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ABSTRACT

The primary computational challenge when simulating nonadiabatic ab initio molec-

ular dynamics is the unfavorable compute costs of electronic structure calculations

with molecular size. Simple electronic structure theories, like time-dependent density

functional theory within the Tamm-Dancoff approximation (TDDFT/TDA), allevi-

ate this cost for moderately sized molecular systems simulated on realistic time

scales. Although TDDFT/TDA does have some limitations in accuracy, an appeal-

ing feature is that, in addition to including electron correlation through the use of

a density functional, the cost of calculating analytic nuclear gradients and nonadi-

abatic coupling vectors is often computationally feasible even for moderately-sized

basis sets. In this work, some of the benefits and limitations of TDDFT/TDA are

discussed and analyzed with regard to its applicability as a “back-end” electronic

structure method for the symmetric quasi-classical Meyer-Miller model (SQC/MM).

In order to investigate the benefits and limitations of TDDFT/TDA, SQC/MM is

employed to predict and analyze a prototypical example of excited-state hydro-

gen transfer in gas-phase malonaldehyde. Then, the ring-opening dynamics of se-

lenophene are simulated which highlight some of the deficiencies of TDDFT/TDA.

Additionally, some new algorithms are proposed that speed up the calculation of

analytic nuclear gradients and nonadiabatic coupling vectors for a set of excited

electronic states.
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1. Introduction

A detailed, molecular-level description of nonadiabaticity at the ab initio level is useful

when elucidating many important photoinduced chemical and physical processes [1–7].

Simulating complex nonadiabatic dynamics processes however, is oftentimes prohib-

ited by the computational cost of electronic structure calculations which can have high

polynomial or exponential scalings with system size—particularly if high-order excita-

tions and/or electron correlation is required for an accurate description of the excited

electronic state. A simple approach that seeks to alleviate this cost is to represent

each excited electronic state using only single excitations in the configuration interac-

tion wavefunction while including the effects of electron correlation through the use of

a Kohn-Sham (KS) reference determinant. This approach, known as time-dependent

density functional theory within the Tamm-Dancoff approximation (TDDFT/TDA),

has improved scalings with system size, e.g. ∼ O(N2 − N3) per state, compared to

many other correlated methods and meaningful predictions of nonadiabatic processes

that both explain and predict experimental observables are possible [8].

An appealing feature of TDDFT/TDA from a dynamics perspective is the effi-

ciency when computing analytic nuclear gradients and nonadiabatic couplings which

are used to construct nuclear forces and first-order derivative coupling vectors. [9–13].

Conveniently, in the Tamm-Dancoff approximation, the machinery for calculating ana-

lytic first-order derivative coupling vectors is exactly the same as the analytic nuclear

gradient [12]. Often this results in the same computational routines being used for

both calculations. The main drawback when using analytic gradient routines however,

is the leading quadratic computational cost that grows with the number of excited

electronic states. Some newly-proposed methods avoid this cost by employing overlap

based [14, 15] and finite difference approximations [16, 17]. While these are generally

considered an approximation to the analytic couplings, integrating over the time step

has been shown to result in surface-hopping simulations with greater accuracy includ-

2



ing a more consistent treatment of trivial avoided crossings [18–21]. Propagating the

nuclear degrees of freedom (DOF) using the SQC/MM procedure, however requires

that all couplings be computed at each time step and, with algorithmic improvements,

the cost of calculating these analytically is tractable even for moderately-sized molec-

ular systems.

While many methodologies have been proposed that propagate the equations of

motion for the electronic and nuclear degrees of freedom [22–30], with varying degrees

of complexity [31, 32], a computationally efficient and in many cases sufficiently accu-

rate approach is to propagate both DOF on an equal footing using classical Hamilto-

nian mechanics [33]. One such approach is the symmetric quasi-classical Meyer-Miller

model (SQC/MM) which quantizes the electronic degrees of freedom in the Meyer-

Miller (MM) Hamiltonian using a set of predefined windowing functions which are

applied, symmetrically, both to sample initial conditions, and to estimate electronic

state populations (and/or coherences) at prescribed times during the classical vibronic

dynamics evolution [34, 35]. While typically the SQC/MM approach has been used to

model the complex nonadiabatic dynamics of model systems in the diabatic represen-

tation, recent years have seen significant progress in the development of the SQC/MM

model to predict the dynamics of general molecular systems in the adiabatic repre-

sentation. This has been through improved adiabatic EOM [36] and also some initial

realistic calculations employing “on-the-fly” electronic structure theories [37–40].

In this work, Meyer-Miller dynamics, as employed in both the standard Ehrenfest

method as well as the SQC model, are implemented and analyzed using “on-the-fly”

TDDFT/TDA electronic structure theory in the Q-Chem software package [41]. The

implementation of this methodology required algorithmic improvements that reduce

the cost when evaluating analytic nuclear gradients and first-order derivative coupling

vectors for multiple electronic states. Using SQC/MM with TDDFT/TDA, a simple

analysis of the implemented algorithms is performed by simulating the population

dynamics and geometric rearrangements that mediate excited-state hydrogen transfer

in malonaldehyde. Then, as a more complex illustration of this approach, SQC/MM

is employed to make predictions of the excited-state ring-opening dynamics of se-

lenophene upon photoexcitation which highlights some limitations of TDDFT/TDA
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when modeling bond breaking.

2. Methods

The following notation is used throughout this work: I and J denote adiabatic Born-

Oppenheimer electronic states where an electron has been excited from i,j,k,. . . occu-

pied KS orbitals to a,b,c,. . . virtual orbitals in the reference determinant. µ,ν,λ, σ,. . .

are indices denoting atomic orbital (AO) basis functions. Â[R] denotes the full Carte-

sian derivative of the operator Â with respect to Cartesian nuclear DOF R which also

indicates differentiation of the KS orbital coefficients. All electronic states, orbitals,

and basis functions are assumed to be real unless otherwise noted.

2.1. SQC/MM Nonadiabatic Dynamics

The classical Meyer-Miller Hamiltonian maps the electronic DOF in a

nonadiabatically-coupled dynamic system to a collection of classical harmonic

oscillators. The SQC/MM approach combines this mapping with a simple, yet

effective quantization protocol for the electronic DOF along a classical trajectory.

When electronic structure calculations are used for the nuclear forces and couplings,

the adiabatic basis is most amenable. The MM Hamiltonian expressed in this basis

is

H(x,p,R,P) =
1

2µ
(P + ∆P)2 + Veff(x,p,R), (1)

where R, P denote the positions and momenta of the 3N -Cartesian nuclear DOF with

atomic masses µ. In the MM framework, the nuclei move on an effective potential

energy surface given by

Veff(x,p,R) =

F∑
I

(
1
2p

2
I + 1

2x
2
I − γI

)
EI(R), (2)

where {xI , pI} are the positions and momenta of the “electronic oscillators” defining

a set of F adiabatic electronic states each with energy EI . {γI} denotes a set of zero
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point energy (ZPE) parameters in the electronic DOF. In the adiabatic representation,

the nuclear momentum P arises in combination with a nonadiabatic coupling vector

potential

∆P(x,p,R) =

F∑
I<J

(xIpJ − xJpI) dIJ(R),

which depends explicitly on the standard first-order derivative coupling vector

dIJ(R) =
〈

ΨI |~∇RΨJ

〉
between adiabatic electronic states ΨI and ΨJ . The

occupation-weighted effective potential shown in Eq. 2 is commonly symmetrized

Veff(x,p,R) =
1

F

F∑
I

EI(R) +
1

F

F∑
I<J

(
p2
I − p2

J + x2
I − x2

J

)
(EI(R)− EJ(R)) , (3)

which sets the energy zero and guarantees the electronic dynamics are independent of

energy scale.

The canonical equations of motion (EOM) are obtained by applying Hamilton’s

equations

ẋI =
∂H

∂pI
, ṗI = − ∂H

∂xI
, Ṙ =

∂H

∂P
, Ṗ = −∂H

∂R
(4)

to the adiabatic MM Hamiltonian in Eq. 1 producing dynamically-consistent,

canonical coordinates and momenta in both the nuclear and electronic DOF. An

apparent drawback of using the adiabatic basis however, is that Hamilton’s equations

introduce second -derivative nonadiabatic coupling matrices into the EOM. As recently

shown however [36], the explicit calculation of these second-derivative nonadiabatic

coupling matrices can be avoided entirely by employing a simple change of variables

from the canonical nuclear momentum to the so-called “kinematic” nuclear momentum

Pkin = P + ∆P.
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Although Pkin is not canonically-conjugate to R it can be utilized in generating exactly

the same Hamiltonian dynamics via the following kinematic EOM:

ẋI =
pI
F

F∑
J

(
EI(R)− EJ(R)

)
+ xJdJI(R) · Pkin

µ
, (5a)

ṗI = −xI
F

F∑
J

(
EI(R)− EJ(R)

)
+ pJdJI(R) · Pkin

µ
, (5b)

Ṙ =
Pkin

µ
, (5c)

Ṗkin = −∂Veff

∂R
−
∑
IJ

(
1

2
pIpJ +

1

2
xIxJ

)
(EJ(R)− EI(R))dIJ(R). (5d)

These kinematic EOM, advantageously, contain only the first-order derivative cou-

plings dJI(R), but are nevertheless exactly equivalent to the EOM obtained after

employing Eq. 4 which includes both first- and second-order couplings.

In the SQC/MM approach, quantization of the classical Hamiltonian dynamics

produced by Eq. 5 is done symmetrically, i.e., with respect to both the initial and final

values of the dynamical electronic variables. Quantization is accomplished, initially

by Monte Carlo sampling actions from a “windowing” function defined by the SQC

model. The quantization at the prescribed final times is accomplished by “binning”

the final time-evolved actions according to the windowing function. In Q-Chem, the

triangle windowing model is available and further estimates concerning the number of

acceptable trajectories with this approach are provided in Ref. 42. Additionally, the

option to use a γ-adjustment procedure, exactly as described in Ref. 43, is available

except here the γ-adjustment procedure is employed with the kinematic EOM of Eq. 5.

The key point of the γ-adjustment procedure is to set the {γI} in Eq. 2 per DOF (and

per trajectory), so that the initial forces on the nuclei are that of the initial pure

quantum state—i.e., the single-surface forces. Ehrenfest simulations are also available

where the dynamics of these are equivalent to the SQC calculations, but instead of

using symmetric windowing functions for selecting initial conditions and estimating

final populations, the Ehrenfest method uses integer initial electronic action variables
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with γ = 0 and uses the values of these action variables at each desired final time to

estimate the electronic state populations instead of evaluating whether the actions fall

within a window function.

The nuclear EOM (Eq. 5c and Eq. 5d) are integrated numerically using a tradi-

tional velocity-Verlet integrator. The electronic EOM (shown in Eq. 5a and Eq. 5b)

are integrated using a semi-analytic scheme that solves the time-dependent electronic

Schrödinger equation at each time step with the nuclear coordinates and momenta as

momentarily fixed. This is equivalent to solving the following set of first-order coupled

differential equations

iĊ = HC (6)

where C are the set of time-dependent electronic amplitudes

CI(t) =
1√
2

(
xI(t) + ipI(t)

)
, (7)

that are defined according to the electronic oscillator variables, and H is the electronic

Hamiltonian with matrix elements

HIJ =
1

F

F∑
K

(
EI(R)− EK(R)

)
δIJ − idJI(R) · Pkin

µ
, (8)

expressed in the adiabatic basis. The time-dependent electronic amplitudes are given

by diagonalizing H, at each time step, and writing the solution as a complex expo-

nential

Ct+1 = Ue−iε∆tU†Ct, (9)

where ∆t denotes the time step, U are the eigenvectors, and ε are the eigenvalues of

Eq. 8. The real and imaginary components of C constitute the time-stepped electronic

oscillator coordinates and momenta (scaled by 1/
√

2), respectively.

The propagation scheme shown in Eq. 9 is exact when the time step is zero or
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when the first-order derivative coupling is independent of the nuclear DOF. Construc-

tion of the Hamiltonian matrix in Eq. 8 however, assumes that the nuclei are fixed

during the electronic update. This is an approximation but seems to have a negligible

impact on the accuracy of the electronic dynamics and allows propagation of both the

electronic and nuclear DOF with the same time step. For problematic situations, i.e.

when H changes rapidly in time, a higher-order numerical integrator may be required

at the additional expense of introducing a shorter electronic time step.

2.2. Analytic Gradients and Nonadiabatic Couplings

Time propagation of the electronic and nuclear DOF requires nuclear gradients and

first-order derivative coupling vectors for a set of adiabatic electronic states. The first-

order derivative coupling vector between states ΨI and ΨJ is calculated using the

Hellmann-Feynman theorem [5]

dIJ(R) =
hIJ

ωJ − ωI
,

where ωI and ωJ are TDDFT/TDA excitation energies and

hIJ ≡ 〈ΨI | Ĥ [R] |ΨJ〉

is the nonadiabatic coupling vector. In the TDDFT/TDA formalism, the excited state

wavefunction is a projection of the eigenfunctions of the electronic Hamiltonian Ĥ

onto the space of single excitations

|ΨI〉 =
∑
ia

XI
ai |Φa

i 〉 ,

where |Φa
i 〉 denotes a singly-excited determinant after promoting an electron from an

occupied orbital i to a virtual orbital a in the KS reference. The excitation amplitudes
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XI
ai = 〈ΨI |Φa

i 〉 are obtained by solving the following eigenvalue equation

AXI = ωIX
I ,

where A is a single excitation Hamiltonian which is Hermitian in the Tamm-Dancoff

approximation since the corresponding excitation and de-excitation amplitudes have

been uncoupled.

An appealing property of TDDFT/TDA is that the analytic expression for the

nonadiabatic coupling is similar to the excited state analytic gradient [12]

hIJ =
∑
ijab

XI
aiA

[R]
ai,bjX

J
bj =

∑
ijab

XI
ai

[
F

[R]
ab δij − F

[R]
ij δab + Π

[R]
ia,bj + Ω

[R]
ai,bj

]
XJ
bj , (10)

where F is the KS Fock matrix, Π is the two-electron integral tensor, and Ω de-

notes the response of the exchange-correlation Fock matrix after a perturbation in the

one-particle density matrix [8, 10]. Eq. 10 is a generalized Hellmann-Feynman-type

expression which one might assume is not valid because the wavefunctions employed

are not eigenfunctions of the electronic Hamiltonian; however, it has been shown in

Ref. 44 that the additional non-Hellmann-Feynman terms that arise after projecting

the eigenfunctions onto the space of single excitations renders the first-order deriva-

tive coupling dependent on overall translational motion which is obviously unphysical.

The procedure advised in Ref. 12 is to simply leave these additional non-Hellmann-

Feynman terms out of the expression for the nonadiabatic coupling which is justified

by the introduction of electronic translation factors into the electronic EOM [11].

Evaluating analytic nuclear gradients and nonadiabatic coupling vectors requires

building one- and two-particle density matrices. Constructing the required density

matrices allows the nonadiabatic coupling in Eq. 10 to be expressed in a compact

form

hIJ = PIJ ′

∆ ·H[R] + ΓIJ
′ ·Π[R] + WIJ ′ · S[R] + PIJ ′

∆ · F [R]
xc + TI† ·Ω[R] ·TJ , (11)

where H[R], S[R], and F [R]
xc denotes the Cartesian derivatives of the core Hamilto-
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nian, overlap, and exchange-correlation Fock integrals and Π[R] and Ω[R] denotes the

Cartesian two-electron and exchange-correlation response integral derivatives, respec-

tively. Expressions for the required density matrices and further derivations of the

components of hIJ are provided in Appendix A.

In a nonadiabatic dynamics simulation, evaluating Eq. 11 for multiple electronic

states at each time step can quickly become the dominant computational expense.

Q-Chem already contains efficient analytic gradient and nonadiabatic coupling rou-

tines that evaluate hIJ between any single pair of states [10, 12]. One approach, in

a multi-state protocol, would be to simply use this code to evaluate hIJ between all

combinations of pairs of the electronic states during a trajectory. Such an approach

(referred to as scheme I) involves re-calculating all integrals and integral derivatives

for each density matrix which is clearly not ideal as this amounts to the most computa-

tionally expensive step being needlessly repeated for each pair. An improved approach

would be to simply build all of the required density matrices up front and contract

them all simultaneously, thereby re-using already computed integrals and integral

derivatives. We have implemented this approach, referred to as scheme II, because it

leads to significant cost improvements as the most computationally expensive step (i.e.

evaluating integrals and integral derivatives) is performed once for a common set of

density matrices.

[Figure 1 about here.]

Timing results that illustrate the speedups possible when employing scheme II

are shown in Fig. 1. The molecular system used for the timing analysis was a series of

alkane molecules where the length was systematically increased. Eq. 11 was used to

compute the analytic nuclear gradients and nonadiabatic coupling vectors for the ten

lowest-energy singlet electronic states in each system (corresponding to 55 vectors in

total). The PBE density functional was employed for all calculations with a 6-31G∗

basis set. All timings were benchmarked on a single thread/core 3.6 GHz Intel Core i9

processor. As evident from Fig. 1, the savings after employing scheme II is significant

particularly when more than 300 basis functions are used (for 300 basis functions

scheme II takes approximately 15 minutes while scheme I takes approximately 1 hour).
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Fitting the timings to a quadratic polynomial reveals that, in general this factor of

approximately 4× speedup remains even when 600 basis functions are used. Further

analysis of the fit is provided in Appendix B.

2.3. State-Following and Conical Intersections

A precondition for electronic transitions between adiabatic electronic states is a non-

vanishing first-order derivative coupling. However, approaching symmetry-allowed con-

ical intersections and un-avoided crossings during a dynamics trajectory are also possi-

ble which can present a bookkeeping challenge when tracking and identifying adiabatic

states [45, 46]. Therefore, a protocol is required to ensure that the electronic wave-

function doesn’t instantaneously change character during a trajectory by allowing the

system to correctly pass through these allowed degeneracies. Furthermore, a protocol

is required that ensures the phase of the electronic wavefunction is consistent through-

out the trajectory, which, in turn, ensures that the first-order derivative couplings are

smooth functions of the nuclear DOF.

A simple approach, that is independent of the phase of the KS orbitals, is to as-

sign electronic states based on the difference between their attachment and detachment

density matrices at subsequent time steps [47]. For the multi-state tracking protocol

employed here, an approximate overlap matrix is constructed from the similarity met-

ric

MIJ =


1−

∥∥∥∥∆AIJ

∥∥∥∥ , if

∥∥∥∥∆DIJ

∥∥∥∥ ≤ ∥∥∥∥∆AIJ

∥∥∥∥
1−

∥∥∥∥∆DIJ

∥∥∥∥ , otherwise,

where ∆AIJ = AI
t+1 −AJ

t is the difference between the attachment density for state

I at time step t + 1 and the attachment density for state J at time step t. Similarly,

∆DIJ = DI
t+1 −DJ

t is the difference between the detachment density for state I at

time step t+ 1 and the detachment density for state J at time step t and
∥∥∥·∥∥∥ denotes

the spectral norm.

The matrix element MIJ is an approximate electronic state overlap and in most
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cases is sufficient for state tracking. However, as a result of this matrix being con-

structed from differing electronic basis sets at consecutive time steps, this matrix

should be projected onto a common basis. This is accomplished by taking the singular

value decomposition of MIJ

M = U ·Σ ·VT ,

where U are the left singular vectors which map the electronic basis at t + 1 onto a

common basis, Σ are the singular values of M, and VT are the right singular vectors

which map the electronic basis at time t onto the common basis. With the singular

vectors in hand, constructing the nearest orthogonal matrix representation [48, 49] to

this approximate overlap matrix

Q = U ·VT ,

defines an orthogonalized similarity metric. Assigning state character to specific adi-

abatic states is done with a “Min-Cost” assignment algorithm that permutes the el-

ements of Q until the trace is maximized [50, 51]. Once the trace is maximized, the

energies and corresponding amplitudes are swapped according to the unique set of

indices that resulted in the maximum trace. A consistent overall phase for the am-

plitudes is enforced directly from the overlap, at time t and at t + 1, between the

transition density matrices (see Eq. A1).

3. Model Systems

The simulations of nonadiabatically-mediated molecular rearrangements presented

here (proton transfer and ring-opening) are intended as illustrative examples of mod-

eling small molecular systems with the methodologies presented in this work. The

modeling of the treated relaxation pathways is rigorous and accurate at the level of

theory presented here but there are some relevant relaxation pathways that, for various

reasons, have not been included in these simulations. For example, one such pathway
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for both malonaldehyde and selenophene is nonradiative decay from the optically-dark

S1 electronic state to the ground state which is known to occur on time scales greater

than 50 fs [52, 53]. Nonradiative decay pathways to the ground state have not been

included here because, in such cases, the ground electronic state is multi-reference

and TDDFT/TDA is known to incorrectly predict topologies of the resulting conical

intersections [54]. Likewise, the simulations presented here do not include spin-orbit

coupling which is known to be physically relevant in both systems [53, 55]. Neverthe-

less, these examples constitute important demonstrative examples of the SQC/MM

methodology and the new implementation in Q-Chem.

3.1. Excited-State Hydrogen Transfer in Malonaldehyde

Malonaldehyde is a simple prototypical example of excited-state hydrogen transfer

with many theoretical studies analyzing and identifying the complex interconversion

and intersystem crossing pathways [56, 57]. Geometrically, malonaldehyde favors a

closed ring structure where an intramolecular hydrogen bond is formed between neigh-

boring carbonyl groups. While a substantial barrier for hydrogen transfer is evident

on the S0 and the optically-forbidden S1(nπ∗) and S3(nπ∗) potential energy surfaces,

hydrogen transfer on the optically-bright S2(ππ∗) state is believed to be barrier-less

where the bonding hydrogen favors an equidistant configuration between the two oxy-

gen terminals [52, 58].

Simulating the ultrafast interconversion efficiency after photoexcitation to the S2

state, i.e. for t < 50 fs, is well suited for TDDFT/TDA since conical intersections

with the ground and triplet electronic states aren’t yet accessible and the population

transfers quite rapidly to the S1 state. In the longer-time regime (i.e. t > 50 fs),

alternate pathways to the ground and low-lying triplet states emerge after substantial

population has transferred into the S1 state. Identifying the structural rearrangements

necessary to activate these relaxation pathways have led to some debate including a

proposed three-state conical intersection [52, 59, 60]. Recently, List et al. combined

both experiments with theory to identify and assign these relaxation pathways using

molecular dynamics and x-ray absorption measurements [55].

In the current work, a treatment of malonaldehyde’s short-time S2 relaxation
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pathway is presented based on Ehrenfest, SQC/MM, and fewest-switches surface hop-

ing (FSSH) trajectories in the gas phase, with a particular focus on illustrating the

mechanics of the SQC/MM methodology and new Q-Chem implementation. For all

simulations, trajectories are initialized by sampling nuclear positions and momenta

directly from a 0K ground-state harmonic oscillator Wigner distribution, with the

electronic degrees of freedom initialized as described above for the Meyer-Miller meth-

ods. The electronic degrees of freedom for the FSSH trajectories were initialized on

S2 with integer actions in exactly the same way as the Ehrenfest trajectories. The

reduced masses and harmonic frequencies used to construct the Wigner distribution

were calculated from the minimum energy geometry on the ground electronic state

potential energy surface. The PBE0 density functional was employed with the 6-31G∗

basis set. The Wigner sampled positions and momenta were allowed to propagate via

Meyer-Miller and FSSH dynamics on the three coupled potential energy surfaces: S3,

S2, and S1 with a 0.24 fs time step for t = 60 fs. The gamma-adjustment protocol was

employed for the SQC/MM trajectories.

[Figure 2 about here.]

Mapping the nonadiabatic dynamics at each time step onto the adiabatic basis

states was distinct for malonaldehyde since the initially populated S2 state, assuming

Franck-Condon vertical excitation after sampling the Wigner distribution, is energet-

ically well separated from both the S1 and S3 states. To illustrate this, Fig. 2 shows

the energy differences in the Franck-Condon region between the S2-S1 and S3-S2 elec-

tronic states which are on average ≈ 1.5 eV suggesting that the initially populated S2

state is constructed of mainly ππ∗ character.

[Figure 3 about here.]

The primary orbital contributions for the two most active states (S2 and S1)

are shown in Fig. 3(a). The highest-occupied KS orbital (HOKS) is comprised of out-

of-plane π-type orbitals on the acceptor and donor oxygen atoms with a π bonding

orbital on the carbon backbone. The lowest-unoccupied KS orbital (LUKS) combines

similar out-of-plane π-type orbitals on the acceptor and donor oxygen atoms with a π
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anti-bonding orbital on the carbon backbone. The HOKS-1 orbital is an anti-bonding

σ-type orbitals on the oxygen atoms. The S2 and S1 states are comprised primarily of

excitations from the HOKS and HOKS-1 orbitals to the LUKS, respectively.

The population dynamics are shown in Fig. 3(b) and Fig. 3(c). All three methods,

Ehrenfest, SQC/MM, and FSSH predict a similar decay out of S2 with SQC/MM pre-

dicting slightly more population transfer to the S1 state compared with the FSSH and

Ehrenfest predictions. Ehrenfest predicts a similar population transfer to SQC/MM

up to t = 20 fs then the most significant deviations between all three methods occurs

between t = 20 and t = 40 fs. After t = 40 fs, Ehrenfest predictions of the population

transfer out of S2 are closer to the FSSH results. Over the course of the trajectories,

less than 10% of the population transfers to the S3 state with SQC/MM predicting

slightly more population transfer than Ehrenfest or FSSH.

[Figure 4 about here.]

For reference and comparison with Ref. 52, the donor minus acceptor hydrogen

bond length (DH-AH) was calculated at stationary points on the potential energy

surfaces and monitored during the MM dynamics, i.e. those initialized with the SQC

procedure (see Fig. 4(a)). On the S0 potential energy surface the minimized (DH-AH)

bond length is −0.648 Å. The DH-AH distance is significantly lengthened, suggesting

localization on one of the terminals, on the S1 potential energy surface (±1.013 Å). On

the S2 potential energy surface, the hydrogen is equidistant between the two oxygen

atoms and is free to shuffle between donor and acceptor. The degree of hydrogen

transfer during the dynamics is substantial, as shown in Fig. 4(b), where the hydrogen

shuffles back and forth rapidly from t = 10 to t = 20 fs. Once substantial population

has transferred into the S1 state (at t > 20 fs), the hydrogen atom begins localization

on either of the oxygen terminals as evidenced by density depletion near DH-AH= 0 Å.

The simulations of the S2 relaxation pathways in malonaldehyde presented here

should serve as a guide when using the Ehrenfest or SQC/MM methods in Q-Chem.

An interesting result, in addition to the significant and rapid population transfer that

occurs from the S2 to the S1 state, is the dispersion of DH-AH bond lengths throughout

the SQC/MM simulations. Since an effective potential forms between t = 40 and t = 60

15



fs, i.e. a weighted average of S2 and S1 with significant S2 character, the difference

bond length rarely reaches the optimized value of DH-AH= ±1.013 Å on the S1 surface

and and is more probable between ±0.75 Å. This is not surprising considering that by

t = 60 fs the occupation-weighted potential has approximately 60% S1 character (as

shown in Fig. 3(b)) and there is sufficient DH-AH density near approximately 60% of

the optimal value.

3.2. Ring-Opening Dynamics of Selenophene

Heterocyclic compounds are important building blocks for many modern technolo-

gies, from biomedical applications [61, 62] to electronic devices [63–65]; and various

properties of these compounds can be explored in the gas phase where a detailed,

atomistic treatment is feasible with quasi-classical molecular dynamics methods [66–

70]. Typically, these species exhibit optically-bright ππ∗ states which are short lived

and involve a competing series of internal conversion pathways to nearby ππ∗ and

πσ∗ states that promote both ring-puckered and ring-opened configurations, respec-

tively. Additional competing pathways emerge in ring-opened configurations, i.e. after

sufficient energy has transferred into πσ∗ configurations, as these systems are known

to undergo intersystem crossing to nearby triplet states and nonradiative decay to

the ground electronic state [71, 72]. Of the heterocyclic compounds, five-membered

chalcogen containing ring systems have been extensively studied using nonadiabatic

dynamics methods and, in such systems, this series of competing pathways between

ring-opened and ring-puckered configurations is particularly evident [73–82].

[Figure 5 about here.]

Selenophene (in the gas phase) provides an illustrative example of these types of

competing electronically nonadiabatic dynamics. A simplified schematic, after pho-

toexcitation to the optically-bright singlet A1(π2π
∗) electronic state, is shown in

Fig. 5(a). The first excitation pathway consists of either staying on the A1 state or

undergoing internal conversion to the singlet B1(π1π
∗) state resulting in a distortion

of the planar geometry and ring puckering. The second pathway consists of undergoing

internal conversion to either the singlet B2(π1σ
∗) or the singlet A2(π2σ

∗) state. Once
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sufficient population has transferred into one of these πσ∗ states, ring opening can

occur. In ring opened configurations, additional pathways emerge which result in ei-

ther ring closing after decay back to the singlet ground electronic state or intersystem

crossing to low-lying triplet states.

In order to elucidate the competing pathways in selenophene, excitation energy

differences were calculated across the standard hierarchy of density functionals with

each energy difference referenced from the optimized C2v geometry with the 6-311G∗∗

basis set (see Fig. 5(b)). For comparison, the results from the EOM-EE-CCSD/aug-cc-

pVTZ level are shown in blue. Using the EOM-EE-CCSD differences as a benchmark,

only range-separated density functionals (RSH-GGA) give comparable results where

the closest energy differences are predicted by the LRC-ωPBE and ωB97X functionals.

Generalized gradient approximations and their global hybrid variants (GGA and GH-

GGA) systematically overestimate the energy differences in comparison. Since the

LRC-ωPBE/6-311G∗∗ level has the closest energy difference when compared to the

benchmark, this functional and basis set was chosen for all simulations.

The electronically nonadiabatic dynamics of selenophene were simulated by ini-

tially sampling 200 nuclear positions and momenta directly from a 298K ground-state

harmonic oscillator Wigner distribution. The four lowest energy electronic states were

included in the simulations which, as discussed below, have mixed ππ∗-πσ∗ character

due to out-of-plane distortions coupling together π∗ and σ∗ orbitals (shown in 6(a))

in the Franck-Condon region. The electronic states (S1, S2, S3, and S4) were initially

assigned to the C2v reference states (A1, A2, B1, and B2) described above according

to their maximum overlap and these characters were monitored during the trajectories

as defined by the multi-state tracking protocol. After Wigner sampling nuclear posi-

tions and momenta and assigning the corresponding electronic states, the electronic

oscillator variables were initialized via the SQC protocol with the S2 state initially pop-

ulated, i.e. the state that overlapped most with the optically-bright A1(π2π
∗) state.

The coupled nuclear and electronic DOF were allowed to propagate via Meyer-Miller

dynamics on the potential energy surfaces with a 0.24 fs time step for 80 fs. As with

malonaldehyde, the γ-adjustment protocol was employed in the initial SQC sampling

protocol.
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[Figure 6 about here.]

The primary orbital contributions to the electronic transitions are shown in

Fig. 6(a). The a2 HOKS-1 orbital is a bonding π orbital on the carbon backbone

while the b2 HOKS orbital is a combination of a bonding π-type orbital on the carbon

backbone with a π orbital on the selenium. In the valence space, the b2 LUKS orbital

has the same bonding π structure as the HOKS orbital but is anti-bonding with the

neighboring carbon atoms while the LUKS+1 orbital is a combination of anti-bonding

σ-type orbitals on both the selenium atom and the carbon ring. The optically-bright

A1(π2π
∗) and allowed, but dark, B1(π1π

∗) electronic states are an excitation from the

HOKS and HOKS-1 orbitals to the LUKS orbital, respectively. Similarly, the optically-

forbidden A2(π2σ
∗) and allowed, but dark B2(πσ∗) electronic states are an excitation

from the HOKS and HOKS-1 orbitals to the LUKS+1 orbital, respectively.

As shown in Fig. 6, the population dynamics depend significantly on the character

of the initially populated electronic state. When the initial geometries are Wigner

sampled (see Fig. 6(b)), the majority of population transfers between the S2 and

S1 states before t = 10 fs. After approximately 60% of the initial population has

transferred into S1, the exchange abruptly stops and the populations are maintained

for the remainder of the dynamics—although some population (less than 10%) does

transfer into the S4 state. The S3 electronic state doesn’t acquire any substantial

population on the time scales simulated. The ceasing of this abrupt exchange after 10

fs is surprising, and as an additional experiment, designed to gauge the effect of exciting

into a state of mixed character (as discussed above), 100 trajectories were initialized

with a single value of nuclear coordinates (precisely the C2v equilibrium geometry)

with momenta sampled from a 298K Boltzmann distribution. Though there does not

appear to be an obvious justification for this, the idea was to explore the population

dynamics that result from starting in the A1 electronic state which has pure π2π
∗

character. As shown in Fig. 6(c), when the dynamics are initialized in this way more

than 90% of the population transfers directly to the A2 state and neither the B2 or

B1 states acquire any substantial population.

[Figure 7 about here.]
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When referenced from the symmetric C2v geometry, vibronic predictions from the

nonadiabatic dynamics follow a predictable trend in that πσ∗ states (A2, B2) result

in ring opened configurations and ππ∗ states (A1, B1) result in ring puckered config-

urations. However, when the initial state is mixed, as is the case after sampling the

Wigner distribution, the vibronic pathways are mediated by the amount of ππ∗ or

πσ∗ character that is present on the effective potential energy surface. At stationary

points on the adiabatic potential energy surfaces S0 and S2, the selenophene ring is

closed as shown in Fig. 7(a). The stationary point on the S1 potential energy sur-

face is ring opened which corresponds to an optimized difference bond length, defined

as the Max-Min bond lengths between selenium and the neighboring carbon atoms,

of 0.776Å. The ring opening dynamics are shown in Fig. 7(b) where this change in

the Max-Min difference bond length was monitored and binned across the Wigner

sampled trajectories, i.e. those corresponding to the population dynamics shown in

Fig. 6(b). Clearly, by t = 30 fs most of the trajectories resulted in ring opening with

most of trajectories after t = 50 fs predicting difference bond lengths greater than

the optimized value on the S1 potential energy surface. The majority of trajectories

ring open (≈ 85%) which is seemingly contradictory to the predicted population dy-

namics shown in Fig. 6(b) where only approximately 60% of the population transfers

from the S2 to the S1 state. This evident contradiction can be understood as resulting

from a substantial number of trajectories initially excited into S2 having enough πσ∗

character such that their electronic configuration does not prevent ring opening. For

comparison, 96% of the trajectories that were initialized to from the C2v equilibrium

geometry, i.e. those corresponding to the population dynamics in Fig. 6(c), underwent

ring opening.

[Table 1 about here.]

A potentially concerning aspect of the simulations of selenophene are the num-

ber of Wigner sampled trajectories that cross the Coulson-Fischer (C-F) point [83]

as shown in Table 1. By t = 30 fs, 17% of the trajectories crossed the C-F point

with nearly 88% crossing by t = 80 fs. Since the trajectories were simulated using a

restricted formalism, crossing the C-F point often results in an artificial increase of
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the potential energy as the Se-C ring is broken. Performing the simulations with an

unrestricted KS determinant would seemingly correct for this issue as spin symmetry

breaking would lower the potential energy as the ring is broken. However, unrestricted

KS orbitals have been shown to result in nonphysical potential energy surfaces beyond

the C-F point [84]. In the event however that TDDFT/TDA is employed to simply

predict whether ring opening will occur or not, crossing the C-F point during a dynam-

ics trajectory is not too concerning since the C-F point is crossed on the S1 potential

energy surface which is repulsive along the bond-breaking coordinate.

4. Conclusions

The symmetric quasi-classical model for quantizing classical Meyer-Miller vibronic

dynamics is an efficient, and often quite accurate framework for performing ab inito

molecular dynamics for electronically nonadiabatic processes, such as vibrational-DOF

enhanced electronic energy transfer dynamics and the role that nonadiabatic energy

transfer has on geometric and other properties. Here, what has been developed for gen-

eral use is an implementation of the SQC/MM model using “on-the-fly” TDDFT/TDA

within the widely available Q-Chem quantum chemistry software package, including

the efficient implementation of new algorithms that improve the compute cost when

evaluating analytic nuclear gradients and first-order derivative coupling vectors. In

particular, new digestion routines were proposed that contract the full set of density

matrices with a common set of integrals and integral derivatives which were shown to

speedup the calculations by a factor of four compared with the brute force method.

The efficiency gains that were achieved as a result of these new algorithms should

aid in simulating realistic time-scales of nonadiabatic dynamics in moderately-sized

molecular systems.

As an illustrative example of this new implementation, the excited-state hydrogen

transfer dynamics of malonaldehyde were analyzed. The simulations presented here

suggest that when malonaldehyde is photoexcited to the S2 state, nonradiative decay

occurs rapidly to the nearby S1 state where more than 50% of the population is

transferred before t = 50 fs. In the intermediate regime (t < 50 fs), the hydrogen atom,
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which bonds together the ring structure, shuffles rapidly back and forth between the

donor and acceptor oxygen terminals. Once sufficient population has transferred into

the S1 state however, the hydrogen atom mainly localizes on either of the two oxygen

terminals. These simulations present a computationally simple example of the accuracy

of TDDFT/TDA in combination with the SQC/MM approach when compared with

other comparable nonadiabatic dynamics methods.

The ring-opening dynamics of selenophene were also investigated which posed

some challenges for TDDFT/TDA due to the Se-C bond breaking after crossing the C-

F point. The simulations predict that after photoexcitation to the S2 state population

transfers very rapidly to the S1 state with more than 60% transferring before t =

10 fs. After approximately 20 fs, either by sufficient population accruing in the S1

state or the initialized S2 state having sufficient πσ∗ character, the Se-C bond breaks

resulting in ring opening. Making vibronic predictions, i.e identifying specific electronic

rearrangements and configurations that are directly responsible for ring opening, was

challenging in the case of selenophene as a result of mixing between the π∗ and σ∗

orbitals near the Franck-Condon region.

A serious limitation when using TDDFT/TDA with nonadiabatic dynamics

methods is the incorrect topology predictions of conical intersections between ground

and excited electronic states. While the malonaldehyde and selenophene simulations

presented here predicted the population dynamics between excited electronic states

only, these systems are known to undergo nonradiative decay to the ground state

which is a physically relevant pathway that was neglected. Some electronic structure

approaches, such as spin-flip variants of TDDFT/TDA [12, 85–88], have been devel-

oped already that address the challenges when calculating first-order derivative cou-

pling vectors between ground and excited electronic states. Efficiently implementing

these approaches in the framework of SQC/MM will be the result of future work.
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Appendix A. Density Matrix Derivations

The matrix elements of A are the response of the KS Fock matrix (F) to a perturbation

in the one-particle density matrix (P) [8, 10]. The matrix elements are

Aai,bj =
∂Fai
∂P bj

= (εa − εi)δabδij + Πai,bj + Ωai,bj ,

which include the energies of the occupied and virtual KS orbitals, the two-electron

integral tensor (Π), with elements Πai,bj = (ia|jb)−CHF (ij|ab) where CHF is a scalar

denoting the percent Hartree-Fock exchange, and

Ωai,bj =
∂Fxc,ai
∂P bj

,

which is the response of the exchange-correlation Fock Matrix to a perturbation in the

one-particle density matrix. The exchange-correlation Fock matrix is the response of

the exchange correlation energy (Exc) to the same perturbation

Fxc,ai =
∂Exc
∂P ai

=

∫ ∑
ξ

∂fxc
∂ξ

∂ξ

∂P ai
dr,
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where {ξ} denotes a set of independent parameters defined in the exchange-correlation

functional (fxc) and which depend linearly on the one-particle density matrix.

The differentiation of these matrix elements are typically performed in the AO

basis and contracting the derivatives with relaxed (denoted by ’) one- and two-particle

density matrices is required when building the nonadiabatic coupling vector hIJ [12,

13]. The ground to excited state one-particle transition density matrix is

TI = CvX
IC†o, (A1)

where Co and Cv are rectangular matrices that contain the occupied and virtual blocks

of the KS orbital coefficient matrix C. The generalized difference density matrix (i.e.

when I = J , the ground to excited state difference density matrix is obtained) is

PIJ
∆ =

1

2
Cv(X

IXJ† + XJXI†)C†v −
1

2
Co(X

I†XJ + XJ†XI)C†o,

which depends explicitly on the occupied-occupied and virtual-virtual blocks of KS

orbital coefficient matrix. The relaxed generalized difference density matrix

PIJ ′

∆ = PIJ
∆ + PIJ

Z = PIJ
∆ + CvZ

IJC†o + CoZ
IJ†C†v, (A2)

is obtained after differentiating the KS orbital coefficients. This, in turn, requires

solving the coupled-perturbed self-consistent field (CPSCF) equations for a Z-vector

(ZIJ) between states I and J

(
EΘΘ
KS

)
ZIJ = LIJ (A3)

where Θ denotes the set of virtual-occupied orbital rotations and LIJ is a Lagrangian.

The components of the CPSCF equations are defined as

(
EΘΘ
KS

)
ZIJ ≡ C†vFCvZ

IJ − ZIJC†oFCo + C†v

[
(Π + Ω) ·PIJ

Z

]
Co
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where PIJ
Z is given in Eq. A2 and

LIJ ≡ C†v

[
(Π + Ω) ·PIJ

∆ + TI† ·Ξ ·TJ

]
Co−

1

2
C†v

[
(Π + Ω) ·TI†

]
CvX

J − 1

2
C†v

[
(Π + Ω) ·TJ†

]
CvX

I+

1

2
XJC†o

[
(Π + Ω) ·TI†

]
Co −

1

2
XIC†o

[
(Π + Ω) ·TJ†

]
Co,

which defines the Lagrangian. The solution to Eq. A3 requires contracting the two-

electron integrals and second-functional derivatives with the generalized difference

and transition density matrices. Additionally, the third functional derivative of the

exchange-correlation energy

Ξµν,λσ,κγ =
∂Ωµν,λσ

∂P κγ
,

is contracted with the transition density matrices of states I and J . With the cor-

responding Z-vector, the relaxed generalized difference density is constructed accord-

ing to Eq. A2 and this matrix is contracted with the core Hamiltonian (H[R]) and

exchange-correlation Fock (F [R]
xc ) integral derivatives when building the nonadiabatic

coupling vector.

Additionally, evaluation of the nonadiabatic coupling vector in Eq. 11 requires

contracting the two-particle (ΓIJ
′
) and energy-weighted (W IJ ′

) density matrices with

the two-electron (Π[R]) and overlap (S[R]) integral derivatives, respectively. These

matrices are defined accordingly as

ΓIJ
′

=

(
P⊗PIJ ′

∆

)
+

(
TI† ⊗TJ

)
(A4a)

WIJ ′
= −1

2
ΛIJ ′

CC† − 1

2
CC†ΛIJ ′† (A4b)
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where

ΛIJ ′
= PIJ ′

∆ · F + P

[
(Π + Ω) ·PIJ ′

∆ + TI† ·Ξ ·TJ

]
+

1

2
TI

[
(Π + Ω) ·TJ†

]
+

1

2
TJ

[
(Π + Ω) ·TI†

]
+

1

2
TI†
[
(Π + Ω) ·TJ

]
+

1

2
TJ†

[
(Π + Ω) ·TI

]
,

which are notably relaxed due to their dependence on the relaxed generalized difference

density matrix from Eq. A2.

Appendix B. Timing Analysis

The timings were analyzed by fitting the data to a simple quadratic polynomial

CPU-time(N) = aN2 + bN + c,

where N denotes the total number of basis functions. The fit parameters of the most

computationally expensive components of the nonadiabatic coupling are provided in

Table 2. Both the exchange-correlation (XC) and electron-electron (E-E) components

of the nonadiabatic coupling vector scale quadratically with the number of basis func-

tions. However, the quadratic prefactor corresponding to the exchange-correlation

term, after employing scheme II, is reduced by a factor of ≈ 10 compared with scheme

I. The leading prefactor for the electron-electron integral derivative contractions, which

is clearly the most computationally expensive step, is reduced by ≈ 2.5 after employing

scheme II.

[Table 2 about here.]

Timing illustrations for the speedups possible when employing scheme II are shown for

the the exchange-correlation (XC, Fig. 8(a)) and electron-electron (E-E, Fig. 8(b)) in-

tegral derivative contractions. Fitting the timings with a quadratic polynomial reveals

that a factor of ≈ 3 speedup for the electron-electron repulsion integral derivative con-

tractions is possible. The exchange-correlation integral derivative contractions result
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in a ≈ 10× speedup.

[Figure 8 about here.]
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[79] M. Stenrup and Å. Larson, Chem. Phys. 379 (1-3), 6–12 (2011).

[80] A. Prlj, B.F. Curchod and C. Corminboeuf, Phys. Chem. Chem. Phys. 17 (22), 14719–

14730 (2015).

[81] T. Schnappinger, P. Kölle, M. Marazzi, A. Monari, L. González and R. de Vivie-Riedle,
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Table 1. The trajectories that crossed the Coulson-Fischer point during the SQC/MM nonadiabatic dynamics

simulations of selenophene.

Time (t,fs) % traj. crossed C-F point < S2 >

0 0.00 0.000

10 0.00 0.000

20 0.00 0.000

30 16.8 0.077

40 54.1 0.312

50 66.9 0.461

60 75.6 0.604

70 85.5 0.673

80 88.4 0.743
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Table 2. Fit parameters for the exchange-correlation (XC) integral derivative contraction (solid lines in

Fig. 8(a)) and the electron-repulsion (E-E) integral derivative contraction (solid lines in Fig. 8(b)) components
of the analytic nuclear gradient and nonadiabatic coupling vector (corresponding to 8) with increasing alkane

chain length.

Component (hIJ) a× 105 b× 102 c× 101

XC (scheme I) 6.769 4.475 −18.830

XC (scheme II) 0.661 1.224 −4.489

E-E (scheme I) 26.14 −1.696 3.773

E-E (scheme II) 10.23 −1.389 4.397
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Figure 1. Timing benchmarks as a function of basis set (N) and increasing chain length (n) for a series of
alkane molecules. The timings reported are the full evaluation of the set of analytic nuclear gradient and first-

order derivative coupling vectors (55 in total). The ten lowest-energy singlet excited states of each system were

included. The red curve (scheme I) and the blue curve (scheme II) corresponds to a polynomial least-squares
fit.

32



#
 T

ra
je

c
to

ri
e

s

 Excitation Energy (eV)  

 S
2
(ππ*) - S

1
(nπ*)   

 S
3
(nπ*) - S

2
(ππ*)  

Figure 2. The binned energy differences between the S2(ππ∗) and S1(nπ∗) excitation energies (blue) and

the S3(nπ∗) and S2(ππ∗) excitation energies (red) in malonaldehyde. Approximately 400 initial positions were
sampled from a 0K ground-state harmonic oscillator Wigner distribution.
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Figure 3. (a) The top contributing KS orbital excitations of the S2(ππ∗) and S1(nπ∗) electronic states of

malonaldehyde. The population dynamics of the S2(ππ∗) electronic state (b) and the S1(nπ∗) and S3(nπ∗)

electronic states (c) simulated with the Ehrenfest (red, ≈ 200 trajectories), SQC/MM (blue, ≈ 400 trajectories
with 69% contributing), and FSSH (green, ≈ 200 trajectories) methods.
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malonaldehyde. The minimum difference between the donor-hydrogen (DH) and acceptor-hydrogen (AH) bond

lengths at each stationary point and for each electronic state is shown in parenthesis. (b) The time dependence
of the difference (DH-AH) bond lengths monitored during the SQC/MM trajectories.
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Figure 5. (a) A simplified schematic of the available nonadiabatic pathways to ring opening and ring puck-
ering in selenophene. (b) Energy differences across between the A1(π2π∗), A2(π2σ∗), and B2(π1σ∗) excitation
energies referenced from the C2v geometry on the ground electronic state for each method. The EOM-EE-CCSD
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Figure 6. (a) The top contributing KS orbitals of the excited electronic states of selenophene referenced from

the equilibrium geometry. (b) The SQC/MM population dynamics after sampling a 298K harmonic oscillator
Wigner distribution (≈ 200 trajectories with 80% contributing). (c) The SQC/MM population dynamics with

the positions initialized to the C2v geometry and the velocities sampled from a 298K Boltzmann distribution

(≈ 100 trajectories).
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(b) The difference between maximum and minimum selenium-carbon bond lengths monitored across the ≈ 200

Wigner-initialized SQC/MM trajectories.
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Figure 8. Timing data as a function of basis set size and increasing chain length for the the exchange-

correlation (XC) integral derivative contractions (a) and the electron-electron (E-E) repulsion integral deriva-
tive contractions (b). The red curves (scheme I) and the blue curves (scheme II) correspond to a polynomial

least-squares fit of the timings of each component.
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