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Textures as Probes of Visual Processing

Jonathan D. Victor, Mary M. Conte, and Charles F. Chubb
Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, 
New York, NY 10065

Abstract

Visual textures are a class of stimuli with properties that make them well-suited for addressing 

general questions about visual function at the levels of behavior and neural mechanism. They have 

structure across multiple spatial scales, they put the focus on the inferential nature of visual 

processing, and they help bridge the gap between stimuli that are analytically convenient and the 

complex, naturalistic stimuli that have the greatest biological relevance. Key questions that are 

well-suited for analysis via visual textures include the nature and structure of perceptual spaces, 

modulation of early visual processing by task, and the transformation of sensory stimuli into 

patterns of population activity that are relevant to perception.

Keywords

spatial vision; image statistics; segmentation; perceptual spaces; visual mechanisms; top-down 
modulation

Introduction

Visual texture is a pervasive aspect of what we see: it is the visual consequence of the fact 

that objects and surfaces are made out of distinctive materials. Indeed, images of the real 

world can be thought of as having two complementary components: objects and “stuff” – 

wood, skin, fabric, etc. (Adelson 2001). Just as information about objects is primarily 

conveyed by their shape, information about “stuff” is primarily conveyed by visual texture 

(Adelson 2001, Motoyoshi et al. 2007). This partition, though, is far from absolute: visual 

texture also conveys information about shape – for example, discontinuities indicate object 

boundaries (Schmid & Victor 2014), and distortions of textures indicate 3D slant (Li & Zaidi 

2000, Li & Zaidi 2004) and curvature (Todd et al. 1997, Todd et al. 2004).

Independent of these varied and critical roles of visual texture in scene analysis, the domain 

of visual textures is an important system for the experimental study of visual processing and 

sensory coding in general. This is especially the case when the term “visual texture” is 

expanded, as it commonly is, to include artificial images that have texture-like qualities. 

Figure 1 serves to provide a glimpse of the variety of images that are included in this 

broadened meaning: artificial textures in Figure 1A–P, R, and T, and natural textures in 

Figure 1Q and S. We will discuss these examples in more detail below.
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We take the viewpoint of textures as probes of vision not only for historical and conceptual 

reasons, but also in the hope that it will entice vision scientists to make greater use of this 

domain. We focus on the questions one can ask and the kinds of answers one can expect to 

obtain. In particular, we examine how textures may be used to gain insight into the general 

computations carried out in early vision and how they are modulated by top-down 

influences. We first consider psychophysical approaches and then turn to neurophysiological 

investigations. In broad strokes, the former addresses the “algorithmic” level and the latter 

the “implementation” level (Marr 1982) – and both highlight the many ways that textures are 

valuable tools for the study of vision.

There are several related reasons why visual textures are effective probes for analyzing the 

psychophysics and neurophysiology of visual processing. Perhaps the most fundamental 

reason is that the ability to test models depends on the diversity of stimuli used to probe 

them. By combining elements of structure and randomness, textures fill an analytical gap in 

the stimulus sets we have to study visual processing. On the one hand, elementary stimuli 

such as gratings and random stimuli such as white noise provide mathematically principled 

ways to analyze early visual processing. However, both approaches fail beyond the initial 

cortical stages, because such stimuli rarely contain the features to which extrastriate neurons 

are tuned. Natural scenes, on the other hand, contain such features, but the complex structure 

of natural stimuli – for example, that some kinds of features tend to occur together – makes 

it difficult to identify the computations that produce neuronal responses. Visual textures 

provide a path forward: by manipulating the structured components of a visual texture, one 

can create stimuli that are enriched to emphasize a specific set of features.

A second aspect of the utility of textures is that gathering information from textures 

necessarily requires rapid integration across space, a key aspect of early visual processing in 

general. Texture-based paradigms can be used to probe the extent and specificity of 

mechanisms that underlie this integration (Victor & Conte 1989), with the expectation that 

the characteristics that are identified apply to spatial vision in general.

Finally, judgments based on textures require statistical inference. This too is an essential part 

of visual processing: determining the scene that generated an image is necessarily an ill-

posed problem and useful judgments can only be made by combining the incoming visual 

information with a set of priors. Because the visual texture paradigm explicitly requires 

judgments that are made based on statistics, this crucial aspect of vision remains in the 

forefront.

Historical background: probing visual mechanisms with texture

The recognition that studies of texture perception can provide insight into general 

computational mechanisms underlying vision has its origins in Bela Julesz’ work, more than 

50 years ago (Julesz 1962). Julesz not only established this overall context, but also 

produced many insights and techniques that have stood the test of time. This body of work is 

well-known for two ideas – the notion of “preattentive processing” (Julesz 1981a, Julesz 

1981b) and the Julesz Conjecture (Julesz 1962, Julesz et al. 1973). Each of these ideas 

opened up fertile domains of research, which we selectively describe in later sections. 
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Subsequent studies, including those of Julesz himself, led to substantial revision and 

refinement of both ideas, which nevertheless remain pre-eminent in shaping the field.

Many of Julesz’s studies were based on textures built from micropatterns – i.e., arrays 

consisting of repeated placement of a small token, possibly with some jitter or variation in 

orientation (Fig. 1A,B, G, and H). He observed that often, a texture patch built from one 

micropattern could be readily segmented from a background texture built from a different 

micropattern (e.g., Figs. 1A, G, and H), but only if these micropatterns differed along 

specific dimensions (Julesz 1962, Julesz 1981a, Julesz 1981b, Julesz & Bergen 1983, Julesz 

et al. 1973) (e.g., not in Fig. 1B). Similarly, subjects could quickly identify the location of a 

single unique element within a large array of contrasting elements, but only if this element 

differed from its neighbors along specific dimensions – such as its orientation (Julesz 1981a, 

Julesz 1981b). He reasoned that since these tasks – texture segmentation and “pop-out” 

(Bergen & Julesz 1983, Julesz & Bergen 1983)—appeared to be performed automatically 

and without effort (in contrast to conjunctive feature search, (Treisman & Gelade 1980)), 

they did not require attention, and therefore designated them “preattentive” processing. 

However, later studies – using dual tasks – showed that at least some attentional resources 

are required (Joseph et al. 1997). As we describe below, this observation that attention is 

involved in texture processing opened the door to the use of textures to study how top-down 

influences can affect earlier processing.

An intriguing aspect of these early studies was that in most cases, the feature dimensions 

that supported these tasks could be described in simple mathematical terms – “first-order” or 

“second-order” statistics (see Glossary) (Julesz 1962, Julesz 1981a, Julesz 1981b, Julesz et 

al. 1973). The functional relevance of this observation is that simple linear spatial filtering, 

as performed either by idealized center-surround retinal ganglion cell outputs, or oriented 

filters in primary visual cortex, could extract these statistics, provided that the population 

responses were pooled in a quadratic fashion. The strong form of this observation – that 

texture segmentation and “pop-out” could only be supported by first- or second-order 

statistics – became known as the “Julesz Conjecture”(Victor 1994a, Yellott 1993). However, 

Julesz himself recognized early on (Caelli & Julesz 1978, Caelli et al. 1978, Julesz 1962, 

Julesz et al. 1973) that the Julesz Conjecture was false (e.g., Fig. 1 E–H).

Importantly, the exceptions to the conjecture appeared to relate to visual features that were 

(and are) believed to be extracted in visual cortex, beyond extraction of orientation: features 

such as connectivity and clumping (Julesz 1962), collinearity (Fig. 1G), and closure (Caelli 

& Julesz 1978, Caelli et al. 1978) (Fig. 1H). Julesz and colleagues (Julesz 1962, Julesz 

1981a, Julesz et al. 1973) pointed out that some of these features could be extracted by 

mechanisms that extracted first- or second-order features, provided that they acted on a pre-

processed version of the image, rather than on the raw image itself. Thus, although the 

“Julesz Conjecture” does not hold, the texture paradigm supported the broader notion that 

specific image statistics are extracted by local, parallel processing, with different kinds of 

image statistics extracted as processing unfolds.

Later work, using texture synthesis strategies based on Markov random fields (Gilbert 1980) 

and other means (Julesz et al. 1978, Victor & Brodie 1978) identified many further examples 
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of specific types of higher-order statistics that support texture segregation (Fig. 1E, F), as 

well as large classes of higher- order statistics that do not (Victor & Conte 1991). Recent 

physiological studies have shown that the perceptually-relevant high-order statistics are 

indeed extracted by visual cortex, primarily in V2 (Yu et al. 2015)

What is a visual texture?

At first it might seem that the term “visual texture” does not need definition, as its intuitive 

meaning, a visual image of a material texture (see for example Fig. 1Q, S), would seem to 

suffice. However, this term has come to denote a much larger class of visual images, most of 

which do not correspond to images of natural materials (Caelli & Julesz 1978, Caelli et al. 

1978, Chubb et al. 1994, Graham 1989, Julesz 1962, Landy & Bergen 1991, Landy & Oruc 

2002, Nothdurft 2000, Sutter et al. 1995, Victor & Brodie 1978, Victor et al. 2015) – see Fig. 

1 A–P for examples. The justification for the use of the term “visual texture” for these 

artificially-constructed stimuli is that they capture an essential feature of natural visual 

textures: an image in which distinctive local features are arranged in a spatially extended 

fashion.

Typically, a texture involves a mixture of order and disorder, but the nature of this mixture 

can take many forms. One kind of mixture is shown in Figs. 1B, G, H, and L : these images 

consist of stereotyped elements arranged on a grid, but the elements are in random 

orientations. Another kind of mixture is shown in Figs. 1C, I, J, and K: each half of the 

image is characterized a specific distribution of gray values, but individual pixel values are 

drawn randomly from this distribution. A third kind of mixture is shown in Figs. 1E and F: 

these images are generated by specifying the margins in a random fashion, and then 

applying a deterministic rule to fill the interior. Yet another kind of mixture is shown in Figs. 

1N, O, and P: here, the visual structure is determined by the choice of specific spatial 

frequencies and their orientations, but their phases are chosen at random.

A definition of visual texture

Despite this variety, it is possible to frame a definition that encompasses these (and other) 

hybrids of structure and randomness, while excluding others – for example, an image of a 

specific face – that, intuitively, we would not want to consider to be a “texture.” The basic 

idea that we would like to capture is that, much as a small sample swatch of material 

conveys the properties of the entire unseen bolt, a single image of a visual texture conveys 

the properties of a much larger collection of images. Put another way, one can recognize a 

sample of material without having seen that particular example. So a visual texture is not 

just a single image, but rather, an ensemble of images, along with a way to sample this 

ensemble to obtain other individual images that typify it. This criterion– that individual 

samples typify the larger collection – is the key component of many authors’ definitions of 

texture (Portilla & Simoncelli 2000, Victor 1994b, Zhu et al. 1998). In many other studies of 

texture – including the seminal work of Julesz, this idea is not made explicit, but the 

methods of texture construction guarantee that it holds.

Formalizing this notion rests on the concept of an “image statistic.” In essence, an image 

statistic is a mathematically-defined feature of an image, or an ensemble (collection) of 
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images. For example, the mean luminance value is an image statistic; another simple image 

statistic is the fraction of pixels in an image that have a specific gray-level value. These 

image statistics can be computed by examining the luminance of one point at a time, and are 

therefore called “first-order.” Other image statistics require examining the luminance at two 

or more points of an image simultaneously. For example, spatial correlations can be captured 

by the average value of the product of the luminance at two image points separated by a 

given displacement – this is an example of a second-order statistic because it requires 

examining two points in the image simultaneously.

As these examples show, determining the value of the image statistic entails an averaging 

process, such as computing a mean or computing a probability. This averaging process can 

be carried out in two contrasting ways. One can draw a sample image from the ensemble and 

compute the average over that sample. Alternatively, one can choose a single location in 

space, and compute the average over all samples in the ensemble, focusing at that particular 

location. The core property of a visual texture is that these two kinds of averages – a spatial 

average within an image, and an average across the ensemble – yield identical results. With 

some additional formalism that we suppress here, this mathematical property is “ergodicity.”

We emphasize that although a single image is often used to illustrate a visual texture, doing 

so requires knowledge (often implicit) about how this image is representative of an 

ensemble. For example, a sine grating could be taken as a representative of an ensemble 

consisting of sine gratings at random spatial phases. Similarly, an array of line segments 

whose orientations are either horizontal or vertical is an example drawn from an ensemble of 

images, each of which is independently created in this fashion.

At first glance it might appear that our definition would exclude textures generated by 

placing tokens on a regular grid, because ensemble averages computed at the grid points will 

not match ensemble averages computed at points in the gaps. However, we can include this 

important class of stimuli within the definition by requiring that the ensemble randomizes 

over all starting positions of the grid. With this understanding, the present formalization of 

visual texture, along with the extensions mentioned below, includes most of the stimuli that 

are typically called “textures”, while avoiding the paradoxes that arise if a texture were taken 

to mean an individual image (Victor 1994a, Yellott 1993). Additionally, there is direct 

experimental evidence that in carrying out texture-based tasks, humans in fact form internal 

representations of ensembles, rather than individual examples (Victor & Conte 2004, Victor 

& Conte 2006).

Our definition implies that visual textures are spatially homogeneous in a statistical sense: 

ensemble averages at each location must all match the average across space, and therefore, 

must match each other. As a consequence, visual textures must be infinite in spatial extent– 

or at least the algorithm for generating examples of images must be extensible to arbitrarily 

large regions. The requirement for spatial homogeneity eliminates from the definition the 

kinds of collections that we would not want to consider textures – such as collections of 

natural scenes or of faces. These collections do not conform to the definition of texture 

because their statistical properties differ across space: for example, statistics determined by 

averaging over the upper halves of all images will not be the same as statistics determined 

Victor et al. Page 5

Annu Rev Vis Sci. Author manuscript; available in PMC 2017 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from the lower halves. Haphazard collections – for example, an ensemble consisting of a 

face, a teapot, a house, and a Gabor patch – are also not visual textures, for the same reason.

Finally, the concept of a visual texture has implications for experimental design. Because 

visual textures are ensembles, studies of responses to a visual texture require some kind of 

sampling of this ensemble. That is, experiments necessarily consist of a sequence of trials, in 

which different examples of a texture are presented on each trial. Because of the defining 

property of textures – that spatial and ensemble averages are equivalent – we can think of 

this sampling either as choosing different finite regions within an infinite image, or, by 

choosing the same region within a randomly-chosen image.

Extensions of the definition

The above definition of visual texture can be extended in several ways. First, while we focus 

here on grayscale images, the notion of image statistics and therefore visual texture extends 

immediately to chromatic and even hyperspectral images. The variety of image statistics is 

now much greater, as each pixel is represented by a list of scalars (one for each chromatic or 

spectral channel), rather than by a single grayscale value (Hansen et al. 2008, Li & Lennie 

1997, te Pas & Koenderink 2004). Similarly, the notion of a static visual texture extends to 

that of a texture movie: the image is an array with two dimensions for space and one for time 

(Hu & Victor 2010).

It is also often useful to modify the requirement that image statistics computed across the 

ensemble are homogeneous globally to the more relaxed requirement that they are 

homogeneous over suitably-specified local regions. The motivation for this is the following. 

Consider a smooth 3D object that is “painted” with an example of a visual texture. Because 

of the object’s 3D shape, each portion of the surface will have a different tilt with respect to 

the viewer, and these tilts will each distort the projection of the surface texture onto the 

image plane. Observers are able to use this gradually changing texture to draw inferences 

about 3D shape (Li & Zaidi 2004, Todd et al. 1997, Todd et al. 2004), demonstrating that 

they can estimate image statistics locally.

The domain of textures

Textures form a diverse domain. Not only do they vary along all of the traditional parameters 

used to define visual stimuli – such as luminance, contrast, spatial frequency, and 

orientation, but even within one of these parameters, there are a wealth of possibilities. For 

example, textures can differ not only in their mean luminance or contrast, but in any aspect 

of the distribution of luminance values, such as its skewness, or the prevalence of a specific 

gray level. Similarly, textures can differ not only in their dominant orientation, but also, in 

the extent to which orientations vary; they may even have multiple dominant orientations, as 

in the octotropic plaids (Fig. 1O) of Li and Zaidi (Li & Zaidi 2000).

Moreover, the examples of Figure 1 show that textures may also vary in ways that are not 

captured by these traditional parameters – such as naturalness or artificiality, and regularity 

vs. randomness. For textures that are derived from (or appear to be derived from) images of 

natural material, verbal descriptions (Bhushan et al. 1997) corresponding to material 

properties (e.g., glossy vs. matte, soft vs. hard, rough vs. smooth) appear appropriate, but the 
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verbal repertoire is somewhat limited (Bhushan et al. 1997) and verbal descriptions may not 

be fully satisfactory.

Informally, each of the parameters needed to specify a texture can be considered to be a 

“dimension” of the domain. However, the correspondence is inexact, because although the 

parameters represent degrees of freedom, they are not necessarily independent. The origin of 

these dependencies is that the probabilities in a distribution must add up to 1, and, more 

subtly, that lower moments of a distribution constrain higher ones. The former leads to linear 

interdependencies among the parameters; the latter, more problematically, leads to nonlinear 

interdependencies. A useful geometric view of this situation is that the texture parameters 

may be thought of as coordinates, but the axes for these coordinates are curved: changing the 

value of one parameter may necessitate changing the value of another.

Specifying and constructing textures

The variety of texture parameters, along with their interdependencies, leads to two related 

technical problems. How should a texture be specified? And, how are those specifications 

translated into construction of texture samples? We consider two overall classes of 

approaches here: strategies that are applicable when the interdependencies among texture 

parameters are simple to control, and strategies that attempt to deal with more complex 

interdependencies. In addition to strategies developed for the purpose of probing the visual 

system, we also mention strategies that have been developed in the computer graphics 

community (Bar-Joseph et al. 2001, DeBonet & Viola 1997, Efros & Leung 1999, Xu et al. 

2000). Although the primary motivation for these techniques is to fill in or reproduce a 

texture sample in a way that is visually acceptable, these methods also provide valuable tools 

to probe the visual system, especially when naturalistic textures are of interest.

Perhaps the simplest way to control the interdependencies of the texture parameters is to 

restrict the range of spatial correlations. The extreme case is that there are no correlations 

between pixels. That is, the luminance assigned to each pixel is independently drawn from a 

specified distribution; this mathematical description both defines the texture and is an 

explicit algorithm for texture generation. An alternate but essentially equivalent construction 

is the “scramble” texture: pixels are colored to match a distribution exactly, and then 

spatially scrambled (Chubb et al. 2004, Chubb & Nam 2000). Examples are shown in Fig. 

1C, I, J, and K.

A somewhat less-restrictive strategy allows for spatial correlations, but only over a limited 

range. At each point in a grid, a micropattern is randomly chosen from a library. The library 

might consist (for example) of line segments(Fig. 1L) (Wolfson & Landy 1999), tokens with 

pairs of line segments at a fixed relative orientation, such as X’s, L’s, and T’s (Bergen & 

Julesz 1983), Gabor patches of specified spatial frequency and orientation (Fig. 1M)

(Graham et al. 1993), or other sets of tokens (Fig. 1A, B, G, H)(Caelli & Julesz 1978, Caelli 

et al. 1978, Julesz 1962). Generally, the tokens are smaller than the spacing between the grid 

points so that overlaps are not of concern.
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The computer-graphics approaches of (Efros & Leung 1999) and (Xu et al. 2000) are 

conceptually related to the micropattern strategy, and can generate an impressive variety of 

naturalistic textures. These approaches start with a sample texture – typically a photographic 

image – then cut out patches, and then rearrange them to create new texture examples. In 

(Efros & Leung 1999), discontinuities at the borders of the rearranged patches are 

minimized by “growing” the synthesized texture outward from a starting patch; in (Xu et al. 

2000), texture patches are relocated in a chaotic fashion and then discontinuities at their 

edges are reduced by a bridging process. As a consequence, there is a sharp demarcation 

between local statistics, which are preserved, and longer-range ones, which are not.

One can also control the interaction of texture parameters by working in the frequency 

domain. This enables construction of textures with long-range spatial correlations, provided 

that the luminance distribution is Gaussian (Fig 1O and P). Here, the covariances (the 

pairwise spatial correlations) are not specified directly, but rather, via their Fourier transform 

(the power spectrum), since the power at each spatial frequency can be specified 

independently. To synthesize such textures, one first creates a sample of uncorrelated 

Gaussian noise, and then applies a spatial filter whose modulation transfer function has an 

amplitude equal to the square root of the desired power spectrum. Closely related is the 

strategy of superimposing a finite number of sinusoids in random phase (fig. 1N). Note that 

since both methods necessarily create images with random phases, multipoint correlations – 

at any spatial scale – cannot be specified.

The limitations of the above approaches have led to the development of a second class of 

strategies to control image statistics of multiple orders and/or spatial scales. Several of these 

methods deal with the interdependence of such statistics by drawing inspiration from 

statistical mechanics. Here, a small number of image statistics are explicitly specified, and 

these are used to construct textures that are as random as possible, given the specified 

statistics. These “maximum-entropy” textures crisply demonstrate the way in which a 

texture is a mixture of structure (the specified statistics) and randomness (all other statistics). 

Maximum-entropy textures can be viewed as generalizations of some of the approaches 

mentioned above. Specifically, IID (independent identically-distributed) textures (Chubb et 

al. 1994) are maximum-entropy textures in which the first-order statistics are specified (Fig. 

1 C, I, J, and K). Correlated Gaussian noises, constructed by filtering Gaussian white noise 

are maximum-entropy textures in which the covariances (or, equivalently, the power spectra) 

are specified (Fig. 1O, P).

The properties of entropy give the maximum-entropy approach mathematical appeal. A 

maximum-entropy ensemble is guaranteed to be uniquely determined by its defining 

statistics. Moreover, any visual texture can be viewed as the limit of a sequence of 

maximum-entropy textures, each of which is specified by a finite number of image statistics 

(Zhu et al. 1998). The coordinate system generated by these statistics has an intrinsic 

geometry based on information theory (Amari 2001), in which distance corresponds to 

statistical discriminability.

The main limitation of the maximum-entropy approach is that although the maximum-

entropy ensemble is guaranteed to exist for any set self-consistent statistics, constructing it 
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(and drawing samples from it) may be difficult. A general strategy, but a computationally-

intensive one, has been developed by (Zhu et al. 1998); in essence, this method iteratively 

alters individual pixels in an image to increase its entropy, subject to the specified statistical 

constraints. For several special cases (in addition to the IID and correlated-Gaussian cases 

discussed above), computationally-efficient alternatives exist. Chief among these is that 

when certain kinds of a local statistics are specified, a Markov process (Gilbert 1980) can be 

used to generate a maximum-entropy texture. Sampling this Markov process – i.e., 

synthesizing an example of a texture that manifests its statistics – can be accomplished by 

seeding the image with a small number of random pixels and then applying an arithmetic 

recursion rule that sequentially specifies the luminance values of the remaining pixels (Fig. 

1C–F). But when two or more local statistics are specified, the Markov strategy only 

succeeds if the recursion rules obey certain algebraic constraints (Champagnat et al. 1998, 

Gilbert 1980, Pickard 1980). This restricts the basic Markov approach to specific 

combinations of local image statistics. For combinations of image statistics that fail to meet 

these constraints, there are extensions of this basic idea; these extensions suffice to capture 

all of the statistics of 2×2 patches of pixels (Victor & Conte 2012).

Other general strategies approximate a maximum-entropy texture through an iterative 

approach, and are applicable to a wide range of interdependent image statistics. In the 

paradigmatic example of this approach (Portilla & Simoncelli 2000), statistics are organized 

into an pyramid, whose levels correspond to different spatial scales. At each scale, statistics 

include values derived from the individual pixels (variance, skewness, and kurtosis) and the 

outputs of linear filters placed on the texture (including autocorrelations, cross-correlations, 

and cross-scale correlations). This approach allows parametrization and synthesis of an 

impressively wide variety of textures (e.g., Fig. 1R, T), including both natural and artificial 

ones. The approach also shows that, although these parameter classes are interdependent, 

none can be omitted without a substantial loss of the ability to specify and synthesize 

naturalistic textures(Portilla & Simoncelli 2000). However, the mapping from individual 

parameters to textures is quite complex: while any texture corresponds to a specific set of 

parameters, the converse is not true: generic parameter sets not derived from texture 

examples may not correspond to realizable textures.

Two related approaches also use a multiscale model, but their synthesis procedure is based 

on wavelets (Bar-Joseph et al. 2001, DeBonet & Viola 1997). Of note, the Bar-Joseph 

method is applicable to mixtures of textures and texture movies.

A framework for textures and tasks

To begin, it is helpful to be explicit about a shared assumption of models aimed at 

accounting for texture perception:

1. All spontaneous visual distinctions are produced by a limited set of basic 

mechanisms (the M black circles in Figs. 2A and 2B), each of which transforms the 

pattern of light seen by the observer into a neural image (Robson 1980) reflecting the 

spatial distribution of a specific image statistic.
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The primary motivation for using textures as stimuli is to determine the image statistics 

sensed by these mechanisms. To appreciate the importance of this goal, reflect that if indeed 

all visible differences result from differential activation of these basic mechanisms, then the 

statistics they compute are nothing less than the elementary substances of human vision.

Early models of texture processing focused on explaining “preattentive” texture 

segmentation— visual effects that occur with no effort of attention. Consequently, attention 

played no role in these models (illustrated in Fig. 2A), all of which shared the same general 

form (e.g., (Caelli 1985, Graham & Sutter 1998, Julesz & Bergen 1983, Malik & Perona 

1990)). Under these “back-pocket models” (so called because researchers routinely pulled 

such models from a back pocket to account for new instances of preattentive texture 

segmentation (Chubb & Landy 1991)), two other assumptions are made:

2. The effect of any texture on human vision can be summarized by its “activation 

vector,” i.e., the set activation levels the texture produces in the basic mechanisms, 

and

3. Performance in any texture discrimination task is determined by some omnibus 

decision statistic (shown in Fig. 2A as a quadratic combination of component 

differences) that quantifies the disparity between the activation vectors of the 

textures.

Although attention plays no role in the back pocket model, it is clear that top-down attention 

can influence texture judgments. Consider, for example, the visual task confronted by a 

prospector. When a uranium prospector examines a sample of ore whose image presents an 

expanse of randomly variegated, interpenetrating lobes of different minerals, she is 

performing a subtly calibrated visual computation. If the prospector is skilled in her trade, 

the summary statistic produced by this computation provides at least a rough estimate of the 

concentration of uranium in the ore. The key neural tools required for judgments of this sort 

are the basic mechanisms. It should be noted, however, that the same prospector would need 

to use a different visual statistic if she were looking for copper instead of uranium.

The inferences afforded by an experiment depend crucially how the experiment manipulates 

top-down attention. “Unbiased salience” experiments aim to fix the attentional state of the 

observer in some neutral fashion while varying the properties of the textures to be 

discriminated. Experiments in this class typically assume a back pocket model of the sort 

diagrammed in Fig. 2A. Other “biased salience” experiments explicitly manipulate the 

attentional state of the observer across different conditions. Experiments in this class 

typically assume a model of the sort diagrammed in Fig. 2B. We discuss, in turn, each type 

of experiment and the sorts of inferences it is likely to enable.

Unbiased-salience experiments

Many unbiased salience experiments have attempted to neutralize the potential effects of 

top-down attention by mixing different texture discrimination conditions in the same block. 

For example, (Victor et al. 2015) studied the mechanisms enabling discrimination within a 

10-dimensional space of binary textures (some examples are shown in Fig. 1C–E). In these 

experiments, on each trial, the stimulus comprised a target bar of texture against a square 
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background of some other texture, and the task was to judge the location (right of, left of, 

above, or below the center of the background texture field) of the target bar. Crucially, on 

any given trial, the observer did not know what quality would define the target texture 

relative to the background texture; thus, the observer had to be ready for any sort of 

difference. By keeping the observer in the same fixed state of uncertainty across all trials, 

unbiased-salience experiments of this sort seek to insure that the activation vector produced 

by any given texture is used in the same way across all trials in which that texture occurs.

What can unbiased-salience experiments tell us about mechanisms? In a parameterized 

space of textures, every texture corresponds to a particular N-dimensional point (a parameter 

vector). In this context, a mechanism can be identified with a function that maps N-

dimensional points onto the activations their textures produce in the mechanism. Assuming 

that this function changes sufficiently gradually across N-space, we can approximate a 

mechanism’s behavior near any reference point in terms of its activation gradient at that 

point: i.e., the line through the reference point along which activation changes most rapidly. 

The slope of this line corresponds to the sensitivity with which changes in that parameter 

influence the activation of the mechanism. For this reason, the function mapping the N 

parameters onto these slopes is sometimes called the “sensitivity function” of the mechanism 

at the reference point. The difference in activation produced in the mechanism by any two 

points in the neighborhood of the reference point is proportional to the distance that 

separates them along the activation gradient.

A consequence of the above observations is that if human vision happens to contain only a 

single mechanism that is sensitive to variations in a particular N-dimensional texture space, 

then the locus of parameter vectors that yield threshold performance in an unbiased salience 

experiment relative to a given reference base point will consist of two hyperplanes on 

opposite sides of that point, each orthogonal to the activation gradient of the mechanism. In 

this case, it is straightforward to measure the sensitivity function characterizing the 

mechanism at the reference point. Several experiments have been lucky enough to discover 

such texture spaces in which discrimination is controlled by the activation of a single 

mechanism (e.g.,(Chubb et al. 1994, Keeble et al. 1995)).

In most experiments, however, the locus of points yielding threshold discrimination from a 

reference point turns out to be a convex hypersurface surrounding that point. Such a finding 

signals that multiple mechanisms interact to determine the salience of the difference between 

textures. It may sometimes still be possible to infer the sensitivity functions of the 

underlying mechanisms (Logvinenko 2003); typically, however, the threshold hypersurface 

is ellipsoidal and hence consistent with a quadratic combination rule (as illustrated in Fig. 

2A). In this case, it is impossible to determine the mechanism sensitivity functions(Poirson 

et al. 1990). Thus, although unbiased-salience experiments can determine a lower bound on 

the number of basic mechanisms, usually they cannot tell us what those mechanisms sense.

Biased-salience experiments

While “unbiased salience” experiments may be relevant to some real-world tasks, many 

visual tasks entail prior knowledge of the relevant stimulus features. For example, when one 

searches, one often knows what one is searching for (as in the task of the prospector 
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mentioned above), and such prior knowledge may improve performance. Moreover, 

manipulating this prior knowledge experimentally provides a way to go beyond estimation 

of dimensionality, to determine the sensitivity of individual mechanisms.

Figure 2B shows a simple way to formalize how the basic mechanisms might be recruited 

for different tasks. In this context the basic mechanisms constitute the library that can be 

used by top- down processes to synthesize a task-specific decision variable (i.e., a tool for 

performing this task), when there is a priori knowledge of what that variable should be. We 

postulate that this synthesis consists of linear combination of the available mechanisms, with 

task-specific weights.

Note that this class of models makes qualitatively different predictions from the back-pocket 

models that account for the results of unbiased-salience experiments. As noted above, in 

unbiased- salience experiments, threshold surfaces are typically ellipsoidal (Chubb & Landy 

1991, Landy & Oruc 2002, Victor et al. 2015). In contrast, the model of Figure 2B predicts 

that when the task is specified, then the threshold surface is flat, and is a hyperplane normal 

to the decision variable. Moreover, as the task is changed, the tool may also change, 

resulting in a change in the slant of threshold surface. Experiments confirm these predictions 

(Chubb & Nam 2000, Nam & Chubb 2000, Silva & Chubb 2014).

This task-dependence allows us to distinguish between models of mechanisms, even if these 

models produce the same thresholds in an unbiased salience task. Figure 3 shows how. For 

simplicity, we consider a two-parameter domain of textures. We consider three sets of 

hypothetical mechanisms in this space (columns); these sets of mechanisms are shown as 

vectors in the top row, where the vectors’ lengths and directions indicate their sensitivities to 

the two parameters. The second row of the Figure shows the threshold contour that would be 

obtained in an unbiased-salience task based on these mechanisms and quadratic summation. 

By design, each of these very different sets of mechanisms produces the same threshold 

contour, underscoring the well-known ambiguity that prevents inferring mechanisms from 

perceptual distances (Poirson et al. 1990).

The remaining rows of Figure 3 show how this ambiguity can be resolved via paradigms that 

explicitly change the task. Here we use the “seed expansion” paradigm (Chubb et al. 2012, 

Silva & Chubb 2014). In this paradigm, the subject’s task is to detect the location of a small 

patch of target texture in a large background of some other texture. In each experimental 

condition, the predominant quality differentiating the target from the background on each 

trial is a particular direction in parameter space. Four such conditions are illustrated here, 

corresponding to the four colored “fans” in Figure 3C and D. A key aspect of the 

experimental design is that within each condition, the directions probed on different trials 

deviate only slightly from a common direction, called the “seed direction” (indicated by the 

central ray of a given “fan” in Figure 3C and D).

To carry out the task, the subject must use her mechanisms to synthesize a tool that captures 

the deviation of the target from the background. As mentioned above with regard to Figure 

2B, we postulate that this synthesis amounts to selecting a linear combination of the 

available mechanisms. But if resources are limited, there is a constraint on the weights used 

Victor et al. Page 12

Annu Rev Vis Sci. Author manuscript; available in PMC 2017 October 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to combine them. This in turn limits the achievable tools. The ideal tool is the achievable 

tool that has the largest projection onto the seed.

Crucially, the tool direction and the seed direction need not match. This mismatch is 

informative about the underlying mechanisms. The last two rows of Figure 3 illustrate this 

for two kinds of constraints: a constraint on the sum of the weights, and a constraint on the 

sum of their squares. In the former case (Figure 3C), the ideal tool will always be one of the 

original mechanisms, namely, the mechanism that projects maximally onto the seed. This is 

because when the sum of weights is constrained, exchanging a portion of this mechanism for 

an equally-weighted portion of a less-sensitive mechanism can only reduce the effectiveness 

of the tool. In the latter case (Figure 3D), the ideal tool may have nonzero weights from 

multiple mechanisms for which there is a positive correlation with the seed. But even in this 

case, the ideal tool need not be aligned with the seed.

Perceptually relevant dimensions

Although only some of the parameters required to specify textures are relevant to perception 

(Chubb et al. 2004, Chubb et al. 2007, Julesz 1962, Julesz et al. 1973, Tkačik et al. 2010, 

Victor & Conte 1991), the number of perceptually relevant dimensions is still very high. To 

get an idea of this dimensionality, one can seek to determine a minimal number of 

mechanisms that are required to account for thresholds within some pre-defined subset of 

textures. Any single study of this kind necessarily provides a very conservative lower bound, 

but combining studies that examine different aspects of texture provides a better idea of the 

dimensionality – though still a lower bound.

We illustrate this by considering three such studies. (i) Bergen, Wilson, and Cowan (Bergen 

et al. 1979) showed that four mechanisms were needed to account for thresholds for a subset 

of one- dimensional, oriented textures (sums of pairs of gratings). (ii) (Chubb et al. 2004, 

Chubb et al. 2007) showed that three mechanisms were needed to account for thresholds for 

IID textures; this set of textures has no overlap with those of (Bergen et al. 1979). (iii) 

(Victor et al. 2015) showed that nine mechanisms were needed to account for thresholds for 

binary textures with local correlations; this set of textures has a one-dimensional overlap 

with the space studied by Chubb et al, namely, the binary IID textures. Taken together, this 

yields a lower bound of 15 dimensions: (4 from (Bergen et al. 1979), 3 from (Chubb et al. 

2004), 9 from (Victor et al. 2015), minus the one overlap of the last two studies) – and 

doesn’t even take into consideration dimensions that are associated with orientation, color, 

and scale.

Threshold discriminations are but one of the texture-related tasks that the visual system 

needs to perform. When other tasks are used as assays – suprathreshold similarity judgments 

and estimation of material properties – estimates of dimensionality are much lower. 

Specifically, Gurnsey et al. (Gurnsey & Fleet 2001) found a dimensionality of 3 by applying 

multidimensional scaling to similarity judgments of isotropic Gaussian noises, Rao and 

Lohse (Rao & Lohse 1996)found a dimensionality of 3 by applying principal components 

analysis and related techniques to verbal ratings of the Brodatz (Brodatz 1965) natural 

texture collection. These too are necessarily lower limits, but there is no straightforward way 
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to combine the estimates across studies to find an improved lower bound: the barrier is 

uncertainty as to the correspondence between the dimensions identified across different 

studies. One potential solution to this problem would be the identification of 

correspondences between the low-level statistical features of texture, and the factors that 

determine higher-level attributes, but this is not possible at present. We know that high-order 

correlations are needed for “naturalness” (Freeman et al. 2013) and some kinds of fourth-

order correlations are related to porosity (Barbosa et al. 2013). However, with the exception 

of gloss (Motoyoshi et al. 2007, Wijntjes & Pont 2010), a correspondence between perceived 

surface properties and image statistics is not yet delineated.

Finally, while it is tempting to attribute the differences between these two approaches (i.e., 

estimates based on thresholds, vs. estimates based on suprathreshold judgments) to 

methodological differences or sample-size limitations, we believe that a more fundamental 

issue is important: that task modulates texture processing. Additionally, task may alter the 

way that texture representations are read out (Victor et al. 2014).

Basic mechanisms and peripheral vision

Recent work suggests that sensitivity throughout the peripheral visual field may be conferred 

entirely by the same basic mechanisms used in texture processing. The starting point for this 

suggestion is the remarkable effectiveness of the algorithm of (Portilla & Simoncelli 2000) 

(see above) in synthesizing new patches of texture that appear visually equivalent to the 

original. But clearly this equivalence must have its limits: if a page of this book were fed as 

input into the algorithm, the output image would appear “texty”, but would not be readable. 

(It would be surprising if it were otherwise – then the algorithm could be used to reliably fill 

in missing sections of documents!). Such an image has been called a “mongrel” of the 

original text (Balas et al. 2009).

Interestingly, when mongrels are viewed in the periphery (beyond the limits where the 

original text would be readable), they often look remarkably similar to the original images. 

More generally, if one replaces each peripheral region of a picture of a scene by a mongrel 

of the region, the resulting image looks very similar to the original scene provided one 

fixates the center. These observations suggest that visual sensitivity in the periphery is 

limited to the statistics provided by basic mechanisms. This conjecture is supported by 

experiments showing that many results in visual search and crowding can be understood 

simply by scrutinizing mongrels of the stimuli (Balas et al. 2009, Rosenholtz et al. 2012): 

tasks are easy if foveal inspection of stimulus mongrels tends to yield the right answer and 

difficult if not.

Physiological studies

As in many other domains of systems neuroscience, physiological studies of visual texture 

processing serve to anchor studies at the behavioral level by identifying the cellular and 

circuit mechanisms that implement the necessary computations. In so doing, physiological 

studies of visual texture also address a broader issue: delineation of the aspects of population 

activity that are relevant to perception.
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Identifying the neural loci of texture processing is a more subtle matter than merely seeking 

the earliest stage of visual processing in which a neural population carries the information 

needed to determine texture identity or texture boundary. This formulation is overly 

simplistic, and would lead to the vacuous conclusion that the photoreceptors are the locus of 

texture processing, as further processing cannot create information that the photoreceptors 

have not already captured.

We therefore need to focus not on whether texture information is present in a given neural 

population, but rather, on whether this information is overt. This in turn is intimately related 

to the general problem of understanding neural population codes – which is one of the 

reasons that the study of visual textures holds enduring interest. Visual textures are, in 

essence, pictorial representations of spatial correlations, which are in turn transformed 

across layers of neural processing. Our inferences as to where texture analysis takes place 

therefore depend on the statistical features of neural activity that we consider to be manifest 

carriers of information, in contrast to covert carriers of information that are not available to 

perception until they are further transformed.

A standard way forward is to assert that information in a population becomes manifest when 

the overall population activity measured over some time window has changed. While this 

criterion leaves open the precise definition of a population (e.g., ON vs. OFF cells, cells of 

specific receptive field sizes, or specific orientation tunings) and how population activity 

should be measured (e.g., mean firing rate, RMS firing rate, etc.), it has a number of 

advantages. By specifying a link between individual neural properties and a population 

signal, it makes a direct connection between computational models of neurons and models 

such as the “back-pocket” models (Chubb & Landy 1991, Landy & Oruc 2002). It makes 

explicit the rationale for mass measures of population activity, such as the visual evoked 

potential and fMRI. Finally, for typical (“ergodic”) textures, it provides a rigorous 

justification for measuring population activity by sampling the responses of a limited 

number of neurons, across a large number of texture examples.

What does this viewpoint imply about texture discrimination? It is helpful to approach this 

question in steps, considering the ways that physiologically-motivated neural models interact 

with different kinds of image statistics. As a simple example, a population of linear neurons 

– except for neurons whose centers and surrounds are in perfect balance – will have an 

average population firing rate that covaries with the mean luminance of the stimulus; thus 

such populations provide an average firing rate that could support discriminations between 

textures that differ in mean luminance.

Our main interest is in discriminating between textures that differ in their spatial structure. 

For textures with identical mean luminances, strict linearity means that such textures will all 

elicit the same average response across a population. But the range of firing rates driven by a 

specific texture will depend on how the texture elements relate to the neural receptive fields: 

if the match is a good one, there will be occasional neurons that are driven well; if not, firing 

rates will tend to be more uniform across the population. Thus, a population measure that is 

sensitive to the variance of firing rates will typically provide a signal that distinguishes 

between textures with different spatial frequency contents, i.e., with different second-order 
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statistics. The details of this measure are unimportant – whether it is a strict measure of 

variance (i.e., average squared firing rate), or merely summation of firing rates following the 

rectifying nonlinearity consequent to a firing threshold. The key requirement is that the 

population measure goes beyond capturing a strict average of the signal that emerges from a 

linear filter. For example, a stylized population of center-surround neurons with a low 

maintained discharge will distinguish between textures consisting of gratings of different 

frequencies, or dots of different sizes. Thus, population signals that discriminate second-

order statistics are present beginning at the level of the retinal ganglion cell and the lateral 

geniculate nucleus.

It is worthwhile noting that at this level, there are systematic differences between ON- and 

OFF-center neurons, with an overall bias towards smaller receptive fields and greater 

sensitivity in the OFF pathway (Balasubramanian & Sterling 2009, Chichilnisky & Kalmar 

2002, Kremkow et al. 2014, Nichols et al. 2013, Zemon et al. 1988). This asymmetry is 

further accentuated in primary visual cortex (Kremkow et al. 2014, Xing et al. 2010), 

ultimately leading to a greater perceptual salience of darks than lights (Chubb et al. 2004, 

Komban et al. 2011).

While these simple computational mechanisms will generically distinguish between textures 

that differ in their second-order statistics, an important caveat is that in order to provide a 

differential signal between two textures, receptive field shapes need to match one texture 

better than another. That is, circularly-symmetric receptive fields can distinguish between 

textures with dots of different sizes or gratings of different spatial frequencies, even if they 

are not specifically matched to the texture tokens (Nothdurft 1990)– but not between 

textures with tokens that differ only in orientation, such as textures built from Gabor patches 

or line-segment tokens. For such discriminations, oriented receptive fields – which emerge 

in V1 – are critical (Lamme et al. 1992, Nothdurft & Li 1985, Song & Baker 2007).

Understanding discriminations that involve higher-order statistics requires moving beyond a 

qualitative consideration of stylized neuronal models. This step is an important one, as high-

order image statistics are the carriers of form information, such as contours, edges and 

corners (Morrone & Burr 1988, Oppenheim & Lim 1981). The key issue is that simple kinds 

of nonlinearities, such as firing rate thresholds and saturations, suffice to generate 

differential responses to spatial statistics of arbitrarily high order, merely because they are 

not polynomials. So it does not suffice to identify such signals or demonstrate whether 

models will produce them; it is necessary to determine whether they are of sufficient 

magnitude and specificity to account for perceptual phenomena. This requires physiological 

experiments using the texture stimuli themselves, as computational models of neurons that 

are constructed with other stimuli cannot be guaranteed to have sufficiently accurate 

predictive value.

Two recent studies have shown that nonlinear processing with the appropriate specificity to 

account for human sensitivity to high-order statistical features originates primarily in visual 

area V2. Freeman et al. (Freeman et al. 2013) examined neural responses to naturalistic 

textures and to phase-scrambled versions of the same textures. These textures shared the 

same first- and second-order statistics, but only the naturalistic textures contained third- and 
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higher-order correlations. In both the macaque (as measured by single-unit activity) and the 

human (as measured by fMRI), V2 showed more vigorous responses to the naturalistic 

textures than to the phase-scrambled ones. Only very minor differences were seen in V1. Yu 

et al. (Yu et al. 2015) used a complementary strategy, examining neuronal responses in 

macaque V1 and V2 to responses to synthetic textures constructed to contain specific third- 

and fourth-order correlations. Neurons that responded differentially to these stimuli were 

rare in V1 (such neurons had been previously noted in the macaque (Purpura et al. 1994) and 

functional imaging suggests their presence in man (Beason-Held et al. 2000, Beason-Held et 

al. 1998)), but were seen in approximately a third of the units in the supragranular layers of 

V2. Critically, neuronal responses were selective for the kinds of third- and fourth-order 

correlations that were perceptually salient. The complementary use of naturalistic textures 

(Freeman et al. 2013) and synthetic ones (Yu et al. 2015) is important, in that it not only 

shows that sensitivity to high-order statistics is relevant for real- world stimuli, but also that 

these statistics per se (and not “naturalness”) suffice to drive neural responses. More broadly, 

these studies suggest an overarching theme for the computations carried out by area V2 – 

extraction of the local primitives (edges, corners, illusory contours) needed to delineate 

objects.

Finally, we note that segmentation based on texture and texture discrimination are likely 

distinct processes (Nothdurft 1994). Figure 4 shows two examples that illustrate this: in both 

cases, there is a salient border formed between two regions that have identical complements 

of texture elements, because of discontinuities that occur at the borders – bars shifted by half 

a spatial cycle (Fig. 4A), and an orientation discontinuity (Fig. 4B). The neural substrate of 

the responses to these contours likely resides in V2 (Schmid et al. 2014), and may be linked 

to iso-orientation suppression. For a review of this topic, and its relationship to pop-out, see 

(Schmid & Victor 2014).

Conclusion

We have surveyed selected lines of study concerning visual texture, emphasizing the nature 

of the domain and the kinds of computational models that perceptual experiments can probe. 

While there is value in understanding how visual texture participates in specific tasks (e.g., 

determining object boundaries and determining 3D shape), we suggest that the most 

important experimental uses of visual texture are for analyzing the kinds of statistical 

information that neural populations can carry and the ways in which top-down and bottom-

up signals interact.
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Glossary

Back-pocket model
A class of models for texture discrimination and segmentation in which several 

heterogeneous image statistics are computed, and a decision is made based on the overall 

difference between them(Chubb & Landy 1991, Landy & Oruc 2002). The overall difference 
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is typically computed as the sum of the squares of the differences between the individual 

statistics. See Figure 2A

Binary texture
A texture composed of pixels that have only two luminance values, typically black and white

Blackshot
A first-order image statistic that quantifies the fraction of pixels whose luminance is near 

black (Chubb et al. 2004)

Correlation
The pairwise correlation between two variables, X and Y, is their covariance normalized by 

their variances,  (see Covariance). Higher-order correlations are similarly 

computed from products of three or more variables

Covariance
A second-order statistic describing the joint distribution of two quantities, such as the 

luminances at a pixel and its neighbor. Formally, the covariance X and Y is given by CXY = 

〈(X −〈X〉)(Y −〈Y〉)〉, where 〈〉 denotes an average over the image or image ensemble. The 

variance of a quantity is its covariance with itself

Ensemble (of images)
A collection of images along with a probabilistic rule for drawing samples from this 

collection

Entropy
A quantification of the degree of randomness in a distribution or ensemble. A “maximum-

entropy” distribution or ensemble is one in which the entropy is maximized, subject to 

specified constraints. For example, a Gaussian distribution is a maximum-entropy 

distribution, given a constraint on mean and variance

Ergodicity
An ensemble property, indicating (when applied to image ensembles) that averages 

determined by sequential sampling across the ensemble are equivalent to averages that are 

computed by spatial sampling of a typical image

Image statistic
A summary quantity computed from a single image, or a collection of images. Simple 

(“first-order”) image statistics (for example, the mean luminance, or the fraction of pixels 

whose luminances have a particular grayscale value), are computed from the distribution of 

luminance values; more complex image statistics (such as a covariance or a correlation) are 

computed from the joint distribution of luminance values at two or more locations in the 

image. The meaning extends to color images and spatiotemporal images (movies).

IID (Independent, identically-distributed) texture
A texture in which each pixel is independently colored, by drawing randomly from the same 

distribution
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Isodipole textures
A pair of textures for which all first- and second-order statistics are identical

Isotripole (isotrigon) textures
A pair of textures for which all first-, second-, and third-order statistics are identical

Markov process
A random sequence in which the probabilistic choice of an element at each step depends 

only on the preceding element

Markov random field
An extension of Markov processes to image ensembles, in which the probabilistic choice of 

the luminance value assigned to each pixel depends only on the luminance values assigned 

to its neighbors

Micropattern
A small element that is replicated in random positions and/or orientations to create a visual 

texture

Multipoint correlation
An image statistic equal to the normalized product of contrast values at two or more points

Order (of an image statistic)
The number of locations in an image that must be simultaneously sampled to compute the 

value of the image statistic. For example, the mean is a first-order statistic, since it can be 

computed by averaging the luminance value at single locations, sampled independently. 

Local contrast is a second-order statistic, since it is computed from the luminance difference 

between a pair of nearby locations. Note that the meaning of “order” in relation to an image 

statistic is distinct from its meaning in describing motion (and sometimes form) 

mechanisms. The distinction is as follows. “First-order motion” is based on second-order 
statistics, since it is computed from a cross-correlation between two points in spacetime 

(Reichardt 1961). “Second-order motion” (Cavanagh & Mather 1989, Chubb & Sperling 

1988, Chubb & Sperling 1989) is based on fourth-order statistics, because it is computed 

from correlations between two contrasts, each of which is in turn a second-order statistic – 

and therefore requires knowledge of four points in a image

Phase correlation
A multipoint correlation at three or more points. The basis for this term is that computing the 

multipoint correlations of order 3 or higher from the Fourier components of an image 

requires knowledge of their relative phases. In contrast, computing correlations of order 2 

only requires knowledge of the Fourier amplitudes

Power spectrum
A second-order statistic that quantifies frequency content. For an image or image ensemble, 

the power spectrum is a function of spatial frequency. Formally, the power spectrum is only 

defined for an infinite ensemble; in practice, it is estimated from Fourier components of a 

limited number of finite samples
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Scramble texture
A texture in which pixel colors are drawn to match a specific distribution, and then the pixels 

are spatially scrambled. When the number of pixels is large, the result is essentially the same 

as an IID texture (see “IID texture”)
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Figure 1. 
The diversity of visual textures. A: Micropattern texture constructed according to the 

algorithm of (Julesz 1962), Figure 9. B: Micropattern texture of (Julesz et al. 1973). C and 

D: First- and second-order Markov textures, constructed according to the algorithms of 

(Julesz 1962) Figures 3 and 5. E and F: Isotripole textures, constructed according to the 

fourth-order Markov algorithm of (Julesz et al. 1978), Figures 3 and 4. G and H: Isodipole 

micropattern textures constructed according to the algorithms of (Caelli & Julesz 1978), 

Figure 5, and (Caelli et al. 1978), Figure 7. I, J, and K: IID textures with polynomial 
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modulators of degree 1, 2, and 3, constructed according to the method of (Chubb et al. 

2007), Figure 2. L: Line-token micropattern texture, similar to that of (Nothdurft & Li 1985) 

and (Wolfson & Landy 1995). M: Gabor micropattern texture, constructed by the method of 

(Graham et al. 1993), Figure 8. N and O: Compound grating textures with a single 

orientation (N) and 8 directions (“octotropic plaid”), constructed according to the method of 

(Li & Zaidi 2000) Figures 8 and 6. P: Isotropic Gaussian noise with three frequency bands, 

constructed according to the method of (Gurnsey & Fleet 2001) Figure 1. Q–T: 

Photographic textures (Q and S) and matching synthetic textures (R and T), from (Portilla & 

Simoncelli 2000), Figures 4 and 6, reproduced with permission of the publisher. Panels A, 

B, G, H, and L show a background texture with a contrasting texture in a square “target” 

region on the lower right. Panels C–F, I–K, and M show contrasting textures in bipartite 

fields. The remaining panels (N–T) show a single texture throughout the field.
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Figure 2. 
Two classes of models for texture processing. A. Unbiased salience: the back pocket model 

of texture segregation (Chubb & Landy 1991). Textures to be discriminated produce 

activations in an array of mechanisms (1,2,…,M), which are sensitive to specific aspects of 

texture. The levels of activation are compared across textures, and the differences combined 

to produce an omnibus decision variable. B. Biased salience: the interaction of task and 

mechanism. While individual mechanisms remain fixed (as in A), top-down processes 

combine these mechanisms with task-specific weights to synthesize a task- specific decision 

variable.
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Figure 3. 
Task-dependence is informative about underlying mechanisms. A. Three candidate sets of 

mechanisms; mechanisms are shown as vectors whose directions and lengths indicate their 

sensitivities to two parameters of texture. In an unbiased-salience task (B), each of these sets 

of mechanisms leads to the same threshold ellipse. C and D show that these models lead to 

disparate results in a “seed expansion” experiment. In each experimental condition (each 

colored “fan”), the predominant quality that distinguishes the target texture from the 

background has a specific direction in the parameter space. This direction is given by the 
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seed, which is shown as the heavier line in the middle of each fan; other stimuli used in the 

experiment have similar but not identical directions (the four flanking lines). To account for 

task performance, we posit that in each seed condition the subject synthesizes the best 

available tool for the task from a linear combination of the available mechanisms (as in 

Figure 2). Since resources are limited, there is a limitation on the weights used to combine 

these mechanisms, and hence a limitation on the tools that can be synthesized. The best 

available tool (vector with arrowhead) is the one with the largest projection onto the seed. 

Panel C simulates the results when the sum of the weights is constrained; panel D, when the 

sum of the squares of the weights is constrained. Thresholds are indicated by the open 

circles; as the data show (Silva & Chubb 2014), these thresholds lie along a line. When the 

sum of the weights is constrained (panel C), the ideal tool is always one of the original 

mechanisms (matching a mechanism of panel A); when the sum of squared weights is 

constrained (panel D), tools may combine two or more mechanisms. Note also that when no 

mechanism has a positive projection onto the seed (green fan in column 1 of rows C and D), 

thresholds are infinite.
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Figure 4. 
Examples of salient boundaries due to local discontinuities between regions containing the 

same texture. A. Segregation due to a spatial phase discontinuity. B. Segregation due to an 

orientation discontinuity. Demonstration due to (Nothdurft 1994), example reproduced with 

permission from (Inverso et al. 2016).
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