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Abstract 16 

The sea surface temperature (SST) contrast between the northern hemisphere (NH) and southern 17 

hemisphere (SH) influences the location of the intertropical convergence zone (ITCZ) and the 18 

intensity of the monsoon systems. This study examines the contributions of external forcing and 19 

unforced internal variability to the interhemispheric SST contrast in HadSST3 and ERSSTv5 20 

observations, and 10 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 21 

from 1881–2012. Using multimodel mean fingerprints, a significant influence of anthropogenic, 22 

but not natural, forcing is detected in the interhemispheric SST contrast, with the observed 23 

response larger than that of the model mean in ERSSTv5. The forced response consists of 24 

asymmetric NH–SH SST cooling from the mid 20th century to around 1980, followed by 25 

opposite NH–SH SST warming. The remaining best-estimate residual or unforced component is 26 

marked by NH–SH SST maxima in the 1930s and mid 1960s, and a rapid NH–SH SST decrease 27 

around 1970. Examination of decadal shifts in the observed interhemispheric SST contrast 28 

highlights the shift around 1970 as the most prominent from 1881–2012. Both NH and SH SST 29 

variability contributed to the shift, which appears not to be attributable to external forcings. Most 30 

models examined fail to capture such large-magnitude shifts in their control simulations, though 31 

some models with high interhemispheric SST variability are able to produce them. Large-32 

magnitude shifts produced by the control simulations feature disparate spatial SST patterns, 33 

some of which are consistent with changes typically associated with the Atlantic Meridional 34 

Overturning Circulation (AMOC).  35 
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1. Introduction 36 

The north–south interhemispheric surface temperature contrast is an important influence on 37 

the location of the intertropical convergence zone (ITCZ) and the strength of the African and 38 

Asian monsoons (Folland et al. 1986; Mantsis and Clement 2009; Chiang and Friedman 2012; 39 

Hwang et al. 2013; Sun et al. 2013; Schneider et al. 2014); as well as the extratropical circulation 40 

(Xue et al., 2018). Previous studies have identified the role of different forcings that have 41 

contributed to changes in the interhemispheric temperature contrast over the instrumental period 42 

(Drost and Karoly, 2012; Friedman et al., 2013). For combined land and ocean surface 43 

temperatures, stronger northern hemisphere (NH) than southern hemisphere (SH) warming is a 44 

robust transient climate response to greenhouse gas (GHG) forcing, largely due to the greater NH 45 

landmass extent and thus smaller thermal inertia (Stouffer et al. 1989; Xu and Ramanathan 46 

2012). Arctic amplification processes also contribute to greater transient NH warming (Serreze 47 

and Barry, 2011). In contrast, the transient warming in the Southern Ocean is limited by 48 

upwelling, the thermal isolation of Antarctica from the Antarctic Circumpolar Current, and the 49 

Southern Ocean meridional overturning circulation (Hutchinson et al., 2013; Marshall et al., 50 

2014; Armour et al., 2016). Northward heat transport by the Atlantic Meridional Overturning 51 

Circulation (AMOC) is the main cause of the mean positive NH–SH temperature contrast 52 

(Feulner et al., 2013; Kang et al., 2014), and a decreasing AMOC is projected to weaken the 53 

interhemispheric temperature contrast in moderate-emissions future climate projections (Feulner 54 

et al., 2013). 55 

Due to their sources mainly in the NH and their relatively short atmospheric residence times, 56 

anthropogenic aerosol emissions contribute to North Atlantic cooling and a decreased NH–SH 57 

interhemispheric temperature contrast (Kiehl and Briegleb 1993; Rotstayn and Lohmann 2002; 58 
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Chang et al. 2011; Allen et al. 2015; Chung and Soden 2017). Though the magnitude of mid-20th 59 

century aerosol forcing remains uncertain (Stevens, 2015; Kretzschmar et al., 2017; Booth et al., 60 

2018), historical climate model simulations suggest that the positive NH–SH surface temperature 61 

imbalance from GHG forcing overtook the aerosol-related NH–SH decrease around 1980 (Drost 62 

and Karoly, 2012; Friedman et al., 2013; Wilcox et al., 2013; Undorf et al., 2018), with 63 

uncertainty on exact timing due to internal variability and intermodal differences (Schurer et al., 64 

2018). This reflects North American and European clean air legislation in the 1970s and 65 

continued GHG emissions. Asian sulfate aerosol emissions have also steadily increased since the 66 

1950s, though present-day global emissions do not exceed 1970s estimates (Lamarque et al., 67 

2010; Hoesly et al., 2018). Asian and African black carbon aerosol emissions have also increased 68 

during this period; their overall radiative forcing is uncertain but estimated to be positive, 69 

spatially and less hemispherically asymmetric compared to sulfate (Bond et al., 2013; Boucher et 70 

al., 2013; Wang et al., 2016). Future anthropogenic aerosol declines are projected to expose even 71 

larger NH warming in the coming decades (Rotstayn et al. 2013; Rotstayn et al. 2015). Another 72 

interhemispheric forcing is stratospheric ozone depletion, which may have stalled SH high-73 

latitude warming (Marshall et al., 2014). 74 

Despite the above progress in physical understanding of the interhemispheric temperature 75 

contrast, key questions remain about the roles of forced and unforced interhemispheric 76 

temperature variability during the instrumental period. Notably, studies have identified a shift in 77 

the interhemispheric temperature difference from the late 1960s through the early 1970s, which 78 

had wide-ranging hydrological impacts particularly on Asian and West African monsoon rainfall 79 

(Baines and Folland, 2007; Dima and Lohmann, 2010; Thompson et al., 2010; Liu and Chiang, 80 

2012). Thompson et al. (2010) do not find any instrumental SST biases at the time of the shift, 81 
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and use an analytical adjustment methodology to show the drop was unrelated to El Niño / 82 

Southern Oscillation (ENSO) fluctuations, volcanic eruptions, or advection by wintertime 83 

atmospheric circulation. Due to the rapid timescale of the drop and association with a rapid 84 

freshening known as the Great Salinity Anomaly (Dickson et al., 1988), it has been proposed that 85 

the interhemispheric shift was caused by internal ocean variability, notably a shift in the AMOC 86 

(Dima and Lohmann, 2010; Thompson et al., 2010), possibly as part of a longer-term decline 87 

over the 20th century driven by Greenland and Arctic meltwater (Rahmstorf et al., 2015; Caesar 88 

et al., 2018). However, this period also coincides with strong sulfate aerosol forcing (Terray, 89 

2012; Friedman et al., 2013; Wilcox et al., 2013; Hodson et al., 2014; Allen et al., 2015). Since 90 

the magnitude of interhemispheric temperature shifts has not been explicitly quantified, it is 91 

difficult to express how unusual the 1970 shift was compared to earlier periods, or if climate 92 

models are able to produce comparable shifts. At the millennial timescale, there have been 93 

indications that climate models may underestimate interhemispheric temperature variability in 94 

paleoclimate reconstructions, through some of the discrepancies may be due to data uncertainties 95 

(Neukom et al., 2014, 2018). 96 

This study aims to characterize the decadal variability of the interhemispheric temperature 97 

contrast (focusing on SST only) in a quantitative framework so that the magnitude of the 1970 98 

shift and other changes can be evaluated more rigorously. We employ a regression-based climate 99 

change detection and attribution approach (Hegerl et al. 1997; Allen and Stott 2003) to extract 100 

the forced and unforced components of the interhemispheric SST contrast. We also examine NH 101 

and SH SST separately to understand their respective contributions to interhemispheric SST 102 

variability. Furthermore, we quantify decadal interhemispheric SST shifts using running linear 103 

trends and examine the spatial patterns associated with the largest-magnitude trends, analogous 104 
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to the approach used in recent studies to quantify the early-2000s global mean surface 105 

temperature slowdown or hiatus (Meehl et al. 2011; Schurer et al. 2015; Marotzke and Forster 106 

2015; Medhaug et al. 2017). 107 

The paper is organized as follows: In Section 2, we present the datasets and simulations 108 

investigated. Section 3 describes the characteristics of decadal interhemispheric SST variability. 109 

The detection and attribution analysis is applied to the interhemispheric SST contrast in Section 110 

4. The separate NH and SH components of interhemispheric SST variability are examined in 111 

Section 5.  Section 6 focuses on decadal shifts in the interhemispheric SST contrast. Finally, 112 

Section 7 concludes with the implications of our work plus some open questions. 113 

 114 

2. Data and models 115 

We define the interhemispheric SST contrast anomaly as the anomaly of mean NH minus 116 

mean SH SST; the annual mean is shown in Figure 1a (top). We examine SST monthly fields 117 

from the Met Office Hadley Center SST dataset (HadSST3) (Kennedy et al. 2011a, 2011b) and 118 

the NOAA Extended Reconstructed SST dataset, version 5 (ERSSTv5) (Huang et al., 2017). 119 

HadSST3 and ERSSTv5 are both constructed from in situ data using much of the same sources, 120 

but apply different quality control, bias corrections, and homogenization. One difference is that 121 

ERSSTv5 infills missing data using empirical orthogonal teleconnections, whereas the HadSST3 122 

data are not infilled. Annual means are taken from December–November, which better fit 123 

climatological seasons and the ENSO annual cycle, and are calculated from 3-month seasonal 124 

means (constructed if there is at least one month of data): December–February, March–May, 125 

June–August, and September–November. 126 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0102.1.
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Previous studies on the interhemispheric temperature contrast have often examined the 127 

combined land surface and SST interhemispheric temperature contrast (Drost and Karoly 2012; 128 

Friedman et al. 2013; Feulner et al. 2013; Wilcox et al. 2013). In comparison to the 129 

interhemispheric SST contrast, the interhemispheric contrast in land surface temperature, shown 130 

using the Climate Research Unit database (CRUTEM4) (Morice et al., 2012) and the NASA 131 

GISS Surface Temperature Analysis (GISTEMP) (Hansen et al., 2010) (250 km smoothing 132 

version) (Figure 1a, bottom), has larger interannual variability and a stronger long-term trend. 133 

As our focus is decadal variability, we hereafter investigate the interhemispheric SST contrast. 134 

While using SST minimizes the direct response of the land surface, we still expect some 135 

contribution from advection from land, especially over the NH (Thompson et al., 2009). 136 

We also examine output from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 137 

(Taylor et al. 2012), listed in Table 1. We select all model realizations for which both historical 138 

natural forcing (solar and volcanic, referred to as historicalNat) and the corresponding historical 139 

all-forcing (natural and anthropogenic, including GHGs, aerosols, ozone, and land use; referred 140 

to as historical) experiments are available from 1881–2012 to allow the longest possible period 141 

for the detection and attribution analysis. In total, 36 historical and historicalNat realizations 142 

from 10 different models are investigated. For 6 models, output was available from the historical 143 

or the historical extension (historicalExt) experiments from 2006–2012. For 4 models (IPSL-144 

CM5A-LR, IPSL-CM5A-MR, CSIRO-Mk3-6-0, and one realization of HadGEM2-ES), the 145 

historical experiments end in 2005, so the Representative Concentration Pathway 4.5 (RCP4.5) 146 

experiment output (Vuuren et al., 2011) is used from 2006-2012. 147 

We investigate SST from the corresponding pre-industrial control (piControl) runs of each 148 

CMIP5 model, whose lengths are also indicated in Table 1. Control simulations from two 149 
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additional models, NCAR CCSM4 and GFDL-CM3, are also examined in some analyses. 150 

Though model drift has been found to affect some variables in CMIP5 models (Sen Gupta et al., 151 

2013), our results for the interhemispheric SST contrast are not affected by linear detrending of 152 

the control runs (not shown).  153 

The 2°x2° ERSSTv5 data and differing-resolution CMIP5 model output are interpolated onto 154 

the 5°x5° HadSST3 grid. In computing hemispheric means, the datasets and models are masked 155 

where HadSST3 contains no data in more than 15 of the first 60 years of the study (1881–1940), 156 

shown in Figure 1b. [The land surface temperature data in Figure 1a (bottom) are masked using 157 

a similar threshold based on the 1881–1940 CRUTEM4 coverage]. Hemispheric means are 158 

calculated poleward of 5° latitude, as modes of interhemispheric SST variability are generally 159 

not centered directly on the equator (Servain et al., 1999; Xie and Carton, 2004; Baines and 160 

Folland, 2007). 161 

 162 

3. Observed and modeled interhemispheric SST variability 163 

As our focus is on decadal and multidecadal variability, we apply a 3-year running mean to 164 

the annual data to suppress high-frequency variations such as ENSO (Wang et al. 2012; Dai 165 

2013). The 3-year mean 1881-2012 observational interhemispheric SST anomaly time series are 166 

shown in Figure 1c, along with those of the CMIP5 historical realizations and their ensemble 167 

mean. The observational datasets are highly correlated (r=0.92), and generally remain within the 168 

envelope of the historical simulations. The ensemble mean has a long-term negative trend until 169 

around 1980 followed by a rebound, similar to the combined interhemispheric land and SST 170 

difference due to opposing GHG and anthropogenic aerosol forcings (Friedman et al. 2013; 171 

Wilcox et. al. 2013) albeit with a smaller trend since 1980. The amplitude of the ensemble mean 172 
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variations is expectedly smaller than that of the observations; the latter show a rapid north–south 173 

increase in the 1920s and north–south decrease from the late-1960s to early 1970s. 174 

The 1881–2012 standard deviation of the 3-year mean interhemispheric SST contrast of the 175 

observations and historical simulations is shown in Figure 1d. The standard deviation of 176 

ERSSTv5 (0.13°C) is larger than that of HadSST3 (0.12°C); both are larger than the multimodel 177 

mean of standard deviations (0.11°C), though still within the inter-model range. An outlier is 178 

GISS-E2-H, whose standard deviations cluster between 0.07°C and 0.08 °C. The single-179 

realization models (particularly bcc-csm1-1) also have low standard deviations, though we would 180 

need more realizations to evaluate their spread. Similar results are found with further smoothing, 181 

with a relatively larger spread of model standard deviations (not shown). 182 

The spatial patterns corresponding to the interhemispheric SST contrast in observations are 183 

shown in Figures 2a and 2c, obtained by ordinary least squares (OLS) regression of the 3-year 184 

mean gridded observations onto the interhemispheric SST time series from 1881-2012. Slope 185 

significance is evaluated using a 2-tailed t-test, adjusting for temporal autocorrelation by 186 

increasing the regression standard error by a factor of √3 assuming 1 degree of freedom for 187 

every 3 years of length (Santer et al., 2000; Biasutti et al., 2008). We additionally apply a False 188 

Discovery Rate (FDR) procedure to test for field significance (Genovese et al., 2002; Wilks, 189 

2016), stippling the gridpoints with p-values satisfying the FDR criterion αFDR = 0.05. Both 190 

datasets have prominent significant positive slopes over the subpolar North Atlantic and 191 

significant negative slopes in the extratropical South Atlantic and South Indian oceans. 192 

ERSSTv5 has more significant gridboxes, presumably due to its reduced spatial noise. Negative 193 

Indian Ocean slopes extend into the NH, similar to the interhemispheric SST mode in Parker et 194 
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al. (2007). There are also positive slopes in the mid-latitude North Pacific, albeit not significant 195 

in either dataset. 196 

Figure 2e shows the 1881-2012 ensemble mean spatial pattern of the 3-year mean CMIP5 197 

historical interhemispheric SST contrast, calculated as the ensemble mean of the regression 198 

slopes of each gridded realization’s SST field onto its own interhemispheric SST contrast time 199 

series (the thin lines in Figure 1c). The slopes are stippled where at least 30 of the 36 200 

realizations agree on the sign of the slope. In contrast to the observations, the strongest 201 

amplitudes and model agreement are in the mid-latitude North Pacific, with maximum slopes 202 

over the Kuroshio extension. The models show consistent negative slopes in the extratropical 203 

SH, particularly the mid-latitude Atlantic and Indian oceans around 40°–45°S. 204 

To illustrate the hydrologic impacts of interhemispheric SST variability, we show the spatial 205 

patterns of tropical rainfall associated with the interhemispheric SST contrast. Figures 2b and 2d 206 

show the regression slopes of 3-year mean rainfall over land using the Global Precipitation 207 

Climatology Center (GPCC) 2.5° spatially-infilled full data monthly product, version 2018 208 

(Becker et al. 2013; Schneider et al. 2018) onto the interhemispheric SST contrast. The observed 209 

slopes are calculated from 1930–2012 due to insufficient gauge coverage beforehand (Polson et 210 

al. 2016). Slopes are stippled where significant at p<0.05 using a 2-tailed t-test, adjusted for 211 

temporal autocorrelation and applying the FDR procedure similarly as the SST data in Figures 212 

2a and 2c. The right panels show the zonal mean slopes. Figure 2f shows the 1930-2012 213 

ensemble mean slope of CMIP5 historical precipitation over land and ocean regressed onto the 214 

interhemispheric SST contrast, with the precipitation fields regridded onto a common 2.5° grid. 215 

Stippling indicates sign agreement of at least 30 of 36 realizations as in Figure 2e. The zonal 216 
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mean slopes in Figure 2f are shown both globally and for land regions only (masked to the 217 

GPCC grid), with the distribution of the middle 30 realizations indicated. 218 

Both the observations and the models show displacement of tropical rainfall into the warmer 219 

SST hemisphere (Chung and Ramanathan, 2007; Chiang and Friedman, 2012; Sun et al., 2013), 220 

with observational slope significance and high model agreement found in the ITCZ and monsoon 221 

regions, emphasizing the strong imprint of the interhemispheric SST contrast on these rainfall 222 

features. However, almost all the realizations underestimate the zonal mean slope magnitudes in 223 

northern tropical land region around 10°N (largely reflecting Africa), consistent with larger-224 

magnitude observed 20th century changes compared to most CMIP3 and CMIP5 models (Hwang 225 

et al., 2013; Polson et al., 2014; Hegerl et al., 2015).  226 

 227 

4. Attribution of interhemispheric SST variability to forcing 228 

In this section, we conduct a detection and attribution analysis to identify the forced 229 

components of the 3-year running mean interhemispheric SST contrast shown above. 230 

 231 

4.1 Detection and attribution methodology 232 

Detection and attribution provides a rigorous framework to separate the components of 233 

observed climate changes driven by external forcing and internal variability (e.g. Hegerl et al. 234 

1997; Allen and Stott 2003). A typical assumption of regression-based detection and attribution 235 

studies such as used here is that the spatiotemporal response pattern of an external forcing is 236 

much better known than the response magnitude (Bindoff et al., 2013). Here, we apply total least 237 

squares (TLS) regression for detection and attribution of the interhemispheric SST contrast 238 

(Allen and Stott 2003). We use multimodel ensemble mean fingerprints, which have often been 239 
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found to perform better than any individual model (Knutti et al. 2010; Hegerl and Zwiers 2011), 240 

though may underestimate the role of model uncertainty (Schurer et al., 2018). Equal weight is 241 

given to each of the 36 realizations in constructing the multimodel ensemble mean. Calculating 242 

the mean over the available simulations rather than among individual models results in a greater 243 

signal-to-noise ratio, though it means that some models are given greater weight due to having 244 

more realizations. 245 

We apply a two-signal analysis with historical and historicalNat fingerprints to detect net 246 

anthropogenic forcing, which has been found to be more robust than detecting aerosol and GHG 247 

forcing separately (Bindoff et al. 2013; Jones et al. 2016). The observations and fingerprints are 248 

shown in Figure 3a. As in Schurer et al. (2013), the fingerprints are not optimized. The scaling 249 

coefficients 𝛽1 and 𝛽2, which determine the magnitude of the fingerprints from observations, are 250 

calculated as follows: 251 

𝑦 = 𝛽1(𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝑁𝑎𝑡 − 𝜀ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝑁𝑎𝑡) +  𝛽2(𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 − 𝜀ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙) + 𝜀𝑜𝑏𝑠    ,    (1) 252 

where y is the observed interhemispheric SST contrast time series of length L (132 years 253 

excluding endpoints due to smoothing: 130 years); 𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝑁𝑎𝑡 and 𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 are the length-L 254 

multimodel mean fingerprints; 𝜀ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝑁𝑎𝑡 and 𝜀ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 are the length-L internal variability of 255 

each fingerprint; and 𝜀𝑜𝑏𝑠 is the unforced residual variability. We assume that taking the mean 256 

over n ensemble members (36 realizations) reduces the internal variability by a factor of √𝑛. 257 

We rearrange 𝛽1 and 𝛽2 into natural (βNat) and anthropogenic (βAnt) scaling coefficients, as 258 

described in Tett et al. (2002): 259 

𝛽𝑁𝑎𝑡 =  𝛽1 +  𝛽2       ,             (2) 260 

𝛽𝐴𝑛𝑡 =  𝛽2            ,             (3) 261 
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We construct the 5-95% confidence intervals accounting for uncertainty in the internal variability 262 

of βNat and βAnt by adding 16,000 random L-year samples from the control simulations onto the 263 

noise-reduced fingerprints and observations. For each iteration, we select 3 segments without 264 

replacement from the 42 non-overlapping 132-year segments available from the 10 control 265 

simulations corresponding to the fingerprints (Table 1), taking 3-year means (and excluding 266 

endpoints). The best-estimate coefficients and 5–95% confidence intervals are shown in Table 267 

2a. Anthropogenic forcing is detected at the 5% one-sided significance level, whereas natural 268 

forcing is not significantly detectable. The best-estimate values of βAnt greater than the 269 

multimodel mean (scaling of 1) suggest a larger response to anthropogenic forcing in 270 

observations than in models, particularly for ERSSTv5 where the multimodel mean is outside the 271 

5–95% uncertainty range. 272 

 273 

4.2 Forced and unforced components of the interhemispheric SST contrast 274 

The best-estimate 3-year mean noise-reduced, or forced, component of y, ỹ, is shown for 275 

HadSST3 in Figure 3b and ERSSTv5 in Figure 3c, with the 5%-95% confidence intervals 276 

constructed from the 16,000 random samples from the control runs. The anthropogenic and 277 

natural contributions to the forced components are also shown; the anthropogenic component is 278 

calculated by subtracting historicalNat from historical component; see Equations (2)-(3). The 279 

anthropogenic component dominates the forced response for both datasets. The forced signal 280 

consists of a negative trend to around 1980 followed by a partial recovery. The negative trend is 281 

overlaid with an increase from around 1920 to 1950.  282 

The best-estimate unforced residual or effective residual time series is estimated as follows: 283 
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𝜀�̂�𝑏𝑠 =
(𝛾 − 𝛽1𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝑁𝑎𝑡 − 𝛽2𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙)

√1 +
𝛽1

2

𝑛⁄ +
𝛽2

2

𝑛⁄  

 285 

  , (4) 284 

where the scaling factor in the denominator is applied to account for the small component of 286 

internal variability in the fingerprints (Schurer et al. 2015). We use both β1 and β2 in Equation 287 

(4) since physically we expect some contribution from both natural and anthropogenic forcing 288 

types of forcing, even though natural forcing is not found to be significant. The best-estimate 289 

residual time series (Figure 3d) has prominent north-south maxima in the 1930s and mid 1960s, 290 

with the latter followed by a rapid north-south decrease to the early 1970s. We will further 291 

examine these decadal changes in Section 6. 292 

Figure 3e shows the best-estimate residual standard deviations along with those of the 293 

control segments (shown in purple). The best-estimate observational residuals are within the 294 

control simulation range, suggesting consistency in magnitude between the internal variability of 295 

the observations and the models. For example, the GISS-E2-H control simulation variability is 296 

more consistent in magnitude to the observational residuals than the GISS-E2-H historical 297 

variability compared to observations (Figure 1d). Also shown are the best-estimate residuals 298 

estimated from applying the detection and attribution methodology to each historical realization, 299 

described in the Appendix (shown in black). Note that this estimate of the internal variability 300 

includes an unknown forced component of each model which differs from the multimodel mean 301 

fingerprint. However, the historical best-estimate residual variability is also within the range of 302 

the control simulations (with both larger and smaller magnitudes), indicating that the multimodel 303 

mean fingerprints reasonably capture much of the forced variability in the individual models. 304 

 305 
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5. Northern and southern components of the interhemispheric SST contrast 306 

Building on the previous section, we apply a detection and attribution analysis to NH and SH 307 

SST separately. The NH and SH fingerprints and observations are shown in Figures 4a–4b. Both 308 

hemisphere observations show a long-term positive trend after cooling from 1881 to around 309 

1910. NH SST shows strong warming from around 1910–1940, described as early 20th century 310 

warming (Hegerl et al., 2018), followed by a slight decrease to around 1980, then strong 311 

warming until 2012. SH SST has a short-term increase around WWII, followed by relatively 312 

steady warming. ERSSTv5 and HadSST3 have the largest overall differences following WWII in 313 

the SH, with ERSSTv5 lower by about 0.2°C in the early 1950s (Figure 4b), potentially related 314 

to differences in bias corrections for the transition from bucket to engine room intakes (Kennedy 315 

2014; Huang et al. 2017). 316 

Using the methodology described in Section 4.1, we obtain the best-estimate scaling 317 

coefficients and 5–95% confidence intervals, shown in Table 2b. Note that our NH and SH 318 

detection and attribution analysis differs from some studies in which different indices or regions 319 

are combined when calculating scaling coefficients, such as Schurer et al. (2018). We choose this 320 

approach to extract the maximum forced variability in each hemisphere, though this allows for 321 

different scaling factors across the equator. 322 

Anthropogenic forcing is detected at the 5% one-sided significance level in both the NH and 323 

SH. Natural forcing is detected in both hemispheres for HadSST3 (with βNat <1), but not in 324 

ERSSTv5. In both datasets, the best-estimate values of βAnt are greater than 1 for both 325 

hemispheres, with the multimodel mean outside the 5–95% range for the SH. The best-estimate 326 

hemispheric forced components (Figures 4c-4d) are dominated by an upward trend from GHG 327 
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forcing, with aerosol-related NH cooling from 1950-1970 (Wilcox et al., 2013; Allen et al., 328 

2015; Undorf et al., 2018). 329 

The best-estimate residual NH and SH time series, 𝜀�̂�𝑏𝑠_𝑁𝐻 and 𝜀�̂�𝑏𝑠_𝑆𝐻, are calculated 330 

similarly to Equation (4) (Figures 4e-4f). As expected, the best-estimate residual 331 

interhemispheric SST contrast, 𝜀�̂�𝑏𝑠 from Equation (4), is very strongly correlated with the 332 

difference of 𝜀�̂�𝑏𝑠_𝑁𝐻 and 𝜀�̂�𝑏𝑠_𝑆𝐻 (HadSST3: r=0.98; ERSSTv5: r=0.93). The observed cooling 333 

from 1881 to around 1910 is present in both 𝜀�̂�𝑏𝑠_𝑁𝐻 and 𝜀�̂�𝑏𝑠_𝑆𝐻; likewise, much of the early 20th 334 

century NH warming, as 𝜀�̂�𝑏𝑠_𝑁𝐻 warms relatively steadily from 1910-1940 and later undergoes a 335 

decrease in the late 1960s. 𝜀�̂�𝑏𝑠_𝑆𝐻 increases rapidly in the late 1930s, then drops in the 1940s 336 

followed by decadal-scale variations, with minima in the mid-1960s and after the early 2000s. 337 

Both 𝜀�̂�𝑏𝑠_𝑁𝐻  and 𝜀�̂�𝑏𝑠_𝑆𝐻 have large standard deviations compared to the control simulations 338 

and the best-estimate NH and SH historical residuals (calculated following the Appendix; 339 

Figure 4g). 𝜀�̂�𝑏𝑠_𝑁𝐻 and 𝜀�̂�𝑏𝑠_𝑆𝐻 are also more positively correlated (HadSST3: r=0.63; 340 

ERSSTv5: r=0.62) than any of the control segments or historical residuals (Figure 4h). [This is 341 

not the case for the direct NH and SH SST observations, whose standard deviations and 342 

correlation are within the range of the historical realizations (not shown)]. The strong amplitude 343 

and correlation of the observed NH and SH best-estimate residuals suggest that the effect of 344 

forcing has been incompletely removed using the multimodel mean regression. The discrepancy 345 

may also be partly due to errors in observations or incorrect climate model decadal variability. 346 

 347 

6. Decadal shifts in the interhemispheric SST contrast 348 

In this section, we examine decadal shifts in the interhemispheric SST contrast. Several 349 

methodologies for identifying climate shifts exist (Overland et al., 2008). Here, we examine 350 
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running linear trends (Trottini et al., 2015), which have been typically used to quantify the early-351 

2000s global mean surface temperature slowdown (Meehl et al. 2011; Schurer et al. 2015; 352 

Marotzke and Forster 2015; Medhaug et al. 2017). As our focus is on decadal-scale shifts, we 353 

examine 9-year running OLS trends applied to the 3-year running mean time series. Similar 354 

results are obtained using running trend lengths of 7 to 13 years (not shown). 355 

 356 

6.1 1970 and 1920s shifts 357 

Figure 5a shows the 3-year mean interhemispheric SST contrast along with the respective 9-358 

year running trends. In both observational datasets, the largest-magnitude trend is the rapid drop 359 

centered around 1970, consistent with previous qualitative identification (Dima and Lohmann, 360 

2010; Thompson et al., 2010) (HadSST3: 1965–1973: –0.63°C per decade, 1966–1974: –0.61°C 361 

per decade; ERSSTv5: 1965–1973: –0.60°C per decade, 1966–1974: –0.64°C per decade). 362 

Hereafter, we focus on the 1966-1974 trends in both datasets for simplicity of comparison. Both 363 

NH cooling and SH warming contribute comparable magnitudes to the 1966-1974 shift (Table 364 

3). The most positive observational NH-SH trend is centered in 1922 (1918–1926) in both 365 

datasets, also with contributions from both hemispheres (Table 3). 366 

Though the CMIP5 historical ensemble mean interhemispheric SST contrast has a negative 367 

trend in the 1960s and 1970s, the 1966–1974 trend magnitude is less than 10% of that in the 368 

observations (–0.051°C per decade), suggesting only a modest role of forcing in the observed 369 

trend. As shown in Figure 5c, the 1966–1974 observational trends are larger than any of the 36 370 

historical realizations over this period. The 1918–1926 observational interhemispheric SST 371 

trends are also much larger than the CMIP5 historical ensemble mean (0.008°C per decade), but 372 

not as far outside the distribution of the 36 individual realizations as the 1970 shift (Figure 5b). 373 
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The observational spatial SST trends are shown for the two periods in Figures 5d-5g. The 374 

1966–1974 trends (Figures 5e and 5g) have a prominent north–south SST dipole pattern in the 375 

Atlantic, with pronounced cooling in the subpolar North Atlantic and warming in the 376 

extratropical South Atlantic, extending to the other mid-latitude basins. There is also strong 377 

cooling in the central equatorial and northeast Pacific, and a warming in the northwest Atlantic 378 

offshore the northeast US. The 1918–1926 trends (Figures 5d and 5f) have pronounced cooling 379 

from 35°–50°S in the Atlantic and Indian sectors. There is strong warming in the equatorial 380 

Atlantic, Labrador Sea, the northeast Pacific, and the northern Nordic and Barents seas (where 381 

not masked in ERSSTv5). The spatial trend patterns are very similar if the historical multimodel 382 

mean SST is regressed out at each gridbox (not shown). 383 

 384 

6.2 Forced and unforced contributions to the 1970 and 1920s shifts 385 

We examine the contributions of forced and unforced variability to the 1970 and 1920s 386 

shifts, based on the detection and attribution best-estimate residuals from Section 4. Figure 6a 387 

shows 𝜀�̂�𝑏𝑠 (from Figure 3d) and their 9-year running trends. The 1966–1974 shift remains the 388 

most prominent in both best-estimate residuals, corresponding to 87% and 77% of the respective 389 

magnitudes of the trends in HadSST3 and ERSSTv5 respectively (Table 3). The 1918–1926 390 

interhemispheric trend remains nearly the same magnitude in the best-estimate residual 391 

HadSST3 as the full dataset (94% unforced), but is more reduced in ERSSTv5 (71% unforced). 392 

We also examine the 𝜀�̂�𝑏𝑠_𝑁𝐻 (Figure 6b) and 𝜀�̂�𝑏𝑠_𝑆𝐻 (Figure 6c) contributions to the 393 

interhemispheric SST shifts. Both shifts result from additive trends of the NH and SH best-394 

estimate residuals: NH cooling plus SH warming from 1966–1974; and NH warming plus SH 395 

cooling from 1918–1926. 𝜀�̂�𝑏𝑠_𝑁𝐻 has pronounced cooling trends over 1966-1974 (Table 3), with 396 
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the largest magnitude 9-year trend over the entire record for HadSST3, and the second-largest in 397 

ERSSTv5 after cooling around 1900; 𝜀�̂�𝑏𝑠_𝑆𝐻 also has large warming over this period in 398 

ERSSTv5. Warming in 𝜀�̂�𝑏𝑠_𝑁𝐻 and cooling in 𝜀�̂�𝑏𝑠_𝑆𝐻 also interfere constructively to produce 399 

the 1918–1926 interhemispheric SST trend. 400 

Figure 7a compares the 1966–1974 trends in observations and best-estimate residuals 𝜀�̂�𝑏𝑠 401 

with the largest-magnitude negative (SH–NH) 9-year interhemispheric SST trends in each of the 402 

non-overlapping 132-year control segments. The 1966–1974 observed interhemispheric SST 403 

trends (solid lines) exceed all trends from the control simulations; however, the reduced-404 

magnitude 𝜀�̂�𝑏𝑠 trends (dashed lines) are comparable to some of the largest-magnitude control 405 

trends. The largest-magnitude negative segments are found in HadGEM2-ES, CSIRO-Mk3-6-0, 406 

IPSL-CM5A-LR, and GFDL-CM3, which are among the high-standard-deviation models in 407 

Figure 3e. [Several control segments exceed the 1918–1926 observational and 𝜀�̂�𝑏𝑠 trend 408 

magnitudes (not shown)]. 409 

Figures 7b-7f show the spatial patterns associated with the 5 largest-magnitude negative 410 

interhemispheric SST trends in the control simulations indicated in Figure 7a. The trends have 411 

general agreement with an interhemispheric dipole in the in the tropical and subtropical Atlantic, 412 

with cooling in the NH and warming in the SH. HadGEM2-ES years 114–122 (Figure 7d) and 413 

GFDL-CM3 years 14–22 (Figure 7f) show strong subpolar Atlantic cooling with warming 414 

extending off the northeast US, and GFDL-CM3 years 14–22 also shows prominent subpolar SH 415 

warming in the Weddell Sea region. In contrast, IPSL-CM5A-LR years 608–616 has subpolar 416 

North Atlantic warming south of Greenland (Figure 7c). CSIRO-Mk3-6-0 years 310–318 417 

(Figure 7b) and HadGEM2-ES years 364–372 (Figure 7e) have a horseshoe-pattern of mid-418 

latitude cooling associated with North Atlantic SST variability (Gastineau and Frankignoul, 419 

Accepted for publication in Journal of Climate. DOI 10.1175/JCLI-D-19-0102.1.



 20 

2015) but are less prominent in the central subpolar region. In the Pacific, CSIRO-Mk3-6-0 years 420 

310–318 (Fig. 7b) shows a triangle-shaped pattern resembling the transition to the negative 421 

phase of the Pacific Decadal Oscillation (PDO) / Interdecadal Pacific Oscillation (IPO) (Zhang et 422 

al. 1997; Mantua et al. 1997; Power et al. 1999), with the other model episodes generally 423 

showing the opposite phase. 424 

 425 

7. Summary and discussion 426 

 427 

7.1 Summary 428 

In this study, we quantify the variability of the interhemispheric SST contrast, motivated by 429 

its importance for tropical rainfall. We examine the variability of the 3-year mean 430 

interhemispheric SST contrast from 1881 to 2012 in the HadSST3 and ERSSTv5 datasets, 431 

applying a detection and attribution analysis using multimodel mean fingerprints from 36 total 432 

realizations of 10 CMIP5 models to identify the contributions from natural and anthropogenic 433 

forcing. We also investigate the constituent northern hemisphere (NH) and southern hemisphere 434 

(SH) SST variability. Our key findings include the following: 435 

 (a) The temporal magnitude of observed interhemispheric SST variability is within the range 436 

of the historical CMIP5 simulations examined. The observed spatial pattern of the 437 

interhemispheric SST contrast projects most strongly over the subpolar North Atlantic and the 438 

extratropical South Atlantic and Indian oceans. The historical model mean spatial pattern also 439 

has strong amplitudes over the extratropical South Atlantic and Indian oceans, but is much 440 

stronger over the North Pacific than the North Atlantic. The tropical rainbands shift toward the 441 
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relatively warmer SST hemisphere in both observations and models, though most models 442 

underestimate the precipitation response over northern tropical land regions. 443 

(b) Anthropogenic, but not natural forcing, is detected at the 95% significance level in the 444 

interhemispheric SST contrast. The anthropogenic scaling factors are consistent with the 445 

multimodel mean in HadSST3, but results with ERSSTv5 suggest a larger interhemispheric SST 446 

response to forcing than simulated in the multimodel mean. We find a significantly larger 447 

amplitude of the anthropogenic influence on SH SST than the multimodel mean in both datasets. 448 

Natural forcing is detected (p<0.05) in the NH and SH in HadSST3 only. 449 

(c) After removing the multimodel mean forced signal, the best-estimate residual unforced 450 

interhemispheric SST variability is largely consistent in magnitude with that of the control 451 

simulations and best-estimate residual historical simulations. However, the best-estimate residual 452 

individual NH and SH SST have relatively larger-magnitude variability and are more positively 453 

correlated than in any of the control simulations examined. 454 

(d) Using 9-year running trends, we determine that the NH–SH interhemispheric decrease 455 

around 1970 is the most prominent shift over the instrumental period, corroborating previous 456 

identification (Baines and Folland, 2007; Dima and Lohmann, 2010; Thompson et al., 2010). 457 

Based on the multimodel mean detection and attribution analysis, we find that the shift was 458 

largely unforced, and due to both unforced NH cooling and SH warming. Interhemispheric SST 459 

shifts of comparable magnitude as the best-estimate residual 1970 shift are found in the control 460 

simulations of some of the high-variability models (CSIRO-Mk3-6-0, IPSL-CM5A-LR, 461 

HadGEM2-ES, and GFDL-CM3). 462 

 463 

7.2 Discussion 464 
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Here, we consider some potential caveats and issues raised by our analysis. In the same way 465 

that the early 21st century global mean surface temperature slowdown motivated further research 466 

into the global energy balance and ocean heat content (Xie, 2016; Yan et al., 2016; Medhaug et 467 

al., 2017), we hope that examination of interhemispheric SST variability can underlie future 468 

mechanistic insights. 469 

 470 

7.2.1 Fingerprint uncertainties 471 

One caveat is that we do not consider inter-model differences in the multimodel mean 472 

fingerprints in our detection and attribution framework, which would add to the scaling factor 473 

uncertainties (Hannart et al., 2014; Schurer et al., 2018). First, there is inter-model spread in the 474 

GHG-only response, which may be due to non-CO2 forcings as well as different feedbacks 475 

(Jones et al. 2016). Figure 8a shows the 3-year mean interhemispheric SST contrast anomaly 476 

time series in 35 historical GHG-only (historicalGHG) realizations (all historical realizations in 477 

Table 1 except for IPSL-CM5A-MR). The multimodel mean time series has a positive 1881-478 

2012 trend of 0.10±0.02 °C per 100 years (slope±2 adjusted standard errors, widened by a factor 479 

of √3 as described in Section 3). There are still considerable differences among the individual 480 

model mean trends, which provide an estimate of the range of the forced response: from –481 

0.04±0.04 °C per 100 years in CSIRO-Mk3-6-0 to 0.31±0.05 °C per 100 years in IPSL-CM5A-482 

LR (Figure 8b). [Model mean trends are calculated for the 7 models with more than 1 483 

realization]. The spread of individual realizations is wider, from –0.21 to 0.38°C per 100 years, 484 

as it includes a larger contribution of model internal variability (with each realization combining 485 

forced and internal variability comparable to the actual climate). We compare the 1881-2012 486 

historicalGHG interhemispheric SST trends with those of global mean SST (including gridpoints 487 
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from 5°S–5°N) for each realization in Figure 8c. The trends are strongly positively correlated 488 

(r=0.58), suggesting that the interhemispheric SST contrast scales with global mean SST in the 489 

GHG-forced response. 490 

Anthropogenic aerosol forcing also remains a large uncertainty in the multimodel mean 491 

anthropogenic fingerprint. Though all models examined except bcc-csm1-1 do contain some 492 

representation of sulfate aerosol indirect effects, inter-model differences in aerosol 493 

parameterization result in different magnitudes and spatial patterns of aerosol forcing (Ekman, 494 

2014; Guo et al., 2015; Allen et al., 2015; Rotstayn et al., 2015), particularly related to aerosol-495 

cloud interactions (Chung and Soden, 2017). As only a subset of the CMIP5 modeling groups 496 

archived specific-forced historical anthropogenic-aerosol-only (historicalAA) realizations, we 497 

approximate the historicalAA interhemispheric contrast anomaly by subtracting the respective 498 

historicalGHG and historicalNat interhemispheric SST contrast time series from the historical 499 

interhemispheric SST contrast for each of the 35 realizations with historicalGHG output (Figure 500 

8d). Note that the internal variability of the approximate historicalAA time series will typically 501 

be larger than for an individual experiment due to it being derived from multiple experiments 502 

(historical–historicalGHG–historicalNat), which contributes to some of the inter-model spread. 503 

For a sense of the magnitude of the aerosol response, we examine the interhemispheric SST 504 

contrast during the mid-20th century period of maximum interhemispheric aerosol forcing 505 

(Rotstayn and Lohmann, 2002; Hwang et al., 2013; Wilcox et al., 2013), using the 1950-1985 506 

trend as in Allen et al. (2015), shown in Figure 8e. The ensemble mean time series has a 507 

significant trend of –0.068±0.014 °C per decade (slope±2 adjusted standard errors), and the 508 

model mean trends range from –0.16±0.04 °C per decade in HadGEM2-ES to –0.012±0.032 °C 509 

per decade in CNRM-CM5. For comparison, the observed trends over this period are –0.11±0.05 510 
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and –0.16±0.039 °C per decade in HadSST3 and ERSSTv5 respectively. Improvements in 511 

spatiotemporal aerosol emission patterns and better treatment of aerosol probabilities may reduce 512 

some of the uncertainties (Schurer et al., 2018; Haustein et al., 2019). Another partially-513 

anthropogenic influence on the interhemispheric SST contrast is African dust emissions from 514 

land use change, which are poorly simulated by CMIP5 models (Evan et al., 2014; Allen et al., 515 

2015). 516 

     Detection of natural forcing in the HadSST3 (which not being infilled is generally preferred 517 

for attribution) individual hemispheres, yet not the interhemispheric SST contrast, suggests that 518 

natural forcing over the 20th century does not show a pronounced enough hemispheric SST 519 

contrast to be detectible, despite some hemispheric asymmetry in volcanic forcing (Haywood et 520 

al., 2013; Iles and Hegerl, 2014). Recent studies increasingly show a volcanic influence on large-521 

scale climate modes, including the AMOC, but the responses may not be well-represented across 522 

models due to their complex lagged processes and limited eruption observations over the 523 

historical period (Swingedouw et al., 2017). For instance, the 1963 Agung eruption may have 524 

forced part of the North Atlantic cooling that contributed to the interhemispheric shift around 525 

1970 (Swingedouw et al., 2013; Hodson et al., 2014). Some observational analyses also suggest 526 

that solar variability may modulate the interhemispheric SST contrast (Rajesh and Tiwari, 2018), 527 

though detection and attribution studies have so far not found a significant solar influence on 528 

large-scale surface temperatures (Schurer et al. 2014). 529 

 530 

7.2.2 Spatial and basin interhemispheric SST variability 531 

While the basic time series diagnostics (Figures 1c-1d) suggest that the CMIP5 models 532 

effectively reproduce the temporal characteristics of the interhemispheric SST contrast, 533 
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comparison of the observed (Figures 2a and 2c) and model mean (Figure 2e) spatial patterns 534 

points to some differences in the mechanisms involved. In particular, the model-mean spatial 535 

pattern has much stronger positive slopes over the North Pacific, whereas the observations have 536 

the most pronounced positive amplitudes over the subpolar North Atlantic. However, we note 537 

that the relatively short observational record and uneven SST observational data distribution, 538 

with much more data from the North Atlantic, makes it difficult to evaluate the significance of 539 

these spatial pattern differences. 540 

Examination of intra-model interhemispheric SST pattern variability suggests that the 541 

extratropical North Atlantic may be more important than suggested by the multimodel mean 542 

pattern. Figure 9 shows the ensemble standard deviation of the 36 CMIP5 historical SST 543 

regression slopes averaged in Figure 2e. The large inter-model variability over the extratropical 544 

North Atlantic north of 40°N contrasts with the weak model-mean slopes in this region in Figure 545 

2e, suggesting that the different patterns cancel out in the multimodel mean. 546 

There are similar questions about the importance of different ocean basins in the large-547 

magnitude interhemispheric SST shifts. The spatial patterns of the 1920s and 1970 548 

interhemispheric SST shifts (Figures 5d-5g) could result from linked ocean basin SST 549 

variability, as proposed between Atlantic and Pacific SST (Zhang and Delworth 2007; Chafik et 550 

al. 2016). On the other hand, the different ocean basins may be independent, as Goosse (2017) 551 

cautions that interhemispheric SST shifts can result from the superposition of unrelated 552 

processes. Among the control shifts, the sign difference in the eastern Pacific in CSIRO-Mk3-6-0 553 

years 310–318 suggests different representations linking Pacific and Atlantic SST variability, or 554 

possibly that that IPO-related Pacific variability is not important for the interhemispheric SST 555 

contrast as it extends into both hemispheres. The eastern Pacific is much less prominent in the 556 
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observed shifts than in the large-magnitude control shifts, though the 1970 shift does show 557 

strong central and northeast Pacific SST cooling extending to southwest North America.  558 

Next, we discuss the subpolar North Atlantic and potential AMOC contribution to 559 

interhemispheric SST shifts. The mechanism of cross-equator ocean heat transport via the 560 

AMOC is thought to explain the interhemispheric “bipolar seesaw” SST pattern in glacial-561 

interglacial paleoclimate records (Crowley, 1992; Broecker, 1998) and has been found in many 562 

modeling experiments (Vellinga and Wu, 2004; Latif et al., 2006; Stouffer et al., 2007; Sun et 563 

al., 2013, 2018). Some studies have thus used the interhemispheric SST contrast as a proxy for 564 

the AMOC (e.g. Dima and Lohmann, 2010), though the Atlantic interhemispheric SST pattern 565 

has been found to be a weaker AMOC indicator than North Atlantic SST in most CMIP5 models 566 

(Muir and Fedorov, 2015) 567 

An observational limitation is that continuous direct measurements of the AMOC only began 568 

in 2004 (with altimetry extending the record to 1993), which is not nearly long enough to resolve 569 

decadal and multidecadal variability. Recently, it has been proposed that the century-long SST 570 

cooling trend in the subpolar North Atlantic, sometimes referred to as the “warming hole”, 571 

indicates a long-term decrease in the AMOC over the 20th century (Drijfhout et al., 2012; 572 

Rahmstorf et al., 2015; Caesar et al., 2018), though the relationship between these surface 573 

changes and the AMOC remains contested (Josey et al., 2018). Negative trends in subpolar 574 

Atlantic surface salinity and density since the early 20th century are consistent with an AMOC 575 

decrease, though other factors could also be responsible (Friedman et al., 2017; Reverdin et al., 576 

2019). Oceanographic proxy reconstructions also suggest a longer-term AMOC decline since the 577 

end of the Little Ice Age (Thibodeau et al., 2018; Thornalley et al., 2018).  578 
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As an indirect index of the AMOC, we calculate an AMOC proxy SST time series following 579 

Rahmstorf et al. (2015) and Caesar et al. (2018) as the difference of the North Atlantic subpolar 580 

gyre (SPG; 50°–15°W, 50°–60°N) and global mean SST, using 3-year running annual means and 581 

masked as shown in Figure 1b. First, we briefly examine the long-term GHG-forced trends of 582 

the AMOC proxy SST index. The 1881–2012 historicalGHG multimodel mean trend of the 583 

AMOC proxy SST index (of the models examined in Figures 8a-8c) is –0.50±0.07 °C per 100 584 

years (slope±2 adjusted standard errors), consistent with the GHG-forced AMOC slowdown 585 

simulated by the models (Caesar et al., 2018). We find that the 1881–2012 AMOC proxy SST 586 

index trends are very strongly correlated with the respective interhemispheric SST trends across 587 

the historicalGHG simulations (r=0.77). 588 

Next, we examine the observed and historical SST AMOC proxy time series variability. 589 

Figure 10a shows the observed interhemispheric SST contrast and 3-year mean SST AMOC 590 

proxy time series anomalies. Though they are strongly correlated (HadSST3: r=0.63; ERSSTv5: 591 

r=0.58), the AMOC proxy SST time series shows stronger variability on longer decadal 592 

timescales, and the interhemispheric SST contrast lacks the long-term 20th century trend in the 593 

AMOC proxy SST time series. Figure 10b compares the observed correlations of the 594 

interhemispheric SST contrast and the AMOC SST proxy index with the historical models. The 595 

observed correlations are stronger than nearly all of the historical realizations, with some models 596 

showing zero or negative correlations. This is consistent with the discrepancy between Figure 2e 597 

and Figures 2a and 2c, indicating that the Atlantic SPG plays a much larger role in the observed 598 

interhemispheric SST contrast than in most models. This suggests that many models could be 599 

misrepresenting some processes of Atlantic interhemispheric SST variability related to the 600 

AMOC, or a common response to forcings. 601 
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Looking forward, simulation of Atlantic interhemispheric SST variability may improve with 602 

increasing model resolution. For example, Hutchinson et al. (2015) find a larger interhemispheric 603 

temperature response in an Atlantic-sector coupled climate model using an eddy-permitting 0.25° 604 

ocean resolution compared to a 1° resolution which is typical of CMIP5 models. North Atlantic 605 

decadal variability may also improve with correction of North Atlantic mean state biases, 606 

particularly salinity, related to AMOC variability (Menary et al., 2015; Park et al., 2016; Liu et 607 

al., 2017). 608 

A related question is the role of the AMOC in the interhemispheric SST shifts in the 1920s 609 

and around 1970. The AMOC proxy SST time series of Figure 10a shows a rapid drop during 610 

the 1970 shift, though not as prominent in the overall record given the larger decadal variability. 611 

The spatial SST pattern associated with the 1970 shift (Figures 5e and 5g) shows an Atlantic 612 

interhemispheric SST dipole suggested as an AMOC fingerprint (e.g. (Dima and Lohmann, 613 

2010)) as well as the specific AMOC slowdown pattern of subpolar Atlantic cooling and 614 

warming offshore the northeast United States (Saba et al., 2016; Caesar et al., 2018). Subsurface 615 

salinity and temperature profiles also suggest an AMOC decline during the mid-20th century 616 

concurrent with the interhemispheric SST shift around 1970 (Hodson et al., 2014). However, 617 

determining the role of the AMOC from alternative mechanisms is difficult on such short 618 

timescales given the lack of data over the period. For example, Wang et al. (2015) showed that 619 

atmospheric teleconnections can also produce an interhemispheric Atlantic SST dipole pattern. 620 

In contrast, the 1920s do not have a persistent increase in the AMOC proxy SST record in 621 

Figure 10a, but rather strong inter-annual variability. Likewise, the spatial SST pattern 622 

associated with the 1920s shift (Figures 5d and 5f) does not have an Atlantic interhemispheric 623 

dipole; the sign change is around 30°S rather than in the equatorial Atlantic.  624 
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Decadal shifts in the subpolar North Atlantic have previously been described in several 625 

different unforced simulations involving linkages between blocking, sea ice, and AMOC 626 

feedbacks (Drijfhout et al., 2013; Kleppin et al., 2015; Moreno-Chamarro et al., 2015; Sgubin et 627 

al., 2017). Understanding how these different processes may contribute to the interhemispheric 628 

SST shifts in the control simulations remains a topic of future investigation. Among our sample 629 

of large-magnitude events (Figure 7b–7e), HadGEM2-ES years 114-122 and GFDL-CM3 years 630 

14–22 show strong and coherent cooling in the subpolar North Atlantic and warming in the Gulf 631 

Stream extension, which are consistent with the spatial fingerprint of an AMOC slowdown (Saba 632 

et al., 2016; Caesar et al., 2018); GFDL-CM3 in particular has been found to have large-633 

amplitude multidecadal AMOC variability (Cheng et al., 2013). The warming found in GFDL-634 

CM3 years 14–22 in the high-latitude SH adjacent to Antarctica has been suggested to be an 635 

AMOC slowdown signature (Dima and Lohmann, 2010). Though the IPSL-CM5A-LR control 636 

shift in years 608–616 shows strong warming in the subpolar North Atlantic, this could 637 

potentially be due to the AMOC: as shown in Muir and Fedorov (2015) (their Figure 4), the 638 

IPSL-CM5A-LR AMOC SST spatial pattern has anomalies of opposing sign in the subpolar 639 

North Atlantic.  640 

 641 

7.2.3 NH and SH variability 642 

An intriguing finding from our detection and attribution analysis is that the best-estimate 643 

residual NH and SST are more positively correlated than in any of the control simulations 644 

(Figure 4h). Likewise, the best-estimate residual NH and SH SST standard deviations are at the 645 

upper end of the control simulation variability (Figure 4g), which is not the case for the 646 

interhemispheric SST contrast (Figure 3e). The positive best-estimate residual NH and SH SST 647 
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correlation and large-magnitude variability are consistent: the in-phase residual NH and SH SST 648 

variations have a canceling influence on the interhemispheric SST contrast. 649 

There are a couple of possibilities that could account for the large positive best-estimate 650 

residual NH and SH SST correlation and large-magnitude variability. One explanation, related to 651 

the fingerprint uncertainties discussed in Section 7.2.1, is that there is a common NH and SH 652 

forced component which is missing or underestimated by the models. For example, climate 653 

models may underestimate the cooling from early 20th century eruptions, such as 1912 Katmai 654 

(1912) and Colima (1913), accounting for the early 20th century discrepancies between the NH 655 

and SH fingerprints and observations in Figures 4a-4b. 656 

Common SST data biases in the NH and SH could also artificially inflate the correlation. 657 

Recent studies examining geographic biases (Cowtan et al. 2018; Chan and Huybers 2019) and 658 

hemispheric and global time series (Folland et al., 2018; Haustein et al., 2019) have found that 659 

WWII-era warming and potentially also some cooling around 1900 remain inflated in gridded 660 

observational data products. A third possibility is that the models may underestimate common 661 

decadal variability in the NH and SH SST. IPO-related Pacific decadal variability, which has 662 

been linked to excursions in global mean surface temperature (Kosaka and Xie, 2013; Maher et 663 

al., 2014; England et al., 2014; Dai et al., 2015; Gastineau et al., 2019), is underestimated by 664 

many CMIP5 models (Kociuba and Power, 2015; Henley et al., 2017). Pacific decadal variability 665 

may account for some of the joint negative values in residual NH and SH SST after around 2000 666 

(Figures 4e-4f), reflecting lower global mean SST than the CMIP5 historical model mean in the 667 

so-called hiatus or slowdown (Fyfe et al. 2013; Medhaug et al. 2017). 668 

These discrepancies raise questions about the use of model control experiments to simulate 669 

background variability, as in many detection and attribution studies (as well as other analyses 670 
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such as future projections). Using control simulations with unrealistic variability means that the 671 

confidence intervals calculated in analyses using them may be over- or under-confident, which 672 

could lead to misleading conclusions. In the future, perhaps the simulation of internal variability 673 

should be treated more explicitly in model selection (e.g. Knutti et al., 2010). 674 
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Appendix: historical simulation residuals 694 

The best-estimate residuals are estimated for each historical realization as follows. Building 695 

on Schurer et al. (2015), we modify the denominator scaling in Equation (4) to account for the 696 

component of shared variance of each individual historical realization time series with the model 697 

mean fingerprint 𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 (the average of all historical realization time series):  698 

 699 

𝜀ℎ̂𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 =
(𝛾ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 − 𝛽1𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙𝑁𝑎𝑡 − 𝛽2𝑋ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙)

√𝛽1
2

𝑛 +
(𝑛 − 𝛽2)2 + 𝛽2

2(𝑛 − 1)
𝑛2  

 701 

  , (A1) 700 

where 𝛾ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 is the respective historical realization time series. 702 

  703 
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Table 1: Models investigated. CMIP5 groups and models are listed with the number of historical and historicalNat realizations; the 1160 

length of the piControl simulations; and the number of 132-year segments from the control simulations used in the analysis. 1161 

Historical, HistoricalNat  piControl  1162 

Group   Model   Realizations   length (yrs.) segments 1163 

BCC   bcc-csm1-1  1   500  3 1164 

CCCma  CanESM2  5   996  7 1165 

CNRM-CERFACS CNRM-CM5  6   850  6 1166 

CSIRO-QCCCE CSIRO-Mk3-6-0 5   500  3 1167 

IPSL   IPSL-CM5A-LR 3   1000  7 1168 

IPSL   IPSL-CM5A-MR 1   300  2 1169 

MOHC            HadGEM2-ES  4   576  4 1170 

NASA-GISS  GISS-E2-H  5    540  4  1171 

NASA-GISS  GISS-E2-R  5    500  3 1172 

NCC             NorESM1-M         1   501  3 1173 

NCAR   CCSM4     1051  7 1174 

NOAA-GFDL  GFDL-CM3     500  31175 
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Table 2: Detection and attribution scaling factors. Best-estimate scaling factors and 5-95% 1176 

confidence intervals for natural (left) and anthropogenic (right) forcing for the (a) 1177 

interhemispheric SST contrast and (b) NH and SH individually. Bold coefficients are detected at 1178 

a 95% significance level, and asterisks indicate where the confidence intervals are outside the 1179 

multimodel mean. 1180 

 1181 

(a) NH–SH 1182 

  βNat    βAnt    1183 

HadSST3: 1.14 (–0.3 to 2.2)  1.32 (0.7 to 2.6) 1184 

ERSSTv5: 0.30 (–1.2 to 1.4)  1.90 (1.2 to 3.3) * 1185 

 1186 

(b) NH and SH 1187 

NH  βNat    βAnt 1188 

HadSST3: 0.57 (0.1 to 1.0)  1.13 (0.8 to 1.5) 1189 

ERSSTv5: 0.28 (–0.2 to 0.7)  1.20 (0.9 to 1.5) 1190 

SH 1191 

HadSST3: 0.40 (+0.0 to 0.7) *  1.19 (1.1 to 1.4) * 1192 

ERSSTv5:    –0.22 (–0.6 to 0.1)  1.32 (1.2 to 1.5) * 1193 

  1194 
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Table 3. 1970 and 1920s trend magnitudes. 9-year observational and best-estimate residual 1195 

SST trend magnitudes over 1966–1974 and 1918–1926 for the interhemispheric SST contrast, 1196 

the NH, and the SH, in °C per decade.  1197 

 1198 

  | Observations   | Best-estimate residual 1199 

1966–1974 | HadSST3 ERSSTv5 | HadSST3 ERSSTv5 1200 

NH-SH | –0.61  –0.64  | –0.53  –0.49  1201 

NH  | –0.34  –0.25  | –0.40  –0.27  1202 

SH  | 0.27  0.40  | 0.15  0.34  1203 

1918–1926 | HadSST3 ERSSTv5 | HadSST3 ERSSTv5 1204 

NH-SH | 0.42  0.30  | 0.40  0.21  1205 

NH  | 0.29  0.17  | 0.22  0.08  1206 

SH  | –0.13  –0.12  | –0.17  –0.18  1207 

 1208 
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 1209 

Figure 1. Interhemispheric temperature and SST contrast time series. (a) Top: annual mean 1210 

(December–November) interhemispheric SST contrast anomaly of HadSST3 (blue) and 1211 

ERSSTv5 (red). Bottom: land surface interhemispheric contrast anomaly of CRUTEM4 (purple) 1212 

and GISTEMP (orange). Anomalies are from 1881-2012 (vertical dashed lines). (b) Gridpoints 1213 

included in computing the northern and southern hemisphere SST means, based on HadSST3 1214 

data coverage and poleward of 5° latitude (solid lines). (c) 3-year running mean interhemispheric 1215 

SST contrast anomaly of CMIP5 historical realizations and observations. Thin lines show 1216 

individual realizations; the solid black line shows the multimodel ensemble mean. (d) 1881–2012 1217 

standard deviations of the 3-year mean interhemispheric SST contrast of observations and 1218 

historical realizations from (c). Grey circles show individual realizations; the solid black line 1219 

shows the multimodel ensemble mean.      1220 
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1221 

Figure 2. Interhemispheric SST contrast spatial patterns: SST and rainfall. (a, c, e) Slope of 1222 

3-year mean SST v. interhemispheric SST contrast from 1881-2012 (from Figure 1c) for (a) 1223 

HadSST3, (c) ERSSTv5, and (e) CMIP5 historical ensemble mean, in °C per °C (unitless). (b, d, 1224 

f) Slope of 3-year mean precipitation v. interhemispheric SST contrast for (b) GPCC rainfall and 1225 

HadSST3 from 1930–2012, (d) GPCC rainfall and ERSSTv5 from 1930–2012, and (f) CMIP5 1226 

historical mean from 1930–2012, in cm month-1 per °C. Right panels show the zonal mean 1227 

slopes. Stippling in (a)–(d) indicates where the slope is significant at p<0.05 and satisfying αFDR 1228 

= 0.05 (see text). Stippling in (e) and (f) indicates sign agreement of at least 30 out of 36 1229 

realizations. Colors in the right panel of (f) indicate land + SST (blue) and land only (black) 1230 

slopes; dotted lines enclose the middle 30 out of 36 realizations.  1231 
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 1232 

Figure 3. Interhemispheric SST contrast detection and attribution. (a) 3-year mean 1233 

interhemispheric SST contrast anomaly: historicalNat and historical fingerprints, and 1234 

observations. (b-c) Forced component of the interhemispheric SST contrast for (b) HadSST3 and 1235 

(c) ERSSTv5. Thick black line is the best-estimate forced component; thin dashed lines indicate 1236 

the 5-95% confidence intervals (see text). The components from anthropogenic and natural 1237 

forcing are also shown. (d) Best-estimate residual interhemispheric SST contrast time series for 1238 

HadSST3 and ERSSTv5. (e) Standard deviations of the best-estimate observational residuals, 1239 

control simulations, and best-estimate historical realization residuals.  1240 
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 1241 

Figure 4. Separate northern and southern hemisphere SST detection and attribution. (a-b) 1242 

3-year mean (a) NH and (b) SH SST anomalies: historicalNat and historical fingerprints, and 1243 

observations. (c-d) Total forced component of the (c) NH and (d) SH SST. (e-f) Best-estimate 1244 

residual SST time series for the (e) NH and (f) SH. (g) Standard deviations of NH and SH SST 1245 

from best-estimate observational residuals, control simulations, and best-estimate historical 1246 

realization residuals. Purple markers show the control simulations, and black markers show the 1247 

best-estimate historical simulation residuals. (h) Correlations of best-estimate residual NH and 1248 

SH SST with those of control simulations and best-estimate historical simulation residuals. 1249 

 1250 
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 1251 

Figure 5. Early-1920s and 1970 interhemispheric SST shifts. (a) Top: 3-year mean 1252 

interhemispheric SST contrast anomaly for HadSST3 (blue), ERSSTv5 (red), and CMIP5 1253 

historical multimodel ensemble mean (black), in °C. Bottom: 9-year running mean trends, in °C 1254 

per decade. The dashed vertical lines indicate the trends centered in 1922 and 1970. (b–c) 1255 

Distribution of 9-year interhemispheric SST trends of each CMIP5 historical realization 1256 

compared with observations for (b) 1918–1926 and (c) 1966–1974. The multimodel ensemble 1257 

mean is shown as a solid black line. (d, f) 9-year SST trend for the period centered in 1922 for 1258 

(d) HadSST3 and (f) ERSSTv5, in °C per decade. (e, g) Same as (d, f), but for the trend centered 1259 

in 1970.  1260 
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 1261 

 1262 

Figure 6. Best-estimate residual SST running trends. (a) 3-year mean best-estimate residual 1263 

interhemispheric SST contrast for HadSST3 and ERSSTv5 in °C (top), with 9-year running 1264 

mean trends in °C per decade (bottom). The dashed vertical lines indicate the trends centered in 1265 

1922 and 1970. (b-c) Same as (a), but for the (b) NH (c) SH SST. 1266 
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 1267 

Figure 7. Control simulation interhemispheric SST shifts. (a) Comparison of the observed 1268 

and best-estimate residual interhemispheric SST trends from 1966–1974 with the largest-1269 

magnitude negative (SH–NH) 9-yr interhemispheric SST trend in each control segment, in °C 1270 

per decade. (b-f) Spatial patterns of the largest-magnitude control segment trends, indicated by 1271 

small letters in (a), in °C per decade: (b) CSIRO-Mk3-6-0 years 310–318, (c) IPSL-CM5A-LR 1272 

years 608–616, (d) HadGEM2-ES years 114–122, (e) HadGEM2-ES years 364–372, and (f) 1273 

GFDL-CM3 years 14–22.  1274 
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 1275 

Figure 8. Specific-forcing interhemispheric SST time series. (a) 3-year running mean 1276 

historicalGHG interhemispheric SST contrast anomaly time series of 35 realizations. Thin lines 1277 

show individual realizations; the thick red line shows the multi-model ensemble mean. (b) 1278 

Distribution of 1881–2012 trends of each realization in (a). Individual model realizations are 1279 

shaded orange; model means are outlined in black. The thick red line indicates the multimodel 1280 

ensemble mean. (c) 1881-2012 interhemispheric SST contrast trends from (b) v. the respective 1281 

1881-2012 global mean SST trends. (d) 3-year running mean historicalAA interhemispheric SST 1282 

contrast anomaly approximation (historical–historicalGHG–historicalNat) of 35 realizations. 1283 

Thin lines show individual realizations; thick line shows the multimodel ensemble mean. (e) 1284 

Distribution of 1950–1985 trends of each realization in (d). Individual model realizations are 1285 

shaded light blue; model means are outlined in black. The thick blue line indicates the 1286 

multimodel ensemble mean. 1287 

  1288 
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 1289 

Figure 9. Inter-model interhemispheric SST spatial pattern variability. CMIP5 historical 1290 

ensemble standard deviation of 3-year mean SST v. interhemispheric SST contrast from 1881-1291 

2012 (from Figure 2e), in °C per °C (unitless). 1292 

 1293 

 1294 

Figure 10. AMOC proxy SST index. (a) Observed 3-year running mean interhemispheric SST 1295 

contrast anomaly (top) and AMOC proxy SST index (subpolar North Atlantic SST minus global 1296 

mean SST) anomaly (bottom; note different scaling). (b) Correlations of the interhemispheric 1297 

SST contrast and AMOC proxy SST index in observations and historical simulations. 1298 
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