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Fast In-Hand Slip Control on Unfeatured Objects
with Programmable Tactile Sensing

Yuri Gloumakov, Member, IEEE, Tae Myung Huh, Member, IEEE, and Hannah S. Stuart, Senior Member, IEEE

Abstract—Accurate dynamic object manipulation in a robotic
hand remains a difficult task, especially when frictional slip is
involved. Prior solutions involve extensive data collection to train
complex models to control the hand that do not necessarily
generalize to other slip circumstances. Our approach focuses
on direct slip sensing using a tactile sensor with a capacitive
array, coupled with a programmable system on a chip, capable of
mode switching and sampling rate adjustment. We characterize
the sensor’s capacity to sense slip features at higher speeds and
introduce a novel methodology for estimating motions. Low-level
sensor reprogramming that couples multiple taxels improves slip
avoidance and reaction time during rapid slip onset events. The
technology also tracks dominant surface vibration frequencies
resulting from stick-slip cycles, estimating speed and acceleration
of smooth flat surfaces. Using a parallel-jaw robotic gripper, we
demonstrate dynamic repositioning of objects lacking trackable
surface features within the hand. The goal of this investigation is
to support faster reasoning and reflexes for dynamic dexterous
robots that experience directional in-hand slip.

Index Terms—Force and tactile sensing, in-hand manipulation,
perception for grasping and manipulation.

I. INTRODUCTION

ROBOTIC within-hand manipulation [1] can significantly
enhance the capability of robots to execute tasks that

would otherwise be too difficult to accomplish, yet it continues
to face substantial challenges [2]. Enabling object reorientation
within the gripper, for instance, facilitates the repositioning
of items in constrained spaces where broad arm movements
are impractical. Achievements in this area have leveraged
controlled slippage [3], provided slip is not catastrophic and
object dynamics, such as velocity, can be reliably estimated.
Uncertainties in object properties that make it difficult to
predict in-hand slip, such as mass and friction, has led some
efforts to constrain the object to slip in simple and predictable
ways [4]. However, following predefined trajectories is not
always possible or preferable, and in dynamic within-hand
manipulation scenarios precise object models are often nec-
essary to predictably accomplish tasks [5]. Other efforts have
identified regions of the hand workspace where drops are
likely, both in robot [6] and human [7] manipulators, in an
effort to avoid those regions entirely.
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Fig. 1: High-speed in-hand repositioning facilitated by SlipTack, capable of
accurately estimating slipping object acceleration.

Tactile sensing can enable robots to detect incipient slip and
prevent object drops [8] and is one way to control frictional
slipping behaviors purposefully. However, without knowing
precise object properties, tracking object features (such as
edges), using external constraints, or relying on computer
vision, the only way left to estimate slipping motion is through
the dynamic friction interaction between the object and sensor.
By relying solely on the dynamic friction interaction, we
aim to develop generalizeable manipulation capabilities that
more closely resemble our own. It is our goal to control slip
using tactile sensing during especially agile, or fast, in-hand
manipulations for less structured tasks. For example, as seen
in Fig. 1, a parallel-jaw gripper estimates the motion of an
object as it slips at 7.0 m/s2 in the hand, then, via acceleration
integration, the object is automatically stopped after 25 cm of
travel.

In this work, we conduct slip sensing using a previously
developed capacitive, geometrically featured, low-cost tactile
sensor, whose parameters and function is described in de-
tail in [9], herein referred to as SlipTack (manufactured by
the authors). While prior work demonstrated its low-level
functions, especially the ability to discern slip directions on
featureless surfaces, these tests were intentionally performed at
robot speeds of ≤10 mm/s without estimating object velocity
or acceleration or rapid onset slip events. To improve the
practicality of the sensor and support agile manipulation, our
contributions are as follows: for the first time (1) we validate
that a model-based approach can sense object velocity up to
100 mm/s, (2) characterize object acceleration and demonstrate
dynamic in-hand object repositioning via integration, and (3)
highlight the benefits of sensing modularity for rapid slip
detection for suppression reflexes and object stabilization.
These demonstrations suggest principles for future sensors,
where the addition of tactile geometric features coupled with
modular sensor design enables switching to simpler, yet faster,
sensing modalities.
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A. Overview

We review the state of the art for in-hand slip sensing
(Section II), highlighting the challenges of handling smooth,
or unfeatured, objects quickly. We describe the capacitive
programmable SlipTack and the principles that govern the
tactile signal (Section III). Methodology for data collection,
slip speed and acceleration estimation, and dynamic manipula-
tion experiments are outlined (Section IV), followed by results
(Section V). We conclude with a discussion (Section VI) and
propose future work (Section VII).

II. RELATED WORK: IN-HAND SLIP SENSING

Agile slip sensing, quick relative motion detection and data
transmission, is imperative to observe dynamic manipulation
or avoid dropping objects. Tactile sensors optimized for trans-
mitting high spatial resolution touch data at low frequencies
(30-100 Hz)1 may not be well suited for these tasks. Designing
separate sensors for specific attributes, at the cost of greater
information resolution, enables higher transmission rates better
suited for reducing delay in high-frequency vibration detection
during frictional slip. For reference, human skin can detect
frequencies up to 400 Hz [10].

A. Inferring slip from high resolution data

Tactile sensing research often focuses on high-resolution
vision-based sensors like GelSight for detecting geometric
contact features [11]. GelSight has been applied to slip de-
tection [12] and object pose moderation during slip manip-
ulations [13]. However, finger cameras have limited sensing
rates (∼30 Hz), making them less suitable for fast slip onset
detection or dynamic manipulation compared to sensors using
faster-sampling transduction technologies like pressure [14] or
acceleration [15]. Proposed neuromorphic approaches aim to
address the sampling rate shortcomings [16]. Concerns with
vision-based sensors include bulk [17] and being limited to
sensing pressure distributions due to a simple uniform tactile
surface. In other words, it works best when there’s a trackable
geometric feature on the object in contact with the finger.
Despite attempts to enhance sensing resolution, even in non-
vision-based sensors, they continue to lack the capacity to
characterize the slip of smooth flat objects.

B. Slip characterization with high sensing rates

In prior research, an accelerometer embedded in a rubber
skin was found to distinguish low from high speeds of sliding
objects while attempting to detect object textures [18]. Recent
tactile sensors directly measure object slipping speed by timing
its edge passing over two known features on the sensor (e.g.
[19], [20]). In sensors with uniformly spaced geometrical
features, the dominant frequency in the signal’s spectrogram
has also been used to determine the rate of interaction with
each additional feature [21]. We propose that a similar ap-
proach could be used to identify stick-slip oscillations of tactile

1Sample transmission rate is typically lower than maximum detectable
transducer frequency. For example, a strain sensor can detect signals over
1 kHz, however the data transfer rate to the robot controller isn’t this high.

features, enabling the detection of slipping speed for objects
in flush contact with the sensor.

Slip speed has also been indirectly tracked using precise
dynamic models [22] or highly parametric models trained with
data that appears to generalize [23]. However, neither method
uses simple and predictable models to directly observe the
sliding interaction as we do here. Prior studies have utilized
geometric features to detect incipient slip by analyzing surface
vibrations [24] and distinguishing between slip occurring with
respect to the hand or the environment [25]. Directly detecting
object slipping speed has not been achieved for objects that
lack detectable features, such as planks or boxes.

C. Leveraging slip for object manipulation

In practice, dynamic manipulation necessitates object accel-
eration and deceleration, and incipient slip and speed tracking
alone may not be sufficient. Friction cones can estimate object
sliding and facilitate planning for in-hand object repositioning
[26]. When object properties are unknown, friction cones
can be also be used in conjunction with proprioception to
slide objects along a table [27]. Successful within-hand object
repositioning has been achieved when external cameras are
available [28] or when objects have well-defined geometries
trained with real-world [29] or simulated [30] object contacts.
These methods can fail when handling objects that are flush
with the sensor and occluded from vision.

When dealing with objects without well-defined geometries,
solely relying on tactile information to controllably regrasp an
object has only been accomplished with highly parametric pre-
trained models [23]. Therefore, our final goal is to demonstrate
that SlipTack can also estimate slip acceleration by sensing
the energetics of a slipping event. We showcase within-hand
object repositioning by effectively stopping a slipping object
at a desired position using a simple model, without relying on
external sensing.

III. PROGRAMMABLE SLIP TACTILE SENSOR

We use SlipTack (Fig. 2) to demonstrate for the first time
the principles proposed in Section I. The remainder of this
section presents models that inform sensing characterization.

Fig. 2: The surface is discretized to nine sensing clusters, each detecting
deflection of the features along the four cardinal directions. Sensing clusters
can be coupled in various configurations to focus the sensing on particular
interactions. Colors illustrate individual capacitive transducers that are elec-
trically coupled or decoupled to get different programmable configurations.
Attachment hooks assist in aligning and physically securing the sensor to
robotic fingers used in this work. Image adapted from [9].
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Fig. 3: Force diagram of a nib undergoing (a) a stick-slip interaction with an
object being pulled laterally and (b) an accelerating sheering motion due to
a dropping object.

A. Object slipping at steady-state speed

For this section we assume that a simple stick-slip friction
oscillator model [31] dominates the interaction at the interface
between the objects and the sensor surface. We model stick-
slip using normal load Fn, lateral spring stiffness kl, static
friction coefficient µs, kinetic friction coefficient µk (where
µk < µs), constant pulling speed v0, nib mass M , and relative
nib displacement u (Fig. 3a). The static friction keeps the nibs
in ‘stick’ phase while µsFn ≥ klu, where nib speed u̇ is equal
to object speed v0. Nibs begin to slip when u is large enough
to induce a spring force that overcomes the static friction
force, µsFn = klu. When the nibs begin to slip relative to
the object, i.e. ‘slip’ phase, we obtain the following equation
of nib motion and its solution:

Mü = µkFn − klu (1)

u = A sin(ω0(t− τ)) + µkFn/kl (2)

where natural frequency ω0 =
√
kl/M is a function of nib

geometry and material properties and amplitude A and phase
τ are determined by the initial conditions. The nibs will
continue to slip until relative velocity (u̇−v0) returns to zero,
where adhesion is regained and the ‘stick’ phase starts again.
Alternating between ‘stick’ and ‘slip’ results in a periodic
motion whose frequency increases with increasing v0 until
saturation [32], during which the period will resemble the
natural frequency. Frequency, f , is related to pull speed, v0,
as follows:

f = 1/(τstick + τslip) (3)

where τstick = (µsFn)/(klv0) and τslip = πw0/2 correspond
to the time the sensor is in the stick and slip phases, respec-
tively. Stick-slip frequency will saturate at lower v0 with nibs
that have a higher natural frequency or with materials that
exhibit a smaller difference between the static and kinetic
friction coefficients.

B. Object acceleration

By adjusting grip force and leveraging gravity for accelera-
tion, a quick reposition can be achieved with minimal move-
ment. Downward object acceleration, a, may be estimated by

Fig. 4: (a) A custom clamp is affixed to the table that is set to maintain a
constant maximum distance between the object and the tactile sensor. A cutout
is included at the top of the clamp so that the interaction can be visually
observed. Vertical and horizontal rollers ensure that the objects slide along a
straight line. (b) Mean (displayed) and interquartile ranges of measured static
and kinetic friction coefficients of the three tested objects.

experimentally calibrating sensor values to measure axial nib
displacement, x− x0 (akin to tracking Fn) (Fig. 3b):

a = g − 1

mt
µkka(x− x0) (4)

where g is the gravitational constant, mt is the total mass
of the object and attached weight, and ka is the axial spring
stiffness of the surface. Acceleration may also be estimated
by tracking the slope of the frequency response: if ft (from
Equation (3)) corresponds to speed at time t, then,

a = (ft2 − ft1)/(t2 − t1) (5)

Both approaches aught to closely estimate acceleration. To
minimize the estimation time and enable a larger range of
regrasping positions, we use the calibrated model to perform
a dynamic regrasping demonstration in Section IV, where we
estimate (x− x0) using the sensed deflection.

C. Sensing modes and sampling rate

With limited bandwidth, sensors have to be pre-selected
with desired characteristics related to resolution and sensing
frequency. SlipTack is capable of altering its sensing modality
in real-time using Programmable System on Chip (PSoC)
architecture, leveraging the integrated analog multiplexers to
electrically connect multiple tactile sensing pixels, or taxels,
by the program. This flexibility enables us to sample at a lower
rate (individual mode, ∼30 Hz) with high spatial resolution or
at much higher rates (coupled mode, ∼2 kHz) for a partic-
ular direction of interaction by coupling various capacitive
elements to downsize the information packet (Fig. 2). For
example, the tactile features can be coupled to sense along
the four cardinal directions at ∼500 Hz when the interaction
event is linear or along clockwise direction at ∼1 kHz when
the event is expect to be rotational. In the majority of our
experiments, we utilized the fastest ∼1 kHz coupled mode for
linear motion to measure the largest range of slip vibration
frequencies.
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Fig. 5: (a) Side view of the parallel-jaw gripper and its components. (b) Top-
down view of the gripper.

IV. METHODS

Our goal is to experimentally test two potential SlipTack
capabilities: ability to detect the speed of a slipping unfeatured
object and estimate its acceleration. We establish a parametric
relationship between the signals captured by SlipTack and the
speed and acceleration of slipping objects.

A. Sensor hardware integration

In the speed trials, SlipTack was placed in a clasp that kept
a constant distance between the sliding object and the sensor’s
surface while ensuring that the two surfaces were flush. A pre-
cise pull motion was made possible using a UR-16 robot arm
(Universal Robots, Denmark) with a customized end-effector
and a string (Fig. 4a). For acceleration trials, two sensors (only
one is used for sensing) were placed on a custom-built 1-
DOF parallel-jaw gripper made of 0.125” aluminum and 3D-
printed PLA fingers (Fig. 5) driven by a Dynamixel MX-28R
motor (ROBOTIS, South Korea). Grasp aperture resolution of
this gripper was limited by motor specifications and finger
geometry, and was discretized according to L cos θm, where
θm is the motor angle and L is the length of the finger in the
parallel mechanism. Since the resolution of θm = 0.09°, the
resolution of the gripper fingertip in the region of interest was
approximately 0.3 mm.

B. Test objects

The study used objects laser-cut from cherry, basswood, and
acrylic. The selection aimed to represent variations within and
between material categories, such as wood-to-wood and wood-
to-acrylic, rather than being exhaustive. Static and kinetic
friction coefficients were obtained by mounting the sensor
on a reference Axis80-M8 force/torque sensor (ATI Industrial
Automation, USA) and dragging it across the different surfaces
using the UR-16 arm. The results in Fig. 4b represent 15
trials each; 5 trials at 2, 3, and 4 N of normal force with
a displacement of 4 cm horizontally over the course of 1 s.
For the speed and acceleration trials, object dimensions were
0.32×4×20 cm and 0.32×6×50 cm, respectively. Different
sizes were used to suit different test setups; a longer object
for acceleration trials provided more time before it escaped
the grasp. A string is attached to the bottom of each object
for the robot arm to pull during speed trials or add weight for
additional downward force in acceleration trials.

Fig. 6: Example velocity trial. Sensor amplitude can be seen going through
push and pull phases. Acceleration and deceleration are omitted when splicing
the steady state pull regions (highlighted).

C. Speed trials and analysis

Objects were pulled at 10-100 mm/s in increments of 5 mm/s
across the sensor. The arm accelerated to a desired speed while
the string was slack. The end-effector was then used to push
(i.e. reset) the objects back into place. Cycling between pulling
and pushing lasted for 2 minutes.

The sensor data collected during speed trials was first
segmented to remove periods of acceleration, deceleration,
and object resetting, as illustrated in Fig. 6. Each pull cycle
was then converted to the frequency spectrum using discrete
Fourier transform with a Hamming window filter. The average
of 300-frame moving window was subtracted from the data to
eliminate low frequencies associated with gross displacement.
For each pull cycle, a frequency spectrum was obtained, and
the average dominant frequency is acquired using a bootstrap
calculation. This calculation considers different ways of ob-
taining the proxy dominant frequency, with the number of
peaks used ranging from 1 to 10. The final dominant frequency
(fd) is obtained by taking the mean of the individual dominant
frequencies (fi) across different frequency ranges:

fi(fmax) = (

10∑
j=1

i∑
k=1

p(k, fmax)

j
)/10 (6)

fd = (

40∑
fmax=15

fi)/26 (7)

where p refers to a sorted list of peaks based on amplitude.
The frequency spectrum was limited to fmax, ranging in 15-
40 Hz to exclude harmonic frequencies but large enough to
include relevant frequency signals; stick-slip oscillations are
expected to be within that range [9].

D. Acceleration trials and analysis

In our robotic gripper, the desired inter-finger gap distance
d was selected within the bounds of [dmin,dmax]. dmin was
designated to prevent device damage while preventing object
slipping, while dmax was the largest distance where the fingers
are still applying a friction force Ff preventing object free-fall.
During data collection and manipulation trials, d was initially
set to dmin to preload the object in the fingers. By varying
d within the range [d0,dmax] we applied different amounts
of normal force Fn, and thus induced different downward
accelerations. d0 is the position value where the resulting Ff is
equal to the force due to gravity Fg , corresponding to an object
slipping at constant speed. Due to different friction properties
between objects, this resulted in slightly different grasping
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ranges. Each position d was repeated 5 times. Ground truth
data was collected using Impulse X2E Motion Capture system
(PhaseSpace, San Leandro CA, USA), recording at 240 Hz
with <1mm precision. An LED was attached to the base of
the basswood object increasing its weight by 15 g; the weight
is due to the LED cluster and transmitter that had to also be
attached to keep the object freestanding. Along with an added
200 g weight, the total object weight was 283 g.

The object is set up vertically, with the robot fingers
pinching the bottom of the object (Fig. 1), with the weight
stationary prior to release. Non-idealities causing horizontal
motion during slip are ignored; horizontal deflections were on
average 11% of the total vertical deflection. Object position
data was first filtered using a 10-frame moving average before
calculating the frame-by-frame acceleration. Due to the non-
linear and unpredictable interaction of the object and sensor at
the instance of release, a representative object acceleration was
obtained after 0.06 s of its release up to 15 cm of the object’s
travel.

Over the same period, the sensor output a signal corre-
sponding to the linear deflection along the sliding direction.
Signal features included the gross and net amplitude change of
the normal and tangential deflection as well as characteristics
of the signal in the frequency domain. The frequencies were
obtained by converting a moving 300-frame window using
a Fourier transform, and the time-evolving spectrogram was
characterized to a single value in a variety of exploratory
ways. At each time step, the frequency bins were summarized
as one of the following: maximum frequency, weighted or
un-weighted mean of the top 5 frequencies, mean frequency
amplitude, or maximum frequency amplitude. As the signal
evolved over time, the signal was simplified by a mean,
maximum, or slope to yield a single representative value. In
total, there were 10 signal interpretations, 1 that is related to
the gross deflection amplitude (G), and 9 obtained from the
frequency domain: mean-mean of the amplitude (MM), mean
of the peak amplitude (MP), weighted mean frequency (MF),
peak of the mean amplitude (PM), peak of the peak amplitude
(PP), peak frequency (PM), slope of the mean amplitude
(SM), slope of the peak amplitude (SP), and slope of the
mean frequency (SF). We then compare these features using
principal component analysis (PCA) and a biplot; exploratory
techniques that help identify patterns and relationships in
multivariate data.

E. Regrasping demonstration

We demonstrate two dynamic autonomous robotic behaviors
performed using SlipTack signals. The first leverages the esti-
mated acceleration regression model, obtained experimentally,
to dynamically reposition the basswood object. The objective
is to discover if the relationship between the sensor and
acceleration can be put to practical use in a real system and
evaluate its limitations.

We used the same gripper setup as in Fig. 5. The demonstra-
tion utilized a Python script that interpreted the sensor signals
over a 0.03 s period and determined gripper open duration to
achieve desired slip distance. Considering the 0.12 s nominal

Fig. 7: (a) Fixed guides used to replace the weight and objects in consistent
locations. (b) Example of a start and end object position within the robotic
hand during the lifting trials. Trials differed only in slip sensing modality.

motor response time, regrasping locations had to account
for inadvertent displacement during finger closure. Here, we
attempt to regrasp the object after 20, 25, and 30 cm of vertical
translation while varying the grasping force to induce different
accelerations. Each grasp force and desired displacement trial
was repeated five times. Motion capture was used to track
objects’ ground truth displacements solely to quantify the
model’s accuracy.

F. Slip arrest demonstration

The second demonstration explores our assumption and
aims to demonstrate that sensing modularity, and thus data
collection speed, enables meaningfully faster reactions to the
onset of slip, in particular when the interaction is known in
advance. As discussed in Section II, binary slip detection for
object arrest has been shown to be useful in prior work. In
Section III, we discuss how SlipTack’s sampling frequency
can be adjusted by coupling the sensing elements and reducing
the information resolution, yet until this point, we assume
throughout our experiments the fastest sampling rate at all
times. We now confirm this assumption using slip avoidance
trials at different sensing rates, in which SlipTack is placed on
one finger of a commercially available 1-DOF 2F-140 parallel-
jaw gripper (Robotiq, Quebec, Canada).

Torsional slip was induced by a sudden downward force on
one end of an object using a string and a weight, simulating
events such as snagging or non-uniform objects [33]. The
basswood object2 was placed horizontally on its edge using
a guide (Fig. 7) to ensure that it was grasped in the same
location (other end of the object) each time. The guide was
also used to precisely reset the location of the weight, such that
the direction of the downward force was consistent between
trials. The Robotiq gripper, on the UR-16 robot arm, first
grasped the object at one end. It then moved it to a location
such that the string at the other end was directly above the
attached weight. A desired finger opening distance d was
selected within the bounds of [dmin,dmax], however, unlike
in Section IV-D, dmax was set in the range where rotational
slipping can occur when the impulse occurs, while avoiding
being too large for translational slip [28].

2The object is now shorter (0.32×4×13 cm) to reduce inertial effects.
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Fig. 8: Dominant frequency, both experimental (crosses) and modeled (dashed
line), is plotted against the speed of the sliding object.

The arm was programmed to accelerate to 3 m/s before
the string became taught. The weight would then induce an
instantaneous downward force causing the object to slip. The
sensor’s signal was converted to the frequency domain, and
when torsional slip was detected, the gripper was commanded
to close in order to increase the normal force and arrest the
object. Slip detection was based on prior work that found the
effective frequency response to be ∼10 Hz [9]. The individual
and coupled modes were each tested over 30 trials. Reaction
time was quantified by object rotation. Aruco markers on the
gripper and object recorded rotational slip in degrees.

V. RESULTS

Speed estimation: The dominant sensor frequency, obtained
using Equation (7), is plotted against the object pull speed
(Fig. 8). The standard deviations indicate a substantial varia-
tion in the signal, however, a trend can nonetheless be observed
for two of the three tested objects. The prominent frequency
did not exhibit a consistent trend in the acrylic material, and
could be a nonlinear interaction due to adhesion between
the acrylic and the sensor’s silicone surface. Such factors
appear to pose a potential limitation of the stick-slip model
described in Section III-A. The dominant frequency did not
appear to saturate with increasing sliding speed for the cherry
and basswood materials, meaning that SlipTack is capable of
sensing higher slipping speeds for those materials. Theoretical
model is additionally included based on Equation (3) using the
sensor’s parameters.3

Acceleration estimation: An example trial is displayed in
(Fig. 9), where the sensor signal and the ground truth object
dynamics are displayed. Missing position data can be seen
near 2.5 s and occurs after the object leaves the gripper.

Variables related to acceleration (AM) and sensor data are
projected to the first two principle components, which are the
two that account for the most variation in the data (Fig. 10).
A biplot was then used to reduce the number of variables
and decrease sparsity. The analysis revealed that the variables
that most closely correlated with acceleration (AM) did not
include frequency slope (SF), but rather signals related to
amplitude (G, MM, MP, PM, and PP). Acceleration (AM)
is plotted against the signal’s gross deflection amplitude (G)
(Fig. 11) and the linear regression model (calibration) is then
used to estimate the acceleration of the slipping objects in the
following regrasping experiments. Future improvements may
enable the use of SF under more ideal conditions.

A weaker correlation between sensor signal and acceleration
was detected for the acrylic than for the other materials

3Individual nib mass M = 1.4e-5 kg and kl = 9.45 N/m.

Fig. 9: Example data obtained from a single drop trial. (a) Ground truth
position data (left y-axis) is obtained using motion capture. Sensor signal
(right y-axis) refers to the difference between the summed up/down capacitor
values. Vertical lines define the region that is used for relating acceleration
to sensor data. (b) Sensor signal in the range of interest is displayed in the
frequency domain. (c) Variation in acceleration (left y-axis) is due to a non-
linear interaction between the sensor and object. Mean power spectrum density
(right y-axis) is obtained by taking the mean amplitude of the frequency signal
in the 0-20Hz range.

Fig. 10: Biplot analysis of sensor features and motion capture data. (a) All
variables are included in the first model. (b) Highly similar features were
removed, improving sparsity.

(Fig. 11), but was stronger than the correlation between its
signal and speed. This is likely due to the use of gross nib
deflection to estimate acceleration, which was less dependent
on stick-slip interaction that was used to estimate speed.
Nonetheless, large variance remains, and it is not yet clear
how this would affect real-world manipulation accuracy.

Regrasping demonstration: Fig. 12a compares the actual
position achieved to the desired position. The demonstration
resulted in dynamic repositioning actions with an overall
accuracy error of 19.7% across all trials, which is within
the error range of even works using external cameras [28].
Despite the seemingly large variance, a one-way ANOVA
has determined that the desired position has a statistically
significant impact on the final position (p < 0.001). As seen
in Fig. 12b, the different gripper opening behaviors resulted
in a range of real object accelerations.4 Importantly, reposition
error only weakly correlated with the induced acceleration, i.e.
regrasping performance is acceleration invariant, suggesting
the variance is due to external factors such as errors in sensor

4Note that some of the trials had an estimated acceleration beyond the
expected 9.8 m/s2, which we attributed to ground truth sensing noise, and
contributed to the regrasping error. Similarly, we omitted data if the motion
capture system was erroneous or lost during these trials.
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Fig. 11: Comparing the observed ground truth mean acceleration (AM) with
the sensor’s gross deflection amplitude (G).

Fig. 12: (a) Results demonstrating the performance of the regrasping demon-
stration, where we varied the desired position. (b) Regrasp position error is
largely invariant with the induced acceleration. Two-way t-test: **p < 0.01,
***p < 0.001

manufacturing. This indicates that the gripper is autonomously
adapting it’s behavior effectively to the variability in grasping
force even as acceleration doubles.

Slip arrest demonstration: Reaction time was quantified by
object rotation. Due to a faster sampling rate (600 Hz vs.
60 Hz), the coupled mode was expected to detect slip 0.015 s
sooner than the individual mode, improving slip arrest by up
to ∼20°. In practice, coupling sensing channels prevented an
average of 10° of additional slip (Fig. 13). A paired-sample
t-test showed significant differences in slip detection between
the two modes (p < 0.001), with non-overlapping notches
indicating differing true medians with at least 95% confi-
dence. In the accompanying media attachment, we demonstrate
similar slip arrest performance differences using a box with
unknown weight.

VI. DISCUSSION

This study established correlations between sensor signal
and slipping object dynamics. Stick-slip oscillations correlated
with sliding speed for two of the three tested objects. The
interaction between acrylic and the sensor’s silicone surface
defied estimation using a simple friction model. Unaccounted
factors, such as viscous friction and inelastic deformation,
contributed to signal variance. We suspect that surfaces like
cardboard or paper [18] may exhibit similar behavior to the
wood materials in this study. To generalize this concept, there
appears to be a subset of surface types that are uniquely
positioned to relay stick-slip information when interacting
with SlipTack. This model could also be applied to other
geometrically featured sensors, albeit with variable sensing
accuracy depending on material selection.

We established linear relationships between sensor signals
and acceleration across the different signal interpretations,

Fig. 13: The notched box plots summarize the amount of rotations the objects
have undergone prior to slip arrest. ***p < 0.001

with certain frequency domain interpretations closely linked to
gross deflection amplitude. This is likely due to accelerating
nib deflections dominating any oscillating signal from stick-
slip friction. The frequency spectrum, requiring more sensing
time for acceleration interpretation than gross deflection, is
useful for a narrower range of object reposition locations;
the object would need to slip further in order to control it
accurately, and is why we proceeded to implemented gross
deflection in tracking acceleration in the manipulation tasks.
We will show in future work how acceleration in less aggres-
sive interactions may be detected using the changing frequency
signal over time, while also showing how this concept works
with other geometrically featured sensors.

For the dynamic within-hand manipulation demonstration,
we successfully regrasped the object at three locations 5 mm
apart with statistical significance. The lack of a significant
relationship between acceleration and error suggests that ac-
celeration was accounted for during the repositioning tasks.
This functionally meaningful outcome is notable given the
wide characterization variability observed in the acceleration
to signal correlation.

The slip avoidance demonstration emphasized the advan-
tages of adjustable sensing modes, showing that SlipTack
rates significantly impact reaction times and slip distances.
Dedicated sensing modes improve reaction time, particularly
in tasks with predictable dominant interactions, as seen in
this study where we anticipated specific motions based on
the experimental setup. This allowed us to measure linear
or rotational slip at the maximum frequency. In addition to
enabling faster sampling rates, coupling the capacitive array
using the integrated analog multiplexer also had the benefit of
acting as a low-pass filter.

A. Future Work

It is expected that new sensing modes may be needed to
optimize performance when handling other materials in more
complex ways, for example, when handling small or irregular
objects. In the future, we will characterize and showcase
regrasping with rotating objects, like executing a swing-up
motion (as in [30]).

A stiffer nib design could reduce signal noise but would
increase resonant and stick-slip frequencies, demanding higher
sampling rates to avoid aliasing. SlipTack, with a resonant
frequency of ∼10 Hz, can presently sample upward of 2 kHz in
the most simple sensing case, meaning that there is flexibility
to either decouple the taxels to sense more complex inter-
actions or have a stiffer surface to reduce contact interaction
noise. However, stiffer nibs might also reduce the displacement
of the conductive fabric layer, potentially lowering sensitivity.
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Modularity is even more important if looking to scale SlipTack
to larger surfaces, which may require using different capacitive
element sizes/patterns or multiple distributed sensing circuits,
without which sensing would be limited by sample rates.

After repeated testing, SlipTack’s surface showed wear,
introducing noise, and in the worst case, peeled off of the PCB,
necessitating the replacement of the entire sensor. While this
occurred after extensive sliding and impulse trials with various
frictional loads, future work could further ruggedize the skin.
The sensor was replaced after each trial block, exhibiting wear
from both speed and acceleration trials and peeling during the
slip reaction trials. Nevertheless, we expect the established
principles in this work to apply to other new sensor designs.

VII. CONCLUSION

When seeking to control fast in-hand slip maneuvers, es-
pecially on unfeatured objects, programmability of the tactile
sensing modality enables higher data rates and faster reflexes.
Specifically for SlipTack, speed and acceleration estimation is
a promising pathway for moving beyond binary slip detection
to slip control. Ultimately, similar dynamic tactile sensing
technologies will allow robots to more accurately operate at
higher speeds in unstructured tasks.
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