

systematic differences in height across teachers due to school-level factors, such as 

(time-invariant) differences in Fitnessgram timing, practices for carrying out or reporting 

height measurements, and the like. In these cases, the estimated standard deviations are 

approximately 70–75 percent of those estimated in models without school effects. In all 

cases, however, the apparent effect of variations in teacher effects on height remains 
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meaningful in magnitude, ranging from 0.16σ to 0.17σ. Standard deviations of teacher 

effects on math and ELA are comparably reduced when including school effects (to 0.15σ – 

0.22σ).

Table A.5 in the supplemental appendix shows the estimated standard deviation of teacher 

effects on height from various alternative specifications of the 2-level models. These include 

models with higher polynomials in lagged height, models interacting student demographics 

(sex, race, and age) with lagged height, and models excluding the elapsed days between 

Fitnessgram measures. The results are all very similar to those in Table 4. Thanks to a 

referee suggestion, we also estimated regressions in which the year-to-year height gain 

(in inches) was used as the dependent variable, rather than the traditional dynamic OLS 

specification from Equation (3). This model is arguably more defensible for height, given 

its ratio scale, than for achievement. While the units are not directly comparable, we found 

comparably large teacher effects on height using this model.

In the supplemental appendix, we additionally report the results of an analysis using the 

nationally representative Early Childhood Longitudinal Survey – Kindergarten Cohort, 1998 

(ECLS-K). These results are informative in that they show our findings of significant effects 

of 2-level value added models on height are present and significant using a national sample 

of students at a different age where the measurement of height was more careful. The 

ECLS-K drew a sample of kindergarteners in sampled schools; measured their achievement 

and height in the fall of their kindergarten year and again in the Fall of 1st grade; and 

linked sampled students to their classroom teachers. The ECLS-K offers some advantages 

to the NYC data, including standardized height measurement by trained assessors and a 

richer set of covariates as well as nationally representative data. Further, there are fewer 

opportunities for dynamic sorting of students into classrooms in the ECLS-K data since this 

study begins with kindergarteners. As reported in Appendix Table B.1, we find a similar 

pattern of teacher effects on height and achievement in the ECLS-K data, indicating that our 

findings are not an artifact of the NYC public schools setting or Fitnessgram measurement 

protocols and practices.

5.2 Do teacher effects on height reflect sorting?

The results from Panel A of Table 4 indicate that the most commonly-estimated 2-level 

value-added models yield significant and implausible “effects” of teachers on height. A 

possible explanation is non-random sorting of students to teachers on unobserved factors 

related to height, or changes in height. These factors might include, for example, student 

health, ethnicity or immigration history, age (which can vary within grade with student age 

at kindergarten entry and grade retention history), or birthweight. If these unobserved factors 

are also related to achievement, this would be potentially troubling for achievement VAMs. 

That is, this is a possible problem if commonly used covariates in value-added models for 

achievement inadequately account for the effects of this sorting.

To explore this possibility, we first examined how teachers’ estimated effects on 

achievement correlate with their effects on height. These correlations are reported in Table 

5 for the 2-level random and fixed effects models. There is little or no evidence of an 

association between teacher effects on height and academic achievement. In both 4th and 5th 
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grade, we find the correlation between value-added on height and achievement is typically 

smaller than 0.05 in absolute value. We found similar results when using Spearman rank 

correlations. In contrast, the correlation between teachers’ value-added on math and ELA 

achievement is modest to strong, at 0.64–0.70 in 4th grade, and 0.51–0.56 in 5th grade. 

There were only two significant correlations between effects on height and achievement: 

the positive correlations of 0.199 and 0.090 between height and math effects in 4th and 

5th grades, respectively. Both emerge only when teacher effects are estimated as fixed 

effects with shrinkage (and excluding school fixed effects); the corresponding correlations 

for random effects are close to zero. We have examined these two cases closely and have 

been unable to identify alternative explanations for these associations. For example, there 

are no outlier fixed effect estimates that drive up the correlation. The correlation is also 

not attributable to the shrinkage factor applied to the fixed effect estimates; the correlation 

is present before the adjustment. While not shown in this table, we also found similarly 

positive correlations between value-added on height and ELA in the fixed effects model, 

though these correlations are smaller than the correlation between math and height in this 

model.

The mostly small correlations in Table 5 offer some assurance that the estimated effects 

on height are not evidence of sorting on factors related to achievement that might raise 

concerns for teacher VAMs on test scores. They do not, however, rule out the possibility 

that students sort to classrooms or teachers on factors related to stature—or changes in 

stature—that are unrelated to achievement. To examine this, we used the method described 

in Section 4.2, which involves this involved estimating separate regressions for each school 

to test the null hypothesis of no mean differences in students across classrooms. This method 

serves to identify schools that exhibit non-random sorting of students to classrooms on 

prior characteristics, including height. Such grouping might be indicative of sorting on 

unobserved factors related to height. From these regressions, we obtained p-values for each 

school, separately by grade, and separately for height and math (ELA results are similar) 

and interpret p-values below 0.05 as evidence of systematic sorting across classrooms within 

school-years.

Results from these tests are shown in Figure 2. The histograms in this figure show the 

relative frequency of p-values across schools, separately by grade level and outcome. We 

find strong evidence of classroom grouping based on lagged math achievement. For the 

roughly 700 schools and 16,000 classrooms in the math regressions, we can reject the null 

hypothesis of no sorting in 64.6 percent of cases in 4th grade, and 62.6 percent in 5th grade. 

These proportions are remarkably close to those reported in Horvath (2015), who estimated 

that 60 percent of North Carolina schools exhibited systematic sorting on prior achievement. 

However, we find little evidence of such sorting on height. Of the 680 schools in the height 

regressions, we can reject the null hypothesis in only 10.1 percent of cases in 4th grade, and 

11.2 percent in 5th grade. This is more than would be predicted by chance, but a much lower 

prevalence of rejections relative to math.14

14Results for ELA are shown in supplemental appendix Figure A.7.
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We also conducted the test for systemic matching of students to teachers within schools 

across years, as described in Section 4.2. In this case we found 32.9 percent of schools 

appeared to persistently match students to teachers based on math scores (compared to 40% 

in Horvath’s study), while only 8.1 percent appeared to match based on height.

Finally, as another test for sorting to teachers on unobserved characteristics associated with 

height, we examined the intertemporal correlation in successive year classroom effects ujt 

for the same teacher. If there is a persistent “effect” of teachers on height, potentially 

explained by unobserved sorting, one would expect to see a positive correlation in classroom 

effects for the same teacher over time. Instead, we find this correlation is small, as reported 

in Table 6. The between-year correlations in teacher effects on height are negative (about 

−0.166) in the random effects model, and in the fixed effects model range from 0.001 in 4th 

grade to −0.094 in 5th grade. By contrast, the intertemporal correlations are 0.435–0.587 in 

math, depending on the model assumptions and grade, and 0.210–0.501 in ELA.

Our analysis thus far finds little evidence in support of systemic sorting of students to 

teachers on height. While a majority of NYC schools exhibit non-random sorting of students 

to classrooms on prior achievement, only a small proportion appear to exhibit sorting on 

height (or perhaps unobserved factors related to height). Moreover, teacher effects from 

our 2-level models for height show little to no persistence across years, when correlating 

effects for teachers with multiple years of classroom data. This finding does not preclude 

classroom-level sorting, but it is not consistent with persistent matching of students to 

teachers across years.

5.3 The role of idiosyncratic error in estimates of teacher effects on height

A second potential explanation for teacher effects on height is sampling error: idiosyncratic 

variation in the height gains of relatively small groups of students across teachers. To assess 

the likelihood that pure sampling variation could produce teacher effects like those observed 

in the baseline model, we first conducted the permutation test described in Section 4.3. This 

exercise removed all effects of sorting, peers, systematic measurement error, and true effects 

by randomly assigning students to teachers. This random assignment was repeated 499 times 

for each model, and the estimated standard deviation σu was retained on each iteration. 

Random effect estimation using maximum likelihood did not converge when student data 

was randomly assigned to teachers. Thus, for the random effect models, we calculated mean 

residuals for teachers and multiplied by the shrinkage factor. Distributions of the σu across 

permutations for the fixed effects model are shown in Figure 3, and the means of these 

distributions are reported in Panel A of Table 4.

In the fixed effects models, the average σu across permutations ranged from 0.053 for 

height to 0.068 for ELA. The standard deviation of these estimates across permutations 

is roughly 0.001–0.002. In other words, even when (real) data on students is randomly 

allocated across teachers, a 1σ increase in teacher “value-added” is associated with an 

average 0.053σ increase in height and a 0.068σ increase in ELA test performance. Figure 

3 shows also that the vast bulk of the distribution of these “null” standard deviations 

is well below our estimates of the standard deviation of teacher effects for height and 
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achievement from the actual data, suggesting the standard deviations from the actual data 

are statistically significantly different from 0. As one would expect, teacher effects under 

random assignment of students to teachers are uncorrelated with those estimated with the 

actual data. (They are also uncorrelated across subjects.)15

The permutation test offers two important insights. First, even under completely random 

assignment of student data to teachers, there are significant teacher “effects” in our 2-level 

models. The distribution of effects under random permutations provides a sense of the range 

of standard deviations under an imposed null of no systematic sorting, peer effects, or true 

effects. Second, our estimated teacher effects in the observed data are clearly over-dispersed 

relative to this null effect distribution, suggesting our estimated teacher effects on height 

and achievement have a standard deviation that is statistically different from zero. To take 

one example, the 95th percentile of the σu for 4th grade height among permutations is 0.06 

(Figure 3). This can be compared to an estimated σu in the actual data of 0.218. Similar 

differences are observed in math and ELA. In the case of height, this suggests that there is 

some systematic variation beyond randomness associated with the actual class sizes within 

schools and sampling variation in the covariates.

Next, we investigate the role of idiosyncratic error by estimating the more sophisticated 

3-level models that include a random classroom error that is uncorrelated within teachers 

over time. While this approach is less common in the literature and in practical settings than 

the traditional 2-level model, it is the one used by Kane, Staiger, and Rockoff (2008) and 

Chetty et al. (2014a). As discussed above, we estimate this 3-level model using maximum 

likelihood; the Kane, Staiger, and Rockoff (2008) approach; and the Chetty et al. (2014a) 

drift model. The key difference between the first and the latter two approaches is that the 

“signal” component of the shrinkage factor is estimated from the covariance in classroom 

effect for the same teacher in successive years. Our results in the previous section suggested 

this covariance is close to zero for these estimates of teacher effects on height. The shrinkage 

factor using this method would be the theoretically “correct” one if there were no persistent 

teacher effects on height.

Panel B of Table 4 reports the estimated standard deviations in teacher effects on 

achievement and height when fitting 3-level models. The estimates in panel (B) come from 

the mean residuals (KRS) approach or maximum likelihood estimation (MLE), as indicated. 

For each of these models, the standard deviation in teacher effects on height falls to zero, 

while those for math and ELA remain significant, ranging from 0.087–0.199, depending on 

the model, grade, and subject.16 The Chetty et al. model of teacher effects with “drift” yields 

a non-zero standard deviation of teacher effects for height (0.057 for 4th grade and 0.031 for 

5th grade), but these values are no larger than those obtained in the permutation test. Thus, 

it is no larger than what one might find by chance. These results suggest that the estimated 

15We repeated this permutations test by allocating students to teachers at random within schools. Distributions of the σu are shown 
in supplemental appendix Figure A.8, and the means are reported in Panel A of Table 4. The average σu across permutations within 
school is larger (0.072–0.131) in this case, which is not surprising since this method may not eliminate systematic measurement error 
between schools (and some students will be randomly matched to their actual teacher when randomizing within school).
16In cases where the covariance in annual teacher effects was negative, we set σu to zero.
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effects in our baseline models for height are almost certainly not “true” effects on height, but 

rather idiosyncratic classroom-level error.

6 Discussion

As of the 2015–16 school year, 36 of 46 states implementing new teacher evaluation 

systems had incorporated some version of VAMs or comparable student achievement 

growth measures into their annual teacher evaluations (Steinberg & Donaldson 2016). 

Value-added models are appealing to school district leaders and state education agencies 

in part because of their convenience. Unlike observational protocols—which require trained 

raters to periodically visit every classroom at considerable expense—VAMs use existing 

administrative data and can be calculated centrally. The case for VAMs is also supported 

by a growing body of research documenting a relationship between measures of teacher 

value-added and students’ long-run outcomes (e.g., Chetty et al. 2014b).

Nonetheless, VAMs remain controversial as a human resources tool in part because of 

concerns about bias and idiosyncratic error (American Statistical Association 2014). These 

concerns each raise the possibility that VAMs may improperly attribute differences in 

student outcomes to teachers. With respect to bias, the error is systematic: the model is 

mis-specified or does not account for other causal influences on student outcomes related 

to teacher assignment but outside of the teacher’s influence. Idiosyncratic error is random 

by definition: on average a VAM may be “correct,” but any given estimate may depart 

significantly from the teacher’s true impact, especially for newer teachers.

The question of whether VAMs are unbiased and imprecise has been given considerable 

attention in the literature. This paper departs from previous work by fitting commonly 

estimated value-added models to an outcome that teachers cannot plausibly effect: student 

height. Our analysis uses real data, available for the same set of NYC students whose 

achievement data were used to produce value-added estimates for teachers. Height is 

arguably measured with less error than student achievement. However, height—like 

achievement—can vary in idiosyncratic ways across classrooms. This variation may be 

due to measurement error, shocks unrelated to teachers, or sampling variation. We find 

large and statistically significant effects of teachers on height using a wide range of 

2-level value-added model specifications commonly used in practice. In our case, the 

only specifications that resulted in the theoretically expected effects of zero were models 

that “shrank” estimated teacher effects by separating “persistent” teacher effects from 

idiosyncratic classroom-level error (e.g., Kane, Rockoff, and Staiger 2008; Chetty et al. 

2014a). We found little evidence of student sorting to teachers on factors related to 

height (or changes in height) that might suggest bias in teacher value-added measures on 

achievement from this sorting.

These findings are reassuring in the sense that they support statistical models that 

successfully separate persistent effects from random or classroom-level error, at least for 

our measure where the null of zero effects is clear. That said, this 3-level model is rarely 

used in on-the-ground teacher evaluation systems. This is in part because practitioners are 

interested in current, time-varying measures of teacher performance that are responsive to 
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changes in teacher practice and effort. True teacher effectiveness may also vary in response 

to real shocks to performance, such as illness or professional development. The 3-level 

model is not designed to capture short-term fluctuation in teacher effects relevant for teacher 

performance evaluation. Moreover, high-stakes applications of VAMs concern more than 

just the question of whether “effects” are globally zero or not; individual estimates—which 

contain both signal and noise—must be sufficiently reliable to make personnel decisions. 

The 3-level models we estimated would (rightfully) suggest that use of such VAM models 

to estimate teacher effects on height do not lead to spurious non-zero estimates. We thus 

interpret our results as a cautionary tale for the naïve application of VAMs with 2-level 

models in educational and other settings. Future work could use simulated data to further 

explore the role of noise in generating false “effects” or affecting individual estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Distribution of teacher effects on height and math scores

Notes: See notes to Table 4 for a description of how teacher effects were estimated. N=4,262 

4th grade teachers and 3,687 5th grade teachers.
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Figure 2: 
Tests for nonrandom sorting by prior math achievement and height

Notes: Each p-value is from a test of the hypothesis that classroom effects in a school s 
are jointly zero. Regression models are estimated separately for each school and grade, with 

lagged student outcomes regressed on school-grade-year and classroom effects.
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Figure 3: 
Standard deviation of teacher effects from 499 random permutations of students to teachers

Notes: To create these figures, we repeated the following steps 499 times. First, randomly 

allocate all students in our data to teachers (within year, maintaining the same number 

of students per teacher). Then, re-estimate the value-added model assuming fixed effects. 

(Standard deviations of the adjusted fixed effects are shown). For each iteration, we saved 

the estimated standard deviation in teacher effects. These figures show the distribution of 

these across random permutations, where the null that there are no true teacher effects has 

been imposed.
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Table 2:

Count of unique teachers and classrooms, and students per teacher or classroom in analytic sample

Height Math ELA

Grade 4 Grade 5 Grade 4 Grade 5 Grade 4 Grade 5

Unique teachers (N) 4,263 3,687 4,721 4,249 4,366 3,978

Mean years observed 1.90 1.98 1.88 1.94 1.82 1.87

Students per teacher:

Mean 36.0 39.0 38.7 42.5 35.9 39.5

SD 22.9 25.5 24.5 27.4 22.8 24.9

p25 19 20 20 21 19 20

p50 27 29 29 33 26 29

p90 71 76 77 84 72 78

Unique classroom-years (N) 7,594 6,848 8,712 8,138 7,941 7,451

Students per classroom:

Mean 20.0 20.8 20.9 22.2 19.7 21.1

SD 5.4 6.4 5.1 6.4 5.6 6.3

p25 17 17 18 19 16 18

p50 20 21 21 22 20 21

p90 26 28 27 28 26 28

Notes: Teachers and classrooms are counted only when seven or more students were available with the minimum data to be included in the 
value-added models for these outcomes. For the full distributions, see the supplemental appendix.
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Table 3:

Student-level bivariate correlations in outcome variables

Correlations between: Grade 4 Grade 5

Math and ELA 0.688*** 0.585***

Math and height −0.059 −0.068***

ELA and height −0.046*** −0.042***

Correlation with lag: Grade 4 Grade 5

Math 0.701*** 0.757***

ELA 0.683*** 0.646***

Height 0.799*** 0.793***

Correlations between changes in: Grade 4 Grade 5

Math and ELA 0.158*** 0.140***

Math and height 0.002 0.007**

ELA and height 0.013*** −0.006*

Notes: Pairwise correlations using all students with available data, not just those in the analytic VAM samples. All outcome measures are z-scores, 
where the height measure is standardized by grade and year. ***, **, and * indicate statistically significant correlations at the 0.0001, 0.01, and 
0.05 levels, respectively.
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Table 4:

Standard deviation of Bayesian shrunken estimated teacher effects

Grade 4 Grade 5

Model specification: Height Math ELA Height Math ELA

A. 2-level models

 RE 0.218 0.286 0.256 0.210 0.253 0.210

 FE (shrunk) 0.250 0.344 0.278 0.315 0.258 0.240

 RE w/school effects 0.169 0.216 0.184 0.157 0.199 0.155

 FE w/school effects (shrunk) 0.166 0.202 0.172 0.160 0.189 0.145

 Permutations: FE (mean σu shown) 0.056 0.063 0.065 0.053 0.056 0.068

 Permutations within school: FE 0.131 0.083 0.077 0.123 0.084 0.072

B. 3-level models

 RE (KRS) 0.000 0.163 0.104 0.000 0.132 0.097

 RE w/school effects (KRS) 0.000 0.107 0.077 0.002 0.087 0.062

 RE (MLE) 0.000 0.199 0.159 0.000 0.164 0.121

 RE w/school effects (MLE) 0.000 0.108 0.070 0.000 0.089 0.056

 Chetty et al. drift model (RE) 0.057 0.180 0.128 0.031 0.143 0.123

Notes: For Panel A (2-level models), teacher effects were estimated in four ways: (1) assuming random teacher effects; (2) assuming fixed teacher 
effects and “shrinking” using the estimated signal-to-noise ratio after estimation; (3) assuming random teacher effects and including school fixed 
effects; and (4) assuming fixed teacher effects (shrunken after estimation) and including school effects—uses a two-stage method that regresses the 
outcome on covariates and school fixed effects and then uses the residuals to estimate the teacher fixed effects. For the random permutations we 
report the mean estimated standard deviation across 499 permutations of students to teachers. For Panel B (3-level models), we used the shrunken 
residual method from Kane, Rockoff, and Staiger (2008; KRS), or a random effects model with both teacher and classroom variance components 
(MLE). The last line of Panel B reports the standard deviation in best linear predictors from the teacher effects model with drift used in Chetty et al. 
(2014a).
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Table 5:

Pairwise correlations between teacher effects

Math VAM:

Grade 4: RE FE (adj) RE w/school effects FE w/school effects

Height VAM:

 RE −0.019 −0.014 −0.007 −0.008

 FE (adj.) −0.030+ 0.199* −0.022 −0.023

 RE w/school effects 0.000 −0.003 0.002 0.002

 FE w/school effects (adj.) −0.002 −0.004 0.001 0.000

ELA VAM:

 RE 0.697* 0.597* 0.521* 0.519*

 FE (adj.) 0.658* 0.689* 0.477* 0.475*

 RE w/school effects 0.525* 0.432* 0.646* 0.643*

 FE w/school effects (adj.) 0.522* 0.428* 0.643* 0.641*

Grade 5: RE FE (adj) RE w/school effects FE w/school effects

Height VAM:

 RE 0.016 0.015 0.002 0.002

 FE (adj.) 0.009 0.090* 0.005 0.005

 RE w/school effects 0.001 0.002 −0.006 −0.007

 FE w/school effects (adj.) 0.000 0.002 0.005 0.005

ELA VAM:

 RE 0.557* 0.540* 0.438* 0.434*

 FE (adj.) 0.511* 0.562* 0.382* 0.378*

 RE w/school effects 0.425* 0.406* 0.514* 0.509*

 FE w/school effects (adj.) 0.424* 0.405* 0.514* 0.511*

Notes: See notes to Table 4 for a description of how teacher effects were estimated. All correlations are pairwise at the teacher level.

*
indicates statistical significance at the 0.001 level. + indicates significance at 0.05 level.
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Table 6:

Between-year correlations in teacher effects

Grade 4 Grade 5 N(4th) N(5th)

Height:

 RE −0.166 −0.167 3,319 3,135

 FE (adj) 0.001 −0.094 3,319 3,135

 RE w/school effects −0.004 0.007 3,285 3,100

 FE w/school effects (adj) 0.000 0.011 3,285 3,100

Math:

 RE 0.557 0.479 4,001 3,885

 FE (adj) 0.587 0.498 4,001 3,885

 RE w/school effects 0.463 0.435 3,988 3,868

 FE w/school effects (adj) 0.471 0.438 3,988 3,868

ELA:

 RE 0.456 0.408 3,428 3,357

 FE (adj) 0.501 0.453 3,428 3,357

 RE w/school effects 0.247 0.210 3,410 3,345

 FE w/school effects (adj) 0.249 0.214 3,410 3,345

Notes: See notes to Table 4 for a description of how teacher effects were estimated.
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