
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Skyrmion fluctuations at a first-order phase transition boundary

Permalink
https://escholarship.org/uc/item/9k25m9jf

Journal
Applied Physics Letters, 116(18)

ISSN
0003-6951

Authors
Esposito, V
Zheng, XY
Seaberg, MH
et al.

Publication Date
2020-05-04

DOI
10.1063/5.0004879
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9k25m9jf
https://escholarship.org/uc/item/9k25m9jf#author
https://escholarship.org
http://www.cdlib.org/


Appl. Phys. Lett. 116, 181901 (2020); https://doi.org/10.1063/5.0004879 116, 181901

© 2020 Author(s).

Skyrmion fluctuations at a first-order phase
transition boundary
Cite as: Appl. Phys. Lett. 116, 181901 (2020); https://doi.org/10.1063/5.0004879
Submitted: 15 February 2020 . Accepted: 20 April 2020 . Published Online: 04 May 2020

V. Esposito , X. Y. Zheng , M. H. Seaberg , S. A. Montoya, B. Holladay, A. H. Reid , R. Streubel ,

J. C. T. Lee, L. Shen, J. D. Koralek, G. Coslovich , P. Walter, S. Zohar , V. Thampy, M. F. Lin, P. Hart ,

K. Nakahara, P. Fischer, W. Colocho, A. Lutman, F.-J. Decker, S. K. Sinha, E. E. Fullerton, S. D. Kevan , S.

Roy, M. Dunne, and J. J. Turner 

ARTICLES YOU MAY BE INTERESTED IN

First and second order rotational transitions of skyrmion crystal in multiferroic Cu2OSeO3
under electric field
Applied Physics Letters 116, 182403 (2020); https://doi.org/10.1063/5.0003880

Photonic integrated multiwavelength laser arrays: Recent progress and perspectives
Applied Physics Letters 116, 180501 (2020); https://doi.org/10.1063/5.0004074

Large anisotropic topological Hall effect in a hexagonal non-collinear magnet Fe5Sn3
Applied Physics Letters 116, 182405 (2020); https://doi.org/10.1063/5.0005493

https://images.scitation.org/redirect.spark?MID=176720&plid=1086294&setID=378288&channelID=0&CID=358612&banID=519897914&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=aaa086372f9ee665edf0e430668794a2c108e2bc&location=
https://doi.org/10.1063/5.0004879
https://doi.org/10.1063/5.0004879
https://aip.scitation.org/author/Esposito%2C+V
https://orcid.org/0000-0001-6153-133X
https://aip.scitation.org/author/Zheng%2C+X+Y
https://orcid.org/0000-0001-7980-4922
https://aip.scitation.org/author/Seaberg%2C+M+H
https://orcid.org/0000-0002-4560-4698
https://aip.scitation.org/author/Montoya%2C+S+A
https://aip.scitation.org/author/Holladay%2C+B
https://aip.scitation.org/author/Reid%2C+A+H
https://orcid.org/0000-0002-7587-295X
https://aip.scitation.org/author/Streubel%2C+R
https://orcid.org/0000-0003-4783-892X
https://aip.scitation.org/author/Lee%2C+J+C+T
https://aip.scitation.org/author/Shen%2C+L
https://aip.scitation.org/author/Koralek%2C+J+D
https://aip.scitation.org/author/Coslovich%2C+G
https://orcid.org/0000-0002-1601-1287
https://aip.scitation.org/author/Walter%2C+P
https://aip.scitation.org/author/Zohar%2C+S
https://orcid.org/0000-0001-9081-5024
https://aip.scitation.org/author/Thampy%2C+V
https://aip.scitation.org/author/Lin%2C+M+F
https://aip.scitation.org/author/Hart%2C+P
https://orcid.org/0000-0002-4569-3926
https://aip.scitation.org/author/Nakahara%2C+K
https://aip.scitation.org/author/Fischer%2C+P
https://aip.scitation.org/author/Colocho%2C+W
https://aip.scitation.org/author/Lutman%2C+A
https://aip.scitation.org/author/Decker%2C+F-J
https://aip.scitation.org/author/Sinha%2C+S+K
https://aip.scitation.org/author/Fullerton%2C+E+E
https://aip.scitation.org/author/Kevan%2C+S+D
https://orcid.org/0000-0002-4621-9142
https://aip.scitation.org/author/Roy%2C+S
https://aip.scitation.org/author/Roy%2C+S
https://aip.scitation.org/author/Dunne%2C+M
https://aip.scitation.org/author/Turner%2C+J+J
https://orcid.org/0000-0002-2106-7955
https://doi.org/10.1063/5.0004879
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0004879
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0004879&domain=aip.scitation.org&date_stamp=2020-05-04
https://aip.scitation.org/doi/10.1063/5.0003880
https://aip.scitation.org/doi/10.1063/5.0003880
https://doi.org/10.1063/5.0003880
https://aip.scitation.org/doi/10.1063/5.0004074
https://doi.org/10.1063/5.0004074
https://aip.scitation.org/doi/10.1063/5.0005493
https://doi.org/10.1063/5.0005493


Skyrmion fluctuations at a first-order phase
transition boundary

Cite as: Appl. Phys. Lett. 116, 181901 (2020); doi: 10.1063/5.0004879
Submitted: 15 February 2020 . Accepted: 20 April 2020 .
Published Online: 4 May 2020

V. Esposito,1,2 X. Y. Zheng,1,2 M. H. Seaberg,2 S. A. Montoya,3 B. Holladay,2,4 A. H. Reid,2 R. Streubel,5

J. C. T. Lee,6,7 L. Shen,1,2 J. D. Koralek,2 G. Coslovich,2 P. Walter,2 S. Zohar,2 V. Thampy,8 M. F. Lin,2 P. Hart,2

K. Nakahara,2 P. Fischer,5,9 W. Colocho,2 A. Lutman,2 F.-J. Decker,2 S. K. Sinha,4 E. E. Fullerton,10,11 S. D. Kevan,6,7

S. Roy,7 M. Dunne,2 and J. J. Turner1,2,a)

AFFILIATIONS
1Stanford Institute for Materials and Energy Sciences, Stanford University and SLAC National Accelerator Laboratory, Menlo Park,
California 94025, USA

2Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
3Naval Information Warfare Center Pacific, San Diego, California 92152, USA
4Department of Physics, University of California—San Diego, La Jolla, California 92093, USA
5Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
6Department of Physics, University of Oregon, Eugene, Oregon 97401, USA
7Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
8SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
9Physics Department, Materials Science & Engineering Initiative, UC Santa Cruz, Santa Cruz, California 95064, USA
10Center for Memory and Recording Research, University of California—San Diego, La Jolla, California 92093, USA
11Department of Electrical and Computer Engineering, University of California—San Diego, La Jolla, California 92093, USA

a)Author to whom correspondence should be addressed: joshuat@stanford.edu

ABSTRACT

Magnetic skyrmions are topologically protected spin textures with promising prospects for applications in data storage. They can form a
lattice state due to competing magnetic interactions and are commonly found in a small region of the temperature—magnetic field phase
diagram. Recent work has demonstrated that these magnetic quasi-particles fluctuate at the leV energy scale. Here, we use a coherent x-ray
correlation method at an x-ray free-electron laser to investigate these fluctuations in a magnetic phase coexistence region near a first-order
transition boundary where fluctuations are not expected to play a major role. Surprisingly, we find that the relaxation of the intermediate
scattering function at this transition differs significantly compared to that deep in the skyrmion lattice phase. The observation of a com-
pressed exponential behavior suggests solid-like dynamics, often associated with jamming. We assign this behavior to disorder and the phase
coexistence observed in a narrow field-window near the transition, which can cause fluctuations that lead to glassy behavior.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0004879

The modern theory of continuous phase transitions and critical
phenomena is the linchpin of statistical mechanics and condensed mat-
ter physics. At the critical point, mean-field theory breaks down and the
microscopic fluctuations become important at many length and time
scales. This description originated from the study by Landau et al.1 and
was later reformulated by Wilson using renormalization group theory, a
formal prescription for handling critical singularities.2 Since the fluctua-
tions are what drives the physics near these mathematical singularities,

the quantitative understanding of fluctuation phenomena has marked a
great success in physics.

While the scaling of the fluctuations is well understood in the
case of continuous transitions, first-order transitions do not typi-
cally exhibit critical fluctuations. In this case, the system does not
go through a critical point but rather exhibits a singularity in a
thermodynamic variable at the phase transition. Indicators of this
are typically latent heat, hysteresis, and phase separation produced
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by the formation of stable nuclei. Interestingly, fluctuation-
induced first-order phase transitions have been theoretically
predicted however.3,4 It was proposed that excessive critical fluctu-
ations may lead to a first-order transition before reaching the
critical point, thereby modifying an expected continuous transition
to become first-order. Early experimental examples involve the
nematic-to-smectic transition in liquid crystals,3,5 and theoretical
works have indicated that this mechanism could be of importance
in superconducting transitions.6,7

Recently, fluctuation-induced first-order transitions have also
been reported in skyrmionic systems.8–10 The presence of such transi-
tions seems to be a common feature to these chiral magnetic materials
and calls for a detailed investigation of the fluctuations near discontin-
uous phase transitions in these systems.11 One topic of interest, espe-
cially as it relates to the skyrmion lattice phase, is how topology affects
the formation, fluctuation, and behavior of the skyrmion lattice where
the thermodynamic free energy becomes non-analytic. This represents
a vast and unexplored area of research in topological systems. While
the inherent features of the fluctuation-induced discontinuities are
important, their investigation nevertheless remains scarce, especially
experimentally.

Here, we address this by reporting a study in the coexistence
region at the phase boundary between the skyrmion lattice and ferro-
magnetic stripe phases in amorphous Fe–Gd alloy thin films. We use
short-pulsed coherent x-rays to detect spontaneous fluctuations in this
region, giving direct insights into the temporal nature of how correla-
tions decay at a first-order phase transition. The intermediate scatter-
ing function is shown to follow a compressed exponential relaxation,
which could be due to either jamming or “glass-like” behavior found
in the phase coexistence region.

Skyrmions are stable topological objects that were theoretically
proposed in 1962 by Skyrme.12 Although they were initially proposed
as a model for subatomic structures, they have become, after the obser-
vation of magnetic skyrmions in MnSi a decade ago, a main focus in
condensed matter physics.13,14 Since then, skyrmion systems have
indeed attracted much interest, in light of their potential use in spin-
tronics and data storage applications.15–19 Recent work has demon-
strated that fluctuations of the skyrmion lattice take place on the leV
energy scale,20 but how this changes near a discontinuous transition is
still not known.

The system studied here is an Fe–Gd thin film heterostructure.
The pronounced perpendicular magnetic anisotropy favors the emer-
gence of exotic magnetic phases, such as stripes or skyrmions. The
experiment was performed at the Linac Coherent Light Source (LCLS)
x-ray free-electron laser21 (FEL) using resonant magnetic soft x-ray
scattering22 to directly probe the different magnetic phases. A unique
double electron bunch scheme is used to generate pairs of x-ray pulses
with tunable delay in the ns range23 (see the supplementary material).
A one-dimensional schematic of the room temperature phases is
shown in Fig. 1(a). The transition between the stripe and skyrmion
phases occurs over a finite range of applied fields between approxi-
mately 180� 205 mT, where the two phases coexist, possibly indica-
tive of a disorder-broadened first-order transition.24 The transition
between the different phases can be determined from the intensity and
the width of the weaker skyrmion x-ray scattering peaks, as shown in
Fig. 2. In particular, the peak in intensity in this region signals the
presence of the long-range ordered skyrmion lattice, and the phase

coexistence region can be identified by the broadening of the peak,
indicative of a reduction of the correlation length. The intensity at
lower field values is due to the tail of the strong stripe peaks (see Fig. 1),
and the transition to the ferromagnetic state above 250mT is shown by
the decline of the peak intensity and the divergence of the peak width.

The stripe and skyrmion phases can be identified by their reso-
nant diffraction pattern at the Fe L3 or Gd M5 edge [see Fig. 1(c)].

25

Traditionally, a change from a twofold symmetry, characteristic of the
one-dimensional nature of the ferromagnetic stripe, to the sixfold sym-
metry of the hexagonal skyrmion lattice occurs in the transformation

FIG. 1. Fe–Gd thin film heterostructure room temperature phases. (a) Sketch of the
phase diagram at room temperature with a magnetic field.25,26 The critical fields are
H� ¼ 180 mT, Hsk¼ 205mT, and Hfm � 265 mT. The experiment reported here
was performed at H¼ 195mT, well in the mixed phase region, where both the sky-
rmion lattice and the stripes coexist. (b) Sketch of the stripe, mixed, and skyrmion
lattice phases in real space, based on simulations from previous work.26,27 (c)
Measured data of the soft x-ray FEL diffraction patterns at the Gd M5-edge showing
the stripe, mixed, and skyrmion lattice phases in reciprocal space. Because each
image is the sum of about 500 shots, the speckle is not visible in these average
images.

FIG. 2. Intensity and radial width of one of the skyrmion peaks as a function of the
applied magnetic field. The shaded area indicates the stripe-skyrmion phase coex-
istence region, and the vertical black line indicates the field for which the fluctua-
tions are measured.
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to the skyrmion phase. Importantly, the intensity distribution
among the different peaks in the mixed phase region of the phase
diagram retains the twofold symmetry of the stripe phase. Deep in
the skyrmion phase of this system, however, this asymmetry is not
due to the phase coexistence with the stripes but rather the pres-
ence of skyrmion bound pairs, breaking the perfect sixfold symme-
try in the skyrmion lattice phase.25 With a proper magnetic field
application procedure, the lattice of skyrmion bound pairs, or the
so-called “bi-skyrmion” phase, can be formed in this material. This
phase has been studied in great detail in other systems, and it has
been shown that it can be electrically driven with orders of magni-
tude lower current density than that for the conventional ferro-
magnetic domain walls.28

In the bound-pair, or bi-skyrmion, lattice phase, referred from
this point simply as the skyrmion lattice phase, the contribution of
each phase is somewhat difficult to disentangle. In the phase coexis-
tence region, the stripe peaks are overlapped with the stronger sky-
rmion reflections. In the transition region, which is the focus of this
study, we are thus sensitive to both order parameters simultaneously
when measuring the stronger peaks. While this can be a problem for
some experiments, here this enables the study of the fluctuations arbi-
trarily close to the transition, as the signal from each phase can be
comparable when approaching the first order phase transition.

The contrast function Cðq; tÞ ¼ CðtÞ for the stronger peaks in
the mixed phase is shown in Fig. 3 for integrals over the Bragg peak
with a reasonable intensity. These are measured by extracting the
number of degrees of freedom from the speckle pattern formulated
under photon counting conditions.29 This contrast function has been
shown to provide direct information on the stochastic fluctuations in
the system and is related to the intermediate scattering function, as
measured with traditional or serial x-ray photon correlation
spectroscopy.30

A reference single-pulse measurement C1ðtÞ is shown in the bot-
tom panel of Fig. 3. This is the contrast function measured using
single-pulse measurements only, for different separation time configu-
rations of the accelerator. In addition to demonstrating the stability of
the beam properties, C1ðtÞ also serves to establish that the sample
response is not affected under prolonged exposure.31

The top panel in Fig. 3 shows the normalized double pulse con-
trast, which encodes the fluctuations at the discontinuous phase transi-
tion. Interestingly, this normalized contrast function, or normalized
intermediate scattering function, does not start decaying until 5–10ns.
Hence, the data cannot be modeled by a simple exponential decay,
characteristic of diffusive behavior. This is in stark contrast to the pure
skyrmion phase where the relaxation follows an exponential decay.20

Furthermore, the sample reaches full decorrelation over the short span
of tens of nanoseconds. The contrast can only decay to a minimum of
CðtÞ ¼ 3=5 when using a two-pulse method in a mixed phase, where
two different types of components contribute to the scattering (see the
supplementary material). So, although the skyrmion lattice phase has
been shown to exhibit a static or frozen-in component at ns levels for
some regions of the lattice phase,20 this is not the case here in the
mixed phase. For the state near the first order phase transition, the
fluctuations are more pronounced and occur over the whole probed
volume.

A delayed response such as that observed here can be reproduced
by a Kohlrausch–Williams–Watt (KWW) function,

Sðq; tÞ ¼ A0 þ A1 exp ð� t=s0Þ½ �bÞ; (1)

with a compressed exponent, b > 1. In order to reflect the theoretical
minimum contrast value, the background constant A0 is constrained
between 0.6 and 1 (see the supplementary material). The optimum fit
gives a quite high value for the compressed exponent b ¼ 3:4, which
captures best the delayed decay of the intermediate scattering function.
This is shown together with an exponential fit to the data in Fig. 3.

While the stretched exponential (b < 1) behavior is typically
found in liquid-like systems, compressed exponentials are typically
found in collective, solid-like dynamical systems.32–38 This anomalous
diffusion can be accounted for by continuous time Levy flights—
random walks with heavy-tailed probability distributions—which
can lead to both stretched and compressed relaxation.37 The com-
mon observation of such relaxation in widely different systems
suggests a generic underlying mechanism, yet the microscopic ori-
gin of such relaxation is still poorly understood.37,38 For instance,
recent work on the microscopic role underlying compressed expo-
nential, or super-diffusive, behavior found that b was strongly
dependent on the deformation properties in colloids,39 which
could have analogous behavior in topological systems.

Other systems that show compressed exponential behavior are
found in the context of jamming.32,35,36 Jamming is known to describe
the universal behavior of complex systems under stress, such as those
found in glasses, colloid systems, and frustrated magnets.40–43 It is usu-
ally due to close-packing in systems where limited or non-Gaussian
dynamics is possible and is often found with the values of the expo-
nent b close to 1.5. For instance, the elastic relaxation of internal stress
in a variety of soft materials, such as colloidal gels, seems to play an
important role in aging properties and has been shown to explain the
compressed relaxation of the dynamical structure factor.33 A fit with
the compressed exponent b fixed to 1.5 (not shown) also can describe

FIG. 3. Fluctuations in the stripe-skyrmion mixed phase. Top: normalized two-pulse
contrast C2ðtÞ=C1ðtÞ. Slower, compressed exponential dynamics are observed and
differ significantly compared to the pure exponential decay reported in the middle of
the skyrmion phase.20 Bottom: single pulse contrast C1ðtÞ. The time axis for this
curve indicates the setting of the accelerator configuration, which generates the
pulse separation of each pair and serves to highlight the stability of the beam
parameters and the resilience of the sample under prolonged exposure.
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the data reasonably well with a decorrelation time of the same order,
indicating that jammed dynamics may explain the decay observed
here.

Although this is a study of the inherent, spontaneous fluctua-
tions, the question arises as to whether other types of fluctuations
could be responsible for the dynamics observed here with compressed
exponential behavior. For instance, a flow of scatterers due to tempera-
ture or field gradients was shown to yield, in the simplest case, a
Gaussian decay (KWW with b¼ 2).38 Drifts of the skyrmion lattice
with velocities of the order of 104 � 105 nm s�1 have been observed
under the application of low electric currents.44,45 However, over the
tens of ns considered here, this corresponds to distances orders of
magnitude smaller than the skyrmion diameter, and such small
motion is unlikely to affect the speckle pattern in a significant way.
Thus, the stochastic fluctuations at the discontinuous phase boundary
are much more significant than that detected in driven skyrmion
systems.

Alternatively, the behavior discovered here could also emerge
when a system exhibits a reasonable amount of disorder in the mixed
phase region. Disorder is known to exist in this system and would
exhibit slow relaxation as seen near a glass-like transition. It is possible
that the KWW behavior is due to this glass-like nature that occurs in
the mixed phase region where the competition between the two differ-
ent states is at play. Although glasses are typically discussed in terms
of stretched exponential behavior,46 structural and metallic glasses do
indeed also exhibit compressed exponential behavior.48 Further work
is needed, however, to conclusively determine which model can
describe the physics of the fluctuation-induced 1st order phase transi-
tion in this skyrmion system. In particular, future studies that focus on
the q-dependence are needed, which will allow us to unravel the mech-
anisms at work here. A linear q-dependence of the relaxation rate s is
expected in the jammed system,35 while de Gennes narrowing47 would
be featured if the transition is glass-like.48

Next-generation x-ray free electron lasers with the increased rep-
etition rate will present the opportunity to unravel these differing
models in topological magnets in the future. In order to remain in a
non-perturbative regime, the x-ray pulses are heavily attenuated, pre-
venting the opportunity to take full advantage of the high, single-pulse
intensity of the source. With such a physical limitation, the signal-to-
noise is mainly limited by the total number of pulse pairs that can be
measured in an experimentally reasonable time. These types of experi-
ments will thus profit tremendously from the increased repetition rate
of these novel light sources beginning to come online.

We report a study of fast, magnetic fluctuations in the phase
coexistence region at a first-order transition in a topological skyrmion
system. The observation of a compressed relaxation was interpreted as
indicative of a jammed or glassy state in this region of the phase dia-
gram. It appears plausible that the limited volume available for each
phase in the phase coexistence region limits their dynamics, which
could lead to the jammed state. Further verification is, however, neces-
sary to resolve if this indeed could represent a skyrmion glass. These
observations naturally raise the question of the universality of this phe-
nomenon and whether the observed behavior is a general feature in
fluctuation-induced first-order phase transition phenomena.

See the supplementary material for experimental details, data
analysis, and discussion of speckle statistics.
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