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a b s t r a c t

The first confirmed case of Coronavirus Disease 2019 (COVID-19) in the US was reported on January 21,
2020. By the end of March, 2020, there were more than 180,000 confirmed cases in the US, distributed
across more than 2000 counties. We find that the right tail of this distribution exhibits a power law,
with Pareto exponent close to one. We investigate whether a simple model of the growth of COVID-
19 cases involving Gibrat’s law can explain the emergence of this power law. The model is calibrated
to match (i) the growth rates of confirmed cases, and (ii) the varying lengths of time during which
COVID-19 had been present within each county. Thus calibrated, the model generates a power law
with Pareto exponent nearly exactly equal to the exponent estimated directly from the distribution of
confirmed cases across counties at the end of March.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In the natural and social sciences, a variety of size distributions
xhibit a power law in the right tail, meaning that the fraction
f observations whose size S exceeds a threshold s decays like

a power function as that threshold increases: P(S > s) ∼ s−ζ

or large s. The parameter ζ > 0 is called the Pareto (or power
aw) exponent. Examples of distributions exhibiting power laws
nclude income [1–4], wealth [5,6], consumption [7,8], city pop-
lations [9–12], firm size [13,14], family names [15–18], stock
eturns [19–21], and numerous others [22–25].

A common feature of models that purport to explain the
revalence of power laws is the presence of random multiplica-
ive growth. Loosely, the size St of a quantity of interest at
ime t (e.g., wealth, population, firm size, etc.) is said to ex-
ibit random multiplicative growth if its (random) growth factor
t+1 = St+1/St is independent of the current size St . This is known
mong economists as Gibrat’s law of proportional growth. On
ts own, Gibrat’s law is not sufficient to generate a power law.
or instance, a geometric Brownian motion (the continuous-time
nalogue of a random multiplicative growth process with lognor-
al growth) stopped at a fixed time has a lognormal distribution,
hich does not exhibit a power law. On the other hand, a geo-
etric Brownian motion stopped at an exponentially distributed

ime has a double Pareto distribution, which exhibits a power
aw in both tails [26]. We may thus expect to observe a power

∗ Corresponding author.
E-mail addresses: brendan.beare@sydney.edu.au (B.K. Beare),

toda@ucsd.edu (A.A. Toda).
ttps://doi.org/10.1016/j.physd.2020.132649
167-2789/© 2020 Elsevier B.V. All rights reserved.
law in the size distribution of a population whose members have
been growing like geometric Brownian motions since birth, and
whose distribution of ages is exponential. The combination of
Gibrat’s law with an exponential age distribution as a generative
mechanism for power laws has been used extensively in recent
economics literature [7,8,27–41]. Related techniques have also
been employed in the physics literature [42–45].

In this paper we study the distribution of confirmed cases of
Coronavirus Disease 2019 (COVID-19) across US counties. As we
will see, by the end of March 2020, a power law had emerged
in the right tail of that distribution. We investigate whether the
combination of Gibrat’s law (for growth in the number of cases
within a county) and a suitable age distribution (for the length of
time since the outbreak in each county) can explain this power
law. Using daily county-level data from the onset of COVID-19
in the US in January 2020 until the end of March 2020, we
estimate the distributions of growth rates and ages, employing
a gamma parametrization of the former and a truncated logistic
parametrization of the latter. Our primary finding is that the
Pareto exponent implied by the estimated growth rate and age
distributions, which is 0.936, nearly exactly matches the Pareto
exponent estimated directly from the distribution of cases across
counties at the end of March, which is 0.930. This indicates that
the combination of Gibrat’s law with a suitable age distribution
can explain the power law observed in the right tail of the
distribution of COVID-19 cases across US counties.

A nice aspect of the COVID-19 data we analyze is that they
span the entire history of confirmed cases in the US population,
thus permitting us to observe the distribution of ages (days

since outbreak) across counties. While there is limited empirical

https://doi.org/10.1016/j.physd.2020.132649
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2020.132649&domain=pdf
mailto:brendan.beare@sydney.edu.au
mailto:atoda@ucsd.edu
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evidence that the age distributions of cities [46] and firms [47]
may be approximately exponential, it is rarely the case that data
used in economics and related fields allow a reliable estimate of
the relevant age distribution. Indeed, it can be difficult to unam-
biguously define the age of a city, firm, or household, the latter
of which is frequently interpreted as a dynastic unit spanning
multiple generations. This confounds validation of the dynamic
generative mechanism. Conveniently, our COVID-19 data reveal
the entire shape of the age distribution, which allows us to
provide what appears to be the first empirical analysis in which
a Pareto exponent is obtained from direct estimates of both the
growth rate and age distributions.

The remainder of our paper is organized as follows. Section 2
contains theoretical background material. In Section 2.1 we ex-
plain how the combination of Gibrat’s law and an exponential
age distribution determines a Pareto exponent. In Section 2.2
we discuss the connection between Gibrat’s law and a simple
model of epidemics. Section 3 contains our empirical findings.
In Section 3.1 we describe our dataset. In Section 3.2 we display
the distribution of COVID-19 cases across US counties at the end
of March, and report a Pareto exponent estimated directly from
this distribution. In Section 3.3 we assess the empirical plausi-
bility of COVID-19 cases evolving according to Gibrat’s law. In
Sections 3.4 and 3.5 we report our estimates for the distributions
of growth rates and ages respectively. In Section 3.6 we show how
to compute the Pareto exponent implied by those growth rate
and age distributions, and observe that it is close to the Pareto
exponent reported in Section 3.2. Section 4 contains brief remarks
in nontechnical language summarizing the practical import of our
findings. Our data and replication files are available online.1

. Theoretical background

.1. Power laws via Gibrat’s law and exponentially distributed age

Suppose that a unit (say, a county) starts with initial size
number of COVID-19 cases) S0 = 1 at t = 0 and grows randomly
according to Gibrat’s law of motion St = GtSt−1 for integer-
valued t ≥ 1, where {Gt}

∞

t=1 is a sequence of independent and
identically distributed (i.i.d.) positive random variables. Let T be
a random integer-valued time (days since COVID-19 outbreak in
the county), independent of the sequence {Gt}

∞

t=1, at which the
unit size ST is observed. Suppose for now that T has the geometric
distribution (i.e., the discrete-time analogue of the exponential
distribution), meaning that for n ≥ 1 we have P(T = n) = p(1 −

p)n−1 for some parameter p ∈ (0, 1) called a success probability.
What can be said about the right tail of the distribution of ST?

It turns out that, under a regularity condition on the distribution
of the growth rate Xt = lnGt , the tail exhibits a power law.
Specifically, letting E denote the expected value operator, we
shall assume that the distribution of Xt has Laplace transform
M(z) = E(ezXt ) finite for real z ∈ [0, η) and diverging to infinity
as z increases to η, where η may be any positive real number or
+∞. Loosely, this means that Xt can take positive values and has
a distribution with a right tail that decays to zero exponentially or
faster. When this regularity condition is satisfied, we may argue
as follows to establish that the right tail of the distribution of ST
exhibits a power law. Let Y = ln ST =

∑T
t=1 Xt . Observe that the

distribution of Y has Laplace transform MY satisfying

MY (z) =

∞∑
n=1

p(1 − p)n−1M(z)n =
pM(z)

1 − (1 − p)M(z)
(1)

1 https://github.com/alexisakira/COVID-19_power_law.
 w
for all positive real z such that (1−p)M(z) < 1. Noting thatM(z) is
convex as a function of z ∈ (0, η) and satisfies M(0) < 1/(1−p) <

M(η), we deduce that there is a unique ζ ∈ (0, η) at which

(1 − p)M(ζ ) = 1, (2)

and that M(z) has strictly positive derivative at z = ζ . It thus
follows from Eq. (1) and an application of l’Hôpital’s rule that

lim
z→ζ

(z − ζ )MY (z) = −
p

(1 − p)2M ′(ζ )
< 0,

mplying that ζ is a simple pole of MY .
The fact that ζ is a positive real pole of MY means that the

ight tail of the distribution of Y decays to zero exponentially at
ate ζ , in the sense that ln P(Y > y) ∼ −ζy for large y. This is a
consequence of a Tauberian theorem proved in Ref. [48]. It follows
that the right tail of the distribution of ST exhibits a power law
with Pareto exponent ζ : setting y = ln s, we have

lim
s→∞

ln P(ST > s)
ln s

= lim
y→∞

ln P(Y > y)
y

= −ζ .

Eq. (2) appears as Eq. (10) in Ref. [42]. It shows how the
Pareto exponent ζ is uniquely determined by the interaction of
the growth rate distribution (through its Laplace transform M)
and the age distribution (through its parameter p). A more general
version of Eq. (2) applicable in settings where the growth rates
may not be i.i.d. but instead satisfy a weaker condition involving
Markov modulation has been established in Ref. [49].

We assumed in the preceding discussion that T has the ge-
ometric distribution. This assumption was stronger than neces-
sary; what matters is that the right tail of the distribution of
T decays at an exponential rate. In our empirical analysis in
Section 3 we employ a truncated logistic parametrization of the
distribution of T , which has an exponentially decaying right tail
but in other respects does not resemble the geometric distribu-
tion. We will see in Section 3.6 that Eq. (2) remains valid in this
case, with p determined by the rate at which the right tail of
the truncated logistic distribution decays exponentially to zero.
We may also allow the initial size S0 to be a positive random
variable independent of {Gt}

∞

t=1 and T , provided that it satisfies
Sζ+ϵ

0 < ∞ for some ϵ > 0; this can be shown using Breiman’s
lemma [50].

2.2. The Susceptible–Infected–Recovered model

Here we provide a brief discussion of the Susceptible–Infected–
Recovered (SIR) model of epidemics [51] and the extent to which
it is consistent with Gibrat’s law. In the SIR model, a community
(say, a county) consists of a mass of individuals who are either
susceptible to an infectious disease (they are neither infected nor
have immunity), infected, or immune (possibly because they are
vaccinated, infected and recovered, or dead). Individuals meet
each other randomly, and conditional on an infected individual
meeting a susceptible individual, the disease is transmitted with
some probability. Let β > 0 be the rate at which an infected
individual meets a person and transmits the disease if susceptible.
Let γ > 0 be the rate at which an infected individual recovers or
dies. Letting x, y, z be the fractions of susceptible, infected, and
recovered individuals in the community (so x + y + z = 1), the
SIR model is described by the system of differential equations

ẋ = −βxy, (3a)

ẏ = βxy − γ y, (3b)

ż = γ y, (3c)

˙ ˙ ˙
here x, y, z are the rates of change of x, y, z.

https://github.com/alexisakira/COVID-19_power_law
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Although the system of differential equations (3) is nonlinear,
it admits an exact analytical solution [52]. It suffices for our
purposes to study the system (3) heuristically at the beginning
of the epidemic, where x ≈ 1 and y, z are small. Setting x = 1,
q. (3b) becomes ẏ = (β − γ )y, and hence y(t) = y0e(β−γ )t .
ntegrating Eq. (3c), we obtain

(t) = z0 +

∫ t

0
γ y(s)ds = z0 + y0

γ

β − γ
(e(β−γ )t

− 1).

The cumulative number of cases up to time t is therefore given
by

c(t) := y(t) + z(t) = z0 +
y0

β − γ
(βe(β−γ )t

− γ ).

Assuming that β > γ (so that there is an epidemic), that time t
is neither too large (so that the approximation x ≈ 1 is valid) nor
too small (so that γ ≪ βe(β−γ )t ), and that z0 is small relative to
y0, it follows that

c(t) ≈ y0
β

β − γ
e(β−γ )t ,

o cases grow exponentially at rate g := β − γ > 0. This implies
hat the growth factor for cases between day t and t + 1,

Gt+1 := c(t + 1)/c(t) ≈ eg , (4)

is independent of the current size c(t). In practice, the trans-
mission rate β may fluctuate over time, so it may be plausible
to assume that the growth factor Gt+1 is a random variable
independent of the current size c(t), as in Gibrat’s law.

The point of the preceding heuristic discussion is that, in the
SIR model, the growth of infections may be broadly consistent
with Gibrat’s law in the early stages of an epidemic. The same
cannot be said for the later stages of an epidemic. In the exact
analytical solution to the system (3) given in Ref. [52], the growth
rate of infections falls as the proportion of the population that
is infected or recovered rises, because a smaller proportion of
the population remains susceptible to infection. Furthermore,
the growth rate of infections may fall as individuals take more
precautionary measures such as avoiding crowded spaces, wash-
ing hands, wearing face coverings, etc. Our empirical findings
reported in Section 3 are based on data from the onset of COVID-
19 in the US in January 2020 until the end of March 2020. At the
end of that period the total number of confirmed COVID-19 cases
in the US (182,308) was less than 0.06% of the total population
(330 million). We provide evidence in Section 3.3 that the growth
rate of cases remained independent of the number of cases up
until the end of March 2020, consistent with Gibrat’s law.

3. Empirical findings

3.1. Dataset

Our dataset consists of the daily numbers of confirmed COVID-
19 cases in US counties reported by The New York Times,2 based on
reports from state and local health agencies. These numbers are
cumulative. We use data from January 21, 2020, when the first
case in the US was reported, through to March 31, 2020. There
are a total of 3243 counties in the US (including both states and
territories). We include the 2121 counties that reported at least
one COVID-19 case by March 31 and exclude the remainder. Ex-
ceptionally, the dataset combines the five boroughs of New York
City (New York, Kings, Queens, Bronx and Richmond counties)
into a single unit called New York City.

2 https://github.com/nytimes/covid-19-data.
Fig. 1. Log–log plot of confirmed COVID-19 cases against tail probabilities across
US counties on March 31, 2020. The tail probability of a county is the proportion
of all counties matching or exceeding its number of COVID-19 cases. The Pareto
fit was obtained by applying the Hill estimator to the top 6.2% of counties by
number of cases. The estimated Pareto exponent is ζ̂ = 0.930, with a standard
error of 0.081.

3.2. Distribution of COVID-19 cases on March 31

In Fig. 1 we plot the number of confirmed COVID-19 cases in
each county on March 31 against the corresponding tail probabil-
ities in log–log scale. The tail probability for county i is defined
o be the fraction of counties whose number of COVID-19 cases
s greater than or equal to that of county i. The county with
he smallest tail probability, and therefore the highest number of
OVID-19 cases, is New York City (though it is in fact an aggregate
f five counties, as pointed out in Section 3.1). The county with
he next highest number of COVID-19 cases is Nassau County,
hich is located in Long Island and borders Queens County in
ew York City. The county with the highest population is Los
ngeles County, which has the sixth highest number of COVID-19
ases.
Setting aside the two data points for New York City and neigh-

oring Nassau County, the data toward the lower-right of Fig. 1
ppear to lie roughly on a straight line. This pattern is indicative
f a power law in the right tail of the distribution of COVID-
9 cases across US counties. To investigate further, we followed
he approach recommended in Ref. [53]. Specifically, we used a
ersion of the Hill estimator [54] to fit a Pareto distribution to the
ata exceeding a threshold selected using the algorithm described
n Ref. [55]. Slightly more than 6% of counties had COVID-19 cases
xceeding the selected threshold. The Hill estimate of the Pareto
xponent was ζ̂ = 0.930, with a standard error of 0.081. (Similar

results were obtained using a 5% or 10% threshold.) The fitted
Pareto tail is displayed in Fig. 1, where in log–log scale it appears
as a straight line with slope −ζ̂ .

The two data points for New York City and Nassau County,
which recorded the highest numbers of COVID-19 cases, lie some-
what to the right and to the left of our estimated power law
in Fig. 1. In its notes on methodology and definitions, The New
York Times (Footnote 3.1) states that where possible it assigned
cases to the county where they were treated, not where they
resided. This could mean that a significant number of Nassau
County residents who were confirmed as having COVID-19 but
received treatment in New York City are classified as New York
City cases rather than Nassau County cases. If we suppose that
one third of Nassau County residents confirmed with COVID-19
were classified as New York City cases, and reassign those cases to

https://github.com/nytimes/covid-19-data
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Fig. 2. Ordinary least squares estimates of β0t , β1t , β2t , β3t in Eq. (5) for the 28 days between March 3 and March 30 inclusive, with 95% confidence bands. In panel
2(a)) we also display the pooled mean growth rate of 0.180.
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assau County, then the small circles representing Nassau County
nd New York City in Fig. 1 shift to the right and left respectively,
uch that both are touching our line of Pareto fit.

.3. Empirical plausibility of Gibrat’s law

The remainder of our empirical analysis focuses on determin-
ng whether the power law with estimated exponent ζ̂ = 0.930
btained in Section 3.2 can be explained by a combination of
ibrat’s law and an age distribution with exponential right tail, as
escribed in Section 2.1. We first assess the empirical plausibility
f Gibrat’s law as a description of the growth in COVID-19 cases
ithin counties. To this end, for each day t between March 3 and
arch 30 inclusive, we estimate the cross-sectional regression
quation

ln ci,t+1 = β0t + β1t ln cit + β2t∆ ln cit + β3tDit + εit (5)

y ordinary least squares, where cit is the number of cases in
ounty i up to day t , ∆ ln ci,t+1 is the growth rate in cases in
ounty i between day t and t + 1, Dit is the number of days
inclusive) between day t and the day of the first confirmed case
n county i, εit is the regression residual, and β0t , β1t , β2t , β3t are
egression coefficients that are potentially time-varying. (Here
0t corresponds to the growth rate g = β − γ in Eq. (4).) The
stimation of Eq. (5) on day t uses the data for all counties i
eporting a positive number of cases (cit > 0). We estimate
q. (5) for the 28 days between March 3 and March 30 inclusive
ecause these are the days on which at least 30 counties reported
positive number of cases. The number of counties used in each
egression increases from 32 on March 3 to 1940 on March 30.

Fig. 2 displays our estimates of β0t , β1t , β2t , β3t in Eq. (5) from
arch 3 to March 30, with accompanying 95% confidence bands.

n each panel, the confidence bands narrow as we move from
eft to right, reflecting the fact that the regression sample size
ncreases from 32 to 1940. In panels 2(b)–2(d), we see that the
stimates of β , β , β are close to zero. This is exactly what
1t 2t 3t
e would expect under Gibrat’s law: the growth rate in cases
etween days t and t +1 ought to be unrelated to the number of
ases on day t , the growth rate in cases between days t − 1 and
, and the time elapsed since the outbreak.

The estimated parameters are quite stable over time. The
stimates of β0t displayed in panel 2(a) indicate that the expected
rowth rate of cases during March was roughly stable at around
5%–20% per day. The pooled mean growth rate (i.e., the average
ver all days and counties with at least one reported case) was
8%, which falls outside the daily 95% confidence bands on only
hree days excluding the very end of March, when mitigation
fforts may have begun to slow the epidemic. The pooled mean
rowth rate may be compared to estimates of related parameters
btained in prior research on COVID-19. In the context of the SIR
odel described in Section 2.2, the recovery rate γ is a biological
arameter determined by the virus. In Ref. [56] the mean serial
nterval, which corresponds to 1/γ , is estimated through contact
tracing to be 7.5 days. Therefore setting γ = 1/7.5 = 0.133 and
g = β − γ = 0.180, our pooled mean growth rate, we estimate
the transmission rate β to be 0.314. This in turn implies that the
reproductive number of COVID-19 (which plays an important role
in epidemic dynamics) is R0 = β/γ = 2.35, which is close to the
estimate of 2.2 reported in Ref. [56].

3.4. Distribution of growth rate of confirmed cases

In Fig. 3 we display a histogram of the growth rates of con-
firmed COVID-19 cases, obtained by pooling our data across all
days t up to March 30 and all counties iwith at least 10 confirmed
cases (cit ≥ 10) and a positive growth rate (∆ ln ci,t+1 > 0).
Overlaying the histogram we plot a gamma distribution fit to
our data by the method of maximum likelihood. The gamma
distribution has density

f (x) =
λα

xα−1e−λx, x > 0, (6)

Γ (α)
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Fig. 3. Histogram of growth rates of confirmed COVID-19 cases, using data from
all days up to the end of March and all counties with at least 10 confirmed cases
and a positive growth rate of cases. The gamma fit was obtained by the method
of maximum likelihood. The nonparametric fit was obtained by Gaussian kernel
smoothing.

where α, λ > 0 are called the shape and rate parameters. The
maximum likelihood parameter estimates are α̂ = 2.30 and λ̂ =

0.4. The fit of the gamma distribution appears to be excellent,
articularly in the right tail of the data. It closely matches a non-
arametric estimate obtained using Gaussian kernel smoothing,
hich we plot alongside it in Fig. 3.
Our data up to March 30 include a total of 5687 day-county

airs with at least 10 confirmed cases (cit ≥ 10). Of those, 725
ay-county pairs had a zero growth rate of cases (∆ ln ci,t+1 =

), and were therefore excluded from the computation of the
istogram in Fig. 3 and corresponding gamma fit. An observed
rowth rate could be zero because there were indeed no new
ases, or because the data were not updated on a particular day.
he proportion of growth rates observed to be zero is π =

25/5687 = 0.128, which is substantial. For this reason, in the
nalysis in Section 3.6, we model the distribution of the growth
ate of confirmed cases as a mixture of our maximum likelihood
stimate of the gamma distribution plotted in Fig. 3 and a point
ass at zero, with proportions 1 − π and π respectively.

.5. Distribution of days since first confirmed case

In Fig. 4 we display a histogram of the number of days (in-
lusive) between the day of the first confirmed case of COVID-19
n a county, and March 31. The histogram is computed from the
121 counties in our dataset that reported at least one confirmed
ase by March 31.
As discussed earlier, the combination of Gibrat’s law with an

xponential age distribution has been widely used as a generative
echanism for power laws. It is apparent from the histogram

n Fig. 4, however, that the exponential distribution (or its dis-
rete counterpart, the geometric distribution) cannot provide an
cceptable approximation to the age distribution we observe in
ur data. The problem is that the density of the exponential
istribution is monotonically decreasing, whereas the histogram
n Fig. 4 is roughly hump shaped.

In nature, an exponential distribution of ages arises when a
opulation grows exponentially over time, as in the Yule model of
peciation discussed in Refs. [10,26]. By analogy, we may expect
o see an exponential distribution of days-since-outbreak in our
ata if the number of counties that have reported at least one
onfirmed COVID-19 case is growing exponentially over time. The
 d
Fig. 4. Histogram of days-since-outbreak on March 31, using data from all
counties reporting at least one confirmed COVID-19 case by March 31. The
truncated logistic fit was obtained by the method of maximum likelihood.

analogy fails because there are only 3243 counties in the US, so
that exponential growth cannot be maintained. Once COVID-19
has spread to a substantial proportion of counties, the rate of
growth in the number of counties reporting at least one case
ought to fall, eventually vanishing as saturation is approached.
Given that nearly two thirds of US counties had reported at least
one confirmed case by March 31, we would expect the number
of newly infected counties to be declining by this time. This
qualitative argument could, in principle, explain the hump shape
in the histogram in Fig. 4. We nowmodel this argument and show
that it does explain the hump shape quantitatively.

The logistic function was introduced in the 19th century as a
model of population growth that commences at an exponential
rate but tapers off as a saturation point is approached due to
competition for resources [57]. In the SIR model discussed in
Section 2.2, in the absence of recovery (so that γ = 0 in Eq. (3b)),
a logistic function describes the growth of the infected population
over time, and the distribution of time-since-infection for the
infected population at any given time is the truncated logistic
distribution. (Truncation is always necessary because saturation
is not reached in finite time.) By analogy, when considering the
spread of an infection across a population of counties, we might
expect the truncated logistic distribution to well-approximate the
distribution of days-since-outbreak across counties at any given
time. We therefore truncate a discrete version of the logistic
distribution introduced in Ref. [58]. Without truncation, for any
integer n, the discrete logistic distribution has probability mass

P(T = n) =
(1 − q)qn−µ

(1 + qn−µ)(1 + qn−µ+1)
, (7)

where q ∈ (0, 1) is a parameter determining the rate of expo-
nential decay in the tails, and µ is a location parameter. After
truncating all mass on nonpositive integers and rescaling so that
the remaining mass sums to one, the probability mass assigned
to each integer n ≥ 1 is

P(T = n) =
(1 + φ)(1 − q)qn−1

(1 + φqn−1)(1 + φqn)
, (8)

where we have reparametrized the distribution in terms of q and
φ = q1−µ, the latter equal to the ratio of probability masses
ncluded and excluded by truncation.

Overlaying the histogram in Fig. 4 we plot a truncated logistic
istribution fit to our data by the method of maximum likelihood.
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Fig. 5. The Pareto exponent ζ is the unique positive real z at which the Laplace
transform M(z) is equal to 1/q.

The maximum likelihood parameter estimates are q̂ = 0.825 and
ˆ = 4.06. The fit captures the general shape of the histogram
easonably well, particularly toward the right tail, which is the
ore important region for our purposes.

.6. Implied Pareto exponent

In Section 2.1 we discussed how the combination of Gibrat’s
aw and an exponential age distribution can generate a power
aw, with Pareto exponent ζ solving Eq. (2). It remains for us to
determine the Pareto exponent thus obtained when the distribu-
tions of growth rates and ages are as estimated in Sections 3.4
and 3.5. A complicating factor is that our age distribution is
not exactly exponential, but instead belongs to the family of
truncated logistic distributions defined by Eq. (8). This leads us
to replace Eq. (1) with

MY (z) =

∞∑
n=1

(1 + φ)(1 − q)qn−1

(1 + φqn−1)(1 + φqn)
M(z)n, (9)

valid for all positive real z such that qM(z) < 1. Define

rn = [(1 + φqn−1)(1 + φqn)]−1
− 1,

and let p = 1 − q. It is straightforward to show that |rn| ≤

φ(1 + q)qn−1, so we may rewrite Eq. (9) as

MY (z) = (1 + φ)p

[
M(z)

1 − qM(z)
+

∞∑
n=1

qn−1rnM(z)n
]

,

where the first term in square brackets has a pole at the unique
ζ ∈ (0, η) solving Eq. (2) and the second term in square brackets
is analytic in a neighborhood of ζ . This shows that ζ is a positive
real pole of MY and so, as in Section 2.1, we deduce from the
Tauberian theorem proved in Ref. [48] that the right tail of the
distribution of ST exhibits a power law with Pareto exponent ζ .
Fig. 5 displays visually how ζ is determined by the parameter q
and Laplace transform M(z), with our empirical estimates for q
nd M(z).
Our estimate of the distribution of the growth rate of con-

irmed COVID-19 cases (i.e., the distribution of Xt ) reported in
ection 3.4 was a mixture of a point mass at zero and a gamma
istribution with weights π = 0.128 and 1 − π respectively.
he particular form of this distribution allows us to obtain the
olution ζ to Eq. (2) in analytic form. Specifically, the Laplace
ransform of the distribution of Xt is given for real z < λ by

(z) = π + (1 − π )
∫

∞

ezx
λα

xα−1e−λxdx

0 Γ (α)
= π + (1 − π ) (1 − z/λ)−α , (10)

nd so the unique solution to Eq. (2) is

= λ

[
1 −

(
1 − π

1/q − π

)1/α
]

. (11)

Substituting the empirical estimates π = 0.128, α̂ = 2.30, λ̂ =

0.4 and q̂ = 0.825 into Eq. (11), we obtain the implied Pareto
xponent ζ = 0.936, which is nearly exactly equal to (and well
ithin the 95% confidence interval of) the estimate ζ̂ = 0.930

reported in Section 3.2. (If we use the nonparametric distribution
in Fig. 3 in place of the gamma distribution then the implied
Pareto exponent is ζ = 0.928.) Thus our simple model involving
Gibrat’s law generates precisely the power law we observe in the
distribution of COVID-19 cases at the end of March.

4. Final remarks

We conclude with some brief remarks in nontechnical lan-
guage to summarize the primary import of our results to policy-
makers dealing with the COVID-19 epidemic, or to historians
seeking to understand the early weeks of the COVID-19 epidemic
in the US. An empirical feature of the distribution of COVID-19
cases across US counties at the end of March 2020 is that case
loads are dramatically higher in some counties than in others.
That is, the distribution of COVID-19 cases across US counties at
the end of March has a heavy right tail. While it may be natural to
look for county-specific characteristics to explain why this is the
case, our results indicate that this is not necessary. The very high
case loads observed in some counties are accurately predicted by
a simple empirically calibrated model combining (i) random mul-
tiplicative growth within each county, and (ii) variation across
counties in the duration of the spread of COVID-19. There is no
need to attribute the highest case loads to other idiosyncratic fac-
tors. New York City, where confirmed cases substantially exceed
our model’s prediction, may be an exception.
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