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Abstract 

6 

Packet collisions and their resolution create a performance bottleneck in random access LA\' s. A 

hardware solution to this problem is to u.~e collision avoidance switches [1, 2]. Collision avoidance 

switches allow the implementation of fandom access protocols without the penalty of collisions 

among packets. 

In this paper, we describe a design and implementation of a local area network ;:i rchi tecture based 

on collision avoidance, called the Collision Avoidance Multiple Broadcast (CA:\IB) tree netv.;ork. 

Our implementation includes CA.MB tree switches, station/network interface boards, and support 

of transport protocols. Our implementation of the CAME tree network follows the protocol layering 

architecture of the IEEE 802 local area networks. 

1This material is based upon work supported by the National Science Foundation under Grant No. NCR-890i909. 

This research is also in part supported by University of California MICRO program and Omron. 
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1. Introduction 

Advantages of random access protocols such as ALOHA and CS MA/CD include simplicity and 

ease of implementation at the stations in a network. Random access protocols also exhibit small 

transmission delays under light traffic conditions. However, they have a performance bottleneck 

under heavy traffic conditions. In that situation, a large number of collisions occur, resulting in 

low channel utilization. Channel capacity is wasted in the transmission of collided packets (3]. 

In order to solve this performance bottleneck in random access protocols, a new network ar­

chitecture based on collision avoidance, called collision avoidance tree network, has been proposed 

and investigated (2,4,5,6) by the authors. The tree network uses collision avoidance switches. These 

switches allow implementation of random access protocols without the penalty of collisions among 

packets. 

Collision avoidance can be implemented with very little circuitry. Implementations of collision 

avoidance hardware are proposed in [1,4,6,7). Various station and switch protocols for collision 

avoidance netv.:orks are discussed in (2,4,5,8). An experimental broadcast star network is discussed 

in [9,10]. In [11), synchronous operation of a broadcast star is considered, and performance is 

analyzed. An exact analysis is developed for the network with an infinite number of stations, and 

n,n approximate analysis is developed for the net"\vork with a finite number of stations. Papers 

[12, 13] assume a broadcast star that operates under asynchronous mode, where transmissions of a 

packet are not confined to the beginning of slots. They also model a broadcast star as a polling 

:system, and develop an approximate analysis. 

Suda et. al. extended the idea of collision avoidance to a tre0 network [2], called the Collision 

Avoidance Multiple Broadcast.(CAMB) tree network. In a CAME tree network, collision avoidance 

switches are used to resolve contentions among packets. The important feature in a switch is that 

there is no collision. When two or more packets contend for the right to use the switch, it is always 

guaranteed that one packet will be successfully transmitted. Thus, no channel time is wasted in 

the transmission of collided packets, eliminating the main disadvantage of a traditional random 
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access network. In the CA.MB tree, the switches are organized into a tree topology. The switches 

are the internal nodes, and the stations are the leaves of the tree. A packet reaches its destination 

by climbing the tree and being broadcast by the switch that is the root of the minimal subtree 

containing both the source and the destination stations. Concurrent transmissions are possible in 

the CAMB tree network, due to the segmented nature of the network. 

Station and switch protocols for the CAMB tree are studied in [4,5]. A switch design based 

on photonic devices and a simulated performance analysis for this network are given in [4,6]. A 

performance study on the CAMB tree network through theoretical analysis and simulations is given 

in [14. 15). In comparison with a broadcast star, the CAMB tree shows a better performance. 

In this paper, we present a design and implementation for the CAMB tree network. In section 

2, a description of the the CA.MB tree network is presented. A design and implementation of the 

CAMB tree network is given in section 3. In section 4, concluding remarks are given. 

2. The CAMB Tree Network 

The CAME tree network consists of collision avoidance switches organized in a tree topology, v;:here 

each s\vi tch is a node in the tree. The stations are the leaves of the tree. Each transmission line 

consists of uplinks and downlinks. A station or a switch uses the uplink to send pa.ckets and receives 

packets through the downlink. A station sends a packet as soon as one is available. A packet reaches 

its destination by climbing the tree and being broadcast by its proper ancestor. The switch that 

is the root of the minimal subtree containing both the source and the destination stations is the 

proper ancestor (Fig.1 ). Note that each switch on the tree is responsible for transmitting a packet 

to its parent switch and for broa.dcasting the packet to its children switches (if the switch is the 

proper ancestor of the source and the destination of the packet). Fig.2 gives an example of a 

transmission in a CAMB tree network. Station 1 transmits a packet. Switch E, which is the proper 

ancestor of this packet, sends it to the parent switch G, and broadcasts it to its subtree (switch A 

and B). If the switch is not the proper ancestor a packet is only passed to the parent switch (in 

Fig.2 switch A passes the packet to its parent switch E only). 
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CAMB Collision Avoidance Switch Protocol 

A CA);fB switch is connected to children switches (or stations) by uplinks and downlinks. It is 

also connected to a parent switch by an uplink and a downlink. A switch can receive packets either 

from its children's uplinks or from its parent's downlink. When a switch receives packets from its 

children's uplinks, the switch executes the following protocol: 

1. The switch selects one of the incoming packets and checks the header of the selected packet 

to see if it is the proper ancestor of the packet. 

2. IF the switch is not the proper ancestor, the packet is transmitted to the parent uplink, 

3. ELSE 

(3.1) IF there is a packet from the parent downlink being broadcast, the packet from a child 

is discarded (this is called broadcast preemption). 

(3.2) ELSE: if there is no packet from parent switch, the packet from a child is broadcast to 

the children's downlinks and to the parent uplink. 

When a switch receives a packet from its parent's downlink, the switch executes the following 

protocol: 

1. IF the s1,vitch is idle, the packet from the parent is broadcast to the children's downlinks. 

2. ELSE if it is busy broadcasting a packet from a child, this packet from a child is aborted and 

the packet from the parent is broadcast to the children's downlinks. 

By the switch protocol. priority is given to the parent's downlink over the children's uplinks. 

This is an efficient priority scheme for the following reasons. A packet is broadcast by its proper 

ancestor to both the source and the destination stations. Successful reception of a packet by the 

source implies that the packet is also successfully received by the destination station. Therefore, 

proper ancestor switch gives priority to a packet coming from the parent [5]. This prevents a 

situation where the source station receives the broadcast but the destination does not Another 
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factor indicating parent switch priority is that a packet coming from the parent is likely to have 

been in the netv.:ork for a longer time than a packet coming from the children. 

Station Protocol 

The CA?v1E station protocol is based upon the station monitoring its downlink for the broadcast 

of its packet. It is very simple and similar to random access protocols such as ALOHA. The CA.\IB 

station protocol is as follows: 

1. A station transmits a packet as soon as one becomes available, starting at say, time t. 

2. The station monitors its downlink for the broadcast of its packet. 

3. IF the station does not see the start of its packet by time t + Rpa, where Rpa = round trip 

propagation delay time between the station and the proper ancestor, 

4. THEN it retransmits the packet immediately, 

5. ELSE (the start of the packet is seen within this time) 

( 5 .1) IF it sees the broadcast of the packet truncated by the broadcast of another packet 

(abortion)~ then it retransmits the packet immediately, 

( 5.2) ELSE the station sees the broadcast of the whole packet (the transmission is successful 

and the station can transmit a new packet). 

~ate that the CAMB tree protocol requires that a station see the broadcast of its entire packet 

before assuming a successful transmission. This is because of the priority mechanism describr2d 

above, which gives the possibility of a packet brpadcast being cut short (aborted in the middle). 

Concurrency of Transmissions 

In the CAME tree, concurrent transmissions are possible. This is due to the segmented nature 

of the network, which allows broadcasting to non-overlapping subtrees of the tree network. In the 

CAME tree, the switch protocol is designed in such a way that, regardless of the level of a switch 

(either above or below the proper ancestor), a packet is always passed to the parent switch. Every 
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time the climbing packet busies a S\Vitch above its proper ancestor~ it prevents stations beneath 

that switch from using the switch as a broadcast point. In other words 1 every time a packet busies 

the switch, it creates partitions that are the children subtrees of that switch. \Vi thin each of these 

partitions 1 broadcasts may occur. Any attempt to transmit from within a partition to a destination 

outside the partition does not succeed. This is illustrated in Fig.l. In [6], it is shown that the delay 

decreases significantly as the degree of concurrency increases. 

3. Implementation of a CAMB Tree Network 

Currently we have a completely operational prototype of the CAMB tree network. In this section, 

a design and an implementation of a CAMB tree network is described. 

In our implementation, we followed the protocol layering architectures of the IEEE 802 local 

area networks. Fig.3 shows the layering architecture of the CAMB tree network and the components 

that implement each layer. The Physical layer consists of CAMB switches, transmission cables and 

transceivers located on the station/network 2 interface board. The MAC layer and part of the LLC 

layer are implemented by the interface board installed in the station. We have also provided the 

TCP /IP protocol on the top of the above protocol stack. 

In the next subsections, we describe the design and implementation of the CAMB tree network 

(i.e., CA.MB switch, station/network interface board, and TCP /IP). 

3.1. CAMB Switch 

The CAMB switch can be realized by the following three switch components. See Fig.4. 

• Uplink Selector (US), which is responsible for detecting an incoming packet and selecting one 

in case of simultaneous packet arrivals. 

2 The station used in this implementation is a LUNA workstation. The LUNA is a UNIX based workstation that 

uses the 32 bit CPU M68030 (20 MHz) and has a 68881 (20 MHz) floating point co-processor. The processing speed 

is 4 MIPS. The workstation supports communication protocols such as TCP /IP, NSF, and X.25. 
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• Address Recognizer (AR), which checks the header of the selected packet to see if the switch 

is the proper ancestor. If it is, the AR sends the packet to the DS and to the parent switch, 

othenvise the AR sends the packet only to the parent s\vitch. 

• Downlink Selector (DS), which receives a packet from the AR and the downlink from the 

parent switch, and broadcasts the packet to all the children switches. In case of simultaneous 

arrivals of a packet from the AR and a packet from the parent downlink, priority is given 

to the packet from the parent downlink. In other words, if the DS is broadcasting a packet 

received from the AR upon the arrival of a packet from the parent downlink, the transmission 

of the packet from the AR is aborted, and the packet from the parent is broadcast. 

We present here a design of the CAMB switch that has the following packet format and ad­

dressing scheme. 

Packet Format 

The packet format used in the current implementation of the CAMB tree network has the 

following seven fields: Destination Address, Control Bit: Reserved, Source Address, Packet Size, 

Data and CRC (Fig.5). 

The Destination Address field (8 bits long) indicates the destination address. The next field, 

Control Bit, is used to indicate if the packet has reached its proper ancestor. Thi.s bit is initially 

set to 1 by the sending station. It remains 1 until the packet reaches the proper ancestor. When 

this happens: the proper ancestor switch resets this bit to 0. The Reserved field is not being used. 

The Source Address field indicates the source address. The Packet Size field indicates the number 

of bits contained in the Data field. This information is used by the stations to determine whether 

a packet has been aborted. The CRC field is used to check the correctness of the received packet 

(header and data). The switch examines only the Destination Address and the Control Bit field. 

All the other fields are used by the receiving station. 

Addressing Scheme 

The addressing scheme assumed in our switch design is shown in Fig.6. Stations are ordered 
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in ascending order from the left to the right of the tree. Addresses are assigned to the switches in 

the following way. Each switch has an eight bit address. However, at level i, only the '2 x ( i - 1) 

left most bits are significant. The other bits are ignored. In our addressing scheme, an address is 

assigned to a switch in such a way that the first 2 x ( i - 1) bi ts of the address of a switch on level 

i match with the first 2 x ( i - 1) bits of the addresses of all of the stations in its subtree. 

Thsi numbering of stations and switches makes it easy for a switch to know whether it is the 

proper ancestor of a packet. A switch on level i checks the 2 x ( i - 1) leftmost bits of the address 

field of a packet. If it is equal to the 2 x (i - 1) leftmost bits of its own address, then it is the 

proper ancestor of the packet. In this case, (as indicated before), the packet is sent to both the 

parent switch and the children switches. Otherwise, the packet is only sent to the parent switch. 

In the following, we use an example to show how packets are transmitted on a CAMB tree 

using the above addressing scheme and packet format. Fig.6 shows a transmission of a packet from 

station A (address 00000000) to station B (address 00000100) as an example. When station A 

sends a packet, its immediate parent switch, Z (address OOOOOOxx), checks the destination address 

of the packet. As the six leftmost bits of the destination address in the packet header are different 

from the switch address, it sends the packet only to its parent switch (Y). Switch Y (address 

OOOOxxxx) then checks the four leftmost bits of the destination address of the packet. This time, as 

they match with ci1e switch's address, switch Y knows that it is the proper ancestor of the packet. 

Thus, the packet is broadca.st to its children. The packet is also sent to the parent switch (X). 

Now, the switch X (address= OOxxxxxx) checks the two leftmost bits of the destination address 

field. They agree with the switch address. Therefore, the switch X thinks that it is the proper 

ancestor of the packet and becomes ready to broadcast the packet to its children. However, if the 

s·witch X actually broadcasts the packet, the packet is broadcast twice (once by switch Y and once 

by switch X). To a.void this undesirable situation, a control bit has been added in the packet header 

(Fig.5). First. a switch checks the control bit in the packet header. If it is 1, the switch knows that 

the packet has already been broadcast by its proper ancestor, so it will transmit the packet only 

to the parent switch. Otherwise, it will check the address field to see if it is the proper ancestor or 
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the packet. In the example shown above, the switch X first checks the control bit. As it is 0. the 

S\vitch does not broadcast the packet. 

We present a switch design which supports four children switches (Fig.4). Thus each leaf switch 

can interface with four devices (stations) - the entire tree structure is a 4-ary tree. Note that this 

design can be easily extended to support more than four children per switch. Each line (either up­

or down-link) consists of a control path and a data path. The control path signals the beginning 

and end of each packet. This line is high whenever there is a valid packet transmission on the data 

line. Otherwise it is low, signaling the switch that there is no packet being transmitted. The data 

path carries the packet sent to the switch. 

In the following, \Ve present a possible implementation of the CAMB switch. First using TTL 

devices and then a VLSI implementation. In the design, we assume the packet format and the 

addressing scheme discussed above. 

3.1.1. TTL Switch Design 

The design of each of the three components (US, AR, DS) of the switch is explained below. 

Uplink Selector (US) 

Fig. 7 schematizes the possible design of the US section of the CAMB switch. The GS has been 

broken down into four units. 

• The Synchronizer - which aligns an incoming packet with the switch's internal clock. Note 

that if several switches in the network share the same clock signaL this unit is not required 

between interconnected switch nodes. Removal of the unit in this case will speed up packet 

transmission. 

• The Start Recognizer - which detects the start of a new packet by checking the control line. 

This unit is also responsible for blocking all other uplinks while a selected packet is being 

transmitted. 

• The Priority Resolver - which selects one packet at random, when more than one packet 
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arrives simultaneously at the switch. ~ote that the Start Recognizer and the Priority Resolver 

are exclusively control path units, i.e., they do not have connections to the data path. So 

the Priority Resolver selects the packet based on the signal from the control lines and signals 

the Multiplexer which packet was selected. The New' line from the AR signals the Priority 

Resolver the end of a packet transmission, resetting the Priority Resolver. 

• The Multiplexer - which allows only the packet which the Priority Resolver selected to go 

through to the Address Recognizer. 

In summary, the synchronizer receives packets from uplinks. The start recognizer detects the 

beginning of the packets (control lines are high), activating the priority resolver, which will randomly 

select one of the packets, based on the control lines. The selected packet is allowed to go through 

the multiplexer. 

Address Recognizer (AR) 

Fig.8 shows the schematic of the AR section of the switch. It consists of 5 units. 

• The Shift Register- which allows the Comparator to check the destination address of a packet. 

An incoming packet goes through the shift register and is always sent to the parent switch. 

The destination address of the packet is contained in the Shift Register for one clock cycle. 

During that cycle, the Comparator can check the the destination address of that packet. 

• The Comparator- which generates a signal ( Cmp) to indicate whether the destination address 

of the incoming packet matches with the switch address, indicating the switch is a proper 

ancestor of the packet. The switch address is configured in a block of 8 SPST switches. 

• The Routing Logic - which generates a signal (B;oadcast) to indicate if the incoming packet 

will be sent to the Downlink Selector to be broadcast or not. This signal is generated based 

on three signals received by the routing logic: Cmp, Control Bit, Parent Int'. When Cmp is 

low, and Control Bit of a packet is high, and Parent Int' is high, a high Broadcast signal will 

be generated. This means that the address of the incoming packet and the address of the 
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switch match, and the packet has not been broadcast by its proper ancestor. and there is no 

transmission from the parent switch. Othenvise, the Broadcast signal will be low. Ddn and 

Cdn lines send to the DS the data and control lines, respectively, received from the US. 

• The Reset Control Bit Logic - which resets the control bit (see packet format - Fig.5) in the 

incoming packet whenever the switch recognizes that it is the proper ancestor of the packet. 

As explained in previously, this will prevent broadcast of a packet by a switch at higher level 

than the proper ancestor. 

• The End Recognizer- which detects either the end of a packet going through the shift register 

(by checking if the control line from the US is low) or a transmission abort (by checking if 

the Parent Int) line is low). When one of these events happens, the End Recognizer sends 

a reset signal (New') to the Uplink Selector. Upon the reset the US waits for new incoming 

packets. ·whenever there is a transmission from the parent, the Parent Int' line is low. 

Downlink Selector (DS) 

The DS section is shown in Fig.9. It is divided into two units. 

• The Selector - which selects a packet from the parent downlink or from the Address Recognizer 

( Cdn, Ddn) and broadcasts it to al~ the children switches. As described previously, priority 

is given to the parent's downlink over the children's uplink. If a packet from the parent 

downlink arrives during transmission of a packet from the AR, the Selector will abort the 

packet transmission from the AR. In addition, a.ny packet from the AR will be blocked during 

the entire period of transmission of a packet from the parent switch. 

• The Flip-flop - which is used to set the control lines to children switches low in case of an 

abort. If the control line goes low it indicates the end of a transmission. It can be either the 

end of a transmission of an entire packet or a truncated packet (abort). To detect an abort, 

station needs to check the packet size indicated in the packet header and the actual size of 

the packet received. 
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A full schematic of the TTL tree S\vi tch based on the above design is given in Fig.10. 

3.1.2. VLSI Switch Design 

In order to reduce the size of a switch and to decrease the delay incurred in a switch, a VLSI 

implementation of the CAMB switch is presented. 

Layout 

To obtain a layout for the CAMB switch, a standard cell layout synthesis tool, Autocells [16] 

( GDT[16] Version 4.0.lg) is used. Autocells is an automatic placement and routing tool for laying 

out circuits using standard cells (polycells). Standard cells are small, predefined rectangular lay­

out blocks that perform simple logic functions that correspond to low-level icons in a schematic. 

Autocells is provided as a part of the integrated GDT system. 

The layout produced by this system is shown in Fig.11. This layout is in 3 m1crons P-well 

standard CMOS technology. Routing is done in only one layer of metal. And to obtain the smallest 

layout area that can possibly be generated, all transistors are set to nominal size. 

The resulting layout is 1497 . .5 microns (width) by 1549.5 microns (height). Input and output 

ports of the switch are arranged as shown in Fig.12. 

Performance Test of the Layout 

Circuit and layout testing is accomplished with Lsim [16) simulator ( G DT version 4.0.lg). Three 

basic algorithms are supported by the Lsim simulator. These include system or logic simulation 

with single direction signal flow, bi-directional switch level simulation, and ADEPT circuit and 

analog simulation. In this CAMB switch implementation, the bi-directional switch level simulation 

is used as the functional testing method. Performance of the layout is obtained by using the Lsim's 

ADEPT mode simulation. 

In our performance tests, a switch is driven with the clock speed of lOMHz, which is the normal 

Ethernet channel speed. The result obtained shows correct functionality with a maximum input to 

output delay of 32.78 ns. 
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3.2. Station/Network Interface Board 

The purpose of this section is to provide a description of the CA.\:1B Station/~etwork interface 

board. This interface board is designed to connect a station to the CA~JB tree network. As 

described in the beginning of section 3, the interface board provides the functions corresponding 

to part of the physical layer, MAC layer and part of LLC layer (Fig.3). 

First we will describe the transmission and reception mechanisms in the interface board. 

Transmission 

The interface between the station and the interface board can be modeled as two independent 

mailboxes. One mailbox is controlled by the station (referred to as a station mailbox), and the 

other mailbox controlled by the interface board (referred to as an interface mailbox). When a 

station wishes to send a packet over the network, the station places a packet into the interface 

mailbox, and raises the electronic equivalent of a mailbox flag. This flag signals the interface board 

that the interface mailbox is full. 

The interface board responds to the raised interface mailbox flag by performing the following 

steps. 

• re-lowers the interface mailbox flag; 

• removes the packet from the interface mailbox; 

• drops a note which says '"Interface mailbox emptied, ready for one more packet" to the station 

in the station mailbox; 

• raises the station mailbox flag; 

• processes the packet (adding header) and places the packet in an interface board internal 

transmission buffer; 

• transmits the packet using the protocol described in section 2. 

The station responds to its raised mailbox flag by executing the mail fetching steps similar to 

the ones performed by the interface board: 
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• re-lowers the station mail box flag; 

• removes and processes the note in its box; 

• puts another packet into the interface mailbox if there is one available. 

Reception 

Packet reception is basically the packet transmission in reverse. The only difference is that the 

interface board provides one additional function. The interface board checks the destination and 

CRC of the packets and passes only those which are error free and correctly addressed. 

When the interface board starts to receive a packet from the network, it immediately begins 

to store this packet in a buffer within the interface board, and also performs CRC error checking. 

When the end of packet is received, if the packet contains an error, it is discarded. Otherwise (no 

errors), the following two cases are possible. 

• In the first case, the incoming packet is the same as the one which the interface board just 

transmitted. As described in a. previous section, the source station identifies a successful 

transmission by receiving a broadcast of the transmitted packet without error. Thus, after 

the interface board receives a. correct broadcast of a complete packet, it looks at the internal 

transmission buffer for the next pa:cket to be transmitted. If there are more packets in the 

queue, the interface board starts the transmission of the next packet. 

• In the second case, the interface board receives a broadcast from another station. If this packet 

is addressed to another station, then the packet is discarded. If the packet is addressed to the 

station, then it will be moved to station mailbox and the station mailbox flag is raised. When 

the station sees its raised mailbox flag, it removes the packet for processing and re-lowers 

the flag. The station then places a ~'station mailbox empty" note in the interface mailbox 

and raises the interface mailbox flag. This note signals the interface board that the station 

is ready to receive another packet. 
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3.2.1. The Interface Hardware 

Interface Board Design 

The interface board functions described above can be realized by the following four sections 

(Fig.13). 

• the Station Interface Section (SIS), which is responsible for the transfer of data and control 

information between the station and the interface board. It implements the mailbox system 

described in the previous section. 

• the Microprocessor Control Section (MCS), which manages data movement, data buffering, 

and header processing for transmission and reception. 

• the Transmission Section (TS), which accepts a packet from the MCS, generates CRC for it, 

and transmits the packet to the switches. 

• The Reception Section (RS): which receives incoming packets, performs CRC error checking, 

and buffers them for transfer to the MCS. 

Next we describe the detailed design and implementation of the four sections just described. 

The Station Interface Section (SIS) 

Fig.14 schematizes the possible design of the SIS section of the interface board. The SIS links 

directly with the station. SIS has been broken into the following units. 

• The Bus Transceiver- which is required to provide an asynchronous two-way communication 

between the address and data busses within SIS and the address and data busses within the 

station. It is also used to reduce the noise across the interface connector (See Fig 13). 

• The Interface Buffer - which stores packets to be transmitted. This Interface Buffer and the 

Interface Status Register described below collectively function as the interface board mailbox 

described in section 3.2. 

15 



• The Interface Status Register (JSR)- \Vhich stores a control word from the station. Whenever 

a control word is written in this register, the interrupt line (I!VTO) will go low, interrupting 

the >.-res. (This corresponds to raising the mailbox flag.) Then, the ~res reads the control 

word from Interface Status Register. 

• The Station Buffer - which stores a packet to be passed to the station. This Station Buffer 

and the Station Status Register described below collectively function as the station mailbox 

described in section 3.2. 

• The Station Status Register (SSR) - which stores a. control word from the interface board. 

Whenever a control word is written in this register, the interrupt line (INT5) will go high, 

interrupting the station. (This corresponds to raising the mailbox flag.) The station then 

reads the control word from Station Status Register. 

Note that the interrupt line (INTO' or INT5) is deactivated when a read is completed in the 

correspondent Status Register (Interface or Station, respectively). This corresponds to the opera­

tion of lowering the mailbox flag. The device used to implement thA buffers and status registers is 

a Dual Port RAM (DPRAM). 

The Microprocessor Control Section (MCS) 

The block diagram of the MCS is given in Fig.15. The MCS controls the other three sections 

of the interface board. The MCS consists of the following units: 

• The Central Processor Unit (GPU) - which implements the control logic that drives all the 

other units in the interface board. It executes a small firmware code contained in the Read 

Only Memory (ROM). It is responsible for packet processing. such as creating and appending 

a header to outgoing packets, processing the header of incoming packets, moving packets 

among DPRAM (in SIS), RAM and FIFO (in TS and RS); and controlling transmission and 

reception of packets. The CPU is a 16-bit microprocessor, operating at 10 MHz. Internally 

it has the following modules. 
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Two D)rfA (direct memory access) modules. used to transfer data from Random Access 

~Iemory (RA:vl) to FIFO (in TS) and vice-versa (in RS). One DMA is used for trans­

mission and the other is used for reception. The DMA can be programmed to transfer 

a certain number of bytes. When this number is reached, an internal interrupt is sent 

to the CPU. 

- A clock generator module, used to generate a clock signal to the CPU and to the other 

units. 

A programmable timer module, used as a timer to start packet retransmissions. When 

the timer counter reaches zero, an internal interrupt is sent to the CPU, and a retrans­

mission takes place. 

PCSO' line is used by the CPU to reset the TS, PCSl' line is used to signal the TS to start 

the transmission of a packet, and PCS2' is used to signal TS to retransmit a packet. The 

DRQJ line received from the RS indicates that a packet is available in the FIFO, and INTJ' 

indicates the end of a packet. 

• The Read Only .Memory (ROM) - which contains the code that is executed by the CPU. 

e The Random Access Memory (RAM) - which provides the internal transmission buffer and 

the internal reception buffer. It is also used to store information necessary for the operation 

of the CPU such as variables and interrupt vectors. 

The Transmission Section (TS) 

The functions of the Transmission Section are provided by the following three units (Fig.16): 

• The Transmission FIFO - which is a First-In Fi~st-Out memory used to store the packet 

that is currently being transmitted. The MCS loads the packet into the FIFO and starts the 

transmission by activating PCSJ '. It also receives a signal from the retransmission control 

line (PCS2 1
). If the broadcast of the transmitted packet is not received before the timeout, 

the MCS sets this line high, triggering a retransmission of the packet in the FIFO. 
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• The CRC Generator - which is used to generate on the fly the CRC code for the current 

transmitted packet. 

• The Transmission Transceiver. - which is used to interface the board with the transmission 

cable (of a tree network). 

The Reception Section (RS) 

Fig.17 shows the block diagram of a design of the Reception Section. It consists of the following 

three units: 

• The Reception FIFO - which is a First-In First-Out memory used to store incoming packets 

from the network (i.e., CA.MB switch). When the control line from the network is low, all 

three units of the RS are held in wait state, and INTl) and DRQl are inactive (high and 

low, respectively). When the control line (from a CAMB switch) goes high, indicating the 

beginning of a packet, the CRC checker (described below) starts calculating the CRC, and 

the incoming packet is stored in the FIFO. As soon as the first byte of the packet is stored 

in the FIFO~ the DRQl signal is activated (goes high), informing the DMA module (in the 

MCS) that there is data to be transferred to the MCS internal reception buffer. When the 

D MA reads the last byte of an incoming packet, an interrupt signal (INT 1 ')is generated and 

sent to the MCS, informing MCS of the end of transfer. 

• The Interrupt Logic - which generates the DRQJ signal to activate the DMA module in the 

MCS when a packet arrives. It also activates the INTl) interrupt signal when the end of a 

packet is transferred to the reception buffer by the DMA. 

• The CRC Checker - which is used to check on the fly the CRC code of the packet being 

received. 

• The Reception Transceiver - which is used to interface the cable with the board. 

A complete circuit schematic of the Station/Network interface board is shown in Fig.18. 

18 



3.2.2. The Interface Software 

In this section, the firmware (contained in the RO;'v1, located in the MCS) that the CPU executes 

is described. It consists of two concurrent processes: a packet transmission process, and a packet 

reception process. These processes are both interrupt driven. In other words, an appropriate 

process is triggered either when a packet is left in the DPRAM and the interrupt line (INTO~ goes 

active, or when the RS signals that a packet is being received. 

As described in section 3.2, the DPRAM functions as the mailbox system. The DPRAM is 

divided into two separate mailboxes: one for the station, and the other for the interface board 

(Fig.14). Each mailbox is designed to hold one packet and one word of status information at a 

time. In this implementation the size of each mailbox is lK x 16 bits. Note that this means that 

the maximum packet length supported by the interface board is 2046 bytes. 

In this implementation, a 32K x 16 bits RAM is used (Fig.15). The RA1'1 in the interface 

board is partitioned into three regions. The first region ( 4 Kbytes in our implementation) contains 

variables and tables used by the firmware that controls the interface board. The second and third 

regions (30 Kbytes each in our implementr.tion) are used as a reception and a transmission buffer 

respectively. 

The Transmission Process 

The transmission process starts when the station writes a packet to the Interface Buffer in 

the SIS. The station also writes a control word to the Interface Status Register. This forces the 

interface mailbox flag to be raised. This means that the DPRAM's interface interrupt line, INTO' 

(Fig.14), goes low. This interrupts the microprocessor within the MCS board to start the following 

transmission algorithm. 

1. The microprocessor reads the control word at the Status Register, clearing the interrupt signal 

INTO'. 

2. The control word indicates that there is a packet in the Interface Buffer. This causes the 

microprocessor to transfer the packet either to the TS if the TS is not busy, or to the MCS 
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internal transmission buffer otherwise. 

3. The microprocessor writes a control word in the Reception Status Register, indicating that 

the Interface Buffer is available to receive another packet. 

4. This write forces the DPRAM's station interrupt, INTS, to be activated. 

The station responds to the active signal on INT5 by activating a process that reads the control 

word written by the MCS. Since the control word informs the station that the interface board is 

available for another packet, the station will copy a new packet to the mailbox if it is ready, starting 

the transmission process again. 

At this point, a packet is now moved from the station and is stored in the Interface Buffer in 

the SIS. In the following we describe how the packet is transmitted to the network from the SIS 

mailbox. 

As described before, if the TS is busy transmitting a packet, the incoming packet \vill be stored 

in the transmission buffer in the RAM (within the MCS on the interface board). Otherwise, the 

microprocessor resets (via PSCO} the TS and programs its DMA (in the MCS) to transfer the 

packet from the Interface Buffer (DPRAM) to the TS's FIFO. When the transfer is complete, the 

microprocessor sLarts the timer and signals the FIFO to start the transmission. If a broadcast of 

the packet is not received by the RS when the time-out occurs, the microprocessor ·resets the timer 

and retransmits the packet. This process continues until a broadcast of the packet is received by 

the RS. 

When a broadcast of the transmitted packet is received, the reception process will set a flag to 

stop the transmission process. The transmission process resets the TS and looks in the transmission 

buffer for a new packet to be transmitted. 

The Reception Process 

Before the arrival of a packet, the control line from a CAMB switch is low, and INT 1' and 

DRQl a.re inactive (Fig.17), indicating the RS is in an idle state. The DMA unit (in the MCS) is 

initialized to fetch three bytes from the reception FIFO (in the RS). 
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The reception process starts when a packet (from a CA.VIE switch) arrives at RS on the interface 

board. Upon the arrival of a packet at RS, the control line changes from low to high, moving the 

first byte of the incoming packet into the reception FIFO. This causes DRQJ to change to high, 

and the high on the DRQJ line in turn triggers the DMA module to start the byte-by-byte transfer 

of the packet from the FIFO to the reception buffer in MCS. 

When the last byte of the packet is transfered from the FIFO to the MCS reception buffer, an 

interrupt (INT 1 ') is generated to signal the reception process to check the last bit of the received 

packet. If the bit is equal to one and the number of bytes received matches that of the Packet Size 

field, the packet has been received correctly. Otherwise, a CRC error has been detected. 

In the case where a CRC error has been detected and the station is the source of the packet, the 

erroneous packet is discarded, and the flag is set to inform the transmission process to retransmit 

the packet. 

If the packet has no error ( CRC and packet size correct), then the following three cases are 

possible. 

a) The destination address matches that of the receiving station. In this case, the packet will be 

kept in the reception buffer for transfer to the station. 

b) The source address matches that of the receiving station. In this case, the reception process 

notifies the transmission process of the successful transmission of the packet. 

c) ~either the source nor the destination address of the packet matches that of the station. In this 

case, the incoming packet is discarded from the reception buffer. 

Note that after the first three bytes are moved to the reception buffer, the reception process 

examines the first three bytes of the packet (the destination address, a reserved byte and the source 

address) and determines which of the above is the case. 

In the first case, the incoming packet is transferred from the reception buffer in the MCS to the 

Station Buffer in the SIS. When the station finishes reading the packet from the Station Buffer, 
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it writes a control word in the Interface Status Register, generating an interrupt (INTO') for the 

interface board. This interrupt signals the reception process to search for more packets in the 

reception buffer (in M CS) to be transferred to the station. 

3.3. Network Protocol 

In the previous sections, we described the design and implementation of the Physical layer and 

Data link layer (MAC and LLC layers) of the CAMB tree network. In this section, we describe 

transport protocol support for the CAMB tree network. 

In our CAMB tree network implementation, we used Unix-based LUNA 3 workstations as 

network stations. LUNA workstations support TCP /IP and UDP /IP. To support such transport 

protocols (TCP /IP and UDP /IP) on the top of our CAMB tree network layering architecture, we 

implemented an interface between IP and the interface board. 

The most efficient way to support IP on our CAMB tree network is to design and implement 

a device driver for this purpose. However, this will make the implementation hardware dependent 

and not 1:~asily portable to other machines. Therefore: our approach is to provide an interface that 

is hardware independent by using the LUNA workstation's general device driver as a base (Fig.19). 

A similar design approach was used at the University of California at Irvine to connect tty lines 

into the ARPA Internet (19]. 

In our implementation, TP passes a packet to IP, and IP then passes the packet to the pseudo­

device called the Raw Packet Interface (RPI). The packet is then handed to the Tree Net\vork 

Daemon process through a raw socket interface. Finally, the packet is handed to the Station 

Device Driver that sends it to the Tree Network interface board. (The reception procedure is the 

reverse of the transmission procedure described above.) 

3.3.1. Station Device Driver 

The LUNA station general device driver allows a process to map its virtual memory address 

3 LUNA is a trademark of Omron. 
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space into the physical I/O address space. It also allows a process to wait for an interrupt signal 

from an I/O interface. When an interrupt happens, a device driver internal interrupt routine is 

called to handle it and the process that is waiting for that interrupt is awakened. The ioctl() system 

call provides access to the device driver. 

3.3.2. Tree Network Daemon 

The Tree Network Daemon interfaces with the Raw Packet Interface and the LUNA Device 

Driver. In the case where a packet is transmitted towards the CAMB network, the tree network 

daemon reads a packet from the Raw Packet Interface and subsequently writes them to the LUNA 

Device Driver interface. In receiving a packet, the tree network daemon reads packets from the 

LUNA Device Driver interface and writes them to the Raw Packet Interface. In order to handle 

both transmission and reception of packets, the daemon forks into two processes. 

The daemon is in effect a software link between the LUNA Device Driver and the Raw Packet 

Interface. The UNIX raw sockets are used as an interface between the Tree Network Daemon and 

the Raw Packet Interface. 

The daemon program is rather simple in concept. It consists of an initialization sequence and 

infinite loops where it waits for inputs from the Ra\V Packet Interface and/or the LUNA Device 

Driver. 

First the raw socket and the hardware are initialized. A raw socket is established: the connection 

to the LUNA device driver interface is made, the DP RAM address space is mapped into the Daemon 

memory address space, and several constants and pointers are initialized. 

After the initialization of the socket and device interface, the daemon forks into two processes. 

The child process handles packet reception. It reads a packet from the device driver and writes it 

to the raw socket. The parent process handles packet transmission. It reads a packet from the raw 

socket and writes it to the device. 

After creating a child process, the parent process enters into a wait state by calling a recvfrom() 

system call. When a packet is sent to the socket by the RPI, the process is awakened, and reads the 
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packet from the ra\V socket. The 4 byte header is added to an IP data unit to construct a tree net 

data unit (a packet). This 4 byte header contains the packet size and its destination. The packet 

is then moved to the DPRAM, and the control word is written to the Interface Status Register to 

indicate the existence of a packet in the DPRAM. Then the process enters into a wait state again. 

The child process enters into a wait state by calling an ioctl() system call. When a packet is 

received from the network, the LUNA device driver will generate a signal, waking up the child 

process. Then the process reads the control word from the Station Status Register. If the control 

word indicates that there is a packet waiting to be received, then the size of the packet is read from 

the header (stored in the DP RAM). The packet is then copied from the DP RAM into a local buffer 

(in the tree network daemon). Next, a control word is written to the Interface Status Register 

to indicate that the Station Buffer is available. Finally, the packet is sent to the raw socket after 

stripping the tree network header. Then, the process enters into a wait state again. 

3.3.3. The Raw Packet Interface 

l'he Raw Packet Interface is a pseudo device driver which is used to provide a connection between 

the IP protocol layer and the Tree Network Daemon. The Raw Packet Interface appears exactly 

like a standard network interface (such as Ethernet) to the TP protocol layer. However, unlike an 

Ethernet device driver which interfaces with a real hardware component, the RPI interfaces with 

a software process (Tree Network Daemon). 

In a packet transmission, IP sends a packet to RPI by invoking an output routine for the RPI 

( rp_output ()). The RPI output routine uses the UNIX raw socket interface to pass this packet to 

the Tree Net work Daemon. 

In a packet reception, when a packet is sent to the raw socket by the Tree Network Daemon, 

another routine in the RPI is invoked. This routine simply places the packet on the IP input queue. 

4. Concluding Remarks 

In this paper, a design and implementation of the CAMB Tree Network is described. CA.MB 

switches, Interface Board and station protocols provide the physical layer, data link layer and 
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higher layer protocols (TCP /IP) for the Tree Network. Currently we have a completely operational 

prototype of the Tree 0T etwork. The next step is to run performance tests on the Tree l\ et work 

with different configurations. 
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