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ELISA System for Human Endothelial Lipase
Tatsuro Ishida,1*† Kazuya Miyashita,2† Mamoru Shimizu,2 Noriaki Kinoshita,2 Kenta Mori,1 Li Sun,1

Tomoyuki Yasuda,1 Shigeyuki Imamura,3 Katsuyuki Nakajima,4 Kimber L. Stanhope,5 Peter J. Havel,5

and Ken-ichi Hirata1

BACKGROUND: Endothelial lipase (EL) regulates the me-
tabolism of HDL cholesterol (HDL-C). However, the
role of EL in regulating plasma HDL-C concentrations
and EL’s potential involvement in atherosclerosis in
humans has not been fully investigated due to the lack
of reliable assays for EL mass. We developed an ELISA
system for serum EL mass.

METHODS: Human recombinant EL proteins, purified
from cultured media of human EL–transfected Chi-
nese hamster ovary cells, were used as antigen and cal-
ibrator. Two specific monoclonal antibodies were gen-
erated in mice against recombinant EL protein for a
sandwich ELISA. We measured EL mass in human se-
rum using EL recombinant protein as a calibration
standard.

RESULTS: The EL antibodies did not cross-react with lipo-
protein lipase and hepatic triglyceride lipase. The detec-
tion limit of the ELISA was 20 pg/mL, which is approxi-
mately 10 times lower than that of previous ELISA
systems. Recovery of spiked EL in serum was 90%–105%.
Assay linearity was intact with a �4-fold dilution of se-
rum. Intra- and interassay CVs were �5%. The serum EL
mass in 645 human subjects was [mean (SE)] 344.4 (7.7)
pg/mL (range 55.2–1387.7 pg/mL). Interestingly, serum
EL mass was increased in patients with diagnosed cardio-
vascular disease and inversely correlated with serum
HDL-C concentrations. There was no difference in EL
mass between pre- and postheparin plasma samples.

CONCLUSIONS: This ELISA should be useful for clarify-
ing the impact of EL on HDL metabolism and EL’s
potential role in atherosclerosis.
© 2012 American Association for Clinical Chemistry

A large number of studies have established an inverse
relationship between HDL cholesterol (HDL-C)6 and
risk for cardiovascular disease (CVD) in humans (1–
5 ), and low HDL-C is considered one of the most im-
portant negative risk factors for atherosclerotic CVD
(6 ). Even after LDL cholesterol (LDL-C) is intensively
controlled to low concentrations with statin therapy,
low HDL-C remains a clinically significant cardiovas-
cular risk factor (7, 8 ). Furthermore, low HDL-C is
frequently accompanied by hypertriglyceridemia, and
these lipid disorders synergistically contribute to an in-
creased risk for CVD (9 ). Increased plasma triglyceride
(TG) concentrations and low plasma concentrations of
HDL-C have emerged as diagnostic criteria for the
metabolic syndrome. Despite the therapeutic potential
of HDL in combating CVD, there is a limited therapeu-
tic strategy available for selectively raising HDL-C con-
centrations. Moreover, because of the multiplicity of
HDL metabolism in humans, it is difficult to make an
etiological diagnosis for the cause of high or low
HDL-C concentrations in clinical settings.

Endothelial lipase (EL), a member of the triacylg-
lyceride lipase family, is synthesized by vascular endo-
thelial cells (10 –13 ). Experiments in engineered mice
with a disrupted native EL locus, as well as in mice
overexpressing human EL (hEL), have revealed an in-
verse relationship between plasma HDL-C concentra-
tion and EL expression (11, 14 ). Previous studies have
shown that plasma EL mass measured by ELISA is in-
versely correlated with HDL-C concentrations in hu-
mans (15, 16 ). Association-based human genetic stud-
ies have provided evidence that variations in the EL
genomic LIPG locus such as T111I, G26S, and N396S
are linked to differences in circulating HDL-C concen-
trations or CVD (17–21 ), although recent studies with
a large number of subjects have established associa-
tions between LIPG single-nucleotide polymorphism
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and HDL-C concentrations, but none with CVD (21–
23 ). Thus, genetic variation in EL can modulate plasma
HDL-C concentrations, although the relationship with
CVD remains controversial. Although EL is still ex-
pected to be an attractive pharmacological target for
raising HDL-C concentrations, the clinical significance
of plasma EL concentration on plasma HDL-C concen-
trations and atherosclerosis in humans has not been
fully elucidated due to the lack of a standard and reli-
able assay system. To obtain a better understanding of
the association of EL and plasma concentrations of
HDL-C in humans, our goal was to establish a new
assay system for EL mass measurement using newly
generated antibodies.

Materials and Methods

MONOCLONAL ANTIBODY PREPARATION

We transfected Chinese hamster ovary (CHO) cells
(American Type Culture Collection) with the human
EL-c-myc/pHBAP-3-neo plasmid (10 ) and selected
stable transfectants with 500 �g/mL G418 (Invitro-
gen). We screened EL expression in the stable transfec-
tants using an ELISA system with monoclonal antibod-
ies against EL (clones 11–9B and 2–12E) (16 ) and
chose 1 of the high expression clones, referred to as
hEL-myc/CHO 53A5, for subsequent experiments.
The cells were cultured for 24 h in TIL medium
(Immuno-Biological Laboratories) containing 10% fe-
tal bovine serum (FBS) (PAA Laboratories), after
which the medium was changed for serum-free TIL
medium. After 3 days, the supernatants were collected
and measured. We purified EL protein from the con-
centrated conditioned medium of hEL-myc/CHO
53A5 using an immunoaffinity column containing
anti-EL carboxy-terminus antibody (clone 2–12E)
(14, 16 ), emulsified with Freund complete adjuvant,
and then immunized into BALB/c mice (Charles
River). After a boost with immunogen, we carried out
fusion of spleen cells with X63-Ag8.653 myeloma cells
(Immuno-Biological Laboratories) with PEG1500
(Roche Applied Science) followed by screening for de-
sired hybridoma reactive only to EL by immunoblot-
ting. We identified 2 monoclonal antibodies that re-
acted with amino terminus (26A1) and carboxy
terminus (48A1) of EL among 15 clones.

PREPARATION OF EL CALIBRATORS AND OTHER LIPASES

To obtain standard full-length EL protein, the concen-
trated culture medium of hEL-myc/CHO 53A5 was in-
cubated with 70% NH4SO4, and then put through
immuno-affinity columns containing monoclonal an-
tibodies against amino (clone 5–3B) and carboxy
(clone 2–12E) terminus of EL (14, 16 ). We estimated
the purity of the recombinant hEL protein by densi-

tometry using a Multi Gauge (Fujifilm) and deter-
mined the concentration of the protein by comparison
with BSA (PAA Laboratories) as an indicator after elec-
trophoresis. In addition, we used the culture superna-
tant of hEL-myc/CHO 53A5 cells as a working stan-
dard for the ELISA system.

To test the cross-reactivity of the ELISA with
other lipase members, including lipoprotein lipase
(LPL) and hepatic triglyceride lipase (HTGL), we
purchased recombinant human LPL protein from
BioVendor and generated recombinant human
HTGL as follows. Full-length human HTGL cDNA
was identified in human liver cDNA (Clontech) by
PCR using primers 5�-ATCGGAGAAATGGACAC
AAGTCCC-3� and 5�-CGCTCGAGTCTGATCTTT
CGCTTTGATGTTTT-3�. A FLAG-epitope tag was
added to the 3� end of cDNA before subcloning. To
generate the plasmid encoding hHTGL-Full, the cDNA
was inserted into pcDNA3.1(�) expression vector (In-
vitrogen). Human HTGL exhibits cell surface binding
through the 5 carboxyl-terminal residues (KRKIR)
(24 ). Therefore, to promote secretion to a culture su-
pernatant, we prepared a truncated human HTGL
mutant (hHTGL-471) by deleting the 5 carboxyl-
terminal residues. We used antisense PCR primer (5�-
CGCTCGAGTGATGTTTTAGACTTTATTTCACA-3�)
to generate the plasmid encoding hHTGL-471. The
PCR product was inserted into pcDNA3.1(�) expres-
sion vector after a FLAG-epitope tag was added to the
3� end.

CHO cells were transfected with the hHTGL-471
plasmid and selected with 500 �g/mL G418 to establish
stable transfectants. We screened hHTGL-471 expres-
sion in the transfectants by using anti– c-FLAG rabbit
IgG (Immuno-Biological Laboratories) and generated
1 of the high-expression clones, referred to as human
HTGL-471/CHO 3B1. We purified HTGL protein
from the concentrated conditioned medium of human
HTGL-471/CHO 3B1 using an anti-FLAG M2 affinity
gel (Sigma-Aldrich). We estimated the purity of the
recombinant human HTGL protein by densitometry
using a Multi Gauge and determined the concentration
of the protein by comparison with BSA as an indicator
after electrophoresis.

IMMUNOBLOTTING AND

IMMUNOPRECIPITATION-IMMUNOBLOTTING

We analyzed the supernatant from hEL-myc/CHO
53A5 cells by SDS-PAGE, followed by staining with
Coomassie Brilliant Blue. For immunoblotting, 5 �L
conditioned medium of hEL-myc/CHO 53A5 was used
for 12% SDS-PAGE and transferred to nitrocellulose
membrane (Bio-Rad). The membrane was incubated
with 2 �g of the 26A1 or 48A1 antibody followed by
incubation with secondary antibody conjugated with
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horseradish peroxidase (HRP) (1:4000, Immuno-
Biological Laboratories). We assessed the reactivity of
antibodies by immunoprecipitation-immunoblotting.
The supernatant from the hEL-myc/CHO 53A5 cells
was incubated with 2 �g 26A1 or 48A1 or mouse IgG
(as negative control) and then with added Protein-G
Sepharose (GE Healthcare Japan). After further incu-
bation, the supernatant was centrifuged, and the result-
ing pellet was washed 3 times with 500 �L TNE buffer
(10 mmol/L Tris-HCl, pH 7.8, 150 mmol/L NaCl, 1
mmol/L EDTA, 1% Nonidet P-40). The pellet was sub-
sequently lysed, and we performed immunoblot anal-
ysis using biotinylated anti-EL amino-terminus mono-
clonal antibody (clone 11–9B) (14, 16 ) followed by
HRP-conjugated streptavidin system. We visualized
the EL signal by use of an ECL reagent (Amersham
Biosciences).

IMMUNOFLUORESCENCE

The hEL-myc/CHO 53A5 and control mock-CHO
cells cultured on coverslips were washed with pre-
warmed PBS (137 mmol/L NaCl, 10 mmol/L phos-
phate, 2.7 mmol/L KCl, pH 7.4), fixed with 4% para-
formaldehyde in PBS for 15 min, and permeabilized
with 0.1% Triton X-100 for 60 min. After saturation
of unspecific sites with 100 g/L BSA/PBS, the cells
were first incubated with the EL 26A1 or 48A1 anti-
body (1:200) or negative control (mouse mAb IgG
Isotype Control, Cell Signaling Technology), and then
with fluorescence-labeled secondary antibody (Alexa
Fluor594 goat anti-mouse IgG, Invitrogen, 1:200).
DAPI was used for nuclear staining. Images were cap-
tured by use of the Biozero BZ-8000 microscope
(Keyence).

EL SANDWICH ELISA PROTOCOL

Microtiter plates (96 wells) were coated by adding 100
�L of 100 mmol/L carbonate buffer (pH 9.5) to each
well that also contained 1.0 �g purified 48A1 mouse
monoclonal IgG, followed by incubation overnight at
4 °C. The plates were then washed with PBS-T and
blocked with 200 �L of 1% (wt/vol) BSA in PBS con-
taining 0.05% NaN3/well overnight at 4 °C. After two
washings with PBS-T, test samples and recombinant
EL, as a standard, that had been serially diluted with 1%
BSA in PBS-T per 100 �L were added to the wells of the
coated microtiter plate in duplicate and incubated at
4 °C overnight. After 4 washes with PBS-T, 100 �L
HRP-conjugated 26A1 mouse IgG Fab� was added to
each well and the samples were incubated for 30 min at
4 °C. The wells were washed 5 times with PBS-T, and
100 �L tetramethyl benzidine solution (Kem-En-Tec)
was added to each well as a substrate, followed by incu-
bation in the dark for 30 min at room temperature. The
reaction was terminated by adding 100 �L of 0.5 mol/L

H2SO4. We measured absorbance of the solution at 450
nm by means of an ELISA reader (E-Max; Molecular
Devices).

To assess the intra- and interassay precision for the
ELISA, we established 3 QC samples covering the high,
middle, and low range of the calibration curves. We
determined intraassay precision by 24 repeated mea-
surements of each QC sample in a plate, and interassay
precision by assessing each QC sample across 6 differ-
ent plates with quintuple wells. Additionally, for assess-
ing the recovery rate in blood samples, different con-
centrations of recombinant EL added to samples were
measured, and the recovery rate was validated as the
difference between the measured concentration and
the theoretical concentration. The analytical limit of
quantification for this kit was determined on the ba-
sis of the guidelines provided by CLSI evaluation
protocols.

The ELISA assay system was finally designed
as a kit (Immuno-Biological Laboratories, code
27182).

PREPARATION OF BLOOD SAMPLES

The investigation conformed to the principles outlined
in the Declaration of Helsinki, and the clinical study
was approved by the Institutional Review Board of
Kobe University Graduate School of Medicine.

We conducted the first set of experiments to de-
termine the effect of heparin administration on
plasma EL mass. We collected pre- and postheparin
plasma samples from overweight and obese partici-
pants in a nutritional research study conducted at
the University of California, Davis Clinical and
Translational Science Center’s Clinical Research
Center as described previously (25 ). The activity of
HTGL in the plasma samples was measured as de-
scribed previously (26 ).

The second set of experiments was conducted to
evaluate EL mass in patients with diagnosed existing
CVD. Whole blood was obtained from 645 Japanese
patients consecutively admitted to Kobe University
Hospital, Kobe, Japan, from April 2008 to March 2011,
with written informed consent. Because it has been re-
ported that preheparin EL mass is significantly corre-
lated with postheparin EL mass, blood was collected
without administration of heparin in the fasting state,
while both pre- and postheparin plasma was obtained
from some patients. The sera and plasma were imme-
diately separated and kept frozen at �80 °C until assay.
In some preliminary experiments, we obtained plasma
and sera of healthy subjects (Veritas). Plasma concen-
trations of HDL-C, LDL-C, and TG were measured
enzymatically.

1658 Clinical Chemistry 58:12 (2012)



STATISTICAL ANALYSIS

We conducted statistical analysis with Stat View ver-
sion 5.0 (SAS Institute). We used Spearman correlation
coefficient analysis to assess associations between mea-
sured parameters. Results are expressed as mean (SE),
and P � 0.05 was considered significant.

Results

IDENTIFICATION OF RECOMBINANT hEL AND

CHARACTERIZATION OF ANTIBODIES AGAINST EL

We generated a pair of antibodies recognizing the
amino terminus (26A1) and carboxy terminus (48A1)
that exhibited a highly specific reactivity with the EL
protein derived from hEL-myc/CHO 53A5 cells. Im-
munoblotting revealed a strong signal for 68-kDa ma-
ture EL protein (Fig. 1A). To confirm whether the an-
tibodies had the ability to react against native EL in
aqueous conditions, we performed an immuno-
precipitation-immunoblotting analysis. Both 26A1
and 48A1 antibodies were able to immunoprecipitate
EL originated from the conditioned medium of hEL-
myc/CHO 53A5 (Fig. 1B). Immunofluorescence re-
vealed that EL expression was abundantly detected in
the cytosol of hEL-myc/CHO 53A5 (Fig. 1C). No sig-
nal was detected in negative controls, i.e., mock-
transfected cells with primary antibodies or hEL-myc/
CHO 53A5 cells without primary antibodies. Thus, we
were able to identify EL expression in culture medium
of hEL-myc/CHO 53A5 cells and confirm the specific
reactivity of the 26A1 and 48A1 antibodies with EL
protein.

SPECIFICITY, RECOVERY, AND IMPRECISION OF THE ELISA

Because the 26A1 and 48A1 antibodies had a highly
specific reactivity with the EL protein, we chose them
for establishment of the new sandwich ELISA system.
The standard dose–response curve for the EL ELISA
system exhibited a linear shape when plotted on a log/
log scale over a range from 31 to 2000 pg/mL, and the
linearity was excellent (R2 � 0.99) (Fig. 2A). The new
ELISA system worked for both serum and EDTA
plasma samples equally. Although EL has a 44% and
41% amino acid sequence homology with LPL and
HTGL (10 ), the cross-reactivity of this ELISA against
human LPL and HTGL was �0.1% (Fig. 2B). Impreci-
sion was determined with 3 supplemented QC controls
(high, middle, and low). The intraassay imprecision
exhibited CVs of 1.9% in the high, 2.7% in the middle,
and 3.0% in the low controls (Table 1). Additionally,
the interassay results for the CVs were 3.7% in the high,
2.0% in the middle, and 2.8% in the low controls. Thus,
we considered the ELISA system to be reliable from the
standpoint of imprecision. The recoveries were
�85.6% for human EDTA plasma samples at 4� dilu-

tion, �74.7% for human serum, and nearly 100% for
TIL media supplemented with 10% FBS (Table 2). We
calculated the assay limit of quantification as 5.7 pg/mL
using CLSI protocols.

Because EL has several heparin-binding domains,
we investigated the effect of heparin administration on
plasma EL mass. Unexpectedly, there was no signifi-
cant difference in EL mass between pre- and posthep-
arin samples (Fig. 3, A and B), in contrast to the marked
heparin-releasable HTGL activity in the same samples

Fig. 1. Immunoblotting of EL protein with anti-EL
monoclonal antibodies.

(A), A strong signal of full-length EL (68 kDa) was detected
with both 48A1 (lane 1) and 26A1 (lane 2) anti-EL anti-
bodies, whereas smaller-sized minor bands were also de-
tected with 26A1. (B), Twenty-fold concentrated culture
medium of hEL-myc/CHO 53A5 (lane 1), EL protein immu-
noprecipitated from culture supernatant of hEL-myc/CHO
53A5 with mouse IgG (negative control, lane 2), with
48A1 (lane 3), or with 26A1 (lane 4) were detected. (C),
Expression of EL (red) in hEL-myc/CHO 53A5 (hEL-CHO)
cells was evaluated by immunofluorescence with the
48A1 or 26A1 antibodies. DAPI (blue) is for nuclear
stain. Mock-transfected (Mock-CHO) cells treated with
the antibodies and hEL-myc/CHO 53A5 in which the
primary antibody was replaced by nonspecific IgG (w/o
1° Ab) are shown as negative controls. Scale bar indi-
cates 10 �m.
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(Fig. 3A). Although there are heparin-binding sites in the
carboxy-terminal end of EL, we confirmed that heparin
does not block the binding sites of the amino-terminus
(26A1) or carboxy-terminus (48A1) antibody.

INVERSE CORRELATION OF SERUM EL MASS AND HDL-C LEVELS

IN CVD

The serum EL mass in 645 consecutive human subjects
was 344.4 (7.7) pg/mL, and ranged from 55.2 to 1387.7
pg/mL. No patients had an EL concentration below the
limit of quantification. The distribution of EL mass was
skewed to the left (Fig. 4A). The EL mass was not cor-
related with serum HDL-C (Fig. 4B and Supplemental
Fig. 1B, which accompanies the online version of this
article at http://www.clinchem.org/content/vol58/
issue12) or LDL-C concentrations (data not shown) in
this population. Because our previous study showed
that EL mass was associated with plasma HDL-C con-
centrations in patients with CVD (16 ), we next inves-
tigated the serum EL mass in patients having athero-
sclerotic CVD. The EL mass concentration in these 228
patients with CVD was 395.8 (15.1) (range 57.7–
1387.7) pg/mL, which was significantly higher than
that in the 645 consecutive patients (P � 0.001), and
the EL distribution was again skewed to the left (Fig.
5A). Concomitantly, the patients with CVD had signif-
icantly lower concentrations of serum HDL-C than
those without CVD {46.2.0 (1.0) vs 52.0 (0.6) mg/dL
[1.20 (0.03) vs 1.35 (0.02) mmol/L]}, P � 0.001). When
serum EL concentration was compared to the lipid
profile in the CVD patients, it was inversely correlated
with plasma HDL-C concentrations (R � �0.250, P �
0.001) (Fig. 5B and online Supplemental Fig. 2B), but
not with LDL-C (R � �0.055, NS), or triglyceride (R �
0.078, NS) concentrations.

Discussion

We generated specific EL monoclonal antibodies
against recombinant EL that reacted with the amino
(26A1) and carboxy (48A1) terminus. Both antibodies
had strong reactivity with native EL protein and en-

Fig. 2. Characteristic of the hEL ELISA system.

(A), Calibration curve for calculation of EL concentrations.
(B), Specificity of the EL ELISA system. A, absorbance.

Table 1. Intra- and interassay imprecision.

QC

Measured
value,
pg/mL SD, pg/mL CV, % n

Intraassay imprecision

High 1126.9 20.85 1.9 24

Middle 285.9 7.71 2.7 24

Low 90.8 2.69 3.0 24

Interassay imprecision

High 1100.7 40.81 3.7 6

Middle 282.7 5.58 2.0 6

Low 91.4 2.54 2.8 6

Table 2. Recovery validation.

Sample

Theoretical
value,
pg/mL

Measured
value,
pg/mL % Recovery

Human plasma 1147.9 982.7 85.6

647.9 557.9 86.1

397.9 357.4 89.8

Human serum 1098.6 820.6 74.7

598.6 449.3 75.1

348.6 274.3 78.7

TIL media supplemented
with 10% FBS

1000.0 941.1 94.1

500.0 483.0 96.6

250.0 245.7 98.3

1660 Clinical Chemistry 58:12 (2012)
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abled the detection of full-length EL by the sandwich
ELISA. The limit of quantification of 5.7 pg/mL for hEL
is much lower than that of previous ELISA systems,
probably because the new antibodies are more specific
for full-length EL protein than the old ones, which
were generated against peptide fractions of EL (16 ).
The serum EL mass in preheparin plasma was approx-
imately 70 –1000 pg/mL in the present study. Previous
studies by our group and another group reported that
the concentrations of EL mass in preheparin plasma
were approximately 10 –1000 �g/L, concentrations
approximately 1000-fold higher than measured with
the new assay (15, 16 ). These differences have resulted
in confusion as to whether the plasma concentration
of EL is really higher than the concentrations of
LPL and HTGL without heparin infusion. The concen-
trations of other lipases, including LPL and HTGL, in

preheparin plasma have been reported to be �30�100
�g/L (27, 28 ). When compared with the low plasma
concentrations of other lipase members, we speculate
that the range of EL concentrations determined by the
new ELISA is more reasonable than those by the previ-
ous one. We consider the specificity of the antibodies
used for this assay to be suitable for determining spe-
cific EL mass concentrations in human plasma, which
showed different reactivity from the antibodies gener-
ated against peptide fractions in EL (16 ). The new
ELISA may also be useful for identifying cases of ge-
netic deficiency of EL in humans.

In the present study, a modest but significant in-
verse correlation between serum EL and HDL-C con-
centrations in patients with CVD was noted, whereas
the relationship was not observed in all patients. The
EL concentration was not correlated with serum
LDL-C or TG concentrations. These findings con-
firmed the previous notion that EL is a determinant of
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plasma HDL-C concentrations, particularly in patients
with CVD. It has been reported that EL expression is
highly regulated by a variety of factors including in-
flammatory cytokines, biomechanical forces, lipopoly-
saccharide, angiotensin II, and oxidized LDL (29 –31 ).
In fact, plasma EL mass was increased in experimental
endotoxemia in humans and correlated with inflamma-
tory markers such as C-reactive protein, interleukin-6,
and secretory phospholipase A2-IIa (32, 33 ). In con-
trast, statins reduce EL expression and plasma EL mass
(16, 34 ), which is accompanied by increased plasma
HDL-C concentrations in humans (16 ). These findings
suggest that a change in EL expression associated with
inflammatory states may at least in part account for the
variation of HDL-C concentrations in CVD patients.

Cell culture experiments revealed that cytokine-
stimulated EL expression was concomitant with an in-
crease in EL activities (35 ). However, EL activity is
partly regulated through posttranscriptional mecha-
nisms. It has been reported that EL forms a head-to-tail
dimer in the human plasma, and the homodimer for-
mation is essential for the maintenance of EL activity

(36 ), as is the case with LPL and HTGL. In addition, EL
is proteolytically processed into 40- and 28-kDa frag-
ments and inactivated by proprotein convertases (37 ).
In this regard, our sandwich ELISA system can recog-
nize the dimer of full-length EL with the intact enzy-
matic activity. On the other hand, angiopoietin-like 3 is
known to act as an endogenous EL inhibitor (38 ). In
addition, human heat-inactivated serum inhibited EL
phospholipase activity (39 ), indicating the existence of
some endogenous EL inhibitor in human serum. Fur-
thermore, a naturally occurring variant in the EL gene
(LIPG), glycine-26 to serine, which is associated with
increased HDL, exhibits impaired synthesis (20 ).

It has been reported that EL has several heparin-
binding domains and binds to heparan sulfate pro-
teoglycans on the vascular endothelium (12, 15, 40 ).
Therefore, EL should be released into plasma by heparin
treatment (15). In the present study, however, there was
no difference in EL mass between pre- and postheparin
plasma samples, whereas control HTGL activity was
markedly increased by the heparin administration.
When we evaluated EL mass by our previous ELISA
system (16 ), we confirmed that the administration of
heparin did not affect plasma the EL protein. Thus, the
interaction of EL with heparan sulfate proteoglycans
needs to be determined by further studies.

In conclusion, we developed a sandwich ELISA us-
ing newly generated monoclonal antibodies specific to
human plasma EL. The limit of quantification, range of
linearity, and imprecision for EL quantification are
suitable for both experimental and clinical use. From
the preliminary study of a healthy reference range, we
found that reference-range EL concentrations were be-
tween approximately 50 and 1400 pg/mL in human
plasma. This range is much lower and, we suggest,
more reasonable than the range measured with previ-
ous EL assays. It is possible that patients with low (EL
deficiency) and high serum EL concentrations associ-
ated with high or low HDL-C concentrations will be
identified by use of this new assay for EL.
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