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2.1 An example of genotypes vs. haplotypes. Genotypes describe which base are at

a location in the genome. The genotypes at each of the three loci here are A/T, G/A,

and T/C. Haplotypes designate which are inherited together on the same chromosome.

In this example, the A/A/C variants are on the same chromosome and therefore the

same haplotype, and the T/G/T variants are on the other. . . . . . . . . . . . . . 14
2.2 An example of clinically significant differences in haplotypes. Two different

possibilities for organization of the same genotype. In (a), the wild type promoter and

gene are on the same chromosome and are therefore able to produce a normal amount

of functional protein. In (b), only a reduced amount of functional protein is produced. 15
2.3 Motivation and overview of diplotyping. Gray sequences illustrate the haplo-

types; the reads are shown in red and blue. The red reads originate from the upper

haplotype, the blue ones from the lower. Genotyping each SNV individually would

lead to the conclusion that all of them are heterozygous. Using the haplotype context

reveals uncertainty about the genotype of the second SNV. . . . . . . . . . . . . . 16
2.4 Motivation and overview of diplotyping. a Gray sequences illustrate the haplo-

types; the reads are shown in red and blue. The red reads originate from the upper

haplotype, the blue ones from the lower. Genotyping each SNV individually would

lead to the conclusion that all of them are heterozygous. Using the haplotype context

reveals uncertainty about the genotype of the second SNV. b Clockwise starting top

left: first, sequencing reads aligned to a reference genome are given as input; second,

the read alignments are used to nominate candidate variants (red vertical bars), which

are characterized by the differences to the reference genome; third, a hidden Markov

model (HMM) is constructed where each candidate variant gives rise to one “row” of

states, representing possible ways of assigning each read to one of the two haplotypes

as well as possible genotypes (see the “Methods” section for details); forth, the HMM

is used to perform diplotyping, i.e., we infer genotypes of each candidate variant as

well as how the alleles are assigned to haplotypes . . . . . . . . . . . . . . . . . 26
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2.5 Reach of short read and long read technologies. The callable and mappable

regions for NA12878 spanning various repetitive or duplicated sequences on GRCh38

are shown. Feature locations are determined based on BED tracks downloaded from

the UCSC Genome Browser [48]. Other than the Gencode regions [49, 50], all features

are subsets of the Repeat Masker [51] track. Four coverage statistics for long reads
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coverage. “GIAB High Confidence,” “GATK Callable,” and “Short Read Mappable”
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the numbers on the right detail coverage over the feature and coverage over the whole

genome (parenthesized) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Precision and recall of MarginPhase on Nanopore and WhatsHap on PacBio

datasets in GIAB high confidence regions.Genotype concordance (bottom) (wrt.

GIAB high confidence calls) of MarginPhase (mp, top) on Nanopore and WhatsHap

(wh, middle) on PacBio (PB). Furthermore, genotype concordance for the intersection

of the calls made by WhatsHap on the PacBio and MarginPhase on the Nanopore

reads is shown (bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.7 Genotyping errors (with respect to GIAB calls) as a function of coverage.

The full length reads were used for genotyping (blue), and additionally, reads were cut

such as to cover at most two variants (red) and one variant (yellow) . . . . . . . . 38
2.8 Confirming short-read variants. We examine all distinct variants found by our

method, GIAB high confidence, GATK/HC, and FreeBayes. Raw variant counts ap-
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a All variants. b Variants in GIAB high-confidence regions. c Variants outside GIAB

high-confidence regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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cleotides, i.e., Σ = {A,C,G, T} . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.10 Example graph. Left: An alignment matrix. Right: The corresponding directed

graph representing the bipartitions of active rows and active non-terminal rows, where

the labels of the nodes indicate the partitions, e.g. ‘1,2 / .’ is shorthand for A =

({1, 2}, {}}).) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.11 Genotyping HMM. Colored states correspond to bipartitions of reads and allele

assignments at that position. States in C1 and C2 correspond to bipartitions of reads

covering positions 1 and 2 or 2 and 3, respectively. In order to compute genotype

likelihoods after running the forward-backward algorithm, states of the same color

have to be summed up in each column . . . . . . . . . . . . . . . . . . . . . . 54
2.12 The merger of two read partitioning HMMs with the same number of

columns. Top and middle: two HMMs to be merged; bottom: the merged HMM.

Transition and emission probabilities not shown . . . . . . . . . . . . . . . . . 60
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3.1 Assembly pipeline. An overview of an example haploid consensus assembly pipeline

which uses multiple sequencing technologies and pieces of software. This is non-

exhaustive, as additional sequencing types and software could be included. . . . . . 68
3.2 Nanopore sequencing data. a, Throughput in gigabases from each of three flow

cells for 11 samples, with total throughput at top. Each point is a flow cell. b, Read

N50 values for each flow cell. Each point is a flow cell. c, Alignment identities against
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line is a single sample comprising three flow cells. d, Genome coverage as a function of

read length. Dashed lines indicate coverage at 10 and 100 kb. HG00733 is accentuated

in dark blue as an example. Each line is a single sample comprising three flow cells.

e, Alignment identity for standard and RLE reads. Data for HG00733 chromosome 1

flow cell 1 are shown (4.6 Gb raw sequence). Dashed lines denote quartiles. . . . . 78
3.3 Assembly metrics for Shasta, Wtgdb2, Flye and Canu before polishing. a,
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sembly. c, Assembly disagreement counts for regions outside centromeres, segmental

duplications and, for HG002, known SVs. d, Total generated sequence length versus

total aligned sequence length (against GRCh38). e, Balanced base-level error rates for

assembled sequences. f, Average runtime and cost for assemblers (Canu not shown). 81
3.4 Shasta MHC assemblies compared with the reference human genome. Un-

polished Shasta assembly for CHM13 and HG00733, including HG00733 trio-binned

maternal and paternal assemblies. Shaded gray areas are regions in which coverage

(as aligned to GRCh38) drops below 20. Horizontal black lines indicate contig breaks.

Blue and green describe unique alignments (aligning forward and reverse, respectively)

and orange describes multiple alignments. . . . . . . . . . . . . . . . . . . . . 86
3.5 Polishing assembled genomes. a, Balanced error rates for the four methods on

HG00733 and CHM13. b, Row-normalized heatmaps describing the predicted run

lengths (x axis) given true run lengths (y axis) for four steps of the pipeline on

HG00733. Guppy v.2.3.3 was generated from 3.7 Gb of RLE sequence. Shasta, Margin-

Polish and HELEN were generated from whole assemblies aligned to their respective

truth sequences. c, Error rates for MarginPolish and HELEN on four assemblies. d,

Average runtime and cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.6 HiRise scaffolding for 11 genomes. a, NGx plots for each of the 11 genomes, be-

fore (dashed) and after (solid) scaffolding with HiC sequencing reads, GRCh38 minus

alternate sequences is shown for comparison. b, Dot plot showing alignments between

the scaffolded HG00733 Shasta assembly and GRCh38 chromosome scaffolds. Blue in-

dicates forward aligning segments, green indicates reverse, with both indicating unique
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isoforms in ELN (tropoelastin) are predicted by the AugustusPB mode of CAT and

are supported by macaque Iso-Seq data but differ significantly from human by two
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not in apes, as a result of an ape-specific deletion (bottom) that changed the gene
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4.5 A bonobo isoform of ANAPC2 contains a novel exon predicted by the

AugustusPB mode of CAT, which is supported by bonobo Iso-Seq data

from iPSC tissue. The exon is not seen in the human or chimpanzee annotations.

a, The exon structure of this gene is shown for human, chimpanzee, and bonobo. The

novel exon is alternatively spliced, seen in one isoform of ANAPC2 in bonobo and not

the other. b, A sample of Iso-Seq reads from the bonobo iPSC tissue shows support
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and CHM13 is from a haploid (hap) cell line. The numbers in parentheses along the

x axis are the assembly numbers. alt, alternate; mat, maternal; pat, paternal; phap,
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Abstract

Using long reads to improve haplotype phasing, genome assembly, and gene

annotation

by

Marina Haukness

Despite their accuracy, next-generation DNA sequencing technologies have lim-

ited utility in analyzing ambiguous and repetitive parts of the genome due to the short

length of reads. Third-generation long read DNA sequencing technologies, such as those

from Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio), allow us

to explore much more of the genome and perform more comprehensive genomic analyses.

However, new software must be developed for these analyses in order to take advantage

of the increased read lengths, while mitigating errors from base-level inaccuracies. In

this thesis, I explore the advantages of long reads for haplotype phasing and genome

assembly. I then use genome assemblies created from long reads to perform compara-

tive genomics analyses, focusing on gene annotation of new, high-quality assemblies of

primates and humans, including annotating the first fully complete human genome and

a human pangenome containing over 90 distinct haplotypes.
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Chapter 1

Introduction

At their core, many genomic analyses aim to determine an individual’s under-

lying genomic sequence, which requires the use of accurate DNA sequencing methodolo-

gies. Over the past two decades, there have been frequent and substantial innovations

in DNA sequencing technologies that have transformed the field of genomics, increasing

the quality of analyses and types of possible analyses that can be done at lower costs and

higher speeds. The cost of DNA sequencing and subsequent genome reconstruction has

decreased dramatically; for example, the cost of sequencing the human genome dropped

from $300 million in 2001 for the first human genome in the Human Genome Project

to around $1000 in 2020, with the biggest drop in cost in 2008 resulting from the intro-

duction of next-generation sequencing, which produces high-quality, short reads. This

has made genome sequencing for personal health diagnoses, such as cancers and other

genetic diseases, increasingly feasible. It has also made it easier to study more nonhu-

man species, giving us a more complete picture of the genomic diversity of organisms
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living on this planet, and more insight into processes like evolution.

After the introduction of next-generation sequencing, many additional types

of DNA sequencing have emerged, each with characteristics that are suited for different

kinds of genomic analyses. There are now multiple technologies available for sequencing

longer sections of DNA at once, which result in what are referred to as long reads.

These reads, though less accurate than their predecessors, allow for analyses that were

previously impossible due to the short read lengths of next-generation reads. Much

of this dissertation will focus on these longer sequencing reads and how they have

transformed the field.

Short next-generation reads, such as those from Illumina, are highly accurate

at a per-base level, cost-effective, and allow for a wide range of genomics analyses

to be performed. Their sequencing errors are well-characterized and easy to model

statistically. These properties make next-generation reads ideal for genotyping small

variants in well-characterized regions of the genome. Despite their accuracy, short reads

suffer from being more difficult to map to the genome, especially in repetitive regions

such as LINE and SINE elements, segmental duplications, centromeres, and telomeres.

This is because sequencing reads that arise from repetitive genomic sequences that have

a length greater than the length of the read often cannot be unambiguously mapped to

the read’s precise origin. This results in short reads being able to map to only about 90%

of the current reference genome assembly [2], and even less (80%) at high confidence [3].

Any genomics analyses that rely on a read mapping step, such as variant calling, cannot

confidently be completed in these difficult-to-map regions. Short reads also have limited
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utility when assembling a genome de novo (from scratch), as it can be hard to find long

enough overlaps between reads to unambiguously extend assembled segments, resulting

in assemblies that are very discontinuous, with many short assembled fragments and

few long ones. Additional problems with short reads include uneven read coverage and

sequencing bias [4].

Long read sequencing technologies, such as those from Pacific Biosciences

(PacBio) and Oxford Nanopore Technologies (ONT), have proliferated in recent years

and offer both new solutions and new challenges to genomics analyses. Long read se-

quencing helps address some of the problems that arise from traditional short read

sequencing methods, such as improving ambiguous read mapping in repetitive regions,

because their length can span all or most of many repeats, and can include more of the

unique flanking sequence on either end. Unfortunately, these reads have some downsides.

The sequencing error rate can be close to 10%, and errors are not distributed randomly,

and instead are concentrated in homopolymers, where a single base of DNA is repeated

any number of times. Long read sequencers also tend to have lower throughput and cost

more than short reads [5]. Despite these downsides, long reads have already transformed

the field of bioinformatics, and their accuracy and throughput are quickly increasing.

Some candidate problems that long reads are well-suited for include haplotype phasing

and genome assembly, which are two areas I have focused on in this dissertation. Long

reads can also be used in RNA-sequencing, and help improve isoform resolution among

transcripts of genes, and paralog resolution within homologous gene families, which I

took advantage when performing gene annotation on various assemblies.
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Once higher quality genome assemblies are made, they will allow for studying

regions of the genome previously almost entirely ignored, such as the centromeres, which

are notoriously difficult to assemble due to their highly repetitive structure, as well

as any of the other repetitive regions of the genome. This will also allow for higher

quality annotations made on top of the assemblies, such as repeat annotations and

gene annotations. Having higher quality assemblies and annotations for more species,

and for more individuals within a species, will then pave the way for more interesting

and complex comparative genomics analyses. Then we can gain more insight into the

evolutionary histories of these species, particularly within such challenging regions, as

well as more knowledge about the variation present in these regions among individuals

within a species.

The past six years of graduate school have been an exciting time to be involved

in the field, where the state-of-the-art changes on a yearly basis. This thesis describes

many projects I have been involved in, which may seem fairly unrelated on their surface,

but one unifying theme amongst them all is that long reads can be used to improve many

different genomic analyses. The first part of my dissertation focused on the problem of

haplotype phasing. I worked on developing software called MarginPhase, which uses a

Hidden Markov Model (HMM) to separate an input set of long reads into two haplotypes,

and then identify variants within each haplotype to produce a set of phased variants. I

then switched focus to genome assembly. I ran many different assembly pipelines using

different types of long reads, and also gained expertise at the use of long range contact

information within proximity ligation reads to string smaller assembled sequences of
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DNA (contigs) into bigger scaffolds. I analyzed the quality of these assemblies along

many different metrics. This culminated in the publication of Shasta, an assembler

that uses long nanopore reads from ONT. I then switched focus to gene annotation

and comparative gene analysis on these assemblies made from long reads. I helped

annotate and analyze two new primate genome assemblies, the rhesus macaque and the

bonobo, using long RNA sequencing reads to aid in the identification of novel genes and

novel transcript isoforms. I joined the Telomere-to-Telomere Consortium to help lead

the gene annotation on the first fully complete human genome assembly, identifying

genes in regions of the genome that had never been assembled before, such as regions in

and near the centromeres. I joined the Human Pangenome Reference Consortium and

annotated the genes on a pangenome made of 47 new diploid assemblies for a diverse

panel of humans, and focused on gene families experiencing copy number variation

within this panel.

The rest of my thesis will focus on my contributions of each of these projects.

Because each of these sections are quite distinct from the others, they require a lot of

background information, and rather than include that all up front, relevant background

can instead be found at the beginning of the corresponding chapter. However, a small

amount of background relevant to all chapters, mainly regarding sequencing technolo-

gies, can be found after this introduction. The rest of the document is organized as

follows: Chapter 2 is about the development and use of MarginPhase, a diplotyper

that uses an HMM to simultaneously genotype and phase haplotypes using long DNA

sequencing reads. Chapter 3 is about using long nanopore reads for genome assem-
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bly, and development of a pipeline to fully sequence and assemble 11 genomes in 11

days. Chapter 4 is about comparative genomics, specifically gene annotation on pri-

mates, focusing on two new assemblies of the rhesus macaque and bonobo and detailing

some software contributions made to the Comparative Annotation Toolkit. Chapter 5

is about gene annotation on the first fully complete, telomere-to-telomere genome as-

sembly as a part of the Telomere-to-Telomere (T2T) consortium. Chapter 6 is about

gene annotation on a human pangenome as a part of the Human Pangenome Reference

Consortium (HPRC). The appendices include mainly supplemental information from

the corresponding papers.
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Background

The following section details some additional background that is largely rele-

vant to each of the remaining chapters within my dissertation.

DNA sequencing techniques

This dissertation focuses on analyses that use whole-genome sequencing, which

aims to sequence the entire genome for a given sample. This is in opposition to tar-

geted sequencing, which aims to sequence only selected portions of the genome, as well

as microarray-based methods, which serve to identify the bases at predetermined loci

within the genome. Whole-genome sequencing is immensely powerful, as it does not re-

quire predetermining loci of interest within which to restrict sequencing or genotyping.

Sanger sequencing

Sanger sequencing was one of the first methods for DNA sequencing, developed

in 1977 by Frederick Sanger [6], and remained one of the most widely used sequencing

technologies for many years. The current iteration of Sanger sequencing involves the

use of modified di-deoxyucleotide triphosphates (ddNTPs) which will terminate the

construction of a DNA chain after they are incorporated. For a given DNA sample,

four separate reactions occur that involve a mix of regular deoxynucleotide phosphates

(dNTPs) and one of the ddNTPs. Gel electrophoresis is used to read the results of the

chain reactions. The reads produced by this process can be up to 1000 base pairs long

and are extremely accurate, with accuracies of approximately 99.999%. Unfortunately,
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the process does not scale well to generate the large amounts of data needed for genomics

projects today, but it still has its uses for smaller-scale needs.

Next-generation sequencing

The next type of sequencing technologies developed after Sanger sequencing

are referred to as “next-generation sequencing” (or “second-generation sequencing”,

“shotgun sequencing”, or “short read sequencing”). Today, this term is mostly used

to refer to Illumina sequencing [7], which is how the rest of this dissertation will use

the term as well. These techniques follow the general workflow of fragmenting the

DNA within a sample, ligating adapters, amplifying the DNA with a polymerase chain

reaction (PCR), and sequencing the resulting DNA. The sequencing here is “sequencing

by synthesis”, where in each round, each DNA strand gets extended by a fluorescently

labeled dNTP, and the base that was used is recorded.

There are additional types of Illumina sequencing such as paired end sequenc-

ing, where pairs of reads are produced that originated from the same DNA, and the

linkage information between the pair can improve read mapping to a genome. This type

of sequencing technique is highly parallelizable, and results in reads that are still highly

accurate (approximately 99.9%, depending on machine), with read lengths between 50 to

400 base pairs, commonly 150 or 300bp. Though less accurate than Sanger sequencing,

the throughput allows for quick production of millions of reads from a sample.
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Proximity ligation sequencing

Chromosome conformation-capture (3C) was the first technique used to detect

the frequencies of interactions between genomic loci [8]. 4C combines 3C techniques

with high-throughput sequencing [9]. HiC can be considered a type of either of these

methods, and it is the only type of chromosome capture technique that I used within

the work for my dissertation. Each of these techniques follows the same general set

of steps: cross-linking DNA that is in close physical proximity (the actual proximity

ligation), then prepping that DNA for sequencing, and performing the sequencing. HiC

uses Illumina next-generation sequencing for the final sequencing step. It results in sets

of pairs of reads, where the pairs of reads are from portions of DNA that were in close

physical proximity to each other during the initial cross-linking step. Each of these

interactions can be plotted to create a contact map, which allows for the visualization

of the density of these contacts across the genome. HiC data is particularly useful

for scaffolding de novo genome assemblies. Contigs that have many HiC interactions

between them are likely near each other along the chromosome, so they can be scaffolded

together.

Linked reads

10X Genomics commercialized the production of linked sequencing reads. Un-

fortunately, this technique was discontinued in 2020, although these reads are mentioned

in a couple sections within my dissertation, so they still deserve some background. A

linked read is made up of multiple short reads that originate from a single, long piece of
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DNA. Each short read is barcoded with a unique molecular barcode to designate they

arose from the same original molecule, and then they are sequenced on a next-generation

sequencer. The long range information allows these reads to be used for some of the

analyses that long reads are good for, like structural variant calling and de novo genome

assembly [10], though they are not quite as good as the long reads discussed next.

Long read sequencing

The next major innovation for DNA sequencing was deemed “third-generation

sequencing”, though it is also often referred to as “long read sequencing”, as the reads

produced can be much longer than any of the previously mentioned technologies (tens

to hundreds of thousands of base pairs per read, even occasionally more than a million).

However, the long read length comes with a cost of being less accurate. This space

is dominated by two companies, Pacific Biosciences (PacBio) and Oxford Nanopore

Technologies (ONT).

PacBio reads are generated from the SMRT (Single Molecule Real-Time) se-

quencing platform. For a piece of DNA, which can range in length up to tens of thou-

sands of base pairs, PacBio makes a circular piece of DNA with the DNA insert and

adapters on either end. The DNA is sequenced using fluorophores. The first type of

reads from PacBio were Continuous Long Reads (CLR), and had insert sizes from 25kb

to 100kb, but low accuracies (88-90%). Later, PacBio introduced their High Fidelity

(HiFi) reads, that used Circular Consensus Sequencing (CCS) mode rather than CLR

mode. These reads are much smaller in size (10-25 kb), which allows the polymerase

10



to read around the piece of circular DNA many times to generate multiple subreads for

the DNA insert. A consensus sequence is called, and this leads to accuracies greater

than 99%. As one may expect, these techniques lead HiFi reads to cost significantly

more than other sequencing types.

ONT is responsible for commercialization of nanopore sequencing, which was

initially conceived at UC Santa Cruz [11]. Nanopore sequencing involves sequencing

DNA as it passes through a pore embedded within a membrane. To do so, DNA strands

get adapters added, which include a motor protein to help pull them through the pore.

An electric field is applied to the membrane, setting up a difference in charge on either

end. The negatively charged DNA is pulled through to the positively charged side,

passing through a pore on its way. The current is measured as the DNA passes through

the pore, and the resulting signal is used to infer which nucleotides were present in

the pore. Nanopore sequencing started off being wildly inaccurate, but accuracies have

improved to be around 90%-94% these days. The majority of errors in nanopore reads

are concentrated within homopolymers, which are stretches where a single nucleotide

base repeats, as it is difficult to determine the number of bases involved from the way

they pass through the pore.

RNA sequencing

All of the sequencing techniques mentioned up until this point have been for

use on DNA. However, DNA gives only a static view about the genome of a cell–

RNA is much more dynamic, and sequencing RNA can give more information about
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things like an organism’s gene expression across multiple tissue types. A portion of my

thesis focuses on gene annotation, which directly benefits from the inclusion of RNA

sequencing information, instead of having to rely completely on the genomic sequence

to predict the existence of transcripts and genes.

RNA sequencing generally requires converting a single-stranded RNA molecule

back into a complementary strand of DNA (cDNA), and then sequencing the cDNA

with existing techniques. Next-generation sequencing is commonly used, so it has all

the same advantages and disadvantages as discussed earlier. Another downside of these

techniques relevant to transcriptome analysis is that short reads may be unable to

distinguish between different isoforms of a gene, as they may not be long enough to

cover all of the exons involved.

As one may hope, long reads can additionally be used to sequence RNA. Iso-

Seq use PacBio reads to sequence full-length cDNA transcripts. Nanopore sequencing

can also be used to sequence full-length cDNA transcripts, but it has the additional

advantage of being able to sequence native RNA strands themselves. This adds the

ability to identify any modifications to the RNA bases, whereas any method involving

a conversion to cDNA loses these base modifications.
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Chapter 2

Haplotype Phasing

Background

Variant identification

Identifying genetic variants within a genome can reveal valuable information

about an individual or population, such as the genetic causes of clinically significant

phenotypes or the ancestry of DNA [12]. There are several different types of genetic

variation: single nucleotide variations (SNVs), where a single nucleotide differs at a lo-

cus, insertions and deletions (indels), where there is an insertion or deletion of a base (or

more), and structural variations (SVs), where there are larger differences greater than

50 base pairs in length. In a diploid individual with two copies of each chromosome,

variations can be homozygous, meaning the same on both copies of the chromosome,

or heterozygous, meaning different on each copy. Variant identification comprises two

related processes: genotyping and phasing. Genotyping refers to determining the indi-
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vidual’s genotype at each locus in the genome, and phasing refers to determining which

variants arise from which haplotype and are therefore likely to inherited together (bar-

ring recombination). Figure 2.1 shows an example of the difference between genotypes

and haplotypes in a diploid organism. To get a complete understanding of the genetic

variation in an individual, both genotyping and phasing, which can together be called

diplotyping, should be completed.

Figure 2.1: An example of genotypes vs. haplotypes. Genotypes describe which base are at a
location in the genome. The genotypes at each of the three loci here are A/T, G/A, and T/C. Haplotypes
designate which are inherited together on the same chromosome. In this example, the A/A/C variants
are on the same chromosome and therefore the same haplotype, and the T/G/T variants are on the
other.

Genotyping is often the only one of these processes undertaken after sequenc-

ing an individual, as it allows us to identify the existence of variations in someone’s

DNA. There are many existing variant callers that can determine genotypes based on

genome sequencing information, commonly from accurate but short sequencing reads.

Technology such as SNP chips make this simple genotyping even more straightforward

and economical. Less attention is paid to the organization of the variants into haplo-

types; however, this organization can lead to phenotypically distinct traits and therefore

may be necessary to ascertain. An example of when haplotype phasing might be useful

in addition to genotyping is a case where an individual has two point mutations that

affect a gene, one in the promoter which causes a decrease in abundance of the protein,
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and another in the protein coding region of the gene which results in a nonfunctional

protein, such as a nonsense mutation leading to early truncation during translation.

This example situation is pictured in Figure 2.2. If the individual is heterozygous for

these mutations, meaning they have one functional wild type copy of both the promoter

and the protein-coding gene, and one mutant copy of each, then there are two possible

ways these mutations can be arranged across the two copies of the chromosome they are

on. In the first arrangement, both wild type copies of the promoter and protein are on

one chromosome, and both mutant copies are on the other chromosome. The individual

would be able to produce a normal amount of functional protein in this case despite

the two mutations. However, in the second possible arrangement, the mutant promoter

and wild type protein are on one chromosome, and the wild type promoter and mutant

protein are on the other. Here, the patient would not be able to produce enough of the

functional protein, which could be clinically significant.

Figure 2.2: An example of clinically significant differences in haplotypes. Two different
possibilities for organization of the same genotype. In (a), the wild type promoter and gene are on the
same chromosome and are therefore able to produce a normal amount of functional protein. In (b),
only a reduced amount of functional protein is produced.
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An example of the challenges of diplotyping adjacent sites in practice is demon-

strated in Figure 2.3. Three SNV positions are shown, with the true haplotypes in grey,

and reads in red and blue coming from each haplotype. Without knowledge of the

haplotypes, we could reasonably predict the genotypes for these sites as A/C, G/T,

and G/C. However, due to the potential for sequencing errors, this may lead to wrong

predictions, as the middle site actually had two sequencing errors in the reads covering

it leading to an incorrect prediction instead of T/T. Errors like this can be avoided if

we have knowledge of which haplotypes each read originated from, so we could then

determine that there must have been sequencing errors on the second site.

Figure 2.3: Motivation and overview of diplotyping. Gray sequences illustrate the haplotypes;
the reads are shown in red and blue. The red reads originate from the upper haplotype, the blue ones
from the lower. Genotyping each SNV individually would lead to the conclusion that all of them are
heterozygous. Using the haplotype context reveals uncertainty about the genotype of the second SNV.

Existing variant calling and phasing tools and their limitations

Many existing genotyping pipelines are designed for short reads of DNA, where

they excel at calling variants in regions where the reads can map with high confidence.

At the time when this work was being completed in 2017-2018, some of the main vari-
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ant callers that were used are GATK HaplotypeCaller, Freebayes, SAMtools mpileup,

DeepVariant, and Clairvoyante [13, 14, 15, 16, 17]. Some of these variant callers, like

GATK HaplotypeCaller, Freebayes, and SAMtools mpileup rely on statistical methods

that model the error distributions found in short, Illumina reads, whereas DeepVariant

and Clairvoyant use deep neural networks. These short read variant callers have some

limitations, which is that they require the reads to be aligned to the reference genome

of interest and short reads cannot be unambiguously mapped to all areas of the genome.

Therefore, there are many regions within the genome upon which variants cannot con-

fidently be called. Some of these variant calling tools claim to be able to be used with

long reads as well, but the performance is not nearly as good when using error-prone

longer reads. There are also some specialized variant callers, such as PoreSeq [18] and

marginAlign [19] for Oxford Nanopore, and a method proposed by Guo et. al which

works only on PacBio reads [20]. However, none of these programs leverage any linkage

information of the long reads to attempt phasing of the variants.

Haplotype phasing is challenging with standard short-read sequencing tech-

nologies, because reads are not long enough to span multiple variants from which phas-

ing constraints can be implied. For example, the human heterozygosity rate is approxi-

mately 0.1%, or one base out of every thousand differing, which means that reads that

are tens of thousands of bases long are likely to contain multiple variants. This means

that short reads like 150bp Illumina reads are not likely to span multiple variant sites,

and are therefore not informative for phasing. Many existing approaches for phasing are

statistical methods, and some make use of information in related individuals to better
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impute possible haplotypes [21]. Long reads are particularly well-suited for haplotype

phasing, because longer reads more frequently contain multiple variants on a single read,

which demonstrates that those variants on that read come from the same chromosome.

However, because the accuracy of these long reads is much lower on a per-base level

compared to short shotgun reads, it is more difficult to determine whether observed dif-

ferences in bases in sequencing reads at a given locus are due to an actual variation in

the DNA or sequencing errors (as pictured in Figure 2.3), making both genotyping and

phasing more challenging to do accurately. If variant callers can handle high error rates

in the reads appropriately, variant calling programs designed for use with long reads

have the potential to find variants in previously unmappable regions of the genome, and

phase variants more accurately.

Even though there are existing tools for both variant calling and phasing, there

are none that do both genotyping and phasing, besides WhatsHap [22] (whose authors

we collaborated with as part of this work). Therefore, there is room for additional

technologies to be introduced to this space. We propose a program that simultaneously

does both genotyping and phasing, using an HMM to bipartition the DNA sequencing

reads into their haplotypes and determine the genotype of each haplotype individually.

Implementation

In the remaining portion of this chapter, I discuss the work we have completed

to implement a tool that simultaneously does both variant calling and phasing using

long reads, called MarginPhase. Additional background relevant to the paper can be
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found within the included portion of the main text.

Contributions

The following contains the full text of the MarginPhase paper, called “Haplotype-

aware diplotyping from noisy long reads”. I was co-first author along with Trevor Pesout

and Jana Ebler, and the paper was published in Genome Biology in June 2019. I worked

on the implementation of the MarginPhase software, including coding and testing its

components. I also worked on designing and executing the experiments included in the

paper. I also wrote a significant portion of the main text, and worked on figure design

and production.

To give a more thorough breakdown of my individual contributions to this

paper, I will give my own perspective on the work and its components. As a broad

overview, we proposed using a Hidden Markov Model (HMM) to bipartition the reads

into two sets, each set arising from the same chromosome, and then genotype and phase

within the resulting bipartitions. This should improve the accuracy of genotyping and

phasing if we are able to perform both processes with only the reads that are most

likely to be in each haplotype, because it will be easier to identify sequencing errors

(as opposed to not having them separated out, where errors and heterozygous sites can

be hard to distinguish). In addition to improving the accuracy of these processes, this

would have the added bonus that both the genotyping and phasing will be completed

at the same time.
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The first goal was to implement the diplotyper, thoroughly testing it along the

way. Trevor Pesout and I were given a prototype of the MarginPhase program, written

by our advisor Benedict Paten, that had an implementation of an Hidden Markov Model

(HMM) that could bipartition a set of simulated test reads, and then genotype and

phase within the read bipartitions. We extended this implementation to read in real

sequencing reads, get those to work within the HMM, and output a final, phased VCF at

the end. Though it sounded like a good portion of the work was done with the working

prototype, the resulting engineering to make the tool usable took quite a while longer.

There were many iterations of testing and development to parameterize the model to

work with the real sequencing error modalities onserved in PacBio and ONT read sets.

We collaborated with Jana Ebler and Tobias Marschall to publish this work.

They were simultaneously working on WhatsHap, which is another tool that could si-

multaneously genotype and phase variants using long reads. We designed experiments

to compare our two tools and explore their uses. We tested the tools on a standard

benchmark set (NA12878), using both PacBio and ONT reads to test the accuracy of

both genotyping and phasing. We found that each tool had its own strengths (for exam-

ple, WhatsHap had better genotyping accuracy using PacBio reads, and MarginPhase

had better accuracy with ONT reads). Both tools allowed for the identification of many

hundreds of thousands of variants outside of the regions that were previously considered

to be the ’genotypable’ regions of the genome, because the long reads were able to be

mapped to a larger portion of the genome.
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Related work on MarginPhase after publication

After the time of publication of this initial paper, WhatsHap went on to be-

come the industry standard for phasing. (MarginPhase was largely a proof-of-concept at

this point, and had some limitations involving usability.) However, the code for Margin-

Phase has provided a framework, now called ‘Margin’, upon which Trevor Pesout greatly

expanded for the rest of his dissertation. MarginPolish was the next tool developed,

which is a polisher to improve erroneous sequence for de novo assemblies. It was intro-

duced in the paper upon which the next chapter of my dissertation is based, “Nanopore

sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human

genomes” [23]. Next, Margin was used to phase reads in a variant calling pipeline called

PEPPER-Margin-DeepVariant, published in the paper “Haplotype-aware variant calling

with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads” [24].

The PEPPER-Margin-DeepVariant pipeline has gone on to be used within ultrarapid

clinical testing settings [25, 26], and at its fastest a sample was able to be collected,

sequenced, analyzed, and diagnosed in under 8 hours.

Full Text of the MarginPhase paper

Abstract

Current genotyping approaches for single-nucleotide variations rely on short,

accurate reads from second-generation sequencing devices. Presently, third-generation
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sequencing platforms are rapidly becoming more widespread, yet approaches for lever-

aging their long but error-prone reads for genotyping are lacking. Here, we introduce

a novel statistical framework for the joint inference of haplotypes and genotypes from

noisy long reads, which we term diplotyping. Our technique takes full advantage of

linkage information provided by long reads. We validate hundreds of thousands of can-

didate variants that have not yet been included in the high-confidence reference set of

the Genome-in-a-Bottle effort.

Background

Reference-based genetic variant identification comprises two related processes:

genotyping and phasing. Genotyping is the process of determining which genetic vari-

ants are present in an individual’s genome. A genotype at a given site describes whether

both chromosomal copies carry a variant allele, whether only one of them carries it, or

whether the variant allele is not present at all. Phasing refers to determining an in-

dividual’s haplotypes, which consist of variants that lie near each other on the same

chromosome and are inherited together. To completely describe all of the genetic vari-

ation in an organism, both genotyping and phasing are needed. Together, the two

processes are called diplotyping.

Many existing variant analysis pipelines are designed for short DNA sequenc-

ing reads [27, 28]. Though short reads are very accurate at a per-base level, they can

suffer from being difficult to unambiguously align to the genome, especially in repet-
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itive or duplicated regions [29]. The result is that millions of bases of the reference

human genome are not currently reliably genotyped by short reads, primarily in multi-

megabase gaps near the centromeres and short arms of chromosomes [30]. While short

reads are unable to uniquely map to these regions, long reads can potentially span into

or even across them. Long reads have already proven useful for read-based haplotyp-

ing, large structural variant detection, and de novo assembly [31, 32, 33, 34]. Here, we

demonstrate the utility of long reads for more comprehensive genotyping. Due to the

historically greater relative cost and higher sequencing error rates of these technologies,

little attention has been given thus far to this problem. However, long-read DNA se-

quencing technologies are rapidly falling in price and increasing in general availability.

Such technologies include single-molecule real-time (SMRT) sequencing by Pacific Bio-

sciences (PacBio) and nanopore sequencing by Oxford Nanopore Technologies (ONT),

both of which we assess here.

The genotyping problem is related to the task of inferring haplotypes from long-

read sequencing data, on which a rich literature and many tools exist [8–14], including

our own software WhatsHap [35, 22]. The most common formalization of haplotype

reconstruction is the minimum error correction (MEC) problem. The MEC problem

seeks to partition the reads by haplotype such that a minimum number of errors need

to be corrected in order to make the reads from the same haplotype consistent with

each other. In principle, this problem formulation could serve to infer genotypes, but in

practice, the “all heterozygous” assumption is made: tools for haplotype reconstruction

generally assume that a set of heterozygous positions is given as input and exclusively
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work on these sites.

Despite this general lack of tools, some methods for genotyping using long reads

have been proposed. Guo et al. [36] describe a method for long-read single-nucleotide

variant (SNV) calling and haplotype reconstruction which identifies an exemplar read

at each SNV site that best matches nearby reads overlapping the site. It then parti-

tions reads around the site based on similarity to the exemplar at adjacent SNV sites.

However, this method is not guaranteed to discover an optimal partitioning of the reads

between haplotypes, and the authors report a comparatively high false discovery rate

(15.7%) and false-negative rate (11.0%) for PacBio data of NA12878, which corresponds

to an F1 score of only 86.6%. Additionally, two groups are presently developing learning-

based variant callers which they show can be tuned to work using long, noisy reads: In

a recent preprint, Luo et al. [17] describe a method which uses a convolutional neural

network (CNN) to call variants from long-read data, which they report to achieve an F1

score between 94.90 and 98.52%, depending on parametrization (when training on read

data from one individual and calling variants on a different individual, see Table 3 of

[17]). Poplin et al. [16] present another CNN-based tool, which achieves an F1 score of

92.67% on PacBio data (according to Supplementary Table 3 of [19]). These measures

appear promising; however, these methods do not systematically exploit the linkage

information between variants provided by long reads. Thus, they do not leverage one

of the key advantages of long reads.

For an illustration of the potential benefit of using long reads to diplotype

across adjacent sites, consider Figure 2.4a. There are three SNV positions shown which
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are covered by long reads. The gray sequences represent the true haplotype sequences,

and reads are colored in blue and red, where the colors correspond to the haplotype

which the respective read stems from: the red ones from the upper sequence, and the

blue ones from the lower one. Since sequencing errors can occur, the alleles supported

by the reads are not always equal to the true ones in the haplotypes shown in gray.

Considering the SNVs individually, it would be reasonable to call the first one as A/C,

the second one as T/G, and the third one as G/C, since the number of reads supporting

each allele is the same. This leads to a wrong prediction for the second SNV. However,

if we knew which haplotype each read stems from, that is, if we knew their colors, then

we would know that there must be sequencing errors at the second SNV site. Since

the reads stemming from the same haplotypes must support the same alleles and there

are discrepancies between the haplotyped reads at this site, any genotype prediction at

this locus must be treated as highly uncertain. Therefore, using haplotype information

during genotyping makes it possible to detect uncertainties and potentially compute

more reliable genotype predictions.

Contributions

In this paper, we show that for contemporary long read technologies, read-

based phase inference can be simultaneously combined with the genotyping process for

SNVs to produce accurate diplotypes and to detect variants in regions not mappable by

short reads. We show that key to this inference is the detection of linkage relationships

between heterozygous sites within the reads. To do this, we describe a novel algorithm
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Figure 2.4: Motivation and overview of diplotyping. a Gray sequences illustrate the haplotypes;
the reads are shown in red and blue. The red reads originate from the upper haplotype, the blue ones
from the lower. Genotyping each SNV individually would lead to the conclusion that all of them are
heterozygous. Using the haplotype context reveals uncertainty about the genotype of the second SNV.
b Clockwise starting top left: first, sequencing reads aligned to a reference genome are given as input;
second, the read alignments are used to nominate candidate variants (red vertical bars), which are
characterized by the differences to the reference genome; third, a hidden Markov model (HMM) is
constructed where each candidate variant gives rise to one “row” of states, representing possible ways
of assigning each read to one of the two haplotypes as well as possible genotypes (see the “Methods”
section for details); forth, the HMM is used to perform diplotyping, i.e., we infer genotypes of each
candidate variant as well as how the alleles are assigned to haplotypes

to accurately predict diplotypes from noisy long reads that scales to deeply sequenced

human genomes.

We then apply this algorithm to diplotype one individual from the 1000 Genomes

Project, NA12878, using long reads from both PacBio and ONT. NA12878 has been ex-

tensively sequenced and studied, and the Genome in a Bottle Consortium has published
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sets of high confidence regions and a corresponding set of highly confident variant calls

inside these genomic regions [37]. We demonstrate that our method is accurate, that

it can be used to confirm variants in regions of uncertainty, and that it allows for the

discovery of variants in regions which are unmappable using short DNA read sequencing

technologies.

Results

A unified statistical framework to infer genotypes and haplotypes

We formulated a novel statistical framework based upon hidden Markov mod-

els (HMMs) to analyze long-read sequencing data. In short, we identify potential SNV

positions and use our model to efficiently evaluate the bipartitions of the reads, where

each bipartition corresponds to assigning each read to one of the individual’s two hap-

lotypes. The model ensures that each read stays in the same partition across variants,

and hence does not “switch haplotypes,” something which is key to exploiting the inher-

ent long range information. Based on the read support of each haplotype at each site,

the model determines the likelihood of the bipartition. By using the forward-backward

algorithm, we pursue “global” diplotype inference over whole chromosomes, a process

that yields genotype predictions by determining the most likely genotype at each po-

sition, as well as haplotype reconstructions. In contrast to panel-based methods, like

the Li-Stephens model [38], our method relies on read data instead of using knowledge

of existing haplotypes. In 2.4b, we give a conceptual overview of our approach and
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describe it in more detail in the “Methods” section.

Adding robustness to our analysis, we provide two independent software imple-

mentations of our model: one is made available as an extension to WhatsHap [22, 39],

and the other is a from-scratch implementation called MarginPhase. While the core

algorithmic ideas are the same, MarginPhase and WhatsHap differ primarily in their

specialized preprocessing steps, with the former being developed to work primarily with

nanopore data and the latter developed to work primarily with PacBio (although both

can work with either). The MarginPhase workflow includes an alignment summation

step described in the “Allele supports” section whereas WhatsHap performs a local

realignment around analyzed sites explained in the “Allele detection” section.

Data preparation and evaluation

To test our methods, we used sequencing data for NA12878 from two different

long-read sequencing technologies. NA12878 is a participant from the 1000 Genomes

Project [28] who has been extensively sequenced and analyzed. This is the only individ-

ual for whom there is both PacBio and Nanopore sequencing reads publicly available.

We used Oxford Nanopore reads from Jain et al. [33] and PacBio reads from the

Genome in a Bottle Consortium [40]. Both sets of reads were aligned to GRCh38 with

minimap2, a mapper designed to align error-prone long reads [41] (version 2.10, using

default parameters for PacBio and Nanopore reads, respectively).

To ensure that any variants we found were not artifacts of misalignment, we

filtered out the reads flagged as secondary or supplementary, as well as reads with a
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mapping quality score less than 30. Genome-wide, this left approximately 12 million

Nanopore reads and 35 million PacBio reads. The Nanopore reads had a median depth

of 37 × and median length of 5950 bp, including a set of ultra-long reads with lengths

up to 900 kb. The PacBio reads had a median depth of 46 × and median length of 2600

bp.

To validate the performance of our methods, we used callsets from Genome

in a Bottle’s (GIAB) benchmark small variant calls v3.3.2 [37]. First, we compared

against GIAB’s set of high confidence calls, generated by a consensus algorithm span-

ning multiple sequencing technologies and variant calling programs. The high confidence

regions associated with this callset exclude structural variants, centromeres, and het-

erochromatin. We used this to show our method’s accuracy in well-understood and

easy-to-map regions of the genome.

We also analyzed our results compared to two more expansive callsets, which

cover a larger fraction of the genome, that were used in the construction of GIAB’s

high confidence variants, one made by GATK HaplotypeCaller v3.5 (GATK/HC, [27])

and the other by Freebayes 0.9.20 [14], both generated from a 300× PCR-free Illumina

sequencing run [37].

Evaluation statistics

We compute the precision and recall of our callsets using the tool vcfeval from

Real Time Genomics [42] (version 3.9) in order to analyze our algorithm’s accuracy of

variant detection between our query callsets and a baseline truth set of variants. All
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variants that identically match between the truth and query callsets (meaning they

share the same genomic position, alleles, and genotype) are considered true positive

calls. Calls that do not match any variants in the truth callset are false negatives and

truth callset variants that are not matched in our callset are false positives.

In order to evaluate the ability of our algorithm to genotype a provided set

of variant positions, we compute the genotype concordance. Here, we take all correctly

identified variant sites (correct genomic position and alleles), compare the genotype pre-

dictions (homozygous or heterozygous) made by our method to the corresponding truth

set genotypes, and compute the fraction of correct genotype predictions. This enables

us to analyze how well the genotyping component of our model performs regardless of

errors arising from wrongly called variant sites in the detection stage of the algorithm.

We evaluate the phasing results by computing the switch error rate between

the haplotypes our algorithms predict and the truth set haplotypes. We take all variants

into account that were correctly genotyped as heterozygous in both our callset and the

truth set. Switch errors are calculated by counting the number of times a jump from

one haplotype to the other is necessary within a phased block in order to reconstruct

the true haplotype sequence [22].

We restrict all analysis to SNVs, not including any short insertions or deletions.

This is due to the error profile of both PacBio and Nanopore long reads, for which

erroneous insertions and deletions are the most common type of sequencing error by

far, particularly in homopolymers [27, 28].
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Comparison to short read variant callers

We explored the suitability of the current state-of-the-art callers for short reads

to process long-read data (using default settings) but were unsuccessful. The absence of

base qualities in the PacBio data prevented any calling; for Nanopore data, FreeBayes

was prohibitively slow and neither Platypus nor GATK/HC produced any calls.

Long read coverage

We determined the regions where long and short reads can be reliably mapped

to the human genome for the purpose of variant calling, aiming to understand if long

reads could potentially make new regions accessible. In Fig. 2, various coverage metrics

for short and long reads are plotted against different genomic features, including those

known for being repetitive or duplicated. These metrics are described below.

The callsets on the Illumina data made by GATK/HC and FreeBayes come

with two BED files describing where calls were made with some confidence. The first,

described in Fig. 2 as Short Read Mappable, was generated using GATK CallableLoci

v3.5 and includes regions where there is (a) at least a read depth of 20 and (b) at most a

depth of twice the median depth, only including reads with mapping quality of at least

20. This definition of callable only considers read mappings.

The second, described as GATK Callable, was generated from the GVCF out-

put from GATK/HC by excluding the areas with genotype quality less than 60. This

is a more sophisticated definition of callable as it reflects the effects of homopolymers

and tandem repeats. We use these two BED files in our analysis of how short and long
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Figure 2.5: Reach of short read and long read technologies. The callable and mappable
regions for NA12878 spanning various repetitive or duplicated sequences on GRCh38 are shown. Feature
locations are determined based on BED tracks downloaded from the UCSC Genome Browser [48]. Other
than the Gencode regions [49, 50], all features are subsets of the Repeat Masker [51] track. Four coverage
statistics for long reads (shades of red) and three for short reads (shades of blue) are shown. The labels
“PacBio Mappable” and “Nanopore Mappable” describe areas where at least one primary read with GQ
≥ 30 has mapped, and “Long Read Mappable” describes where this is true for at least one of the long
read technologies. “Long Read Callable” describes areas where both read technologies have coverage of
at least 20 and less than twice the median coverage. “GIAB High Confidence,” “GATK Callable,” and
“Short Read Mappable” are the regions associated with the evaluation callsets. For the feature-specific
plots, the numbers on the right detail coverage over the feature and coverage over the whole genome
(parenthesized)

reads map differently in various areas of the genome.

For long reads, we show four coverage statistics. The entries marked as “map-

pable” describe the areas where there is at least one high-quality long-read mapping

(PacBio Mappable, Nanopore Mappable, and Long Read Mappable for regions where
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at least one of the sequencing technologies mapped). The Long Read Callable entries

cover the regions where our methods should be able to call variants due to having a

sufficient depth of read coverage. In these regions, both sequencing technologies had a

minimum read depth of 20 and a maximum of twice the median depth (this is similar to

the GATK CallableLoci metric, although made from BAMs with significantly less read

depth).

Figure 2 shows that in almost all cases, long reads map to a higher fraction

of the genome than short reads map to. For example, nearly half a percent of the

whole genome is mappable by long reads but not short reads. Long reads also map

to 1% more of the exome, and 13% more of segmental duplications. Centromeres and

tandem repeats are outliers to this generalization, where neither PacBio nor Nanopore

long reads cover appreciably more than Illumina short reads.

Comparison against high confidence truth set

To validate our method, we first analyzed the SNV detection and genotyping

performance of our algorithm using the GIAB high confidence callset as a benchmark.

All variants reported in these statistics fall within both the GIAB high confidence regions

and regions with a read depth between 20 and twice the median depth.

Variant detection

Figure 3 (top) shows precision and recall of WhatsHap run on PacBio data and

MarginPhase on Oxford Nanopore data, which gives the best performance for these two
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data types (see Additional file 1: Figure S1 for the results for WhatsHap on ONT and

MarginPhase on PacBio). On PacBio reads, WhatsHap achieves a precision of 97.9%

and recall of 96.3%. On Nanopore reads, MarginPhase achieves a precision of 76.9%

and a recall of 80.9%. We further stratify the performance of our methods based on the

variant type. For homozygous variants, WhatsHap on PacBio data has a precision of

98.3% and a recall of 99.3%, MarginPhase on Nanopore data has a precision of 99.3% and

a recall of 84.5%. For heterozygous variants, WhatsHap on PacBio data has a precision

of 96.8% and a recall of 93.8%; MarginPhase on Nanopore data has a precision of 66.5%

and a recall of 78.6%. The high error rate of long reads contributes to the discrepancy

in the performance between homozygous and heterozygous variant detection, making it

more difficult to distinguish the read errors from the alternate allele for heterozygous

variants. In Section 5 of Additional file 1, we further discuss the precision and recall

as a function of read depth, and we report more performance based on variant type in

Section 6.

Long reads have the ability to access regions of the genome inaccessible to

short reads (“Long read coverage” section). To explore the potential of our approach

to contribute to extending gold standard sets, such as the one produced by the GIAB

effort, we produced a combined set of variants which occur in both the calls made by

WhatsHap on the PacBio reads and MarginPhase on the Nanopore data, where both

tools report the same genotype. This improves the precision inside the GIAB high

confidence regions to 99.7% with a recall of 78.7%. In further analysis, we refer to

this combined variant set as Long Read Variants. It reflects a high precision subset
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Figure 2.6: Precision and recall of MarginPhase on Nanopore and WhatsHap on PacBio
datasets in GIAB high confidence regions.Genotype concordance (bottom) (wrt. GIAB high
confidence calls) of MarginPhase (mp, top) on Nanopore and WhatsHap (wh, middle) on PacBio (PB).
Furthermore, genotype concordance for the intersection of the calls made by WhatsHap on the PacBio
and MarginPhase on the Nanopore reads is shown (bottom)

of variants validated independently by both sequencing technologies. While data from

both technologies are usually not available for the same sample in routine settings,

such a call set can be valuable for curating variants on well-studied individuals such as

NA12878.
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Genotyping

In order to further analyze the quality of the genotype predictions of our meth-

ods (heterozygous or homozygous), we computed the genotype concordance (defined in

the “Data preparation and evaluation” section) of our callsets with respect to the GIAB

ground truth inside of the high confidence regions. Figure 3 (bottom) shows the results.

On the PacBio data, WhatsHap obtains a genotype concordance of 99.79. On the

Nanopore data, MarginPhase obtains a genotype concordance of 98.02. Considering the

intersection of the WhatsHap calls on PacBio, and MarginPhase calls on Nanopore data

(i.e., the Long Read Variants set), we obtain a genotype concordance of 99.99%. We

detail the genotype performances for different thresholds on the genotype quality scores

that our methods report for each variant call (Additional file 1: Section 7).

Phasing

In addition to genotyping variants, MarginPhase and WhatsHap can also phase

them. We evaluated the results of both methods by computing switch error rates (de-

fined in the “Data preparation and evaluation” section) inside the GIAB high-confidence

regions for correctly located and genotyped GIAB truth set variants. We computed the

switch error rate of MarginPhase on Nanopore and WhatsHap on PacBio reads. For

both datasets, we achieved a low switch error rate of 0.17%. In Additional file 1: Table

S1, corresponding per-chromosome switch error rates are given.
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Cutting and downsampling reads

Our genotyping model incorporates haplotype information into the genotyping

process by using the property that long sequencing reads can cover multiple variant

positions. Therefore, one would expect the genotyping results to improve as the length

of the provided sequencing reads increases.

In order to examine how the genotyping performance depends on the length

of the sequencing reads and the coverage of the data, the following experiment was

performed using the WhatsHap implementation. The data was downsampled to average

coverages 10×,20×,25×, and 30×. All SNVs inside of the high confidence regions in the

GIAB truth set were re-genotyped from each of the resulting downsampled read sets,

as well as from the full coverage data sets. Two versions of the genotyping algorithm

were considered. First, the full-length reads as given in the BAM files were provided to

WhatsHap. Second, in an additional step prior to genotyping, the aligned sequencing

reads were cut into shorter pieces such that each resulting fragment covered at most

two variants. Additionally, we cut the reads into fragments covering only one variant

position. The genotyping performances of these genotyping procedures were finally

compared by determining the amount of incorrectly genotyped variants.

Figure 4 shows the results of this experiment for the PacBio data. The geno-

typing error increases as the length of reads decreases. Especially at lower coverages,

the genotyping algorithm benefits from using the full length reads, which leads to much

lower genotyping errors compared to using the shorter reads that lack information of
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neighboring variants. For the Nanopore reads, the results were very similar (Additional

file 1: Figure S2). In general, the experiment demonstrates that incorporating haplotype

information gained from long reads does indeed improve the genotyping performance.

This is especially the case at low coverages, since here, the impact of sequencing errors

on the genotyping process is much higher. Computing genotypes based on bipartitions

of reads that represent possible haplotypes of the individual helps to reduce the number

of genotyping errors, because it makes it easier to detect sequencing errors in the given

reads.

Figure 2.7: Genotyping errors (with respect to GIAB calls) as a function of coverage. The
full length reads were used for genotyping (blue), and additionally, reads were cut such as to cover at
most two variants (red) and one variant (yellow)

38



Callset consensus analysis

Call sets based on long reads might contribute to improving benchmark sets

such as the GIAB truth set. We analyze a call set created by taking the intersection of

the variants called by WhatsHap on PacBio reads and MarginPhase on Nanopore reads,

which leaves variants that were called identically between the two sets. In 2.8, we further

dissect the relation of this intersection callset, which we call Long Read Variants, to the

GIAB truth set, as well as its relation to the callsets from GATK HaplotypeCaller and

FreeBayes, which both contributed to the GIAB truth set.

Figure 2.8: Confirming short-read variants. We examine all distinct variants found by our
method, GIAB high confidence, GATK/HC, and FreeBayes. Raw variant counts appear on top of each
section, and the percentage of total variants is shown at the bottom. a All variants. b Variants in GIAB
high-confidence regions. c Variants outside GIAB high-confidence regions
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2.8a reveals that 404,994 variants in our Long Read Variants callset were called

by both the GATK Haplotype Caller and FreeBayes, yet are not in the GIAB truth set.

To gather additional support for the quality of these calls, we consider two established

quality metrics: the transition/transversion ratio (Ti/Tv) and the heterozygous/non-

ref homozygous ratio (Het/Hom) [29]. The Ti/Tv ratio of these variants is 2.09, and

the Het/Hom ratio is 1.31. These ratios are comparable to those of the GIAB truth

set, which are 2.10 and 1.55, respectively. An examination of the Platinum Genomes

benchmark set [30], an alternative to GIAB, reveals 78,493 such long-read validated

variants outside of their existing truth set.

We hypothesized that a callset based on long reads is particularly valuable

in the regions that were previously difficult to characterize. To investigate this, we

separately examined the intersections of our Long Read Variants callset with the two

short-read callsets both inside the GIAB high confidence regions and outside of them,

see 2.8b and 2.8bc, respectively. These Venn diagrams clearly indicate that the con-

cordance of GATK and FreeBayes was indeed substantially higher in high confidence

regions than outside. An elevated false-positive rate of the shortread callers outside the

high confidence regions is a plausible explanation for this observation. Interestingly, the

fraction of calls concordant between FreeBayes and GATK for which we gather addi-

tional support is considerably lower outside the high confidence regions. This is again

compatible with an increased number of false positives in the short-read callsets, but

we emphasize that these statistics should be interpreted with care in the absence of a

reliable truth set for these regions.
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Candidate novel variants

To demonstrate that our method allows for variant calling on more regions of

the genome than short-read variant calling pipelines, we have identified 15,498 variants

which lie outside of the Short Read Mappable area, but inside the Long Read Callable

regions. These variants therefore fall within the regions in which there is a sequencing

depth of at least 10 and not more than 2 times the median depth for both long-read

sequencing technologies, yet the regions are unmappable by short reads. We determined

that 4.43 Mb of the genome are only mappable by long reads in this way.

2.1 provides the counts of all variants found in each of the regions from Fig. 2,

as well as the counts for candidate novel variants, among the different types of genomic

features described in “Long read coverage”section. Over two thirds of the candidate

variants occurred in the repetitive or duplicated regions described in the UCSC Genome

Browser’s repeatMasker track. The transition/transversion ratio (Ti/Tv) of NA12878’s

15,498 candidate variants is 1.64, and the heterozygous/homozygous ratio (Het/Hom)

of these variants is 0.31. Given that we observe 1 candidate variant in every 325 hap-

lotype bases of the 4.43 Mb of the genome only mappable by long reads, compared to

1 variant in every 1151 haplotype bases in the GIAB truth set on the whole genome,

these candidate variants exhibit a 3.6× increase in the haplotype variation rate.

Runtimes

Whole-genome variant detection using WhatsHap took 166 CPU hours on

PacBio reads, of which genotyping took 44 h. Per chromosome, a maximum of 4.2 GB
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of memory was required for genotyping, and additionally, at most 2.6 GB was needed

for phasing. The MarginPhase implementation took 1550 CPU hours on ONT data,

broken down into 330 h for diplotyping and 1220 h for read realignment (described

in the “Allele supports” section). The MarginPhase workflow breaks the genome into

2-Mb overlapping windows, and on each of these windows, MarginPhase required on

average 22.6 GB of memory, and a maximum of 30.2 GB.

We found that the time-consuming realignment step significantly improved

the quality of the ONT results and attribute this as the major cause of the difference

in runtimes. Furthermore, the methods employed to the find candidate sites differ

between the implementations. WhatsHap performs genotyping and phasing in two

steps, whereas MarginPhase handles them simultaneously after filtering out the sites

that are likely homozygous (in the case of ONT data, this is between 98 and 99%

of sites). The filtration heuristic used during our evaluation resulted in MarginPhase

analyzing roughly 10× the number of sites than WhatsHap, increasing the runtime and

Table 2.1: Distribution of candidate novel variants across different regions of interest. All variants
refers to the variants in the Long Read Variants set, and Novel Variant Candidates are those described
in Section 3.6.

All Variants
Novel Variant

Candidates

Total 2,913,942 15,498
Gencode v27 (ALL) 1,363,064 5,594
Gencode v27 exome 86,357 538
Repeat Masker 1,583,684 10,677
LINEs 690,859 5,161
SINEs 421,340 1,432
Segmental Duplications 157,341 5,683
Tandem Repeats 96,871 5,437
Centromeres 18,644 2,031
Telomeres 295 14
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memory usage.

Discussion

We introduce a novel statistical model to unify the inference of genotypes

and haplotypes from long (but noisy) third-generation sequencing reads, paving the

way for genotyping at intermediate coverage levels. We emphasize that our method

operates at coverage levels that preclude the possibility of performing a de novo genome

assembly, which, until now, was the most common use of long-read data. Furthermore,

we note that unlike the approaches using a haplotype reference panel of a population

for statistical phasing and/or imputation [31], our approach only uses sequencing data

from the individual; hence, its performance does not rely on the allele frequency within

a population.

Our method is based on a hidden Markov model that partitions long reads into

haplotypes, which we found to improve the quality of variant calling. This is evidenced

by our experiment in cutting and downsampling reads, where reducing the number of

variants spanned by any given read leads to decreased performance at all levels of read

coverage. Therefore, our method is able to translate the increased read lengths of third

generation platforms into increased genotyping performance for these noisy long reads.

Our analysis of the methods against a high confidence truth set in high confi-

dence regions shows false discovery rates (corresponding to one minus precision) between

3 and 6% for PacBio and between 24 and 29% for Nanopore. However, when considering
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a conservative set of variants confirmed by both long read technologies, the false dis-

covery rate drops to around 0.3%, comparable with contemporary short-read methods

in these regions.

In analyzing the area of the genome with high-quality long-read mappings, we

found roughly a half a percent of the genome (approximately 15 Mb) that is mappable

by long reads but not by short reads. This includes 1% of the human exome, as well

as over 10% of segmental duplications. Even though some of these areas have low read

counts in our experimental data, the fact that they have high-quality mappings means

that they should be accessible with sufficient sequencing. We note that this is not the

case for centromeric regions, where Illumina reads were able to map over twice as much

as we found in our PacBio data. This may be a result of the low quality in long reads

preventing them from uniquely mapping to these areas with an appreciable level of

certainty.

We demonstrate that our callset has expected biological features, by showing

that over our entire set of called variants, the Ti/Tv and Het/Hom ratios were similar

to those reported by the truth set. The Ti/Tv ratio of 2.18 is slightly above the 2.10

reported in the GIAB callset, and the Het/Hom ratio of 1.36 is slightly lower than the

1.55 found in the GIAB variants. In the 15,498 novel variant candidates produced by

our method in regions unmappable by short reads, the Ti/Tv ratio of 1.64 is slightly

lower than that of the truth set. This is not unexpected as gene-poor regions such as

these tend to have more transversions away from C:G pairs [32]. We also observe that

the Het/Hom ratio dropped to 0.31, which could be due to the systematic biases in
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our callset or in the reference genome. The rate of variation in these regions was also

notably different than in the high confidence regions, where we find three variants per

thousand haplotype bases (3.6× the rate in high confidence regions). A previous study

analyzing NA12878 [33] also found an elevated variation rate in the regions where it is

challenging to call variants, such as low-complexity regions and segmental duplications.

The study furthermore found clusters of variants in these regions, which we also observe.

The high precision of our set containing the intersection of variants called on

Nanopore reads and variants called on PacBio reads makes it useful as strong evidence

for confirming existing variant calls. As shown in the read coverage analysis, in both

the GIAB and Platinum Genomes efforts many regions could not be called with high

confidence. In the regions excluded from GIAB, we found around 400,000 variants using

both Nanopore and PacBio reads with our methods, which were additionally confirmed

by 2 other variant callers, FreeBayes and GATK/HC, on Illumina reads. Given the

extensive support of these variants from multiple sequencing technologies and variant

callers, these 400,000 variants are good candidates for addition to the GIAB truth set.

Expansion of benchmark sets to harder-to-genotype regions of the human genome is

generally important for the development of more comprehensive genotyping methods,

and we plan to work with these efforts to use our results.
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Conclusions

Variant calling with long reads is difficult because they are lossy and error-

prone, but the diploid nature of the human genome provides a means to partition reads

to lessen this effect. We exploit the fact that reads spanning heterozygous sites must

share the same haplotype to differentiate read errors from true variants. We provide

two implementations of this method in two long-read variant callers, and while both

implementations can be run on either sequencing technology, we currently recommend

that MarginPhase is used on ONT data and that WhatsHap is used on PacBio data.

One way we anticipate improvement to our method is by incorporating methy-

lation data. Hidden Markov models have been used to produce methylation data for

ONT reads using the underlying signal information [34, 35]. As shown by the read-

cutting experiment, the amount of heterozygous variants spanned by each read improves

our method’s accuracy. We predict that the inclusion of methylation into the nucleotide

alphabet will increase the amount of observable heterozygosity and therefore further im-

prove our ability to call variants. Work has begun to include methylation probabilities

into our method.

The long-read genotyping work done by Luo et al. [17] using CNNs does not

account for haplotype information. Partitioning reads into haplotypes as a preprocessing

step (such as our method does) may improve the CNN’s performance; we think this is

an interesting avenue of exploration.

Further, our method is likely to prove useful for future combined diplotyp-
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ing algorithms when both genotype and phasing is required, for example, as may be

used when constructing phased diploid de novo assemblies [36, 37] or in future hybrid

long/short-read diplotyping approaches. Therefore, we envision the statistical model

introduced here to become a standard tool for addressing a broad range of challenges

that come with long-read sequencing of diploid organisms.

Methods

We describe a probabilistic model for diplotype and genotype inference, and in

this paper use it to find maximum posterior probability genotypes. The approach builds

upon the WhatsHap approach [35], but incorporates a full probabilistic allele inference

model into the problem. It has similarities to that proposed by [43], but we here frame

the problem using Hidden Markov Models (HMMs).

Alignment matrix

Let M be an alignment matrix whose rows represent sequencing reads and

whose columns represent genetic sites. Let m be the number of rows, let n be the

number of columns, and let Mi,j be the jth element in the ith row. In each column let

Σj ⊂ Σ represent the set of possible alleles such that Mi,j ∈ Σj ∪ {−}, the “−” gap

symbol representing a site at which the read provides no information. We assume no

row or column is composed only of gap symbols, an uninteresting includegraphicsedge

case. An example alignment matrix is shown in Figure 2.9. Throughout the following

we will be informal and refer to a row i or column j, being clear from the context
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whether we are referring to the row or column itself or the coordinate.

Figure 2.9: Alignment matrix. Here, the alphabet of possible alleles is the set of DNA nucleotides,
i.e., Σ = {A,C,G, T}

Genotype inference problem overview

A diplotype H = (H1, H2) is a pair of haplotype (segments); a haplotype

(segment) Hk = Hk
1 , H

k
2 , . . . ,H

k
n is a sequence of length n whose elements represents

alleles such that Hk
j ∈ Σj . Let B = (B1, B2) be a bipartition of the rows of M into

two parts (sets): B1, the first part, and B2, the second part. We use bipartitions to

represent which haplotypes the reads came from, of the two in a genome. By convention

we assume that the first part of B are the reads arising from H1 and the second part

of B are the reads arising from H2.

The problem we analyze is based upon a probabilistic model that essentially

represents the (Weighted) Minimum Error Correction (MEC) problem [44, 45], while

modeling the evolutionary relationship between the two haplotypes and so imposing a

cost on bipartitions that create differences between the inferred haplotypes.
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For a bipartition B, and making an i.i.d. assumption between sites in the

reads:

P (H|B,M) =
n∏

j=1

∑
Zj∈Σj

P (H1
j |B1, Zj)P (H2

j |B2, Zj)P (Zj)

Here P (Zj) is the prior probability of the ancestral allele Zj of the two haplo-

types at column j, by default we can use a simple flat distribution over ancestral alleles

(but see below). The posterior probability P (Hk
j |Bk, Zj) =

P (Hk
j |Zj)

∏
{i∈Bk:Mi,j ̸=−} P (Mi,j |Hk

j )∑
Yj∈Σj

P (Yj |Zj)
∏

{i∈Bk:Mi,j ̸=−} P (Mi,j |Yj)

for k ∈ {1, 2}, where the probability P (Hk
j |Zj) is the probability of the hap-

lotype allele Hk
j given the ancestral allele Zj . For this we can use a continuous time

Markov model for allele substitutions, such as Jukes-Cantor [46], or some more so-

phisticated model that factors the similarities between alleles (see below). Similarly,

P (Mi,j |Hk
j ) is the probability of observing allele Mi,j in a read given the haplotype

allele Hk
j .

The genotype inference problem we consider is finding for each site:

argmax
(H1

j ,H
2
j )

P (H1
j , H

2
j |M) = argmax

(H1
j ,H

2
j )

∑
B

P (H1
j , H

2
j |B,M)

i.e. finding the genotype (H1
j , H

2
j ) with maximum posterior probability for a generative

model of the reads embedded in M.
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A graphical representation of read partitions

For a column j in M, a row i is active if the first non-gap symbol in row i

occurs at or before column j and the last non-gap symbol in row i occurs at or after

column j. Let Aj be the set of active rows of column j. For a column j a row i is

terminal if its last non-gap symbol occurs at column j or j = n. Let A′
j be the set of

active, non-terminal rows of column j.

Let Bj = (B1
j , B

2
j ) be a bipartition of Aj into a first part B1

j and a second

part B2
j . Let Bj be the set of all possible such bipartitions of the active rows of j.

Similarly, let Cj = (C1
j , C

2
j ) be a bipartition of A′

j , and Cj be the set of all possible such

bipartitions of the active, non-terminal rows of j.

For two bipartitions B = (B1, B2) and C = (C1, C2), B is compatible with

C if the subset of B1 in C1 ∪ C2 is a subset of C1, and, similarly, the subset of B2 in

C1 ∪C2 is a subset of C2. Note this definition is symmetric and reflexive, although not

transitive.

Let G = (VG, EG) be a directed graph. The vertices VG are the set of bipar-

titions of both the active rows and the active, non-terminal rows for all columns of M

and a special start and end vertex, i.e. VG = {start, end} ∪ (
⋃

j Bj ∪Cj) . The edges

EG are a subset of compatibility relationships, such that (1) for all j there is an edge

(Bj ∈ Bj, Ci ∈ Cj) if Bj is compatible with Cj , (2) for all 0 < j < n there is an edge

(Cj ∈ Cj, Bj+1 ∈ Bj+1) if Cj is compatible with Bj+1, (3) there is an edge from the

start vertex to each member of B1, and (4) there is an edge from each member of Bn
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to the end vertex (Note that Cn is empty and so contributes no vertices to G). Figure

2.10 shows an example graph.

Figure 2.10: Example graph. Left: An alignment matrix. Right: The corresponding directed graph
representing the bipartitions of active rows and active non-terminal rows, where the labels of the nodes
indicate the partitions, e.g. ‘1,2 / .’ is shorthand for A = ({1, 2}, {}}).)

The graph G has a large degree of symmetry and the following properties are

easily verified:

• For all j and all Bj ∈ Bj, the indegree and outdegree of Bj is 1.

• For all j the indegree of all members of Cj is equal.

• Similarly, for all j the outdegree of all members of Cj is equal.
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Let the maximum coverage, denoted maxCov, be the maximum cardinality of

a set Aj over all j. By definition, maxCov ≤ m. Using the above properties it is easily

verified that: (1) the cardinality of G (number of vertices) is bounded by this maximum

coverage, being less than or equal to 2+(2n−1)2maxCov, and (2) the size of G (number

of edges) is at most 2n2maxCov.

Let a directed path from the start vertex to the end vertex be called a diploid

path, D = (D1 = start,D2, . . . , D2n+1 = end). The graph is naturally organized by the

columns of M, so that D2j = (B1
j , B

2
j ) ∈ Bj and D2j+1 = (C1

j+1, C
2
j+1) ∈ Cj for all

0 < j ≤ n. Let BD = (B1
D, B

2
D) denote a pair of sets, where B1

D is the union of the first

parts of the vertices of D2, . . . , D2n+1 and, similarly, B2
D is the union of second parts of

the vertices of D2, . . . , D2n+1.

B1
D and B2

D are disjoint because otherwise there must exist a pair of vertices

within D that are incompatible, which is easily verified to be impossible. Further, be-

cause D visits a vertex for every column of M, it follows that the sum of the cardinalities

of these two sets is m. BD is therefore a bipartition of the rows of M which we call a

diploid path bipartition.

Lemma 2.0.1. The set of diploid path bipartitions is the set of bipartitions of the rows

of M and each diploid path defines a unique diploid path bipartition.

Proof. We first prove that each diploid path defines a unique bipartition of the rows

of M. For each column j of M, each vertex Bj ∈ Bj is a different bipartition of the

same set of active rows. Bj is by definition compatible with a diploid path bipartition
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of a diploid path that contains it, and incompatible with every other member of Bj. It

follows that for each column j two diploid paths with the same diploid path bipartition

must visit the same node in Bj, and, by identical logic, the same node in Cj, but then

two such diploid paths are therefore equal.

There are 2m partitions of the rows of M. It remains to prove that there

are 2m diploid paths. By the structure of the graph, the set of diploid paths can

be enumerated backwards by traversing right-to-left from the end vertex by depth-first

search and exploring each incoming edge for all encountered nodes. As stated previously,

the only vertices with indegree greater than one are for all j the members ofCj, and each

member of Cj has the same indegree. For all j the indegree of Cj is clearly 2|Cj |−|Bj |:

two to the power of the number of number of active, terminal rows at column j. The

number of possible paths must therefore be
∏n

j=1 2
|Cj |−|Bj |. As each row is active and

terminal in exactly one column, we obtain m =
∑

j |Cj | − |Bj | and therefore:

2m =
n∏

j=1

2|Cj |−|Bj |

.

A hidden Markov model for genotype and diplotype inference

In order to infer diplotypes, we define a Hidden Markov Model which is based

on G, but additionally represents all possible genotypes at each genomic site (i.e. in

each B column). To this end, we define the set of states Bj×Σj ×Σj , which contains a
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state for each bipartition of the active rows at position j and all possible assignments of

alleles in Σj to the two partitions. Additionally, the HMM contains a hidden state for

each bipartition in Cj, exactly as defined for G above. Transitions between states are

defined by the compatibility relationships of the corresponding bipartitions as before.

This HMM construction is illustrated in Figure 2.11.

Figure 2.11: Genotyping HMM. Colored states correspond to bipartitions of reads and allele
assignments at that position. States in C1 and C2 correspond to bipartitions of reads covering positions
1 and 2 or 2 and 3, respectively. In order to compute genotype likelihoods after running the forward-
backward algorithm, states of the same color have to be summed up in each column

For all j and all Cj ∈ Cj each outgoing edge has transition probability P (a1, a2) =∑
Zj

P (a1|Zj)P (a2|Zj)P (Zj), where (Bj , a1, a2) ∈ Bj×Σj ×Σj is the state being tran-

sitioned to. Similarly, each outgoing edge of the start node has transition probability
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P (a1, a2). The outdegree of all remaining nodes is 1, so these edges have transition

probability 1.

The start node, the end node, and members of Cj for all j are silent states,

and hence do not emit symbols. For all j, members of Bj ×Σj ×Σj output the entries

in the j-th column of M that are different from “–”. We assume every matrix entry to

be associated with an error probability, which we can compute from P (Mij |Hk
j ) defined

previously. Based on this, the probability of observing a specific output column of M

can be easily calculated.

Computing genotype likelihoods

The goal is to compute genotype likelihoods for the possible genotypes for each

variant position using the HMM defined above. Performing the forward-backward algo-

rithm returns forward and backward probabilities of all hidden states. Using those, the

posterior distribution of a state (B, a1, a2) ∈ Bj×Σj ×Σj , corresponding to bipartition

B and assigned alleles a1 and a2, can be computed as

P ((B, a1, a2)|M) =
αj(B, a1, a2) · βj(B, a1, a2)∑

B′∈B(Aj)

∑
a′1,a

′
2∈Σj

αj(B′, a′1, a
′
2) · βj(B′, a′1, a

′
2)

(2.1)

where αj(B, a1, a2) and βj(B, a1, a2) denote forward and backward probabilities of the

state (B, a1, a2) and B(Aj), the set of all bipartitions of Aj . The above term represents

the probability for a bipartition B = (B1, B2) of the reads in Aj and alleles a1 and

a2 assigned to these partitions. In order to finally compute the likelihood for a certain
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genotype, one can marginalize over all bipartitions of a column, and all allele assignments

corresponding to that genotype.

Example 2.0.1. In order to compute genotype likelihoods for each column of the align-

ment matrix, posterior state probabilities corresponding to states of the same color in

Figure 2.11 need to be summed up. For the first column, adding up the red probabilities

gives the genotype likelihood of genotype T/T , blue of genotype G/T and yellow of G/G.

Implementations

We created two independent software implementations of this model, one based

upon WhatsHap and one from scratch, which we call MarginPhase. Each uses different

optimizations and heuristics that we briefly describe.

WhatsHap implementation

We extended the implementation of WhatsHap ([35], bitbucket.org/whatshap/

whatshap) to enable haplotype aware genotyping of bi-allelic variants based on the above

model. WhatsHap focuses on re-genotyping variants, i.e. it assumes SNV positions to

be given. In order to detect variants, a simple SNV calling pipeline was developed. It

is based on samtools mpileup [47] which provides information about the bases sup-

ported by each read covering a genomic position. A set of SNV candidates is generated

by selecting genomic positions at which the frequency of a non-reference allele is above a

fixed threshold (0.25 for PacBio data, 0.4 for Nanopore data) and the absolute number

of reads supporting the non-reference allele is at least 3.
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Allele Detection. In order to construct the alignment matrix, a crucial step is to

determine whether each read supports the reference or the alternative allele at each of

n given genomic positions. In WhatsHap, this is done based on re-aligning sections

of the reads [22]. Given an existing read alignment from the provided BAM file, its

sequence in a window around the variant is extracted. It is aligned to the corresponding

region of the reference sequence and additionally, to the alternative sequence, which is

artificially produced by inserting the alternative allele into the reference. The alignment

cost is computed by using affine gap costs. Phred scores representing the probabilities

for opening and extending a gap and for a mismatch in the alignment can be estimated

from the given BAM file. The allele leading to a lower alignment cost is assumed to be

supported by the read and is reported in the alignment matrix. If both alleles lead to

the same cost, the corresponding matrix entry is “–”. The absolute difference of both

alignment scores is assigned as a weight to the corresponding entry in the alignment

matrix. It can be interpreted as a phred scaled probability for the allele being wrong

and is utilized for the computation of output probabilities.

Read Selection. Our algorithm enumerates all bipartitions of reads covering a vari-

ant position and thus has a runtime exponential in the maximum coverage of the data.

To ensure that this quantity is bounded, the same read selection step implemented pre-

viously in the WhatsHap software is run before constructing the HMM and computing

genotype likelihoods. Briefly, a heuristic approach described in [48] is applied, which se-

lects phase informative reads iteratively taking into account the number of heterozygous
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variants covered by the read and its quality.

Transitions. Defining separate states for each allele assignment in Bj enables easy

incorporation of prior genotype likelihoods by weighting transitions between states in

Cj−1 and Bj × Σj × Σj . Since there are two states corresponding to a heterozygous

genotype in the bi-allelic case (0|1 and 1|0), the prior probability for the heterozygous

genotype is equally spread between these states.

In order to compute such genotype priors, the same likelihood function under-

lying the approaches described in [49] and [50] was utilized. For each SNV position, the

model computes a likelihood for each SNV to be absent, heterozygous, or homozygous

based on all reads that cover a particular site. Each read contributes a probability term

to the likelihood function, which is computed based on whether it supports the reference

or the alternative allele [49]. Furthermore, the approach accounts for statistical uncer-

tainties arising from read mapping and has a runtime linear in the number of variants

to be genotyped [50]. Prior genotype likelihoods are computed before read selection. In

this way, information of all input reads covering a position can be incorporated.

MarginPhase Implementation

MarginPhase (github.com/benedictpaten/marginPhase) is an experimental,

open source implementation of the described HMM written in C. It differs from the

WhatsHap implementation in the method it uses to explore bipartitions and the method

to generate allele support probabilities from the reads.
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Read Bipartitions. The described HMM scales exponentially in terms of increasing

read coverage. For typical 20-60x sequencing coverage (i.e. average number of active

rows per column) it is impractical to store all possible bipartitions of the rows of the ma-

trix. MarginPhase implements a simple, greedy pruning and merging heuristic outlined

in recursive pseudocode as follows:

procedure computePrunedHMM(M)
if maxCov ≥ t then

Divide M in half to create two matrices, M1 and M2, such
that M1 is the first n

2 rows of M and M2 is the remaining
rows of M.

HMM1 ← computePrunedHMM(M1)
HMM2 ← computePrunedHMM(M2)
HMM← mergeHMMs(HMM1,HMM2)

else
Let HMM be the read partitioning HMM for M.

return subgraph of HMM including visited states and transitions
each with posterior probability of being visited ≥ v, and which
are on a path from the start to end nodes.

The procedure computePrunedHMM takes an alignment matrix and returns

a connected subgraph of the HMM for M that can be used for inference, choosing to

divide the input alignment matrix into two if the number of rows exceeds a threshold t,

recursively.

The sub-procedure mergeHMMs takes two pruned HMMs for two disjoint align-

ment matrices with the same number of columns and joins them together in the natural
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way such that if at each site i there are |B1
i | states in HMM1 and |B2

i | in HMM2 then

the resulting HMM will have |B1
i | × |B2

i | states. This is illustrated in Figure 2.12. In

the experiments used here t = 8 and v = 0.01.

Figure 2.12: The merger of two read partitioning HMMs with the same number of
columns. Top and middle: two HMMs to be merged; bottom: the merged HMM. Transition and
emission probabilities not shown
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Allele supports

In MarginPhase, the alignment matrix initially has a site for each base in the

reference genome. To generate the allele support for each reference base from the reads

for each read, we calculate the posterior probability of each allele (reference base) using

the implementation of the banded forward-backward pairwise alignment described in

[46]. The result is that for each reference base, for each read that overlaps (according

to an initial guide alignment extracted from the SAM/BAM file) the reference base, we

calculate the probability of each possible nucleotide (i.e., { ‘A’, ‘C’, ‘G’, ‘T’ }). The

gaps are ignored and treated as missing data. This approach allows summation over

all alignments within the band. Given the supports for each reference base, we then

prune the set of reference bases considered to those with greater than (by default) three

expected non-reference alleles. This expectation is merely the sum of non-reference

allele base probabilities over the reads. This reduces the number of considered sites by

approximately two orders of magnitude, greatly accelerating the HMM computation.

Substitution probabilities

We set the read error substitution probabilities, i.e., P (Mi,j |(Hj)
k empirically

and iteratively. Starting from a 1% flat substitution probability, we generate a ML

read bipartition and pair of haplotypes, we then re-estimate the read error probabilities

from the differences between the reads and the haplotypes. We then rerun the model

and repeat the process to derive the final probabilities. For the haplotype substitution

probabilities, i.e., P ((Hj)
k|Zj), we use substitution probabilities of 0.1% for transver-
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sions and 0.4% for transitions, reflecting the facts that transitions are twice as likely

empirically but that there are twice as many possible transversions.

Phase blocks

MarginPhase divides the read partitioning HMMs into phase sets based on the

number of reads which span adjacent likely heterozygous sites. The bipartitioning is

performed on each of these phase sets individually. MarginPhase’s output includes a

BAM which encodes the phasing of each read, including which phase set it is in, which

haplotype it belongs to, and what of the aligned portion falls into each phase set. Reads

which span a phase set boundary have information for both encoded in them.
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Chapter 3

Genome Assembly

Background

Reference genomes and their biases

Many genomics analyses, like variant calling, are performed relative to a ref-

erence genome for the species, such as GRCh38 for humans. Using a single reference

genome has many benefits, such as providing consistent genomic coordinates used in all

annotations and analyses. However, there are some situations that require the assembly

of a new genome. If a species of interest does not already have a reference genome, or

there is a desire to improve upon the existing reference due to technological advance-

ments, or there is some other reason for not using an existing reference like a desire to

prevent reference bias in downstream applications, the genome will need to be assem-

bled from scratch. De novo genome assembly is the process of assembling a genome

without any guidance from an existing reference genome. In addition to increasing the
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number of species with assembled genomes, de novo genome assembly can be useful for

creating reference assemblies for specific subpopulations, and characterizing structural

variations that can be difficult to identify when comparing to a reference that is vastly

different in the region of interest.

Genome assembly techniques

Genome assembly is the process of reconstructing an individual’s genome, given

DNA sequencing reads from that individual. Due to the limitations of sequencing tech-

nologies, sequenced reads are much shorter than the longest stretches of contiguous

DNA in a genome. The reads commonly used in the field today can range in size any-

where from 150 base pairs per read for Illumina shotgun sequencing, to over 1 million

bases with Oxford nanopore reads, but even these longest reads are still a fraction of

the size of many chromosomes. Humans, for example, have some chromosomes that are

over 200 million base pairs long. Therefore, de novo genome assembly requires using

the reads and their overlapping subsequences to reconstruct the original sequences of

the chromosomes from which they originated. The algorithms for genome assembly

differ greatly depending on the type of sequencing reads used and their different error

distributions and read lengths.

The first approaches to genome assembly used Sanger sequencing on genomic

fragments cloned into bacterial artificial chromosomes (BACs), including the first as-

sembly of the human genome in the Human Genome Project [51]. These assemblies

from Sanger sequencing were accurate on a base-pair level, but incredibly expensive to
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create. They also contained many gaps of unassembled sequence between contigs, which

are continuous blocks of assembled DNA. After the introduction of considerably less ex-

pensive next-generation short read technologies, it was possible to create many more

genome assemblies, though these assemblies were not very contiguous. Contig N50s, or

the length of the shortest contig that covers 50 percent of the total length of the genome

when contigs are ordered in decreasing size, are very low in short read assemblies, in the

20-100 kilobase range [52, 53]. For example, the initial mouse assembly created with

Illumina reads had a contig N50 of 24.8 kb [54]. The accuracy of the short assembled

portions is fairly high, at least.

Newer DNA sequencing technologies, such as long reads and linked reads, can

be used to create highly contiguous genome assemblies. Longer reads allow for finding

longer overlaps between reads, and make it easier to unambiguously extend contigs. This

results in much higher contig N50s, in the range of tens of megabases rather than tens

of kilobases [23, 55, 56]. However, the quality scores of the assembled contigs are lower,

particularly before any additional polishing of the assembly. Long read assemblers will

be discussed in greater detail later, particularly our own assembler for nanopore reads,

Shasta [23].

Assembly algorithms

Current assemblers tend to fall into two major categories. The first type are

Overlap-Layout-Consensus (OLC) assemblers, which as can be inferred by the name,

assemble genomes using three main steps: finding overlaps between the reads and build-
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ing an overlap graph, using the overlaps to group sections of the graph into contigs, and

building a consensus sequence of the most likely nucleotide sequence for each contig. In

the overlap graph, reads are represented as nodes in the graph, and the overlaps between

reads as edges. OLC assemblers can be used on many types of sequencing reads, both

short and long. However, OLC assemblers can be computationally inefficient due to

the overlap stage, where many alignments between pairs of reads need to be made to

compute the overlaps and construct the graph.

The second type are De Bruijn Graph (DBG) assemblers. This type of assem-

bler revolves around constructing a de Bruijn graph out of the input reads. The reads

are decomposed into their constituent kmers. For example, the 4-mers that make up

the sequence “GATTACA” would be GATT, ATTA, TTAC, and TACA. The de Bruijn

graph is built using kmers as nodes, with edges between overlapping kmers, and reads

are paths through the graph. DBG assemblers require highly accurate sequencing reads.

However, if a de Bruijn graph can be used, this type of assembler can be very computa-

tionally efficient, as constructing a de Bruijn graph is much faster than computing the

overlaps between pairs of reads within the input dataset.

Finishing steps for an assembly

Scaffolding

After producing an initial contig assembly, the contigs can be linked together

further to create larger scaffolds that organize contigs into larger structures that are

hopefully closer to the size of chromosomes. Proximity ligation reads are particularly
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useful for this, as each pair of reads represents sequences that are in close physical

proximity to each other within the nucleus, so contigs that have large amount of contacts

between them can be scaffolded together. Some available scaffolding applications that

use proximity ligation reads such as HiC and Chicago are HiRise [57] and SALSA2 [58].

Gaps created by scaffolding can be filled with long reads, using a tool like PBJelly2 [59]

which uses PacBio reads.

Polishing

Finally, assemblies can be polished by aligning sequencing reads back to the

assembly, and fixing errors where the read alignments disagree with the assembled se-

quencing. Accurate short reads have been traditionally used for polishing, using a

program like Pilon [60]. Alternatively, the long reads themselves can be used to pol-

ish assemblies. Later in this chapter, we introduce our own polishing software tools

developed in the lab (MarginPolish and HELEN) that use nanopore reads to polish.

Use of multiple sequencing types for assembly

Integrating multiple different DNA sequencing types during an assembly work-

flow can improve assemblies by taking advantage of the different characteristics of each

sequencing type. An example of an assembly workflow involving many options for se-

quencing types is shown in Figure 3.1.
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Figure 3.1: Assembly pipeline. An overview of an example haploid consensus assembly pipeline
which uses multiple sequencing technologies and pieces of software. This is non-exhaustive, as additional
sequencing types and software could be included.

Diploid genome assembly

Ignored up until this point is another major limitation of the current state of

assembly: all of these assemblers produce a single, collapsed haplotype. This results

in the loss of information for a diploid (or higher ploidy) organism, and the more het-

erozygous the individual is, the greater the loss of information will be. There are some

assemblers previously mentioned that attempt to address this by creating varying levels

of “pseudohaploid” assemblies, where alternative haplotype paths can be represented

for portions of the genome, such as Supernova2 which works with 10X linked reads.
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However, these phased segments do not cover the whole genome, and there is no notion

of the long-range phasing of these haplotypes.

ONT reads and assembly

Nanopore sequencing, commercialized by Oxford Nanopore Technologies (ONT),

is particularly apt for use in genome assembly. Nanopore reads can be very long, over 100

kilobases in length when using the ultra-long sequencing protocol [33], which facilitates

the assembly of the most challenging regions of the genome, such as centromeres, acro-

centric short arms, telomeres, rRNAs, and segmental duplications. Nanopore sequencing

has the downside of being less accurate than other long read technology (PacBio). Its

errors are concentrated in homopolymers, leading to a greater rate of homopolymer

errors in resulting assemblies. However, it does have benefits because in addition to

having the longest read lengths of any sequencing technology, it can also be cheaper

and faster to generate the large quantities of input data needed for genome assembly

using high throughput sequencers like the PromethION.

There are existing methods for assembling genomes de novo using nanopore

reads, but they either require a lot of computing resources, or are not very accurate.

For example, a de novo assembly of NA12878 with nanopore reads used Canu [55]

for the assembly, and took over 150,000 CPU hours and weeks of wall-clock time [33].

Canu, which is fairly accurate, is partially so slow because it performs an error correction

step, where reads are corrected in order to minimize the base-level errors present. Other

methods which are faster than Canu, such as wtdbg2 [61] and Flye [62], are still relatively
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slow (taking days of wall clock time as opposed to weeks), and produce less accurate

assemblies in part because they do not include an error correction step. Improvements

to the speed and accuracy of software for assembling and polishing assemblies using

nanopore reads would be beneficial for the field and could enable the sequencing of

many large genomes quickly, at low cost.

Shasta assembler

The Shasta assembler, developed primarily by Paolo Carnevali while he worked

for the Chan Zuckerberg Initiative, with contributions by other lab members such as

Ryan Lorig-Roach, aims to reduce the amount of time needed to assemble genomes using

nanopore reads by orders of magnitude, while obtaining assemblies of better quality (or

at least comparable to) existing assemblers.

A few key points of Shasta’s methods are the following. Shasta uses run-length

encoding in order to minimize the effect of errors in homopolymers typically observed

in the error profiles of nanopore reads. To increase the speed of assembly, Shasta uses

a marker representation of reads, where each read is represented as a sequence of fixed

markers observed in the read, and markers are determined by a fraction of all kmers for

a given value k. Shasta runs a modified MinHash algorithm to find candidate pairs of

overlapping reads, then computes alignments between candidates and creates a Marker

Graph. Data structures are all stored in memory, to reduce time spent reading and

writing from disk, and consequently, Shasta needs to be run on a single node with a
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large amount of memory (1-2 TB for a mammal sized assembly).

Future directions: PacBio HiFi reads and assembly

After the publication of Shasta, PacBio came out with a new type of high-

fidelity reads, HiFi for short, that are produced using their Circular Consensus Sequenc-

ing (CCS) mode. These reads are much more accurate than the traditional PacBio CLR

read. Because the accuracy of the PacBio CLR reads was a serious limitation to using

them for genome assembly, HiFi reads are much better suited to the problem. Hifiasm

[63] is an example of an assembler that works on HiFi reads and produces assemblies

that are both highly contiguous and have high quality scores. HiFi reads are still limited

by their relatively smaller read lengths compared to nanopore reads. However, com-

bining HiFi and nanopore reads together by creating an initial contig assembly with

the HiFi reads and threading the nanopore reads through after to use the long range

information is a promising strategy. This strategy is employed in an automated manner

by Verkko (not yet published).

Contributions

The following sections include most of the full text of the paper published for

Shasta, “Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly

of eleven human genomes” published in Nature Biotechnology in May 2020 [23]. I

was a co-first author of this paper, along with Kishwar Shafin, Trevor Pesout, Ryan
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Lorig-Roach, and Hugh Olsen. The goal of this paper was to demonstrate the use

of the Shasta assembly software to sequence and assemble eleven human genomes in

approximately eleven days. This paper contains four different projects: the generation

of the ONT sequencing reads using a new ultralong read length protocol that aimed to

increase the number of read lengths greater than 100kb, the assembler (Shasta) used to

create the initial contig assemblies, the polisher (MarginPolish) which was built upon

the previously introduced ‘Margin’ framework, and the polisher (HELEN) that uses a

recurrent neural network. We also performed proximity ligation sequencing with HiC

reads, and I used those to scaffold the assemblies. We compared Shasta to three other

existing assemblers, and the polishers to two existing polishers.

I helped design and run the assembly pipelines for Shasta (and the other as-

semblers), as well as the polishing and scaffolding pipelines. I compared Shasta against

the other assemblers (and the polishers against other polishers) and performed many of

the quality analysis portions of the pipeline. I also designed and made several figures

and tables and wrote large portions of the main text.

I moved several portions of the main text to the appendix of this dissertation,

as they did not directly relate to the work I personally did on this manuscript, but are

still important for understanding the paper. These sections include some of the methods

for the new software tools presented in the paper that I did not help develop.
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Future directions post publication

Shasta continues to be in development, with a goal of increasing the contiguity

of assemblies to reach telomere-to-centromere contiguity (and eventually, telomere-to-

telomere). Diploid genome assembly is another goal for Shasta. However, it is no longer

funded by CZI. Since the initial publication of the results, N50s of the assemblies have

increased by a factor of up to 2-4 times, largely due to the work of detangling repetitive

parts of the genome such as segmental duplications.

Shasta was also tested in the Human Pangenome Reference Consortium (HPRC),

whose goal is to eventually create 350 reference-quality assemblies of a genetically di-

verse group of people. This would test if Shasta is truly scalable and able to compete

with assemblers using more accurate sequencing types, such as PacBio HiFi. Unfortu-

nately, the assemblers that used HiFi reads were found to be superior, as the base-level

quality is simply so much higher.

Full text of paper

Abstract

De novo assembly of a human genome using nanopore long-read sequences

has been reported, but it used more than 150,000 CPU hours and weeks of wall-clock

time. To enable rapid human genome assembly, we present Shasta, a de novo long-read

assembler, and polishing algorithms named MarginPolish and HELEN. Using a single
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PromethION nanopore sequencer and our toolkit, we assembled 11 highly contiguous

human genomes de novo in 9 days. We achieved roughly 63x coverage, 42 kb read N50

values and 6.5x coverage in reads > 100 kb using three flow cells per sample. Shasta

produced a complete haploid human genome assembly in under 6 hours on a single

commercial compute node. MarginPolish and HELEN polished haploid assemblies to

more than 99.9% identity (Phred quality score QV = 30) with nanopore reads alone.

Addition of proximity-ligation sequencing enabled near chromosome-level scaffolds for

all 11 genomes. We compare our assembly performance to existing methods for diploid,

haploid and trio-binned human samples and report superior accuracy and speed.

Introduction

Reference-based methods such as GATK[13] can infer human variations from

short-read sequences, but the results only cover ˜90% of the reference human genome

assembly [2, 3]. These methods are accurate with respect to single-nucleotide variants

and short insertions and deletions (indels) in this mappable portion of the reference

genome[64]. However, it is difficult to use short reads for de novo genome assembly

[53], to discover structural variations (SVs)[65, 66] (including large indels and base-level

resolved copy number variations), or to resolve phasing relationships without exploiting

transmission information or haplotype panels8.

Third generation sequencing technologies, including linked-reads[67, 68, 69]

and long-read technologies[70, 71], overcome the fundamental limitations of short-read
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sequencing for genome inference. In addition to increasingly being used in reference

guided methods[2, 72, 73, 39], long-read sequences can generate highly contiguous de

novo genome assemblies[74].

Nanopore sequencing, as commercialized by Oxford Nanopore Technologies

(ONT), is particularly useful for de novo genome assembly because it can produce high

yields of very long 100+ kilobase (kb) reads[33]. Very long reads hold the promise of

facilitating contiguous, unbroken assembly of the most challenging regions of the human

genome, including centromeric satellites, acrocentric short arms, ribosomal DNA arrays

and recent segmental duplications[75, 76, 77]. The de novo assembly of a nanopore

sequencing based human genome has been reported[33]. This earlier effort needed 53

ONT MinION flow cells and the assembly required more than 150,000 CPU hours and

weeks of wall-clock time, quantities that are unfeasible for high throughput human

genome sequencing efforts.

To enable easy, cheap and fast de novo assembly of human genomes we devel-

oped a toolkit for nanopore data assembly and polishing that is orders of magnitude

faster than state-of-the-art methods. We use a combination of nanopore and proximity-

ligation (HiC) sequencing[67] and our toolkit, and we report improvements in human

genome sequencing coupled with reduced time, labor and cost.
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Results

Eleven human genomes sequenced in 9 days

We selected for sequencing 11, low-passage (six passages), human cell lines of

the offspring of parent-child trios from the 1,000 Genomes Project[78] and genome-in-

a-bottle (GIAB)[40] sample collections. Samples were selected to maximize captured

allelic diversity (see Methods).

We carried out PromethION nanopore sequencing and HiC Illumina sequenc-

ing for the 11 genomes. We used three flow cells per genome, with each flow cell receiving

a nuclease flush every 20–24 h. This flush removed long DNA fragments that could cause

the pores to become blocked over time. Each flow cell received a fresh library of the

same sample after the nuclease flush. A total of two nuclease flushes were performed

per flow cell, and each flow cell received a total of three sequencing libraries. We used

Guppy v.2.3.5 with the high accuracy flipflop model for basecalling (see Methods).

Nanopore sequencing of all 11 genomes took 9 days and produced 2.3 terabases

(Tb) of sequence. We ran up to 15 flow cells in parallel during these sequencing runs.

Results are shown in Fig. 3.2 and Supplementary Tables 1-3. Nanopore sequencing

yielded an average of 69 gigabases (Gb) per flow cell, with the total throughput per

individual genome ranging between 48x (158 Gb) and 85x (280 Gb) coverage per genome

(Fig. 3.2a). The read N50 values for the sequencing runs ranged between 28 and 51 kb

(Fig. 3.2b). (An N50 value is a weighted median; it is the length of the sequence in a

set for which all sequences of that length or greater sum to 50% of the set’s total size.)
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We aligned nanopore reads to the human reference genome (GRCh38) and calculated

their alignment identity to assess sequence quality (see Methods). We observed that

the median and modal alignment identity was 90 and 93%, respectively (Fig. 3.2c).

The sequencing data per individual genome included an average of 55x coverage arising

from > 10-kb reads and 6.5x coverage from > 100-kb reads (Fig. 3.2d). This was in

large part due to size selection that yielded an enrichment of reads longer than 10 kb.

To test the generality of our sequencing methodology for other samples, we sequenced

high-molecular weight DNA isolated from a human saliva sample using identical sample

preparation. The library was run on a MinION (roughly one-sixth the throughput of a

ProMethION flow cell) and yielded 11 Gb of data at a read N50 of 28 kb (Supplementary

Table 4), extrapolating both are within the lower range achieved with cell-line derived

DNA.
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Figure 3.2: Nanopore sequencing data. a, Throughput in gigabases from each of three flow cells
for 11 samples, with total throughput at top. Each point is a flow cell. b, Read N50 values for each
flow cell. Each point is a flow cell. c, Alignment identities against GRCh38. Medians in a–c shown
by dashed lines, dotted line in c is the mode. Each line is a single sample comprising three flow cells.
d, Genome coverage as a function of read length. Dashed lines indicate coverage at 10 and 100 kb.
HG00733 is accentuated in dark blue as an example. Each line is a single sample comprising three flow
cells. e, Alignment identity for standard and RLE reads. Data for HG00733 chromosome 1 flow cell 1
are shown (4.6 Gb raw sequence). Dashed lines denote quartiles.
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Shasta assembler for long sequence reads

Shasta was designed to be orders of magnitude faster and cheaper at assembling

a human-scale genome from nanopore reads than the Canu assembler used in our earlier

work [33]. During most Shasta assembly phases, reads are stored in a homopolymer-

compressed form using run-length encoding (RLE)[79, 80, 81]. In this form, identical

consecutive bases are collapsed, and the base and repeat count are stored. For example,

GATTTACCA would be represented as (GATACA, 113121). This representation is insensi-

tive to errors in the length of homopolymer runs, thereby addressing the dominant error

mode for Oxford Nanopore reads[70]. As a result, assembly noise due to read errors is

decreased, and notably higher identity alignments are facilitated (Fig. 3.2e). A marker

representation of reads is also used, in which each read is represented as the sequence

of occurrences of a predetermined, fixed subset of short k-mers (marker representation)

in its run-length representation. A modified MinHash [82, 83] scheme is used to find

candidate pairs of overlapping reads, using as MinHash features consecutive occurrences

of m markers (default m = 4). Optimal alignments in marker representation are com-

puted for all candidate pairs. The computation of alignments in marker representation

is very efficient, particularly as various banded heuristics are used. A marker graph is

created in which each vertex represents a marker found to be aligned in a set of sev-

eral reads. The marker graph is used to assemble sequence after undergoing a series

of simplification steps. The assembler runs on a single machine with a large amount

of memory (typically 1–2 Tb for a human assembly). All data structures are kept in
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memory, and no disk I/O takes place except for initial loading of the reads and final

output of assembly results.

Benchmarking Shasta

We compared Shasta to three contemporary assemblers: Wtdbg2[61], Flye[62],

and Canu[55]. We ran all four assemblers on available read data from two diploid human

samples, HG00733 and HG002, and one haploid human sample, CHM13. HG00733 and

HG002 were part of our collection of 11 samples, and data for CHM13 came from the

T2T consortium[84].

Canu consistently produced the most contiguous assemblies, with contig NG50

values of 40.6, 32.3 and 79.5 Mb, for samples HG00733, HG002 and CHM13, respectively

(Fig. 3.3a). (NG50 is similar to N50, but for 50% of the estimated genome size.) Flye

was the second most contiguous, with contig NG50 values of 25.2, 25.9 and 35.3 Mb, for

the same samples. Shasta was next with contig NG50 values of 21.1, 20.2 and 41.1 Mb.

Wtdbg2 produced the least contiguous assemblies, with contig NG50 values of 15.3, 13.7

and 14.0 Mb.
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Figure 3.3: Assembly metrics for Shasta, Wtgdb2, Flye and Canu before polishing. a, NGx
plot showing contig length distribution. The intersection of each line with the dashed line is the NG50
for that assembly. b, NGAx plot showing the distribution of aligned contig lengths. Each horizontal
line represents an aligned segment of the assembly unbroken by a disagreement or unmappable sequence
with respect to GRCh38. The intersection of each line with the dashed line is the aligned NGA50 for
that assembly. c, Assembly disagreement counts for regions outside centromeres, segmental duplications
and, for HG002, known SVs. d, Total generated sequence length versus total aligned sequence length
(against GRCh38). e, Balanced base-level error rates for assembled sequences. f, Average runtime and
cost for assemblers (Canu not shown).
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Conversely, aligning the samples to GRCh38 and evaluating with QUAST[85],

Shasta had between 4.2 and 6.5x fewer disagreements (locations where the assembly

contains a breakpoint with respect to the reference assembly) per assembly than the

other assemblers (Supplementary Table 5). Breaking the assemblies at these disagree-

ments and unaligned regions with respect to GRCh38, we observe much smaller absolute

variation in contiguity (Fig. 3.3b and Supplementary Table 5). However, a substantial

fraction of the identified disagreements likely reflect true SVs with respect to GRCh38.

To address this, we discounted disagreements within chromosome Y, centromeres, acro-

centric chromosome arms, QH-regions and known recent segmental duplications (all of

which are enriched in SVs[86, 87]); in the case of HG002, we further excluded a set of

known SVs[88]. We still observe between 1.2x and 2x fewer disagreements in Shasta

relative to Canu and Wtdbg2, and comparable results against Flye (Fig. 3.3c and Sup-

plementary Table 6). To account for differences in the fraction of the genomes assem-

bled, we analyzed disagreements contained within the intersection of all the assemblies

(that is, in regions where all assemblers produced a unique assembled sequence). This

produced results highly consistent with the previous analysis and suggests Shasta and

Flye have the lowest and comparable rates of misassembly (Methods, see Supplemen-

tary Table 7). Finally, we used QUAST to calculate disagreements between the T2T

Consortium’s chromosome X assembly, a highly curated, validated assembly[84] and

the subset of each CHM13 assembly mapping to it; Shasta has two to 17 times fewer

disagreements than the other assemblers while assembling almost the same fraction of

the assembly (Supplementary Table 8).
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Canu consistently assembled the largest genomes (average 2.91 Gb), followed

by Flye (average 2.83 Gb), Wtdbg2 (average 2.81 Gb) and Shasta (average 2.80 Gb).

Due to their similarity, we would expect the most of these assembled sequences to map

to another human genome. Discounting unmapped sequence, the differences are smaller:

Canu produced an average of 2.86 Gb of mapped sequence per assembly, followed by

Shasta (average 2.79 Gb), Flye (average 2.78 Gb) and Wtdbg2 (average 2.76 Gb) (Fig.

3.3d, see Methods). This analysis supports the notion that Shasta is currently relatively

conservative versus its peers, producing the highest ratio of directly mapped assembly

per sample.

For HG00733 and CHM13 we examined a library of bacterial artificial chromo-

some (BAC) assemblies (Methods). The BACs were largely targeted at known segmental

duplications (473 of 520 BACs lie within 10 kb of a known duplication). Examining the

subset of BACs for CHM13 and HG00733 that map to unique regions of GRCh38 (see

Methods), we find Shasta contiguously assembles all 47 BACs, with Flye performing

similarly (Supplementary Table 9). In the full set, we observe that Canu (411) and Flye

(282) contiguously assemble a larger subset of the BACs than Shasta (132) and Wtdbg2

(108), confirming the notion that Shasta is relatively conservative in these duplicated

regions (Supplementary Table 10). Examining the fraction of contiguously assembled

BACs of all BACs represented in each assembly we can measure an aspect of assembly

correctness. In this regard Shasta (97%) produces a much higher percentage of correct

BACs in duplicated regions versus its peers (Canu 92%, Flye 87%, Wtdbg2 88%). In the

intersected set of BACs attempted by all assemblers (Supplementary Table 11), Shasta,
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100%; Flye, 100%; Canu, 98.50% and Wtdbg2, 90.80% all produce comparable results.

Shasta produced the most base-level accurate assemblies (average balanced er-

ror rate 0.98% on diploid and 0.54% on haploid), followed by Wtbdg2 (1.18% on diploid

and 0.69% on haploid), Canu (1.40% on diploid and 0.71% on haploid) and Flye (1.64%

on diploid and 2.21% on haploid) (Fig. 3.3e, see Methods and Supplementary Table

12). We also calculated the base-level accuracy in regions covered by all the assemblies

and observe results consistent with the whole-genome assessment (Supplementary Table

13).

Shasta, Wtdbg2 and Flye were run on a commercial cloud, allowing us to

reasonably compare their cost and runtime (Fig. 3.3e, see Methods). Shasta took an

average of 5.25 h to complete each assembly at an average cost of US$70 per sample. In

contrast, Wtdbg2 took 7.5× longer and cost 3.7× as much, and Flye took 11.9× longer

and cost 9.9× as much. Due to the anticipated cost and complexity of porting it to

Amazon Web Services (AWS), the Canu assemblies were run on a large, institutional

compute cluster, consuming up to US$19,000 (estimated) of compute and took around

4–5 d per assembly (Methods, see Supplementary Tables 14 and 15).

To assess the use of using Shasta for SV characterization we created a workflow

to extract putative heterozygous SVs from Shasta assembly graphs (Methods). Extract-

ing SVs from an assembly graph for HG002, the length distribution of indels shows the

characteristic spikes for known retrotransposon lengths (Supplementary Fig. 1). Com-

paring these SVs to the high-confidence GIAB SV set we find good concordance, with

a combined F1 score of 0.68 (Supplementary Table 16).
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Contiguously assembling major histocompatibility complex (MHC) hap-

lotypes

The MHC region is difficult to resolve using short reads due to its repetitive

and highly polymorphic nature [89], and recent efforts to apply long-read sequencing

to this problem have shown promise[33, 90]. We analyzed the assemblies of CHM13

and HG00733 to see if they spanned the MHC region. For the haploid assemblies of

CHM13 we find MHC is entirely spanned by a single contig in all four assemblers’

output, and most closely resembles the GL000251.2 haplogroup among those provided

in GRCh38 (Fig. 3.4a, Supplementary Fig. 2 and Supplementary Table 17). In the

diploid assembly of HG00733 two contigs span most of the MHC for Shasta and Flye,

while Canu and Wtdbg2 span the region with one contig (Fig. 3.4b and Supplementary

Fig. 3). However, we note that all these chimeric diploid assemblies lead to sequences

that do not closely resemble any haplogroup (Methods).
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Figure 3.4: Shasta MHC assemblies compared with the reference human genome. Unpol-
ished Shasta assembly for CHM13 and HG00733, including HG00733 trio-binned maternal and paternal
assemblies. Shaded gray areas are regions in which coverage (as aligned to GRCh38) drops below 20.
Horizontal black lines indicate contig breaks. Blue and green describe unique alignments (aligning for-
ward and reverse, respectively) and orange describes multiple alignments.

To attempt to resolve haplotypes of HG00733 we used trio-binning[91] to par-

tition the reads for HG00733 into two sets based on likely maternal or paternal lineage

and assembled the haplotypes (Methods). For all assemblers and each haplotype assem-

bly, the global contiguity worsened substantially (as the available read data coverage
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was approximately halved and, further, not all reads could be partitioned), but the

resulting disagreement count decreased (Supplementary Table 18). When using haploid

trio-binned assemblies, the MHC was spanned by a single contig for the maternal haplo-

type (Fig. 3.4c, Supplementary Fig. 4 and Supplementary Table 19), with high identity

to GRCh38 and having the greatest contiguity and identity with the GL000255.1 hap-

lotype. For the paternal haplotype, low coverage led to discontinuities (Fig. 3.4d)

breaking the region into three contigs.

Deep neural network-based polishing for long-read assemblies

We developed a deep neural network-based consensus sequence polishing pipeline

designed to improve the base-level quality of the initial assembly. The pipeline consists

of two modules: MarginPolish and the homopolymer encoded long-read error-corrector

for Nanopore (HELEN). MarginPolish uses a banded form of the forward–backward al-

gorithm on a pairwise hidden Markov model (pair-HMM) to generate pairwise alignment

statistics from the RLE alignment of each read to the assembly. From these statistics,

MarginPolish generates a weighted RLE partial order alignment (POA)[92] graph that

represents potential alternative local assemblies. MarginPolish iteratively refines the

assembly using this RLE POA, and then outputs the final summary graph for con-

sumption by HELEN. HELEN uses a multi-task recurrent neural network (RNN)[93]

that takes the weights of the MarginPolish RLE POA graph to predict a nucleotide

base and run length for each genomic position. The RNN takes advantage of contextual

genomic features and associative coupling of the POA weights to the correct base and
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run length to produce a consensus sequence with higher accuracy.

To demonstrate the effectiveness of MarginPolish and HELEN, we compared

them with the state-of-the-art nanopore assembly polishing workflow: four iterations of

Racon polishing[94] followed by Medaka[95]. MarginPolish is analogous in function to

Racon, both using pair-HMM-based methods for alignment and POA graphs for initial

refinement. Similarly, HELEN is analogous to Medaka, in that both use a deep neural

network and both work from summary statistics of reads aligned to the assembly.

Figure 3.5a and Supplementary Tables 20–22 detail error rates for the four

methods performed on the HG00733 and CHM13 Shasta assemblies (see Methods) using

Pomoxis [96]. For the diploid HG00733 sample MarginPolish and HELEN achieve a

balanced error rate of 0.388% (Phred quality score QV = 24.12), compared to 0.455%

(QV = 23.42) by Racon and Medaka. For both polishing pipelines, a notable fraction of

these errors are likely due to true heterozygous variations. For the haploid CHM13 we

restrict comparison to the highly curated X chromosome sequence provided by the T2T

consortium[84]. We achieve a balanced error rate of 0.064% (QV = 31.92), compared

to Racon and Medaka’s 0.110% (QV = 29.59).
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Figure 3.5: Polishing assembled genomes. a, Balanced error rates for the four methods on
HG00733 and CHM13. b, Row-normalized heatmaps describing the predicted run lengths (x axis) given
true run lengths (y axis) for four steps of the pipeline on HG00733. Guppy v.2.3.3 was generated from 3.7
Gb of RLE sequence. Shasta, MarginPolish and HELEN were generated from whole assemblies aligned
to their respective truth sequences. c, Error rates for MarginPolish and HELEN on four assemblies. d,
Average runtime and cost. 89



For all assemblies, errors were dominated by indel errors; for example, substi-

tution errors are 3.16 and 2.9 times fewer than indels in the polished HG000733 and

CHM13 assemblies, respectively. Many of these errors relate to homopolymer length

confusion; Fig. 3.5b analyzes the homopolymer error rates for various steps of the pol-

ishing workflow for HG00733. Each panel shows a heatmap with the true length of the

homopolymer run on the y axis and the predicted run length on the x axis, with the

color describing the likelihood of predicting each run length given the true length. Note

that the dispersion of the diagonal steadily decreases. The vertical streaks at high run

lengths in the MarginPolish and HELEN confusion matrix are the result of infrequent

numerical and encoding artifacts (see Methods and Supplementary Fig. 5).

Figure 3.5c and Supplementary Table 23 show the overall error rate after run-

ning MarginPolish and HELEN on HG00733 assemblies generated by different assembly

tools, demonstrating that they can be usefully employed to polish assemblies generated

by other tools.

To investigate the benefit of using short reads for further polishing, we polished

chromosome X of the CHM13 Shasta assembly after MarginPolish and HELEN using

10X Chromium reads with the Pilon polisher[97]. This led to a roughly twofold reduction

in base errors, increasing the QV from roughly 32 (after polishing with MarginPolish

and HELEN) to around 36 (Supplementary Table 24). Notably, attempting to use Pilon

polishing on the raw Shasta assembly resulted in much poorer results (QV = 24).

Figure 3.5d and Supplementary Table 25 describe average runtimes and costs

for the methods (see Methods). MarginPolish and HELEN cost a combined US$107
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and took 29 h of wall-clock time on average, per sample. In comparison Racon and

Medaka cost US$621 and took 142 wall-clock hours on average, per sample. To assess

single-region performance we additionally ran the two polishing workflows on a single

contig (roughly 1% of the assembly size), MarginPolish/HELEN was three times faster

than Racon (1×)/Medaka (Supplementary Table 26).

Long-read assemblies contain nearly all human coding genes

To evaluate the accuracy and completeness of an assembled transcriptome we

ran the Comparative Annotation Toolkit[98], which can annotate a genome assembly

using the human GENCODE[99] reference human gene set (Table 3.1, Methods and

Supplementary Tables 27–30).

Table 3.1: CAT transcriptome analysis of human protein coding genes for HG00733 and CHM13.

Sample Assembler Polisher
Genes

Found %
Missing
Genes

Complete
Genes %

HG00733

Canu HELEN 99.741 51 67.038
Flye HELEN 99.405 117 71.768

Wtdbg2 HELEN 97.429 506 66.143
Shasta HELEN 99.228 152 68.069
Shasta Medaka 99.141 169 66.27

CHM13
Shasta HELEN 99.111 175 74.202
Shasta Medaka 99.035 190 73.836

For the HG00733 and CHM13 samples we found that Shasta assemblies pol-

ished with MarginPolish and HELEN contained nearly all human protein coding genes,
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having, respectively, an identified ortholog for 99.23% (152 missing) and 99.11% (175

missing) of these genes. Using the restrictive definition that a coding gene is complete

in the assembly only if it is assembled across its full length, contains no frameshifts

and retains the original intron–exon structure, we found that 68.07% and 74.20% of

genes, respectively, were complete in the HG00733 and CHM13 assemblies. Polishing

the Shasta assemblies alternatively with the Racon–Medaka pipeline achieved similar

but uniformly less complete results.

Comparing the MarginPolish and HELEN polished assemblies for HG00733

generated with Flye, Canu and Wtdbg2 to the similarly polished Shasta assembly we

found that Canu had the fewest missing genes (just 51), but that Flye, followed by

Shasta, had the most complete genes. Wtdbg2 was clearly an outlier, with notably larger

numbers of missing genes (506). For comparison we additionally ran BUSCO[100] using

the eukaryote set of orthologs on each assembly, a smaller set of 303 expected single-copy

genes (Supplementary Tables 31 and 32). We find comparable performance between the

assemblies, with small differences largely recapitulating the pattern observed by the

larger CAT analysis.

Comparison of Shasta and PacBio HiFi assemblies

We compared the CHM13 Shasta assembly polished using MarginPolish and

HELEN with the recently released Canu assembly of CHM13 using PacBio HiFi reads[101].

HiFi reads are based on circular consensus sequencing technology that delivers substan-

tially lower error rates. The HiFi assembly has a lower NG50 (29.0 versus 41.0 megabase
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(Mb)) than the Shasta assembly (Supplementary Fig. 6). Consistent with our other

comparisons to Canu, the Shasta assembly also contains a much lower disagreement

count relative to GRCh38 (1073) than the Canu-based HiFi assembly (8,469), a dif-

ference that remains after looking only at disagreements within the intersection of the

assemblies (380 versus 594). The assemblies have an almost equal NGAx (˜20.0 Mb),

but the Shasta assembly covers a smaller fraction of GRCh38 (95.28 versus 97.03%)

(Supplementary Fig. 7 and Supplementary Table 33). Predictably, the HiFi assembly

has a higher QV than the polished Shasta assembly (QV = 41 versus QV = 32).

Scaffolding to near chromosome scale

To achieve chromosome length sequences, we scaffolded all of the polished

Shasta assemblies with HiC proximity-ligation data using HiRise [57] (see Methods and

Fig. 3.6a). On average, 891 joins were made per assembly. This increased the scaffold

NG50 values to near chromosome scale, with a median of 129.96 Mb, as shown in Fig.

3.6a, with additional assembly metrics in Supplementary Table 36. Proximity-ligation

data can also be used to detect misjoins in assemblies. In all 11 Shasta assemblies, no

breaks to existing contigs were made while running HiRise to detect potential misjoins.

Aligning HG00733 to GRCh38, we find no notable rearrangements and all chromosomes

are spanned by one or a few contigs (Fig. 3.6b), with the exception of chrY, which is

absent because HG00733 is female. Similar results were observed for HG002 (Supple-

mentary Fig. 8).
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Figure 3.6: HiRise scaffolding for 11 genomes. a, NGx plots for each of the 11 genomes, before
(dashed) and after (solid) scaffolding with HiC sequencing reads, GRCh38 minus alternate sequences is
shown for comparison. b, Dot plot showing alignments between the scaffolded HG00733 Shasta assembly
and GRCh38 chromosome scaffolds. Blue indicates forward aligning segments, green indicates reverse,
with both indicating unique alignments.

Discussion

With sequencing efficiency for long reads improving, computational consider-

ations are paramount in determining overall time, cost and quality. Simply put, large

genome de novo assembly will not become ubiquitous if the requirements are weeks of
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assembly time on large computational clusters. We present three new methods that

provide a pipeline for the rapid assembly of long nanopore reads. Shasta can produce a

draft human assembly in around 6 hours and US$70 using widely available commercial

cloud nodes. This cost and turnaround time is much more amenable to rapid proto-

typing and parameter exploration than even the fastest competing method (Wtdbg2),

which was on average 7.5 times slower and 3.7 times more expensive.

The combination of the Shasta assembler and nanopore long-read sequences

produced using the PromethION sequencer realizes substantial improvements in through-

put; we completed all 2.3 Tb of nanopore data collection in 9 d, running up to 15 flow

cells simultaneously.

In terms of assembly, we obtained an average NG50 of 18.5 Mb for the 11

genomes, roughly three times higher than for the first nanopore-sequenced human

genome, and comparable with the best achieved by alternative technologies[71, 102].

We found the addition of HiC sequencing for scaffolding necessary to achieve chromo-

some scale assemblies. However, our results are consistent with previous modeling based

on the size and distribution of large repeats in the human genome, which predicts that

an assembly based on 30 times coverage of such reads of > 100 kb would approach the

continuity of complete human chromosomes[33, 84].

Relative to alternate long-read and linked-read sequencing, the read identity of

nanopore reads is lower, however, improving over time[70, 33]. We observe modal read

identity of 92.5%, resulting in better than QV = 30 base quality for haploid polished

assembly from nanopore reads alone. The accurate resolution of highly repetitive and
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recently duplicated sequence will depend on long-read polishing, because short reads

are generally not uniquely mappable. Further polishing using complementary data

types, including PacBio HiFi reads49 and 10X Chromium50, will likely prove useful in

achieving QV 40+ assemblies.

Shasta produces a notably more conservative assembly than competing tools,

trading greater correctness for contiguity and total produced sequence. For example, the

ratio of total length to aligned length is relatively constant for all other assemblers, where

approximately 1.6% of sequence produced does not align across the three evaluated sam-

ples. In contrast, on average just 0.38% of Shasta’s sequence does not align to GRCh38,

representing a more than four times reduction in unaligned sequence. Additionally,

we note substantially lower disagreement counts, resulting in much smaller differences

between the raw NGx and corrected NGAx values. Shasta also produces substantially

more base-level accurate assemblies than the other competing tools. MarginPolish and

HELEN provide a consistent improvement of base quality over all tested assemblers,

with more accurate results than the current state-of-the-art long-read polishing work-

flow.

We assembled and compared haploid, trio-binned and diploid samples. Trio-

binned samples show great promise for haplotype assembly, for example contiguously

assembling an MHC haplogroup, but the halving of effective coverage resulted in ulti-

mately less contiguous human assemblies with higher base-error rates than the related,

chimeric diploid assembly. This can potentially be rectified by merging the haplotype

assemblies to produce a pseudo-haplotype or increasing sequencing coverage. Indeed,
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the improvements in contiguity and base accuracy in CHM13 over the diploid samples il-

lustrate what can be achieved with higher coverage of a haploid sample. We believe that

one of the most promising directions for the assembly of diploid samples is the integra-

tion of phasing into the assembly algorithm itself, as pioneered by others[74, 103, 104].

We anticipate that the new tools we have described here are suited for this next step: the

Shasta framework is well placed for producing phased assemblies over structural vari-

ants, MarginPolish is built off of infrastructure designed to phase long reads2 and the

HELEN model could be improved to include haplotagged features for the identification

of heterozygous sites.

Connected together, the tools we present enabled a polished assembly to be

produced in around 24 h and for roughly US$180, against the fastest comparable combi-

nation of Wtdbg2, Racon and Medaka that costs 5.3 times more and is 4.3 times slower

while producing measurably worse results in terms of disagreements, contiguity and

base-level accuracy. Substantial further parallelism of polishing, the main time drain in

our current pipeline, is easily possible.

We are working toward the goal of having a half-day turnaround of our com-

plete computational pipeline. With real-time basecalling, a DNA-to-de novo assembly

could conceivably be achieved in less than 96 h. Such speed would enable screening of

human genomes for abnormalities in difficult-to-sequence regions.
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Methods

A selection of the methods from the Shasta paper are included here. The rest

can be found in the Appendix.

Analysis methods

QUAST / BUSCO

To quantify contiguity, we primarily depended on the tool QUAST [85]. QUAST

identifies misassemblies as major rearrangement events in the assembly relative to the

reference. We use the phrase disagreement in our analysis, as we find “misassembly”

inappropriate considering potentially true structural variation. For our assemblies, we

quantified all contiguity stats against GRCh38, using autosomes plus chromosomes X

and Y only. We report the total disagreements given that their relevant “size” descrip-

tor was greater than 1 Kb, as is the default behavior in QUAST. QUAST provides

other contiguity statistics in addition to disagreement count, notably total length and

total aligned length as reported in Figure 3.3d. To determine total aligned length (and

unaligned length), QUAST performs collinear chaining on each assembled contig to find

the best set of non-overlapping alignments spanning the contig. This process contributes

to QUAST’s disagreement determination. We consider unaligned sequence to be the

portions of the assembled contigs which are not part of this best set of non-overlapping

alignments. All statistics are recorded in Supplementary Table D.1. For all QUAST

analyses, we used the flags min-identity 80 and fragmented.
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QUAST also produces an NGAx plot (similar to an NGx plot) which shows

the aligned segment size distribution of the assembly after accounting for disagreements

and unalignable regions. The intermediate segment lengths that would allow NGAx

plots to be reproduced across multiple samples on the same axis (as is shown in Figure

3.3b) are not stored, so we created a GitHub fork of QUAST to store this data dur-

ing execution: https://github.com/rlorigro/quast. Finally, the assemblies and the

output of QUAST were parsed to generate figures with an NGx visualization script,

ngx plot.py, found at github.com/rlorigro/nanopore_assembly_and_polishing_

assessment/. For NGx and NGAx plots, a total genome size of 3.23Gb was used to

calculate cumulative coverages.

BUSCO [100] is a tool which quantifies the number of Benchmarking Universal

Single-Copy Orthologs present in an assembly. We ran BUSCO via the option within

QUAST, comparing against the eukaryota set of orthologs from OrthoDB v9.

Disagreement assessments

To analyze the QUAST-reported disagreements for different regions of the

genome, we gathered the known segmental duplication (SD) regions [105], centromeric

regions for GRCh38, and known regions in GRCh38 with structural variation for HG002

from GIAB [88]. We used a Python script quast sv extractor.py that compares each

reported disagreement of QUAST to the SD, SV and centromeric regions and discounts

any disagreement that overlaps with these regions. The quast sv extractor.py script

can be found at https://github.com/kishwarshafin/helen/blob/master/modules/

99



python/helper/.

The segmental duplication regions of GRCh38, “ucsc.collapsed.sorted.segdups”,

can be downloaded from https://github.com/mvollger/segDupPlots/.

The defined centromeric regions of GRCh38 for all chromosomes are used from

the available summary at https://www.ncbi.nlm.nih.gov/grc/human.

For GIAB HG002, known SVs for GRCh38 are in “NIST SVs Integration v0.6/”

in ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/.

We used the Tier1+2 bed file available at the GIAB ftp site.

We further exclude SV enriched regions like centromeres, secondary constric-

tion regions, acrocentric arms, large tandem repeat arrays, segmental duplications and

the Y chromosome plus 10 kbp on either side of them. The file is available at:

https://github.com/kishwarshafin/helen/blob/master/masked_regions/

GRCh38_masked_regions.bed

To analyse disagreements within the intersection of the assembled sequences we

performed the following analysis. For each assembly we used minimap2 and samtools

to create regions of unique alignment to GRCh38. For minimap2 we used the options

--secondary=no -a --eqx -Y -x asm20 -m 10000 -z 10000,50 -r 50000 -O 5,56

-E 4,1 -B 5 --end-bonus=100 . We fed these alignments into samtools view with

options -F 260 -u - and then samtools sort with option -m. We then scanned

100 basepair windows of GRCh38 to find windows where all assemblies for the given

sample were aligned with a 1-1 mapping to GRCh38. We then report the sum of
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disagreements across these windows. The script for this analysis is here: https:

//github.com/mvollger/consensus_regions.

Trio-binning

We performed trio-binning on two samples HG002 and HG00733 [91]. For

HG00733, we obtained the parental read sample accessions (HG00731, HG00732) from

1000 genome database. Then we counted k-mers with meryl to create maternal and

paternal k-mer sets. Based on manual examination of the k-mer count histograms to

determine an appropriate threshold, we excluded k-mers occurring less than 6 times for

maternal set and 5 times for paternal set. We subtracted the paternal set from the

maternal set to get k-mers unique to the maternal sample and similarly derived unique

paternal k-mer set. Then for each read, we counted the number of occurrences of unique

maternal and paternal k-mers and classified the read based on the highest occurrence

count. During classification, we avoided normalization by k-mer set size. This resulted

in 35.2x maternal, 37.3x paternal, and 5.6x unclassified for HG00733. For HG002, we

used the Illumina data for the parental samples (HG003, HG004) from GIAB project

[40]. We counted k-mers using meryl and derived maternal paternal sets using the same

protocol. We filtered k-mers that occur less than 25 times in both maternal and paternal

sets. The classification resulted in 24x maternal, 23x paternal, and 3.5x unknown. The

commands and data source are detailed in the Supplementary Notes.
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Transcript analysis with comparative annotation toolkit

We ran the Comparative Annotation Toolkit [98] to annotate the polished

assemblies in order to analyze how well Shasta assembles transcripts and genes. Each

assembly was individually aligned to the GRCh38 reference assembly using Cactus [106]

to create the input alignment to CAT. The GENCODE [107] V30 annotation was used

as the input gene set. CAT was run in the transMap mode only, without Augustus

refinement, since the goal was only to evaluate the quality of the projected transcripts.

All transcripts on chromosome Y were excluded from the analysis since some samples

lacked a Y chromosome.

Run-Length Confusion Matrix

To generate run-length confusion matrices from reads and assemblies, we run-

length encoded (RLE) the assembly/read sequences and reference sequences using a

purpose-built python script, measure runlength distribution from fasta.py. The

script requires a reference and sequence file, and can be found in the GitHub repo

https://github.com/rlorigro/runlength_analysis/. The RLE nucleotides were

aligned to the RLE reference nucleotides with minimap2. As RLE sequences cannot have

identical adjacent nucleotides, the number of unique k-mers is diminished with respect

to standard sequences. As minimap2 uses empirically determined sizes for seed k-mers,

we used a k-mer size of 19 to approximately match the frequency of the default size (15)

used by the presets for standard sequences. For alignment of reads and assemblies we

used the map-ont and asm20 presets respectively.
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By iterating through the alignments, each match position in the cigar string

(mismatched nucleotides are discarded) was used to find a pair of lengths (x, y) such

that x is a predicted length and y is the true (reference) length. For each pair, we

updated a matrix which contains the frequency of every possible pairing of prediction

vs truth, from length 1bp to 50bp. Finally, this matrix is normalized by dividing each

element by the sum of the observations for its true run length,
∑50

i=1(xi, y), and plotted

as a heatmap. Each value represents the probability of predicting a length for a given

true length.

Runtime and Cost Analysis

Our runtime analysis was generated with multiple methods detailing the amount

of time the processes took to complete. These methods include the unix command

time and a home-grown resource tracking script which can be found in the https:

//github.com/rlorigro/TaskManager repository. We note that the assembly and pol-

ishing methods have different resource requirements, and do not all fully utilize available

CPUs, GPUs, and memory over the program’s execution. As such, we report runtimes

using wall clock time and the number of CPUs the application was configured to use,

but do not convert to CPU hours. Costs reported in the figures are the product of the

runtime and AWS instance price. Because portions of some applications do not fully

utilize CPUs, cost could potentially be reduced by running on a smaller instance which

would be fully utilized, and runtime could be reduced by running on a larger instance

which can be fully utilized for some portion of execution. We particularly note the long
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runtime of Medaka and found that for most of the total runtime, only a single CPU was

used. Lastly, we note that data transfer times are not reported in runtimes. Some of the

data required or generated exceeds hundreds of gigabytes, which could be potentially

significant in relation to the runtime of the process. Notably, the images generated by

MarginPolish and consumed by HELEN were often greater than 500 GB in total.

All recorded runtimes are reported in the supplement. For Shasta, times were

recorded to the tenth of the hour. All other runtimes were recorded to the minute.

All runtimes reported in figures were run on the Amazon Web Services cloud platform

(AWS).

Shasta runtime reported in Fig. 3.3f was determined by averaging across all 12

samples. Wtdbg2 runtime was determined by summing runtimes for wtdbg2 and wtpoa-

cns and averaging across the HG00733, HG002, and CHM13 runs. Flye runtime was

determined by averaging across the HG00733, HG002, and CHM13 runs, which were

performed on multiple instance types (x1.16xlarge and x1.32xlarge). We calculated

the total cost and runtime for each run and averaged these amounts; no attempt to

convert these to a single instance type was performed. Precise Canu runtimes are not

reported, as they were run on the NIH Biowulf cluster. Each run was restricted to

nodes with 28 cores (56 hyperthreads) (2x2680v4 or 2x2695v3 Intel CPUs) and 248GB

of RAM or 16 cores (32 hyperthreads) (2x2650v2 Intel CPUs) and 121GB of RAM. Full

details of the cluster are available at https://hpc.nih.gov. The runs took between

219 and 223 thousand CPU hours (4-5 wall-clock days). No single job used more than

80GB of RAM/12 CPUs. We find the r5.4xlarge ($1.008 per hour) to be the cheapest
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AWS instance type possible considering this resource usage, which puts estimated cost

between $18,000 and $19,000 per genome.

For MarginPolish, we recorded all runtimes, but used various thread counts

that did not always fully utilize the instance’s CPUs. The runtime reported in the figure

was generated by averaging across 8 of the 12 samples, selecting runs that used 70 CPUs

(of the 72 available on the instance). The samples this was true for were GM24385,

HG03492, HG01109, HG02055, HG02080, HG01243, HG03098, and CHM13. Runtimes

for read alignments used by MarginPolish were not recorded. Because MarginPolish

requires an aligned BAM, we found it unfair to not report this time in the figure as

it is a required step in the workflows for MarginPolish, Racon, and Medaka. As a

proxy for the unrecorded read alignment time used to generate BAMs for MarginPolish,

we added the average alignment time recorded while aligning reads in preparation for

Medaka runs. We note that the alignment for MarginPolish was done by piping output

from minimap2 directly into samtools sort, and piping this into samtools view to

filter for primary and supplementary reads. Alignment for Medaka was done using

mini align, which is a wrapper for minimap2 bundled in Medaka that simultaneously

sorts output.

Reported HELEN runs were performed on GCP except for HG03098, but

on instances that match the AWS instance type p2.8xlarge in both CPU count and

GPU (NVIDIA Tesla P100). As such, the differences in runtime between the platforms

should be negligible, and we have calculated cost based on the AWS instance price for

consistency. The reported runtime is the sum of time taken by call consensus.py and
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stitch.py. Unannotated runs were performed on UCSC hardware.

Racon runtimes reflect the sum of four series of read alignment and polishing.

The time reported in the figure is the average of the runtime of this process run on the

Shasta assembly for HG00733, HG002, and CHM13.

Medaka runtime was determined by averaging across the HG00733, HG002,

and CHM13 runs after running Racon 4× on the Shasta assembly. We again note that

this application in particular did not fully utilize the CPUs for most of the execution,

and in the case of HG00733 appeared to hang and was restarted. The plot includes the

average runtime from read alignment using minialign; this is separated in the tables

in the supplementary results. We ran Medaka on an x1.16xlarge instance, which

had more memory than was necessary. When determining cost, we chose to price the

run based on the cheapest AWS instance type that we could have used accounting for

configured CPU count and peak memory usage (c5n.18xlarge). This instance could

have supported 8 more concurrent threads, but as the application did not fully utilize

the CPUs we find this to be a fair representation.
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Chapter 4

Gene Annotation

Background

Comparative genomics at scale

As DNA sequencing and assembly has become increasingly accessible in recent

years, hundreds of genomes have been published, arising from projects such as Genome

10k [108], the Vertebrate Genome Project, and the 200 Mammals Project, with many

more hundreds to thousands expected in the next decade [109]. This allows for the

studies of comparative genomics at scales not previously possible. However, many of

these newer genomes were created using next-generation sequencing types, which means

that the genome assemblies are relatively discontiguous. They also frequently contain

other types of errors, like misjoins between contigs. Many comparative genomics anal-

yses require genomes which are both high quality at a base-level and highly contiguous

[110], so we are not able to fully take advantage of the enormous number of published
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genome assemblies at this time. Fortunately, genome assembly techniques are quickly

improving (as seen in the previous chapter), and the number of species with high-quality,

contiguous genomes is quickly increasing. We can use these new assemblies to improve

alignments between genomes and improve gene annotations for these species. Alongside

this, algorithms for comparative genomics analyses have improved to take advantage of

the higher quality input data.

Whole genome alignment

The first step in many comparative genomics analyses is aligning entire genomes

together to find homologous regions to compare in a process called whole-genome align-

ment. Ideally, we would be able to reconstruct the evolutionary history of each base pair

in a set of sequences; however, the similarity of the base DNA sequences can be used as

a proxy for the level of homology of the sequences. At its basis, a whole-genome align-

ment is not any different than shorter alignments, but the size of the input sequences

can lead to huge computational complexity, and extra consideration needs to be given

to large modifications to the input sequences such as structural rearrangements.

Having high-quality, long alignments is necessary for accurate comparison, and

the higher quality the input genomes are, the more accurate this alignment can be. One

tool for creating these whole-genome alignments is Cactus [111], which was later ex-

tended to progressiveCactus [109]. Cactus uses a cactus graph to find high-confidence

anchors for the alignment, by starting with small local alignments to first naively com-

bine into a multiple alignment and then filter. The extension progressiveCactus can
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scale to hundreds of genomes by using a phylogenetic tree to guide the alignments and

break the alignment into subproblems.

Gene annotation

Annotating the location of the functional elements within a genome is often the

next step in a comparative genomics analysis, as one can imagine wanting to compare

the elements of the genome that have identifiable functions between species. I focused

on gene annotation specifically in my dissertation, which is the process of determining

the locations of genes and other coding regions in the genome. Because much of the

genome evolution we are interested in involves the functional coding part of the genome,

having high quality gene annotations is essential.

There are two main strategies for creating a gene annotation for a genome

assembly: ab initio prediction, where the gene structures are predicted using com-

putational models, and alignment-based prediction, where a set of existing sequences

are mapped onto an assembly to find the locations of transcripts. Of course, the two

approaches can also be combined. Many annotation sets currently are produced by ei-

ther NCBI (RefSeq), or Ensembl (Ensembl Gene Build). These institutions have many

resources, but outsourcing the gene annotation portions of pipelines is increasingly un-

necessary as annotation can be performed in-house.

One software option that can perform both alignment-based annotations and

ab initio predictions is the Comparative Annotation Toolkit (CAT), which I used (and

extended) for much of the remaining part of my dissertation. Another option is MAKER2,
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which can also incorporate both types of information, but is technically challenging to

run, does not track orthology relationships and requires additional gene modeling pro-

cessing, and requires assembly of extrinsic transcripts into a transcriptome in order to

be used.

Comparative Annotation Toolkit

The Comparative Annotation Toolkit (CAT) [98] attempts to integrate mul-

tiple existing annotation methods, as described above. It was largely developed by Ian

Fiddes for his dissertation while he was at UC Santa Cruz. CAT can take a reference-

quality annotation of a genome (GFF3) and alignment of this genome and others (HAL)

and produce an annotation on all target genomes as output. CAT can annotate multiple

genomes simultaneously and identify orthology relationships due to its use of alignments

from progressiveCactus, which are not reference-based and can include duplications.

CAT can also incorporate additional data such as RNA-sequencing reads to improve

annotations and identify novel genes. It can run many parameterizations of AUGUS-

TUS and combine all of those predictions when forming a final consensus gene set for

each genome within the alignment.

CAT (and Cactus) have been used in combination in high-profile projects,

such as the Great Apes project [112], and the next few chapters in this dissertation

describe its use in primate assembly papers for the rhesus macaque and the bonobo, the

Telomere-to-Telomere Consortium, and the Human Pangenome Reference Consortium.
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CAT pipeline

The pipeline for CAT can be viewed in Figure 4.1.

Figure 4.1: Pipeline for Comparative Annotation Toolkit.

The first step of the pipeline is the transMap module, which runs the utility

pslMap in order to project transcript annotations from the reference genome onto a

target genome, using alignments between the reference and target genome represented

in .chain format. transMapPslToGenePred converts the transcript projections to a

gene model, which keeps track of frame information and can fill in coding and noncoding

gaps. After the initial transMap projection, the alignments are filtered down. This is

the main step where paralog resolution is involved, so that alignments are filtered down

to only include the most likely ortholog.

111



CAT can then be run with multiple parameterizations of AUGUSTUS: Au-

gustusTM, AugustusTMR, AugustusCGP, and AugustusPB. The output of each of the

output modes of Augustus is combined with the output of TransMap in a final consensus

building step. AugustusTM/TMR are used to refine specific isoforms of transcripts, to

do things like fixing regions where alignments dropped exons or introduced small gaps,

or where splice sites may have shifted. The other two modes of Augustus, AugustusCGP

and AugustusPB, are used to introduce novel isoforms of known genes, or entirely novel

genes. AugustusCGP uses the knowledge of the phylogenetic tree to predict missing

genes and transcripts, whereas AugustusPB uses IsoSeq data to predict novel genes and

isoforms. AugustusPB in particular is able to predict genes in regions that were unable

to align to other genomes.

Finally, CAT is able to incorporate additional information from extrinsic refer-

ence annotations. This can be the information from a well-studied reference annotation

such as those from GENCODE, or it can be from a de novo constructed annotation from

external reference data, such as using StringTie2 [113] to create an annotation from ex-

ternal Iso-Seq data. For any mode that may introduce a putatively novel transcript or

gene, the assignment of a potential parent gene (or transcript) will be resolved during

the parent gene assignment stage. First, putatively novel transcripts will be compared

to the projections from transMap. If it can be confidently assigned to a gene, it will

do so. If it were confidently assigned to a transcript with an orthologous projection,

it will be evaluated to be a novel isoform of the gene. If the gene was later filtered

out during paralog resolution, it will be considered as a potential candidate for a novel
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gene as a potential paralog. If the candidate novel gene does not overlap with any prior

predictions, it is the considered to be a putative novel gene.

The quality of the input genome alignments to CAT is crucial to its success.

Particularly, having high quality outgroups will improve the resolution of paralogs and

rearrangements. The assemblies themselves also need to be of high quality. Discontigu-

ous assemblies can lead to poor alignments and annotated functional features being split

between contigs. Indel errors, present particularly in long read assemblies, can result in

low-quality gene models with many frameshift and nonsense mutations.

CAT software development

Though I did not conceive of or originally implement the Comparative Anno-

tation Toolkit (CAT) [98], I contributed to some of its software development.

Running with chain files as input

Previously, CAT was only able to be run using an input HAL file as the source

of alignments. I extended CAT to be able to use input .chain files as input. These files

also describe how one region can be lifted over to another region, and are in fact the

files created from the HAL file upon with pslMap is run during the transMap module

of CAT. These chain files are also added to the automatic AssemblyHub generation

process so they can be visualized within the UCSC Genome Browser.
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Visualizing synteny files

CAT can now run halSynteny in order to automatically produce synteny files

that can be visualized within the AssemblyHub.

Paralog resolution fixes

CAT (and many other gene annotation software programs) struggle with the

resolution of paralogous genes. I added some additional fixes to improve paralog reso-

lution within CAT.

Some of the difficulties arise from CAT trying to map each paralog of a gene to

its single best locus. However, if overlapping genes are allowed, this leads to overlapping

genes at the same locus, and if not, then the additional copy is not annotated anywhere,

even if there is a second locus that would be a perfectly acceptable locus for it to be

placed. In order to resolve this, I added some additional steps to paralog resolution.

First, I consider the other genes in the same clusters and their scores and other possible

locations. Also, I add penalties for overlapping genes with different IDs to the scores

for each gene.

Speed improvements

Parent gene assignment is the step of CAT that assigns source genes to de novo

gene predictions from other modules within the pipeline. The current implementation

runs in O(n2) time, as it makes many unnecessary comparisons between each novel

prediction and every source gene. Switching the implementation to use clusterGenes
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should be much faster, as after transcripts are clustered to involve only transcripts that

overlap each other, clustering can be performed within each cluster much more quickly.

I implemented this within CAT, and it is much faster. For a whole-genome

sized run, the runtime is reduced from 12h 38m to only 36 minutes - a 21 time speedup!

Limitations and future directions

CAT is still limited by its reliance on the alignments between the reference

genome and the genome being annotated.

If we relax the requirement that gene annotations come from the whole-genome

alignments between the reference genome and target genome, we can perform additional

alignments of reference transcripts to the target assembly itself in order to try to rescue

some of the previously unmapped reference transcripts.

Another new feature would be introducing the ability to identify additional

copies of genes in the target genome. These would be genes from families that have

expanded in the target genome relative to the reference. The information needed to

do this is essentially already there, as transcripts record additional loci where they

also align sufficiently well. Then, there would need to be a step added to resolve these

mappings (amongst all of the other genes in the family) and output these putative novel

duplications in the final output files.
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Gene annotation of primates

Background

Comparative genomics analyses of primates are of particular interest because

the study of primates can elucidate a lot about human evolution. A phylogenetic tree of

primates can be seen in Figure 4.2. Primate genomes, including humans, can be chal-

lenging to assemble because they are highly repetitive, with repetitive elements making

up approximately 50% of their genomes [1], with large differences in species-specific

insertions. Segmental duplications are an important factor which differentiate primate

genomes, and are challenging to assemble even with long reads. Certain gene fami-

lies, such as zinc-finger transcription factors, have many paralogs within each primate

genome, and have rapidly evolved between primates with many gains and losses across

branches.

Up until now, analysis of such repeat content has been difficult or impossible.

Fortunately, more and more high quality genomes for a wide variety of primates are

becoming available. New high-quality primate genomes have already shown improve-

ment over prior versions in ways such as increased mapping identity and coverage of

RNA-sequencing reads, and improved identification of structural variations [112]. We

can continue to use these high quality assemblies to study the difficult regions, such as

repeat families and pseudogenized genes, in primate genomes.
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Figure 4.2: Primate phylogenetic tree. Taken from Rogers and Gibbs 2014 [1]. Evolutionary
relationships among primates are shown.

Contributions for primate gene annotations

The next goal for my dissertation was to use high-quality long read primate and

human assemblies to gain an understanding of gene gain and loss during the evolution

of primates. New, higher quality primate assemblies have been assembled, using PacBio

CLR reads to make the initial assemblies. These assemblies are much more contiguous

than previous assemblies, while maintaining a high quality. We then aligned these

assemblies together, and used the alignment to run CAT. The next sections of this
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chapter present the results of performing gene annotation and analysis of the results for

two primate species of those with new assemblies, the rhesus macaque and the bonobo. I

was a coauthor on the papers that described the new assemblies and analysis, which were

called “Sequence diversity analyses of an improved rhesus macaque genome enhance its

biomedical utility”, published in Science in December 2020 [114], and “A high-quality

bonobo genome refines the analysis of hominid evolution”, published in Nature in June

2021 [115].

Rhesus Macaque

Background

The rhesus macaque (Macaca mulatta) is the most widely studied nonhuman

primate in biomedical research. Even though it is more distantly related to humans than

some other primates, particularly the great apes (chimpanzees, bonobos, gorillas, and

orangutans), rhesus macaque models have been used in the study of infectious diseases

including Ebola and HIV/AIDS, and neurodevelopmental diseases such as autism [116,

117, 118]. The differences between human and macaque genomes are important to

understand when macaques are used as a model for so many human diseases, so an

increase in the quality of the rhesus macaque genome would enable a more thorough

analysis of these genetic differences.
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mmul10 assembly

The most recent version of the rhesus macaque genome, mmul10, has a contig

N50 of 46 Mbp, a 120-fold increase over the prior version, mmul8. It was annotated

using 6.5 million full-length cDNAs. The newest version of the rhesus macaque genome

showed some improvement over the previous version in terms of transcript and IsoSeq

alignments, as shown in Figure 4.3.

The rhesus macaque assembly was incorporated into an alignment with several

other primate genomes (human, bonobo, chimp, gorilla, orangutan, gibbon, marmoset,

and owl monkey). We then used this alignment to run the Comparative Annotation

Toolkit (CAT) to annotate each of the genomes in this alignment. We incorporated the

cDNA reads into the annotations in order to discover novel isoforms of genes. CAT was

run using all AUGUSTUS modules: AugustusTM, AugustusTMR, AugustusPB, and

AugustusCGP.

We used this improved assembly with annotations to discover novel lineage-

specific genes and expanded gene families, and significantly improved understanding of

gene content, isoform diversity, and repeat organization, elucidating differences along

the rhesus lineage.

119



Is
oS

eq
 T

ra
ns

cr
ip

ts
 

w
ith

 Δ
 C

ov
er

ag
e

A

C

# Unchanged        # ChangedTransMap 
Identity         

P
er

ce
nt

  c
ha

ng
e 

in
 

al
ig

nm
en

t m
et

ric
s 

 

TransMap 
Coverage      

IsoSeq 
Coverage

Tr
an

sm
ap

 T
ra

ns
cr

ip
ts

 
w

ith
 Δ

 C
ov

er
ag

e

Tr
an

sm
ap

 T
ra

ns
cr

ip
ts

 
w

ith
 Δ

 Id
en

tit
y

# Unchanged         # Changed# Unchanged        # Changed

B

D

Figure 4.3: TransMap and Iso-Seq mappability in Mmul 10 compared to Mmul 8.0.1.
Comparative Annotation Toolkit (CAT) was used to project transcripts from GRCh38 to Mmul 10 and
Mmul 8.0.1. Alignment coverage and identity were compared for orthologous transcripts found in each
assembly pair. Additionally, Iso-Seq transcripts were mapped to both Mmul 10 and Mmul 8.0.1. (A)
The box plots show the percentage change in identity and coverage of the TransMap alignments (left,
middle), and coverage of Iso-Seq alignments (right) between Mmul 10 and Mmul 8.0.1. Transcripts with
unchanged metrics were omitted from the plot. (B) Number of Iso-Seq transcripts that had changes in
coverage between the assemblies. (C,D) Number of TransMap transcripts that had changes in coverage
and identity between Mmul 10 and Mmul 8.0.1.

Gene annotation on mmul10

I analyzed the CAT annotations of the 83,692 protein coding isoforms found

on the mmul10 assembly and noted relatively small numbers genes with problems such

as frame-shifting indels (980) and genes split over multiple contigs (550). There are 827
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genes with reduced copy number relative to humans. We compared these annotations to

annotations made on the mmul8.0.1 assembly to show that using the mmul10 assembly

improves the quality of the resulting annotated transcripts, visualized in Figure 4.3.

I also identified candidate novel genes, which we defined as genes which were

in the rhesus macaque assembly, but not the human gene annotation, meaning not

necessarily genes that arose only in the rhesus lineage. This work is presented in Figure

4.4. In summary, CAT predicted 2,880 novel transcripts that did not arise from any

previously annotated transcript in the input human annotation. Many were short, but

there were 261 with at least five exons. I found three transcripts that are homologous to

the human CYP2C18 protein, and had abundant IsoSeq support across multiple tissues

(4.4A). We further identified a set of 84 novel exons (exons that were not present in

the human annotation). We found two novel exons in the tropoelastin gene (ELN) near

the C-terminus of the protein which had strong IsoSeq support for alternatively spliced

isoforms across different tissue times (4.4B). These exons are not found in great or lesser

apes, but are shared to the base of the mammalian tree, showing that this is a loss of

exons in the ape lineage.
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Figure 4.4: Novel genes and gene models in the rhesus macaque. (A) A novel gene model
with homology to the cytochrome p450 protein family is predicted by the AugustusPB mode of the
Comparative Annotation Toolkit (CAT). The gene structure and protein domain architecture of three
isoforms are shown (top). The predictions arose from supporting Iso-Seq reads from five tissues (middle).
Orthologous novel genes are also predicted in marmoset, orangutan, and gorilla assemblies; a protein
alignment (bottom) of those genes along with a human CYP2C18 protein is shown. (B) Two macaque
isoforms in ELN (tropoelastin) are predicted by the AugustusPB mode of CAT and are supported
by macaque Iso-Seq data but differ significantly from human by two exons. The gene structure and
functional domains for the last seven exons of this gene are shown (top), along with a comparison
to a human transcript model. These two protein-encoding exons are also observed in marmoset, owl
monkey, and mouse but not in apes, as a result of an ape-specific deletion (bottom) that changed the
gene structure of tropoelastin.
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Bonobo

Background

The primate alignment previously mentioned can be used for many additional

analyses. The alignment included humans, great apes (bonobo, chimp, gorilla, and

orangutan), lesser apes (gibbon), Old World monkeys (rhesus macaque), and NewWorld

monkeys (marmoset and owl monkey). The inclusion of all these different species allows

us to study some of the major splits in the primate lineages, such as the split between

NewWorld and Old World monkeys. After the conclusion of the rhesus macaque genome

analysis described in the previous section, there were plans to do the same for the latest

bonobo assembly.

The bonobo genome (Pan paniscus) has been observed to contain a depletion

of L1PA2 elements, making this particular species an interesting target for an in-depth

analysis of KRAB zinc-finger genes and repeat family evolution. KRAB zinc finger

genes have been involved in an evolutionary arms race with retrotransposable elements

[119, 120]. However, KZNFs can be hard to distinguish from each other due to their self-

similarity. The high-quality primate assemblies will allow us to narrow in on previously

challenging gene families such as these.

panpan3 assembly

A new bonobo genome assembly was made from sequencing a female bonobo,

Mhudiblu, to 74x coverage with PacBio reads. The new assembly, panpan3, has a contig
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N50 of 16.58 Mb and includes an additional 74 Mb of sequence over the previous version

(panpan1.1? ), closing 99.5 percent of the 108,095 gaps in that assembly.

Gene annotation on panpan3

As previously described, we ran the Comparative Annotation Toolkit (CAT)

on the large primate alignment that included this new bonobo assembly. We identi-

fied 20,478 protein-coding genes and 36,880 non-coding genes. I analyzed the rate of

frameshift errors in the gene models and determined that only 0.5 percent of the genes

(119) had insertions or deletions that caused a frameshift. Additionally, 38.4 percent of

the protein-coding isoforms are more complete. 206 noncoding genes and 1,576 protein-

coding genes are parts of gene families that either expanded or contracted compared to

the human genome.

I also looked at the genes that had putatively novel exons discovered. There

are 65 genes with novel exons that are supported by the cDNA evidence. One example

of this is found in ANAPC2, where there is a novel exon found in the bonobo gene

models but not in the chimpanzee. This is shown in Figure 4.5.
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Figure 4.5: A bonobo isoform of ANAPC2 contains a novel exon predicted by the Au-
gustusPB mode of CAT, which is supported by bonobo Iso-Seq data from iPSC tissue.
The exon is not seen in the human or chimpanzee annotations. a, The exon structure of this gene is
shown for human, chimpanzee, and bonobo. The novel exon is alternatively spliced, seen in one isoform
of ANAPC2 in bonobo and not the other. b, A sample of Iso-Seq reads from the bonobo iPSC tissue
shows support for alternative splicing in ANAPC2. c, A protein alignment of the gene is shown for
human, chimpanzee, and bonobo.
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Chapter 5

Gene annotation on a fully complete,

telomere-to-telomere human assembly

Background

The human reference genome has gone through multiple rounds of improve-

ments since the first human genome was completed at the end of the Human Genome

Project in the year 2000. The initial project took over a decade and cost over $2.7 billion

($5 billion in 2022 dollars) [121, 122]. GRCh38 is the most recent version of the hu-

man genome, released by the Human Genome Reference Consortium in 2013 and most

recently patched in 2019. It was constructed from thousands of individual bacterial ar-

tificial chromosomes (BACs). yeast artificial chromosomes (YACs), and fosmid clones,

supplemented with whole-genome sequencing data. One downside of the GRCh38 ref-

erence is that it is a combination of the genomes of 20 anonymous volunteers (although
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one individual represents approximately 70 percent of the sequence). This means that

the sequences presented are not representative of what may occur in a haplotype of any

single person, as they are a mosaic of many. Furthermore, this genome is not actually

complete – it contains many “gaps” (995 gaps, which total approximately 151 Mb in

size) where the DNA sequence at a locus is unknown. These gaps make up 8 percent of

the human genome and contain regions that are biologically important. These gaps are

located in regions of the genome that are challenging to sequence and assemble, namely

in the centromeres and telomeres (and surrounding regions), segmental duplications,

ampliconic gene arrays, and rDNA arrays. There are also other known errors in the

GRCh38 assembly, such as a false duplication on chr21. These challenges can be traced

back to the fact that the GRC assembly was made using bacterial artificial chromosomes

(BACs), but these regions are still challenging to assemble using other types of DNA

sequencing and automated assemblers.

Construction of the T2T assembly

The introduction of new types of DNA sequencing technologies allow for the

possibility of constructing a truly complete human genome for the first time. PacBio

HiFi reads are long (20kb length, error rate 0.1 percent) and highly accurate reads that

can be used to create initial long, highly accurate contigs. Oxford Nanopore’s ultralong

reads (with read lengths greater than 100kb) can then be used to thread the contigs

together to complete scaffolds of full chromosomes.
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Contributions to the T2T publication

After the T2T assembly was created, I contributed to the work that was pub-

lished in the T2T paper called “The complete sequence of a human genome”[123] by

being one of the leads of the gene annotation team. The paper was published in Science

in March 2022. I performed the gene annotation on the assembly and analyzed those

results. I created figures and tables for the paper and contributed to writing the text

for the relevant sections. The next parts of this chapter describe this work. The gene

annotations produced were also used in the companion paper “Complete genomic and

epigenetic maps of human centromeres” [124], also published in Science, and I am a

coauthor on that manuscript as well.

T2T-CHM13 assembly construction and stats

The complete T2T CHM13 assembly contains telomere-to-telomere assemblies

for each of the 22 chromosomes, chromosome X, and a mitochondrial chromosome.

There are zero gaps. An additional 182 Mb of sequence was added that do not align to

anywhere in the existing GRCh38 reference. The new sequences are primarily composed

of centromeric satellites, segmental duplications, and ribosomal DNA (rDNA) arrays.

Gene annotation on the T2T-CHM13 assembly

Once the complete T2T-CHM13 genome was assembled, it needed to be anno-

tated with the locations of genes. I used the Comparative Annotation Toolkit (CAT)
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[98] to produce an initial gene annotation, lifting over GENCODE v35 gene sequences

onto the T2T-CHM13 genome. First, I created an alignment of the T2T-CHM13 genome

to GRCh38 was made using Cactus [109], using chimp (PanTro6) as an outgroup. I then

assembled the Iso-Seq reads into a transcriptome using Stringtie2 [113] and use these as

an external data source for the gene annotation. Next, I ran CAT using the resulting

alignment file and the assembled transcriptome.

In addition to using CAT’s annotations, Liftoff [125] was also run on the T2T-

CHM13 assembly. This was a collaboration with Alaina Shumate from the Salzberg

lab. In comparison to CAT, Liftoff does not depend on a whole-genome alignment of

the genome to the reference to lift over the annotations. Instead, it lifts over each of the

reference gene annotations to the genome of interest using minimap2. Therefore, Liftoff

is capable of annotating genes in regions where there is no good alignment between

GRCh38 and the T2T-CHM13 genome, whereas CAT is unable to. An additional

feature of Liftoff is that it can identify additional copies of genes in the genome.

So, we combined the two gene sets from CAT and Liftoff to form a gene set

that was more complete than either of them were on their own. We removed any genes

from the CAT set that looked problematic (mainly paralogs that were annotated on top

of each other), and added in any genes from Liftoff that did not overlap any of the CAT

annotations.

In the final combined gene set (see Table 5.1), there were a total of 63,494

genes (19,969 protein-coding). In comparison to the GENCODE v35 annotation set on

GRCh38, there are 3,604 new genes (140 protein-coding). There were 263 genes (63
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protein-coding) that were unable to be lifted over to the T2T-CHM13 assembly. Some

of these were expected, such as the genes located on the falsely duplicated section of

chr21.

Statistics GRCh38 T2T-CHM13 Difference (%)

Number of genes 60,090 63,494 +5.7
Protein coding 19,890 19,969 +0.4
Number of exclusive genes 263 3,604
Protein coding 63 140
Number of transcripts 228,597 233,615 +2.2
Protein coding 84,277 86,245 +2.3
Number of exclusive transcripts 1,708 6,693
Protein coding 829 2,780

Table 5.1: Comparison of GRCh38 and T2T-CHM13v1.1 human genome assemblies. GRCh38 sum-
mary statistics exclude “alts” (110 Mbp), patches (63 Mbp), and chromosome Y (58 Mbp). The number
of exclusive genes or transcripts is as follows: for GRCh38, GENCODE genes and transcripts not found
in CHM13; and for CHM13, extra putative paralogs that are not in GENCODE.

Gene annotation on the HG002 chrY assembly

Though the T2T-CHM13 genome was fully complete for the CHM13 cell line,

there was no Y chromosome to be sequenced and assembled, as CHM13 did not have

one. There was then an effort to produce a complete sequence of a Y chromosome.

HG002 was selected for this, and the first complete Y chromosome assembly was made.

A similar process was used to annotate the HG002 chrY assembly. I made an

alignment of the newly assembled chrY to GRCh38, using chimp as an outgroup. I then
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used CAT to lift over the GENCODE v35 annotations to the new assembly, adding in

the Iso-Seq data using the AugustusPB mode. Like before, the CAT annotations were

combined with the Liftoff annotations. There was an additional step of manual curation

to fix many of the ampliconic genes (e.g. the TSPY family) along the chromosome. The

gene annotations for these genes were chosen based on protein sequence identity, and

at any loci where the manual curation differed from that chosen by the CAT/Liftoff

pipeline, the manually curated gene was inserted instead. The gene annotation results

can be found in Table 5.2.

We identified 693 genes (107 of which were protein-coding), which was an 42

protein-coding genes compared to the chrY gene annotation on GRCh38.
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T2T-CHM13v2.0Y
(HG002Y)

GRCh38Y Change

Assembly

Total num. bases 62,460,029 57,264,655 109.1% 5,195,374
Assigned 62,460,029 57,227,415 109.1% 5,232,614
Assigned, unlocalized 0 37,240
Num. gaps 0 56
Num. N-bases 0 30,812,366 53.8%

Annotation

Total num. genes 693 589 1.2
Excl. 110 0 na
Excl. 210 0 na
Protein-coding genes 107 66 1.6
Excl. 42 0 na
Protein-coding transcripts 493 372 1.3
Excl. 124 0 na

Ampliconic gene
copy numbers

BPY2 4 (3, 0) 4 (3, 0) 1.0
CDY 26 (4, 0) 26 (4, 0) 1.0
DAZ 4 (4, 0) 4 (4, 0) 1.0
HSFY 8 (2, 0) 8 (2, 0) 1.0
PRY 8 (2, 0) 8 (2, 0) 1.0
RBMY 34 (6, 4) 32 (6, 4) 1.1
TSPY 66 (46, 0) 25 (7, 0) 2.6
VCY 2 (2, 0) 2 (2, 0) 1.0
XKRY 8 (0, 2) 8 (0, 2) 1.0

Haplogroup
Haplogroup abr.

J-L816
(J1a2b3a1)

R-L20
(R1b1a2a1a2b1a1)

na

Ancestry Ashkenazi Jewish European na

Repetitive bases

SINE 4,385,917 2,625,350 1.7 1.7
Retroposon 18,500 18,506 1.0 1.0
LINE 6,456,888 6,378,323 1.0 1.0
LTR 4,613,537 4,604,368 1.0 1.0
DNA/Rolling-circle 4,387,030 2,626,425 1.7 1.7
Satellite 14,522,636 1,578,773 9.2 9.2
Simple/Low-complexity 21,568,381 1,124,311 19.2 19.2
Other 972,612 705,062 1.4 1.4
All repeat classes 53,004,524 17,501,283 3.0 3.0
% repetitive 84.86% 30.58% 2.8 2.8

Table 5.2: Table: GRCh38 Comparison. Excl = Exclusively found in each assembly.
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Chapter 6

Gene annotation on a human

pangenome

Background

The reference human genome, currently GRCh38 (released in December 2013),

forms an incredibly important backbone to human genomics research. However, GRCh38

is not a complete reference. It contains many gaps (995 gaps containing 115 Mb of se-

quence, approximately 8 percent of the genome) of sequence that is missing entirely,

and it also contains some errors, at both a base-pair level as well as at structural levels

[122]. It also does not represent a true human genome, as it is a mosaic of multiple

individuals.

Clearly, it is time for some updates to the human reference genome. Fortu-

nately, DNA sequencing and assembly technologies have advanced to the point where it
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is possible to make much more contiguous assemblies, covering more of the genome with

fewer gaps. The assembly of the first fully complete, telomere-to-telomere genome for

the CHM13 cell line, described in the previous chapter, is the first attempt at creating

an updated human reference genome. There are no longer any gaps in the assembly,

and portions of the genome that were entirely absent before like the centromeres and

ribosomal DNA arrays are now represented. However, the CHM13 genome has some

limitations as well, mainly that it was derived from a hydatidiform mole cell line, which

resulted in a nearly entirely homozygous genome and therefore does not represent a true

genome that would be found in a diploid human. Regardless, the T2T-CHM13 assembly

already shows improvements in genomic analyses, for example discovering 3.7 million

additional single-nucleotide polymorphisms (SNPs) in regions non-syntenic to GRCh38

and better representing the true copy-number variants (CNVs) of 1000 Genomes Project

(1KG) samples when compared to GRCh38 (1000 Genomes Project Consortium et al.,

2015; Aganezov et al., 2022).

Multiple diploid genome assemblies will be needed to address the remaining

limitations of the current reference genomes, GRCh38 and CHM13. A single genome

assembly will never be able to represent the spectrum of genetic diversity across the

human species. This can lead to biases in analysis, generally termed “reference bias”.

This is particularly harmful when analyzing genomic data from individuals that are

from underrepresented populations, as their genomes are more likely to differ from the

reference. As a solution, we could have many human genome “references”, chosen to

include a large amount of genetic diversity. These many genomes could be aligned
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together to create a pangenome. The input assemblies should be of the highest quality

possible, so that the resulting pangenome is also of the highest quality.

The Human Pangenome Reference Consortium

The Human Pangenome Reference Consortium (HPRC) was formed with the

goal of creating high-quality diploid genome assemblies from a diverse set of individuals

in order to build a pangenome reference. The HPRC aims to eventually sequence and

assemble 350 diverse individuals (700 haplotypes). The following chapter describes an

overview of the work completed in the first few years of the HPRC’s existence, and

details my contributions to the consortium thus far.

HG002 Assemblathon

The first step to creating a human pangenome is assembling the genomes that

will comprise it. In order to determine the best pipeline for doing so, the HPRC or-

ganized a bake-off where many teams from different institutions assembled the HG002

diploid genome, using whichever methods they wanted. The results of this “assem-

blathon” would provide the recipe for generating sequencing information and producing

automated assemblies for the initial subset of individuals from the HPRC panel.

There were many different sequencing data types available. These included

long-read sequencing for the construction of the initial assembly contigs (Oxford Nanopore

long reads, PacBio HiFi reads), and reads that provided long-range link information

(10X linked reads, Hi-C linked reads, BioNano optical maps, Strand-seq). High cov-
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erages for all of the sequencing types were generated to test the effects of different

coverage levels; and participants were also meant to test coverages downsampled to

manufacturer recommendations in order to aid in comparison across the produced as-

semblies. Parental samples, from the father (HG003) and the mother (HG004), were

included as well.

Contributions

I participated on the UC Santa Cruz team, where we chose to use the Shasta

pipeline (as described in a previous chapter) to assemble the HG002 genome. I specifi-

cally contributed by running parts of the Shasta pipeline, and compared different meth-

ods of scaffolding with HiC proximity ligation reads (HiRise, Salsa2) on the resulting

Shasta draft assemblies. I also ran some of the QC for the assemblies, including running

QUAST to get broad assembly QC results and running CAT to get gene annotation

results. I was a coauthor on the paper in which this research was recently published,

“Semi-automated assembly of high-quality diploid human reference genomes” which

came out in Nature in October 2022 [126].

Results

There were a total of 23 assemblies produced from 14 different groups. There

were 12 assembly algorithms used: Canu and HiCanu, CrossStitch, DipAsm, FALCON

Unzip, Flye, hifiasm, MaSuRCA, NECAT, Peregrine, Shasta, and wtdbg2. A summary

of the continuity, phasing, and base level accuracy for each of the assemblies can be
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found in Figure 6.1.

There were some key takeaways from the comparison of all approaches. The

best approaches used the highly accurate PacBio HiFi reads. They also took advantage

of the parent-child data to do graph-based haplotype phasing. The best diploid HG002

assembly was very high-quality. It was very contiguous, with approximately four gaps

per chromosome. The best pipeline was determined to be using hifiasm (with trios) to

generate the contigs for the first 47 individuals in the HPRC panel.
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Figure 6.1: Assembly continuity, phasing and base call accuracy metrics. a, Contig NG50
values. b, Scaffold NG50 values. c, Haplotype phase block NG50 values. d, QV base call accuracy;
as an example, QV60 is about one error per megabase. The dashed lines separate the assemblies into
the four major categories as described in Table 1. The colours designate the type of haplotype phasing
performed: Trio phasing using parental data, endogenous phasing using self-data, partial endogenous
phasing, merging of haplotypes, and final references with various phasing approaches. The grey shaded
regions in b are not applicable for scaffold metrics, as these are contig-only assemblies; however, the Flye
assembler inserts gaps into contigs where there is uncertainty of a repeat sequence, and the purgedups
function applied to the HiCanu contigs removes false duplications within contigs and creates a gap in the
removed location. The grey shading in c indicates not applicable for phase blocks, because GRCh38 has
many haplotypes and CHM13 is from a haploid (hap) cell line. The numbers in parentheses along the
x axis are the assembly numbers. alt, alternate; mat, maternal; pat, paternal; phap, psuedo-haplotype;
pri, primary; std., standard ONT read length; S-seq., Strand-Seq; UL., ultra-long ONT read length.
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A draft pangenome using the HPRC Year 1 assemblies

Goals for the following year of the HPRC

The next phase of the HPRC project was to apply the assembly pipeline to

a panel of 47 individuals, selected to represent global genetic diversity. Subsequently,

these phased assemblies would be used to construct a draft human pangenome (also

included were two haploid, reference-quality assemblies: GRCh38 and T2T-CHM13).

Contributions

My main contribution to the HPRC was performing gene annotation on the

pangenome and using it to compare how genes differ can between individuals. I ran

CAT [98] on the resulting pangenome graphs to lift over the reference GENCODE v38

annotations onto each of the individual haplotype assemblies presented in the graph. I

analyzed the quality of these annotations, focusing on things such as the numbers genes

and transcripts for each biotype that were mapped, and the quality of these mappings

(identifying potential errors such as frameshifts and early stops within the transcripts).

I compared these sets of annotations to the annotation sets provided by Ensembl, which

used a different method of creating them. I also worked on analysis of the copy number

variation present within the panel of genomes, alongside Mark Chaisson. Finally, I

worked on the creation of the UCSC Genome Browser resources associated with this

work, alongside Julian Lucas.

This work will published shortly. Currently, it is available as a preprint called
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“A Draft Human Pangenome Reference” [127] and is in the second round of review

at Nature. For this paper, I performed the work described above. I also contributed

to writing the relevant sections of the main text, and I made the tables and figures

associated with those sections.

Results

The following sections describe some of the published results. I give a brief

description of the general results, but focus mainly on the results for my contributions

regarding gene annotation on the pangenome.

Assembly results

The HPRC created 47 fully phased diploid assemblies for the genomes that

had been selected for the panel. These genomes and their cell lines all met the crite-

ria that they were karyotypically normal, with low passage, and had sequencing data

for the parents available. Samples were then prioritized to maximize genetic diver-

sity. Each sample was deeply sequenced with the following methodologies: PacBio HiFi

reads, ONT long reads, Bionano optical maps, and Hi-C proximity ligation sequencing.

Previously generated high-coverage Illumina short read data sets were also used.

The assemblies were made using Trio-Hifiasm [63], which uses PacBio HiFi

reads and Illumina short reads from the parents to create assemblies that are nearly

fully phased. An automated assembly quality control pipeline was developed and run

on each of the assemblies. The average NG50 of the assemblies was 40 Mb, and the
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average quality value (QV) assessed using Yak and parental kmers from Illumina reads

was 53.57. To evaluate phasing, the average switch error rate was 0.67% and the average

Hamming error rate was 0.79%. The Flagger pipeline was developed to assess reliability

and misassemblies using read alignments, and only 0.88% of each assembly was flagged

as unreliable.

Pangenome construction

After creating the initial assemblies, a few different methods were used to con-

struct a pangenome containing all of the assemblies. Minigraph starts with an assembly,

here GRCh38, and progressively adds additional assemblies, adding SVs larger than 50

bases and complex variants. Minigraph-Cactus (MC) extends this pangenome by using

Cactus [109] to add a base-level alignment between the assemblies. Long sequences un-

alignable to other portions of the graph were clipped out. In contrast, the Pangenome

Graph Builder (PGGB) uses an all-to-all alignment of the assemblies to construct the

pangenome, not starting from a single reference (though both GRCh38 and CHM13 are

included.) Repeat copies are collapsed into a single copy in the graph, due to the diffi-

culty of placing these copies in an all-to-all alignment. It does not remove any clipped

regions like the MC graph, so it is larger in size and complexity. We focused on the MC

graph for gene annotation, though we tested out the PGGB graph as well
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Gene annotation results

I ran CAT (Comparative Annotation Toolkit) [98] on the resulting pangenomes

to lift over the GENCODE v38 annotations onto each of the individual haplotype as-

semblies. Because CAT uses the alignments in the pangenome to project the transcripts

from the reference genome (GRCh38) onto each of the targets, the resulting annotations

are only on portions of the genome that were alignable between the reference and each

target. This means that this method of gene annotation can be viewed as another form

of quality assessment on the graph construction (in addition to quality assessment of

the assemblies themselves). Though I ran CAT on each of the pangenomes created, only

the results for the Minigraph-Cactus graph that used GRCh38 as the starting reference

are presented.

In summary, CAT lifted and annotated a median of 99.5% of the 86,757 protein-

coding transcripts onto each assembly. The results of this can be seen in the below

figures, Figure 6.2 and 6.3. These figures also include the results for the Ensembl anno-

tations and annotations on the PGGB graph. I also analyzed the number of transcripts

that included mutations that caused frameshifts and early stop codons, seen in Figure

6.4. In total, there were a median of 72 transcripts per assembly that had frameshifts

in the MANE isoform, and were also confirmed by Illumina variant calls, and a median

of 31 transcripts per assembly that had nonsense mutations in the MANE isoform (also

confirmed by Illumina variant calls). Relevant methods for this are described in more

detail in the section ‘Gene annotation QC pipeline’.
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Figure 6.2: Gene mapping in the pangenome graphs. The first three show the percentage of
protein-coding genes from GENCODE v38 able to be mapped in the gene annotation sets from Ensembl,
CAT run on the MC graph based on GRCh38, and CAT run on the PGGB graph. The second three show
the percentage of non-coding genes from GENCODE v38 able to be mapped on the same annotation
sets.

Figure 6.3: Transcript mapping in the pangenome graphs. The first three show the percentage
of protein-coding transcripts from GENCODE v38 able to be mapped in the gene annotation sets from
Ensembl, CAT run on the MC graph based on GRCh38, and CAT run on the PGGB graph. The second
three show the percentage of non-coding transcripts from GENCODE v38 able to be mapped on the
same annotation sets.
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Figure 6.4: Genes with frameshift mutations or nonsense mutations in the pangenome
graphs. A) Fraction of canonical transcripts with a frameshifting indel from GENCODE v38 in the
Ensembl annotations and the CAT annotations of the GRCh38-based pangenome graph.B) Fraction
of canonical transcripts with early in-frame stop codons in the Ensembl annotations and the CAT
annotations of the GRCh38-based pangenome graph.

Comparison to alternative gene annotation sets

There was another gene annotation pipeline run on the diploid genome as-

semblies, designed by Ensembl (EBI). The following contains the description of the

Ensembl pipeline and the results, taken from the text of the HPRC paper. I performed

the analysis regarding the completion and quality stats for their pipeline, and compared

Ensembl’s results to the results from CAT.

Ensembl pipeline description

We developed a new Ensembl mapping pipeline to annotate GENCODE (Frank-

ish et al., 2021) genes and transcripts within each new haploid assembly (Methods). To

create high-confidence annotations, the pipeline clusters and maps spatially proximal

genes in parallel (to help avoid issues with individually mapping near identical par-
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alogues) and attempts to resolve inconsistent mappings by both considering the synteny

of the gene neighborhood in relation to the GRCh38 annotation and the identity and

coverage of the underlying mappings. A median of 99.07% of protein-coding genes (min-

imum of 98.08%, maximum of 99.40%) and 99.42% of protein-coding transcripts (min-

imum of 98.29%, maximum of 99.66%) were unambiguously identifiable in each of the

HPRC assemblies (Figure 6.5; Supplementary Table Ensembl Annotation). Similarly,

a median of 98.16% of non-coding genes (minimum of 97.23%, maximum of 98.60%)

and 98.96% of non-coding transcripts (minimum of 97.94%, maximum of 99.28%) were

similarly annotated.

By way of comparison, running this pipeline on T2T-CHM13 gives compara-

ble, if slightly higher, results: we annotated 99.54% and 99.76% of protein-coding genes

and transcripts, and 99.11% and 99.52% of non-coding genes and transcripts in T2T-

CHM13. Intersecting the HPRC/HPRC+ annotations with the assembly reliability

predictions, a median of 99.53% of gene and 99.79% of transcript annotations occurred

wholly within reliable regions, indicating that the vast majority of the annotated hap-

lotypes are structurally correct.

To examine transcriptome base accuracy, we looked for nonsense and frameshift

mutations in the set of canonical transcripts (one representative transcript per gene;

Methods and Supplementary Table Ensembl Annotation, Figure 6.4). We found a

median of 25 nonsense mutations per assembly, supporting the idea that there is a

low level of base-level substitution error. A median of 21 (84%) of these nonsense

mutations per assembly are supported by the independently generated Illumina variant
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Figure 6.5: Ensembl mapping pipeline results. Percentages of protein-coding and non-coding
genes and transcripts annotated from the reference set in each of the HPRC assemblies. Orange points
represent T2T-CHM13 for comparison.

call sets. We found a median of 72 frameshifts (0.37% of transcripts) mutations per

genome, with a median of 67 of these being high-confidence frameshifts not occurring in

the leading 5’ or 3’ ends of the transcript. A median of 58 (80%) of these frameshifts per

assembly are supported by the same Illumina call sets. These numbers are within the

range of previously reported numbers of loss-of-function mutations (between 10-150 per

person, depending on the level of conservation of the mutation) (1000 Genomes Project

Consortium et al., 2015; MacArthur et al., 2012). Some of the non-confirmed frameshifts
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and nonsense mutations (a median of 14 frameshifts and 4 nonsense mutations per

assembly, or one error per ˜1.7 million reference transcriptome bases) are likely assembly

errors.

Gene annotation QC pipeline

QC of a single gene set in comparison to a reference

Frameshifts

For the Ensembl and CAT gene annotation sets, we identified the locations

of frameshifting insertions and deletions by iterating over the coding sequence of each

transcript and looking for any gaps in the alignment. If the gap had a length that was

not a multiple of 3, and its length was less than 30 base pairs long (to remove likely

introns from consideration), the gap is determined to be a frameshift and its location is

saved to a BED file.

Nonsense mutations

We also analyzed the number of nonsense mutations that would cause early

stop codons in both the Ensembl and CAT gene annotation sets. We identified the

nonsense mutations by iterating through each codon in the coding sequence of the

predicted transcripts, and if there was an early stop codon before the canonical stop

codon at the end of the transcript, we saved the location in a BED file.

Though there may be observed errors in frameshifting and nonsense mutations
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in the output gene annotations, consideration should be taken to determine their source.

There are a few possibilities: errors arising from the gene annotation, indel errors present

within the assemblies themselves that would then lead to downstream indel errors,

and true observed frameshifts/nonsense mutations that do lead to true frameshifted or

truncated proteins.

Validation of mutations with Illumina

For both sets of mutations, we then lifted over the coordinates of the mutations

to be on the GRCh38 reference so that we could use existing variant callsets on GRCh38.

We used halLiftover to lift over each set of coordinates, using the GRCh38-based HAL

file from the cactus-minigraph alignment. Then, we used bedtools intersect to intersect

with the variant call file for each of the assemblies.

Sample commands:

halLiftover GRCh38-f1g-90-mc-aug11.hal <GENOME_NAME> <MUTATION_BED_FILE>

GRCh38 <LIFTED_OVER_BED_FILE>

bedtools intersect -wo -a <LIFTED_OVER_BED_FILE> -b <SAMPLE_MERGED_VCF> >

<OVERLAP_OUTPUT_TXT_FILE>

The VCF files used in this intersection were downloaded from the 1KG:

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/

1000G_2504_high_coverage/working/20201028_3202_raw_GT_with_annot/

20201028_CCDG_14151_B01_GRM_WGS_2020-08-05_chr\$i.recalibrated_variants.vcf.gz
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where $i was replaced with each chromosome number. From there, each chromosome vcf

was split so that each sample was in its own file using bcftools view. The chromosome

files for each sample were combined into one VCF using bcftools concat.

QC to compare two non-reference gene sets

I also compared the Ensembl and CAT gene sets directly to each other, in

order to determine the number of genes and transcripts that were annotated by both

pipelines, and the numbers that were annotated by only one of the pipelines. A median

of 10 protein-coding genes (51 transcripts) per assembly were annotated only by CAT,

compared to a median of 156 protein-coding genes (521 transcripts) annotated only

by Ensembl. The vast majority (99.7%) of genes were successfully annotated by both

pipelines. I also determined the number of genes and transcripts that were annotated

at different loci between the two pipelines, which resulted in 179 protein-coding genes

(360 transcripts).

The script used to perform this analysis can be found at https://github.

com/mhaukness-ucsc/gene_annotation_compare.

Discovering duplicated gene copies

I collaborated with Mark Chaisson to identify dupicated gene copies in the

pangenome. I ran Liftoff [125] using extra copy mode to identify additional copies

of genes. Mark supplemented this set with additional copies from his protocol. The

methods for both protocols are described in more detail in the next section. Because
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paralogs of genes in the same gene family can have very similar protein sequences,

we assigned each gene under consideration to a “gene family”, where genes had high

similarity with each other. We did all further analysis with respect to those gene families.

The next section is an excerpt from the relevant section of the paper describing the

results of this analysis. I included larger versions of two of the plots included in one of

the paper figures, so they appear twice. The section after describes the methods used

for this analysis, and is also an excerpt from the paper.

Gene family results

There are 1,529 protein-coding gene families within the Flagger predicted reli-

able regions of the full set of assemblies that have a gain in copy number in at least one

genome (Figure 6.8B). Each assembly has an average of 44 genes with a gain in copy

number relative to GRCh38 within its predicted reliable regions, with a bias towards

rare, low-copy CNVs (Figure 6.8C); 80% of CNV genes appear in a single haplotype.

Previous studies using read depth found that rare CNVs occur generally outside of re-

gions annotated as being enriched in SDs (Sudmant et al., 2010). The genome assemblies

confirm this observation in sequence-resolved CNVs. When stratifying duplicated genes

based on allele frequency (AF) into singleton (present in one haplotype), low frequency

(< 10%), and high frequency, 13% (159/1,181) of the singleton CNVs map to SDs as

annotated in GRCh38. Duplicated genes with a higher population frequency have a

greater fraction in SDs: 40% (86/214) of low-frequency, and 81% (148/184) of high

frequency. 63 genes are CNVs in 10% or more of haploid assemblies, and 17 genes are
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amplified in the majority of individuals relative to GRCh38 (Figure 6.6; Supplementary

Table AdditionalCopyNumberVariants).

Figure 6.6: The top 25 most commonly CNV genes or gene-families in the HPRC/HPRC+
assemblies, ordered by the number of samples with additional copies relative to GRCh38.
Grey bars represent the number of samples with additional copies. Blue circles represent the number of
additional copies per sample, with the size of the circle proportional to the number of samples.

Many of these genes are individually highly copy-number polymorphic and part

of complex tandem duplications (Figure 6.7). For example, the gene GPRIN2 is known

to be copy-number polymorphic (Handsaker et al., 2015) based on read depth, and has
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sequence resolution of 1-3 additional copies duplicated in tandem in the pangenome

(Figure 6.8F). The gene SPDYE2 is similarly resolved as 1-4 additional copies dupli-

cated in tandem (Figure 6.8G). Other copy number variable genes are not contiguously

resolved and reflect limitations of the current assemblies (see Porubsky et al. compan-

ion). For example, the defensin gene DEFB107A has 3-8 additional copies assembled

across all samples, however this gene is assembled into 3-7 separate contigs that do not

reflect the global organization of this gene.
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Figure 6.7: The top 30 most individually CNV genes or gene families in the
HPRC/HPRC+ assemblies, ordered by total number of additional copies observed. Blue
circles again represent the number of additional copies per sample, with the size of the circle propor-
tional to the number of samples. The Grey bars represent the total number of additional copies summed
over the samples.
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Figure 6.8: Transcriptome annotation of the assemblies. A) Ensembl mapping pipeline results.
Percentages of protein-coding and non-coding genes and transcripts annotated from the reference set
in each of the HPRC assemblies. Orange points represent T2T-CHM13 for comparison. B) Assem-
bled gene duplications per genome. The number of genomes containing a duplicated gene for 1529
protein-coding gene duplications indexed by increasing copy number, observed in the predicted reliable
regions of the HPRC/HPRC+ genomes. C) Number of distinct duplicated genes or gene families per
phased assembly relative to the number of duplicated genes annotated in GRCh38 (152). The GRCh38
gene duplications reflect families of duplicated genes, while the counts in other genomes reflect gene
duplication polymorphisms. The assemblies are color coded according to their population of origin. D)
The top 25 most commonly CNV genes or gene-families in the HPRC/HPRC+ assemblies, ordered by
the number of samples with additional copies relative to GRCh38. Grey bars represent the number
of samples with additional copies. Blue circles represent the number of additional copies per sample,
with the size of the circle proportional to the number of samples. E) The top 30 most individually
CNV genes or gene families in the HPRC/HPRC+ assemblies, ordered by total number of additional
copies observed. Blue circles again represent the number of additional copies per sample, with the
size of the circle proportional to the number of samples. The Grey bars represent the total number of
additional copies summed over the samples. F) Dotplot illustrating haplotype-resolved GPRIN2 gains
in the HG01361 assembly relative to GRCh38. G) Dotplot illustrating SPDYE2/SPDYE2B haplotype
resolved gains within a tandem duplication cluster of the HG00621 assembly relative to GRCh38.
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Gene Duplication Analysis Methods

Duplicated genes were detected as multi-mapped coding sequences using Liftoff

(Shumate & Salzberg, 2020) supplemented by a complementary approach (gb-map) us-

ing multi-mapped gene bodies. The combined set was formed by including all liftoff gene

duplications and duplicated genes detected by gb-map. Liftoff We ran Liftoff (commit

35a4e5536414c4ac3b49873f427388d54bc24fd7) to annotate extra gene copies in each

of the assemblies. Liftoff was run with the flag -sc=0.90 to find additional copies of

genes, with an identity threshold of at least 90%. An example command is below:

liftoff -p 10 -sc 0.90 -copies -db <GENCODE_V38_DATABASE>

-u <UNMAPPED_FILE> -o <OUTPUT_GFF3> -polish <GENOME_FASTA> <GRCh38_FASTA>

The additional copies of the genes are identified as such in the output gff3 with

the field extra copy number (equal to anything other than 0). For this analysis, we also

only considered genes that were multi-exon, protein-coding genes. The additional gene

copies were further filtered to remove any genes outside of the “reliable”, haploid regions

as determined by the Flagger pipeline.

gb-map

The gene-body mapping pipeline identifies duplicated genes by first aligning

transcripts of protein coding and pseudogenes (GENCODE v38) to each assembly, and

then multi-mapping the genomic sequences of each corresponding gene. Alignments of

at least 90% identity and 90% of the length of the original duplication are considered
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candidate duplicated genes. Candidates are removed if they overlap previously mapped

transcripts from other genes, low-quality duplications, and genes identified through

CAT and liftoff analysis. Gene family analysis To account for gene duplications in high-

identity gene families, gene families are identified based on sequence alignments from

gb-map. Genes that map reciprocally with 90% identity and 90% length are considered

a gene family. A single gene is selected as the representative gene for the family, and

any gene duplication in the family is counted towards that gene.

Future Directions

The work on the gene family copy number analysis will hopefully be extended

in a future paper. We would like to do further analysis into these genes, particularly

looking at any coding differences within the copies of these genes.

Building UCSC Genome Browser resources

The HPRC pangenome and all its associated resources need to be publicly

available for other users to explore. The UCSC Genome Browser is a tool to graphically

visualize genomes and associated tracks. These tracks can cover a broad range of data;

some examples relevant to this paper include gene annotations, SNPs, and genome

alignments, among other things.

As a part of the HPRC project, I built the basis for the Assembly Hub which

can be used in the UCSC Genome Browser to visualize each of these assemblies and

many results from downstream analyses. I added all versions of the gene annotation
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tracks (both the ones from CAT and Ensembl) and the alignments between each genome

in the different pangenome versions. Julian Lucas has also put in a great amount of

effort on this project, leveraging the files in my hub, which serves as a ‘development’

hub, to create a public-facing hub that includes additional tracks such as segmental

duplications, tandem repeats, and the reliable regions determined by Flagger. This

public hub can be accessed at the following URL: http://hprc-browser.ucsc.edu/
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Appendix B

MarginPhase appendix

The following includes information from the supplement for the MarginPhase

paper.

Comparison Against High Confidence Truthset

In Figure B.1 we provide a comparison against the GIAB high confidence

truthset (within high confidence regions) [37]. In the main manuscript, we present the

more performant method for each sequencing technology; here we describe the results

for the less performant method.
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Figure B.1: Precision and Recall (Top) of MarginPhase on PacBio and WhatsHap on Nanopore
data sets in GIAB high confidence regions. Genotype Concordance (Bottom) (wrt. GIAB high
confidence calls) of MarginPhase (mp, top) on PacBio and WhatsHap (wh, bottom) on Nanopore.

Cutting and Downsampling Reads

In Figure B.2, we show how the genotyping error behaves as a function of

coverage for different lengths of provided read fragments. In the main manuscript,

we present the results for the PacBio data, here we give corresponding results for the

Nanopore reads. As we observed previously, the genotyping error increases, as the

length of the reads decreases due to the lack of information on neighboring variants.
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Figure B.2: Genotyping Errors (wrt. to GIAB calls) as a function of coverage. The full length
reads were used for genotyping (blue) and additionally, reads were cut such as to cover at most two
variants (red) and one variant (yellow).

Switch Error Rates (inside of high confidence blocks)

In Table B.1 we describe the switch error rates of our methods for the two

sequencing technologies within the GIAB high confidence regions [37]. For the compu-

tation of switch errors, we only consider variant positions genotyped as heterozygous in

both the callset and ground truth.
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chromosome MP-PB WH-PB MP-NP WH-NP

chr1 0.48% 0.37% 0.32% 0.65%

chr10 0.43% 0.37% 0.27% 0.63%

chr11 0.20% 0.03% 0.07% 0.41%

chr12 0.25% 0.03% 0.09% 0.45%

chr13 0.23% 0.02% 0.07% 0.37%

chr14 0.18% 0.02% 0.06% 0.38%

chr15 0.22% 0.02% 0.09% 0.35%

chr16 0.55% 0.55% 0.45% 1.01%

chr17 0.65% 0.69% 0.54% 1.34%

chr18 0.25% 0.04% 0.09% 0.35%

chr19 0.11% 0.06% 0.21% 1.42%

chr2 0.21% 0.02% 0.08% 0.37%

chr20 0.24% 0.06% 0.15% 0.54%

chr21 0.18% 0.02% 0.07% 0.43%

chr22 0.55% 0.61% 0.45% 1.12%

chr3 0.27% 0.06% 0.11% 0.34%

chr4 0.18% 0.01% 0.06% 0.20%

chr5 0.21% 0.01% 0.09% 0.33%

chr6 0.79% 0.75% 0.53% 0.85%

chr7 0.32% 0.19% 0.19% 0.53%

chr8 0.26% 0.09% 0.10% 0.36%

chr9 0.18% 0.01% 0.07% 0.43%

chrX 0.32% 0.04% 0.12% 0.23%

whole genome 0.32% 0.17% 0.17% 0.50%

Table B.1: Switch error rates of MarginPhase and WhatsHap for each chromosome inside of the GIAB
high confidence regions.
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Results for Indels

SinceWhatsHap and MarginPhase currently cannot detect indels, we re-genotyped

the GIAB truth set variants using the WhatsHap implementation (as WhatHap is able

to re-genotype given variant positions). We computed the genotype concordance for

indels by determining the fraction of correctly genotyped positions among all positions

in the truth set for which a genotype could be computed. We also report which frac-

tion of the variants could not be genotyped by our method either due to the position

being multi-allelic or because no genotyping information is available at that site after

WhatsHaps allele detection and readselection steps. The results are shown in Table B.

genotype concordance not genotyped

indels (PacBio) 73.82% 6.82%

indels (Nanopore) 55.98% 7.38%

Table B.2: Results from re-typing GIAB truth set indels using WhatsHap on the PacBio and Nanopore
reads.
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Read Depth Analysis

In Fig B.3 and B.4 we provide an analysis of precision, recall, and f-measure

(the harmonic mean of the precision and recall) for our method as a function of read

depth. To produce this data, we analyzed our calls with rtg vcfeval [42] against the

GIAB benchmark small variant calls v3.3.2 [37] in their high confidence region. We

annotated the outputted true positive, false positive, and false negative VCF files with

the read depth at each variant’s reference locus. For each read depth, we counted the

number of TP, FP, and FN calls and used them to derive accuracy statistics.

For each sequencing technology and method implementation we plot three

pieces of data: in dotted lines, the precision and recall for the calls made at that specific

read depth; in solid lines, the precision and recall for all calls made at or above the

read depth; and in grey, the amount of calls which were made at each read depth. The

vertical line indicates the maximum f-measure considering all variants found at that

depth or above. Maximum plotted depth is 100 for PacBio and 75 for ONT; these

values were selected as they slightly surpass twice the median depth of the BAMs (46×

and 37× respectively).

As is apparent from the plots, the precision and recall are varied at lower depths

(less than 20), and at higher depths (roughly 1.5× the median depth), and that these

correlate with areas where fewer calls were made. We hypothesize that the decreased

accuracies at higher depth are related to copy number variation in the sample.
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Figure B.3: Read Depth: PacBio Precision, Recall, and F-Measure as a function of depth.
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Figure B.4: Read Depth: Nanopore Precision, Recall, and F-Measure as a function of depth.

187



Genotyping Results on Heterozygous Variants vs Homozy-

gous Variants

We present our genotyping results on the Genome in a Bottle truth set in high

confidence regions, splitting up the performance on variants that were heterozygous

and variants that were homozygous alternate in the truth set. The results are shown in

Tables B.3 and B.4. In summary, the precision is better at homozygous sites for all cases

(using both tools MarginPhase and WhatsHap, on both PacBio and Nanopore reads).

Recall is also better at homozygous sites in most cases, except in the MarginPhase-

PacBio run, where it is worse. The difference in performance between heterozygous

and homozygous sites is quite drastic when nanopore sequencing is used, especially in

regards to precision. Perhaps this means that the programs are predicting many more

false variants due to the distribution of errors seen in highly inaccurate reads, and the

error models are not yet tuned well enough to take that into account.

Precision Recall F-Measure

WhatsHap (PacBio) 0.9827 0.9928 0.9877

WhatsHap (Nanopore) 0.9369 0.9382 0.9376

MarginPhase (PacBio) 0.9940 0.8923 0.9404

MarginPhase (Nanopore) 0.9923 0.8448 0.9126

Table B.3: Summary of genotyping results on homozygous variants.
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Precision Recall F-Measure

WhatsHap (PacBio) 0.9678 0.9377 0.9525

WhatsHap (Nanopore) 0.5721 0.5870 0.5795

MarginPhase (PacBio) 0.9241 0.9291 0.9266

MarginPhase (Nanopore) 0.6647 0.7858 0.7202

Table B.4: Summary of genotyping results on heterozygous variants.
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Genotype Likelihoods

Our methods output a likelihood for each possible genotype at a variant site

and makes a prediction by reporting the likeliest genotype at each position. From

the genotype likelihoods, we compute the probability that the reported genotype is

wrong by subtracting the likelihood of the predicted genotype from 1. Computing the

corresponding phred-score of this value yields the genotype quality.

In order to analyze the reported genotype qualities, we first computed the

genotyping concordance of our PacBio and Nanopore callsets with respect to the GIAB

truth set as a function of the amount of genotyped variants when using different thresh-

olds on the genotype quality (Figure B.5). For each threshold value (0, 20, 50, 80, 100,

150, 200, 300, 400, 500) we considered the percentage of variants reported with a higher

quality score (“variants genotyped”) and computed the genotype concordance of this

set of variants. Each dot in the plots represents a different threshold, in ascending order

from right to left. As it can be seen in Figure B.5, higher thresholds on the genotype

quality lead to smaller amounts of genotyped variants. At the same time, the geno-

type concordance increases since many wrong, low confidence calls are removed. The

maximum quality value output by MarginPhase is limited to 100. Therefore, the set of

variants genotyped with higher thresholds is empty and no genotype concordance can

be computed.

In a second experiment, we compared the genotype concordance of each set

of calls reported with the same genotype quality to the expected genotype concordance
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as given by the respective qualities. Resulting plots are shown in Figure B.6. The size

of each dot corresponds to the number of calls that were reported with the underlying

quality in the respective VCF file. Both methods reported high quality values for the

majority of calls and the observed genotype concordances for these variants were close

to the expected ones. However, plots show that the genotype qualities produced by

WhatsHap and MarginPhase are not yet well-calibrated. We expect that improving the

computation of weights that we assign to the entries of the allele matrix will lead to

better quality scores as the computation of forward and backward probabilities is based

on these weights (see Section 5 in the main paper).
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Figure B.5: Genotyping concordance as a function of genotyped variants for different thresholds (0,
20, 50, 80, 100, 150, 200, 300, 400, 500) on the genotype quality. Since the maximum quality value
output by MarginPhase is limited to 100, thresholds larger than 100 are not considered in the plots.
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Figure B.6: Observed genotype concordance as a function of the expected genotype concordance of
the variant calls. Dot sizes correspond to the number of calls which were reported with the same quality
score.

Availability of data and material

The datasets generated and analyzed during the current study as well as the

version of the source code used are available at http://doi.org/10.5281/zenodo.

2616973 MarginPhase and WhatsHap are released as Open Source software under the
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MIT licence. MarginPhase is available at github.com/benedictpaten/marginPhase,

WhatsHap is available at bitbucket.org/whatshap/whatshap.
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Appendix C

Shasta methods

This chapter includes additional methods from the Shasta paper that were

omitted from the portion I included from the main text of the paper.

Sample selection

The goal of sample selection was to select a set of individuals that collectively

captured the maximum amount of weighted allelic diversity [128]. To do this, we created

a list of all low-passage lymphoblastoid cell lines that are part of a trio available from

the 1000 Genomes Project collection [28] (We selected trios to allow future addition

of pedigree information, and low-passage line to minimize acquired variation). In some

cases, we considered the union of parental alleles in the trios due to not having genotypes

for the offspring. Let a weighted allele be a variant allele and its frequency in the 1000

Genomes Project Phase 3 VCF. We selected the first sample from our list that contained

the largest sum of frequencies of weighted alleles, reasoning that this sample should have
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the largest expected fraction of variant alleles in common with any other randomly

chosen sample. We then removed the variant alleles from this first sample from the set

of variant alleles in consideration and repeated the process to pick the second sample,

repeating the process recursively until we had selected seven samples. This set greedily,

heuristically optimizes the maximum sum of weighted allele frequencies in our chosen

sample subset. We also added the three Ashkenazim Trio samples and the Puerto Rican

individual (HG00733). These four samples were added for the purposes of comparison

with other studies that are using them [40].

Cell culture

Lymphoblastoid cultures for each individual were obtained from the Coriell

Institute Cell Repository (coriell.org) and were cultured in RPMI 1640 supplemented

with 15% fetal bovine serum (Life Technologies). The cells underwent a total of six

passages (p3+3). After expansion, cells were harvested by pelleting at 300xg for 5

minutes. Cells were resuspended in 10 ml PBS and a cell count was taken using a

BiRad TC20 cell counter. Cells were aliquoted into 50 ml conical tubes containing 50

million cells, pelleted as above and washed with 10 ml PBS before a final pelleting after

which the PBS was removed and the samples were flash frozen on dry ice and stored at

-80oC until ready for further processing.
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DNA extraction and size-selection

We extracted high-molecular weight (HMW) DNA using the QIAGEN Pure-

gene kit. We followed the standard protocol with some modifications. Briefly, we lysed

the cells by adding 3 ml of Cell Lysis Solution per 10 million cells, followed by incu-

bation at 37oC for up to 1 hour. We performed mild shaking intermediately by hand,

and avoided vortexing. Once clear, we split the lysate into 3 ml aliquots and added 1

ml of Protein Precipitation Solution to each of the tubes. This was followed by pulse

vortexing three times for five seconds each time. We next spun this at 2000 x g for

10 minutes. We added the supernatant from each tube to a new tube containing 3 ml

of isopropanol, followed by 50x inversion. The HMW DNA precipitated and formed

a dense thread-like jelly. We used a disposable inoculation loop to extract the DNA

precipitate. We then dipped the DNA precipitate, while it was on the loop, into ice-cold

70% ethanol. After this, the DNA precipitate was added to a new tube containing 50-

250 µl 1x TE buffer. The tubes were heated at 50oC for 2 hours and then left at room

temperature overnight to allow resuspension of the DNA. The DNA was then quantified

using Qubit and NanoDrop.

We used the Circulomics Short Read Eliminator (SRE) kit to deplete short-

fragments from the DNA preparation. We size-selected 10 µg of DNA using the Circu-

lomics recommended protocol for each round of size-selection.
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Nanopore sequencing

We used the SQK-LSK109 kit and its recommended protocol for making se-

quencing libraries. We used 1 µg of input DNA per library. We prepared libraries at a

3x scale since we performed a nuclease flush on every flow cell, followed by the addition

of a fresh library.

We used the standard PromethION scripts for sequencing. At around 24 hours,

we performed a nuclease flush using the ONT recommended protocol. We then re-primed

the flow cell, and added a fresh library corresponding to the same sample. After the

first nuclease flush, we restarted the run setting the voltage to -190 mV. We repeated

the nuclease flush after another around 24 hours (i.e. around 48 hours into sequencing),

re-primed the flow cell, added a fresh library, and restarted the run setting the run

voltage to -200 mV.

We performed basecalling using Guppy v.2.3.5 on the PromethION tower using

the GPUs. We used the MinION DNA flipflop model (dna r9.4.1 450bps flipflop.cfg),

as recommended by ONT.

Chromatin Crosslinking and Extraction from Human Cell Lines

We thawed the frozen cell pellets and washed them twice with cold PBS be-

fore resuspension in the same buffer. We transferred Aliquots containing five million

cells by volume from these suspensions to separate microcentrifuge tubes before chro-

matin crosslinking by addition of paraformaldehyde (EMS Cat. No. 15714) to a final

concentration of one percent. We briefly vortexed the samples and allowed them to
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incubate at room temperature for fifteen minutes. We pelleted the crosslinked cells and

washed them twice with cold PBS before thoroughly resuspending in lysis buffer (50

mM Tris-HCl, 50 mM NaCl, 1 mM EDTA, 1% SDS) to extract crosslinked chromatin.

The Hi-C Method

We bound the crosslinked chromatin samples to SPRI beads, washed three

times with SPRI wash buffer (10 mM Tris-HCl, 50 mM NaCl, 0.05% Tween-20), and

digested by DpnII (20 U, NEB Catalog No. R0543S) for 1 hour at 37oC in an agitat-

ing thermal mixer. We washed the bead-bound samples again before incorporation of

Biotin-11-dCTP (ChemCyte Catalog No. CC-6002-1) by DNA Polymerase I, Klenow

Fragment (10 U, NEB Catalog No. M0210L) for thirty minutes at 25oC with shaking.

Following another wash, we carried out blunt-end ligation by T4 DNA Ligase (4000 U,

NEB Catalog No. M0202T) with shaking overnight at 16oC. We reversed the chromatin

crosslinks, digested the proteins, eluted the samples by incubation in crosslink reversal

buffer (5 mM CaCl 2 , 50 mM Tris-HCl, 8% SDS) with Proteinase K (30 µg, Qiagen

Catalog No. 19133) for fifteen minutes at 55oC followed by forty-five minutes at 68oC.

Sonication and Illumina Library Generation with Biotin Enrichment

After SPRI bead purification of the crosslink-reversed samples, we transferred

DNA from each to Covaris® microTUBE AFA Fiber Snap-Cap tubes (Covaris Cat.

No. 520045) and sonicated to an average length of 400 ± 85 bp using a Covaris®

ME220 Focused-Ultrasonicator™. Temperature was held stably at 6oC and treatment
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lasted sixty-five seconds per sample with a peak power of fifty watts, ten percent duty

factor, and two-hundred cycles per burst. The average fragment length and distribution

of sheared DNA was determined by capillary electrophoresis using an Agilent® Frag-

mentAnalyzer 5200 and HS NGS Fragment Kit (Agilent Cat. No. DNF-474-0500). We

ran sheared DNA samples twice through the NEBNext® Ultra™ II DNA Library Prep

Kit for Illumina® (Catalog No. E7645S) End Preparation and Adaptor Ligation steps

with custom Y-adaptors to produce library preparation replicates. We purified ligation

products via SPRI beads before Biotin enrichment using Dynabeads® MyOne™ Strep-

tavidin C1 beads (ThermoFisher Catalog No. 65002). We performed indexing PCR on

streptavidin beads using KAPA HiFi HotStart ReadyMix (Catalog No. KK2602) and

PCR products were isolated by SPRI bead purification. We quantified the libraries by

Qubit™ 4 fluorometer and FragmentAnalyzer 5200 HS NGS Fragment Kit (Agilent Cat.

No. DNF-474-0500) before pooling for sequencing on an Illumina HiSeq X at Fulgent

Genetics.

Analysis methods

Read alignment identities

To generate the identity violin plots (Fig. 3.2c/e) we aligned all the reads

for each sample and flowcell to GRCh38 using minimap2 [79] with the map-ont preset.

Using a custom script get summary stats.py in the repository https://github.com/

rlorigro/nanopore_assembly_and_polishing_assessment, we parsed the alignment

for each read and enumerated the number of matched (N=), mismatched (NX), inserted
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(NI), and deleted (ND) bases. From this, we calculated alignment identity as N=/(N=+

NX +NI +ND). These identities were aggregated over samples and plotted using the

seaborn library with the script plot summary stats.py in the same repository. This

method was used to generate both Figure 3.2c and Figure 3.2e. For Figure 3.2e, we se-

lected reads from HG00733 flowcell1 aligned to GRCh38 chr1. The “Standard” identities

are used from the original reads/alignments. To generate identity data for the “RLE”

portion, we extracted the reads above, run-length encoded the reads and chr1 reference,

and followed the alignment and identity calculation process described above. Sequences

were run-length encoded using a simple script (github.com/rlorigro/runlength_

analysis/blob/master/runlength_encode_fasta.py) and aligned with minimap2 us-

ing the map-ont preset and --k 19.

Base-level error-rate analysis with Pomoxis

We analyzed the base-level error-rates of the assemblies using the assess assembly

tool of Pomoxis toolkit developed by Oxford Nanopore Technology https://github.

com/nanoporetech/pomoxis. We further modified the program to avoid large inser-

tions and deletions (¿50bp) and submitted a merge request. https://github.com/

nanoporetech/pomoxis/pull/37. The assess assembly tool is tailored to compute the

error rates in a given assembly compared to a truth assembly. It reports an identity er-

ror rate, insertion error rate, deletion error rate, and an overall error rate. The identity

error rate indicates the number of erroneous substitutions, the insertion error rate is

the number of incorrect insertions, and the deletion error rate is the number of deleted
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bases averaged over the total aligned length of the assembly to the truth. The overall

error rate is the sum of the identity, insertion, and deletion error rates. For the purpose

of simplification, we used the indel error rate, which is the sum of insertion and deletion

error rates.

The assess assembly script takes an input assembly and a reference assembly

to compare against. The assessment tool chunks the reference assembly to 1 Kb regions

and aligns it back to the input assembly to get a trimmed reference. Next, the input

is aligned to the trimmed reference sequence with the same alignment parameters to

get an input assembly to the reference assembly alignment. The total aligned length

is the sum of the lengths of the trimmed reference segments where the input assembly

has an alignment. The total aligned length is used as the denominator while averaging

each of the error categories to limit the assessment in only correctly assembled regions.

Then the tool uses stats from bam, which counts the number of mismatch bases, insert

bases, and delete bases at each of the aligned segments and reports the error rate by

averaging them over the total aligned length.

The Pomoxis section in Supplementary Notes describe the commands we ran

to perform this assessment.

Truth assemblies for base-level error-rate analysis

We used HG002, HG00733, and CHM13 for base-level error-rate assessment

of the assembler and the polisher. These three assemblies have high-quality assemblies

publicly available, which are used as the ground truth for comparison. Two of the
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samples, HG002 and HG00733, are diploid samples; hence, we picked one of the two

possible haplotypes as the truth. The reported error rate of HG002 and HG00733 include

some errors arising due to the zygosity of the samples. The complete hydatidiform mole

sample CHM13 is a haploid human genome which is used to assess the applicability

of the tools on haploid samples. We have gathered and uploaded all the files we used

for assessment in one place: https://console.cloud.google.com/storage/browser/

kishwar-helen/truth_assemblies/.

To generate the HG002 truth assembly, we gathered the publicly available

Genome-in-a-bottle (GIAB) high-confidence variant set (VCF) against GRCh38 refer-

ence sequence. Then we used bedtools to create an assembly (FASTA) file from the

GRCh38 reference and the high-confidence variant set. We got two files using this pro-

cess for each of the haplotypes, and we picked one randomly as the truth. All the diploid

HG002 assembly is compared against this one chosen assembly. GIAB also provides a

bed file annotating high-confidence regions where the called variants are highly precise

and sensitive. We used this bed file with assess assembly to ensure that we compare

the assemblies only in the high confidence regions.

The HG00733 truth is from the publicly available phased PacBio high-quality

assembly of this sample [129]. We picked phase0 as the truth assembly and acquired it

from NCBI under accession GCA 003634895.1. We note that the assembly is phased but

not haplotyped, such that portions of phase0 will include sequences from both parental

haplotypes and is not suitable for trio-binned analyses. Furthermore, not all regions

were fully phased; regions with variants that are represented as some combination of
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both haplotypes will result in lower QV and a less accurate truth.

For CHM13, we used the v0.6 release of CHM13 assembly by the T2T con-

sortium [84]. The reported quality of this truth assembly in Q-value is QV 39. One

of the attributes of this assembly is chromosome X. As reported by the T2T assembly

authors, chromosome X of CHM13 is the most complete (end-to-end) and high-quality

assembly of any human chromosome. We obtained the chromosome X assembly, which

is the highest-quality truth assembly (QV ≥ 40) we have.

Assembly of MHC

Each of the 8 GRCh38 MHC haplotypes were aligned using minimap2 (with

preset asm20) to whole genome assemblies to identify spanning contigs. These con-

tigs were then extracted from the genomic assembly and used for alignment visual-

ization. For dot plots, Nucmer 4.0 [130] was used to align each assembler’s spanning

contigs to the standard chr6:28000000-34000000 MHC region, which includes ˜500Mb

flanks. Output from this alignment was parsed with Dot [131] which has a web-based

GUI for visualization. All defaults were used in both generating the input files and

drawing the figures. Coverage plots were generated from reads aligned to chr6, using

a script, find coverage.py, located at github.com/rlorigro/nanopore_assembly\

_and_polishing_assessment/.

The best matching alt haplotype (to Shasta, Canu, and Flye) was chosen as a

reference haplotype for quantitative analysis. Haplotypes with the fewest supplementary

alignments across assemblers were top candidates for QUAST analysis. Candidates with

204



comparable alignments were differentiated by identity. The highest contiguity/identity

MHC haplotype was then analyzed with QUAST using --min-identity 80. For all

MHC analyses regarding Flye, the unpolished output was used.

BAC Analysis

At a high level, the BAC analysis was performed by aligning BACs to each

assembly, quantifying their resolution, and calculating identity statistics on those that

were fully resolved.

We obtained 341 BACs for CHM13 [132, 133] and 179 for HG00733 [105] (com-

plete BAC clones of VMRC62), which had been selected primarily by targeting complex

or highly duplicated regions. We performed the following analysis on the full set of of

BACs (for CHM13 and HG00733), and a subset selected to fall within unique regions

of the genome. To determine this subset, we selected all BACs which are greater than

10 Kb away from any segmental duplication, resulting in 16 of HG00733 and 31 of

CHM13. This subset represents simple regions of the genome which we would expect

all assemblers to resolve.

For the analysis, BACs were aligned to each assembly with the command

“minimap2 –secondary=no -t 16 -ax asm20 assembly.fasta bac.fasta > assembly.sam”

and converted to a PAF-like format which describes aligned regions of the BACs and

assemblies. Using this, we calculated two metrics describing how resolved each BAC

was: closed is defined as having 99.5% of the BAC aligned to a single locus in the

assembly; attempted is defined as having a set of alignments covering ≥ 95% of the
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BAC to a single assembly contig where all alignments are at least 1kb away from the

contig end. If such a set exists, it counts as attempted. We furthermore calculate

median and mean identities (using alignment identity metric described above) of the

closed BACs. These definitions were created such that a contig that is counted as

attempted but not closed likely reflects a disagreement. The code for this can be found

at https://github.com/skoren/bacValidation.

Short Read Polishing

Chromosome X of the CHM13 assembly (assembled first with Shasta, then pol-

ished with MarginPolish and HELEN) was obtained by aligning the assembly to GRCh38

(using minimap2 with the --x asm20 flag). 10X Chromium reads were downloaded from

the Nanopore WGS Consortium (https://github.com/nanopore-wgs-consortium/

CHM13/). These were from a NovaSeq instrument at a coverage of approximately 50X.

The reads corresponding to chromosome X were extracted by aligning the entire read set

to the whole CHM13 assembly using the 10X Genomics Long Ranger Align pipeline

(v2.2), then extracting those corresponding to the corresponding chromosome X contigs

with samtools. Pilon [97] was run iteratively for a total of three rounds, in each round

aligning the reads to the current assembly with Long Ranger and then running Pilon

with default parameters.
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Structural Variant Assessment

To create an assembly graph in GFA format Shasta v0.1.0 was run using

the HG002 sequence data with --MarkerGraph.simplifyMaxLength 10 to reduce bub-

ble removal and --MarkerGraph.highCoverageThreshold 10 to reduce the removal of

edges normally removed by the transitive reduction step.

To detect structural variation inside the assembly graphs produced by Shasta,

we extracted unitigs from the graph and aligned them back to the linear reference.

Unitigs are walks through the assembly graph that do not traverse any node end that

includes a bifurcation. We first processed the Shasta assembly graphs (in GFA for-

mat) with gimbricate (https://github.com/ekg/gimbricatec1c6d1a) to recompute

overlaps in non run-length encoded space and to remove nodes in the graph only sup-

ported by a single sequencing read. To remove overlaps from the graph edges, we then

”bluntified” resulting GFAs with vg find -F (https://github.com/vgteam/vgv1.19.

0 Tramutola). We then applied odgi unitig (https://github.com/vgteam/odgi

463ba5b) to extract unitigs from the graph, with the condition that the starting node

in the unitig generation must be at least 100 bp long. To ensure that the unitigs could

be mapped back to the linear reference, we appended a random walk of 25 Kb after the

natural end of each unitig, with the expectation that even should unitigs would yield

around 50 Kb of mappable sequence. Finally, we mapped the unitigs to GRCh38 with

minimap2 with a bandwidth of 25 Kb (-r25000), and called variants in the alignments

using paftools.js from the minimap2 distribution. We implemented the process in a
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single script that produces variant calls from the unitig set of a given graph https://

github.com/ekg/shastaGFA/blob/master/shastaGFAtoVCF_unitig_paftools.sh.

The extracted variants were compared to the structural variants from the

Genome In A Bottle benchmark in HG002 (v0.6, [134]). Precision, recall and F1 scores

were computed on variants not overlapping simple repeats and within the benchmark’s

high-confidence regions. Deletions in the assembly and the GIAB benchmark were

matched if they had at least 50% reciprocal overlap. Insertions were matched if located

at less than 100 bp from each other and similar in size (50% reciprocal similarity).

Shasta

The following describes Shasta version 0.1.0, which was used throughout our

analysis. All runs were done on an AWS x1.32xlarge instance (1952 GB memory,

128 virtual processors). The runs used the Shasta recommended options for best per-

formance (--memoryMode filesystem --memoryBacking 2M). Rather than using the

distributed version of the release, the source code was rebuilt locally for best perfor-

mance as recommended by Shasta documentation.

Run-length encoding of input reads

Shasta represents input reads using run-length encoding. The sequence of each

input read is represented as a sequence of bases, each with a repeat count that says how

many times each of the bases is repeated. Such a representation has previously been

used in biological sequence analysis [79, 80, 81].

208



For example, the following read

CGATTTAAGTTA

is represented as follows using run-length encoding:

CGATAGTA

11132121

Using run-length encoding makes the assembly process less sensitive to errors in the

length of homopolymer runs, which are the most common type of errors in Oxford

Nanopore reads. For example, consider these two reads:

CGATTTAAGTTA

CGATTAAGGGTTA

Using their raw representation above, these reads can be aligned like this:

CGATTTAAG--TTA

CGATT-AAGGGTTA

Aligning the second read to the first required a deletion and two insertions. But in

run-length encoding, the two reads become:

CGATAGTA

11132121

CGATAGTA

11122321
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The sequence portions are now identical and can be aligned trivially and exactly, without

any insertions or deletions:

CGATAGTA

CGATAGTA

The differences between the two reads only appear in the repeat counts:

11132121

11122321

* *

The Shasta assembler uses one byte to represent repeat counts, and as a result it only

represents repeat counts between 1 and 255. If a read contains more than 255 consecutive

bases, it is discarded on input. In the data we have analyzed so far such reads are

extremely rare.

Some properties of base sequences in run-length encoding

• In the sequence portion of the run-length encoding, consecutive bases are always

distinct. If they were not, the second one would be removed from the run-length

encoded sequence, while increasing the repeat count for the first one.

• With ordinary base sequences, the number of distinct k-mers of length k is 4k.

But with run-length base sequences, the number of distinct k-mers of length k is

4× 3k−1. This is a consequence of the previous bullet.
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• The run-length sequence is generally shorter than the raw sequence, and cannot

be longer. For a long random sequence, the number of bases in the run-length

representation is 3/4 of the number of bases in the raw representation.

Markers

Even with run-length encoding, error in input reads are still frequent. To

further reduce sensitivity to errors, and also to speed up some of the computational steps

in the assembly process, the Shasta assembler also uses a read representation based on

markers. Markers are occurrences in reads of a pre-determined subset of short k-mers.

By default, Shasta uses for this purpose k-mers with k = 10 in run-length encoding,

corresponding to an average approximately 13 bases in raw read representation.

Just for the purposes of illustration, consider a description using markers of

length 3 in run-length encoding. There is a total 4× 32 = 36 distinct such markers. We

arbitrarily choose the following fixed subset of the 36, and we assign an id to each of

the kmers in the subset as follows:

TGC 0

GCA 1

GAC 2

CGC 3

Consider now the following portion of a read in run-length representation (here,

the repeat counts are irrelevant and so they are omitted):

CGACACGTATGCGCACGCTGCGCTCTGCAGC
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GAC TGC CGC TGC

CGC TGC GCA

GCA CGC

Occurrences of the k-mers defined in the table above are shown and define the

markers in this read. Note that markers can overlap. Using the marker ids defined in

the table above, we can summarize the sequence of this read portion as follows:

2 0 3 1 3 0 3 0 1

This is the marker representation of the read portion above. It just includes

the sequence of markers occurring in the read, not their positions.

Note that the marker representation loses information, as it is not possible

to reconstruct the complete initial sequence from the marker representation. This also

means that the marker representation is insensitive to errors in the sequence portions

that don’t belong to any markers.

The Shasta assembler uses a random choice of the k-mers to be used as markers.

The length of the markers k is controlled by assembly parameter Kmers.k with a default

value of 10. Each k-mer is randomly choosen to be used as a marker with probability

determined by assembly parameter Kmers.probability with a default value of 0.1.

With these default values, the total number of distinct markers is approximately 0.1×

4× 39 ≈ 7900.

The only constraint used in selecting k-mers to be used as markers is that if a

k-mer is a marker, its reverse complement should also be a marker. This makes it easy
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Figure C.1: Markers aligned to a run length encoded read.

to construct the marker representation of the reverse complement of a read from the

marker representation of the original read. It also ensures strand symmetry in some of

the computational steps.

It is possible that the random selection of markers is not optimal, and that it

may be best to select the markers based on their frequency in the input reads or other

criteria. These possibilities have not yet been investigated.

Fig. C.1 shows the run-length representation of a portion of a read and its

markers, as displayed by the Shasta http server.

Marker alignments

The marker representation of a read is a sequence in an alphabet consisting

of the marker ids. This sequence is much shorter than the original sequence of the

read, but uses a much larger alphabet. For example, with default Shasta assembly

parameters, the marker representation is 10 times shorter than the run-length encoded

read sequence, or about 13 times shorter than the raw read sequence. Its alphabet has

around 8000 symbols, many more than the 4 symbols that the original read sequence

uses.

Because the marker representation of a read is a sequence, we can compute an
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Figure C.2: A marker alignment represented as a dot-plot. Elements that are identical between the
two sequences are displayed in green or red - the ones in green are the ones that are part of the optimal
alignment computed by the Shasta assembler. Because of the much larger alphabet, matrix elements
that are identical between the sequences but are not part of the optimal alignment are infrequent. Each
alignment matrix element here corresponds on average to a 13 × 13 block in the alignment matrix in
raw base sequence.

alignment of two reads directly in marker representation. Computing an alignment in

this way has two important advantages:

• The shorter sequences and larger alphabet make the alignment much faster to

compute.

• The alignment is insensitive to read errors in the portions that are not covered by

any marker.

For these reasons, the marker representation is orders of magnitude more ef-

ficient than the raw base representation when computing read alignments. Fig. C.2

shows an example alignment matrix.

Computing optimal alignments in marker representation To compute

the (likely) optimal alignment (example highlighted in green in Fig. C.2), the Shasta
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assembler uses a simple alignment algorithm on the marker representations of the two

reads to be aligned. It effectively constructs an optimal path in the alignment matrix,

but using some ‘banding’ heuristics to speed up the computation:

• The maximum number of markers that an alignment can skip on either read

is limited to a maximum, under control of assembly parameter Align.maxSkip

(default value 30 markers, corresponding to around 400 bases when all other Shasta

parameters are at their default). This reflects the fact that Oxford Nanopore reads

can often have long stretches in error. In the alignment matrix shown in Fig. C.2,

there is a skip of about 20 markers (2 light grey squares) following the first 10

aligned markers (green dots) on the top left.

• The maximum number of markers that an alignment can skip at the beginning

or end of a read is limited to a maximum, under control of assembly parameter

Align.maxTrim (default value 30 markers, corresponding to around 400 bases

when all other Shasta parameters are at their default). This reflects the fact that

Oxford Nanopore reads often have an initial or final portion that is not usable.

These first two heuristics are equivalent to computing a reduced band of the

alignment matrix.

• To avoid alignment artifacts, marker k-mers that are too frequent in either of

the two reads being aligned are not used in the alignment computation. For

this purpose, the Shasta assembler uses a criterion based on absolute number

of occurrences of marker k-mers in the two reads, although a relative criterion
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(occurrences per Kb) may be more appropriate. The current absolute frequency

threshold is under control of assembly parameter Align.maxMarkerFrequency

(default 10 occurrences).

Using these techniques and with the default assembly parameters, the time to

compute an optimal alignment is ∼ 10−3 − 10−2 seconds in the Shasta implementation

as of release 0.1.0 (April 2019). A typical human assembly needs to compute 108 read

alignments which results in a total compute time ∼ 105 − 106 seconds, or ∼ 103 − 104

seconds of elapsed time (∼1-3 hours) on a machine with 128 virtual processors. This

is one of the most computationally expensive portions of a Shasta assembly. Some

additional optimizations are possible in the code that implement this computation, and

may be implemented in future releases.

Finding overlapping reads

Even though computing read alignments in marker representation is fast, it

still is not feasible to compute alignments among all possible pairs of reads. For a

human size genome with ∼ 106 − 107 reads, the number of pairs to consider would be

∼ 1012 − 1014, and even at 10−3 seconds per alignment the compute time would be

∼ 109 − 1011 seconds, or ∼ 107 − 109 seconds elapsed time (∼ 102 − 104 days) when

using 128 virtual processors.

Therefore some means of narrowing down substantially the number of pairs to

be considered is essential. The Shasta assembler uses for this purpose a slightly modified

MinHash [82, 83] scheme based on the marker representation of reads.
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In overview, the MinHash algorithm takes as input a set of items each char-

acterized by a set of features. Its goal is to find pairs of the input items that have a

high https://en.wikipedia.org/wiki/Jaccard_indexJaccard similarity index - that

is, pairs of items that have many features in common. The algorithm proceeds by iter-

ations. At each iteration, a new hash table is created and a hash function that operates

on the feature set is selected. For each item, the hash function of each of its features is

evaluated, and the minimum hash function value found is used to select the hash table

bucket that each item is stored in. It can be proven that the probability of two items

ending up in the same bucket equals the Jaccard similarity index of the two items - that

is, items in the same bucket are more likely to be highly similar than items in different

buckets [135]. The algorithm then adds to the pairs of potentially similar items all pairs

of items that are in the same bucket.

When all iterations are complete, the probability that a pair of items was found

at least once is an increasing function of the Jaccard similarity of the two items. In

other words, the pairs found are enriched for pairs that have high similarity. One can

now consider all the pairs found (hopefully a much smaller set than all possible pairs)

and compute the Jaccard similarity index for each, then keep only the pairs for which

the index is sufficiently high. The algorithm does not guarantee that all pairs with high

similarity will be found - only that the probability of finding all pairs is an increasing

function of their similarity.

The algorithm is used by Shasta with items being oriented reads (a read in

either original or reverse complemented orientation) and features being consecutive oc-
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currences of m markers in the marker representation of the oriented read. For example,

consider an oriented read with the following marker representation:

18,45,71,3,15,6,21

Ifm is selected equal to 4 (the Shasta default, controlled by assembly parameter

MinHash.m), the oriented read is assigned the following features:

(18,45,71,3)

(45,71,3,15)

(71,3,15,6)

(3,15,6,21)

From the picture above of an alignment matrix in marker representation, we

see that streaks of 4 or more common consecutive markers are relatively common. We

have to keep in mind that, with Shasta default parameters, 4 consecutive markers

span an average 40 bases in run-length encoding or about 52 bases in the original raw

base representation. At a typical error rate around 10%, such a portion of a read

would contain on average 5 errors. Yet, the marker representation in run-length space

is sufficiently robust that these common “features” are relatively common despite the

high error rate. This indicates that we can expect the MinHash algorithm to be effective

in finding pairs of overlapping reads.

However, the MinHash algorithm has a feature that is undesirable for our

purposes: namely, that the algorithm is good at finding read pairs with high Jaccard
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similarity index. For two sets X and Y , the Jaccard similarity index is defined as the

ratio:

J =
|X ∩ Y |
|X ∪ Y |

Because the read length distribution of Oxford Nanopore reads is very wide,

it is very common to have pairs of reads with very different lengths. Consider now two

reads with lengths nx and ny, with nx < ny, that overlap exactly over the entire length

nx. The Jaccard similarity is in this case given by nx/ny < 1. This means that, if

one of the reads in a pair is much shorter than the other one, their Jaccard similarity

will be low even in the best case of exact overlap. As a result, the unmodified MinHash

algorithm will not do a good job at finding overlapping pairs of reads with very different

length.

For this reason, the Shasta assembler uses a small modification to the MinHash

algorithm: instead of just using the minimum hash for each oriented read for each

iteration, it keeps all hashes below a given threshold (this is not the same as keeping

a fixed number of the lowest hashes for each read). Each oriented read can be stored

in multiple buckets, one for each low hash encountered. The average number of low

hashes on a read is proportional to its length, and therefore this change has the effect

of eliminating the bias against pairs in which one read is much shorter than the other.

The probability of finding a given pair is no longer driver by the Jaccard similarity. The

modified algorithm is referred to as LowHash in the Shasta source code. Note that it is
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effectively equivalent to an indexing approach in which we index all features with low

hash.

The LowHash algorithm is controlled by the following assembly parameters:

• MinHash.m (default 4): the number of consecutive markers that define a feature.

• MinHash.hashFraction (default 0.01): The fraction of hash values that count as

“low”.

• MinHash.minHashIterationCount (default 10): The number of iterations.

• MinHash.maxBucketSize (default 10): The maximum number of items for a

bucket to be considered. Buckets with more than this number of items are ig-

nored. The goal of this parameter is to mitigate the effect of common repeats,

which can result in buckets containing large numbers of unrelated oriented reads.

• MinHash.minFrequency (default 2): the number of times a pair of oriented reads

has to be found to be considered and stored as a possible pair of overlapping reads.

Initial assembly steps

Initial steps of a Shasta assembly proceed as follows. If the assembly is setup

for best performance (--memoryMode filesystem --memoryBacking 2M if using the

Shasta executable), all data structures are stored in memory, and no disk activity takes

place except for initial loading of the input reads, storing of assembly results, and storing

a small number of small files with useful summary information.
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• Input reads are read from Fasta files and converted to run-length representation.

• K-mers to be used as markers are randomly selected.

• Occurrences of those marker k-mers in all oriented reads are found.

• The LowHash algorithm finds candidate pairs of overlapping oriented reads.

• A marker alignment is computed for each candidate pair of oriented reads. If

the marker alignment contains a minimum number of aligned markers, the pair is

stored as an aligned pair. The minimum number of aligned markers is controlled

by assembly parameter Align.minAlignedMarkerCount.

Read graph

Using the methods covered so far, an assembly has created a list of pairs of

oriented reads, each pair having a plausible marker alignment. How to use this type

of information for assembly is a classical problem with a standard solution https:

//doi.org/10.1093/bioinformatics/bti1114(Myers, 2005), the string graph.

It may be possible to adapt the prescriptions in the Myers paper to our situ-

ation in which a marker representation is used. However, we have not attempted this

here, leaving it for future work. Instead, the approach currently used in the Shasta

assembler is very simple, and can likely be improved. In the current simple approach,

the Shasta assembler creates un undirected graph, the Read Graph, in which each vertex

represents an oriented read (that is, a read in either original orientation or reverse com-

plemented), and an undirected edge between two vertices is created if we have found an
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Figure C.3: An example of a portion of the read graph, as displayed by the Shasta http server.

alignment between the corresponding oriented reads.

However, the read graph as constructed in this way suffers from high connectiv-

ity in repeat regions. Therefore, the Shasta assembler only keeps a k-Nearest-Neighbor

subset of the edges. That is, for each vertex (oriented read) we only keep the k edges with

the best alignments (greatest number of aligned markers). The number of edges kept

for each vertex is controlled by assembly parameter ReadGraph.maxAlignmentCount,

with a default value of 6. Note that, despite the k-Nearest-Neighbor subset, it remains

possible for a vertex to have degree more than k.

Note that each read contributes two vertices to the read graph, one in its origi-

nal orientation, and one in reverse complemented orientation. Therefore the read graph

contains two strands, each strand at full coverage. This makes it easy to investigate

and potentially detect erroneous strand jumps that would be much less obvious if using

approaches with one vertex per read.

An example of one strand is shown in Fig. C.3. Even though the graph is

undirected, edges that correspond to overlap alignments are drawn with an arrow that

points from the prefix oriented read to the suffix one, to represent the direction of

222



Figure C.4: An example of a portion of the read graph showing obviously incorrect connections

overlap. Edges that correspond to containment alignments (an alignment which covers

one of the two reads entirely) are drawn in red and without an arrow. Vertices are

drawn with area proportional to the length of the corresponding reads.

The linear structure of the read graph successfully reflects the linear arrange-

ment of the input reads and their origin on the genome being assembled.

However, deviations from the linear structure can occur in the presence of long

repeats (Fig. C.4), typically for high similarity segment duplications.

The current Shasta implementation does not attempt to remove the obviously

incorrect connections. This results in unnecessary breaks in assembly contiguity. De-

spite this, Shasta assembly contiguity is adequate and comparable to what other, less

performant long read assemblers achieve. It is hoped that future Shasta releases will do

a better job at handling these situations.
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Figure C.5: A marker graph representing a single read.

Marker graph

Consider a read whose marker representation is:

a b c d e

We can represent this read as a directed graph that the describes the sequence

in which its markers appear (Fig. C.5).

This is not very useful but illustrates the simplest form of a marker graph as

used in the Shasta assembler. The marker graph is a directed graph in which each

vertex represents a marker and each edge represents the transition between consecutive

markers. We can associate sequence with each vertex and edge of the marker graph:

• Each vertex is associated with the sequence of the corresponding marker.

• If the markers of the source and target vertex of an edge do not overlap, the edge

is associated with the sequence intervening between the two markers.

• If the markers of the source and target vertex of an edge do overlap, the edge is

associated with the overlapping portion of the marker sequences.

Consider now a second read with the following marker representation, which

differs from the previous one just by replacing marker c with x:

a b x d e
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Figure C.6: An illustration of marker graph construction for two sequences.

The marker graph for the two reads is Fig C.6(A).

In the optimal alignment of the two reads, markers a, b, d, e are aligned.

We can redraw the marker graph grouping together vertices that correspond to aligned

markers as in Fig C.6(B).

Finally, we can merge aligned vertices to obtain a marker graph describing the

two aligned reads, shown in Fig C.6(C).

Here, by construction each vertex still has a unique sequence associated with

it - the common sequence of the markers that were merged (however the corresponding

repeat counts can be different for each contributing read). An edge, on the other

hand, can have different sequences associated with it, one corresponding to each of the

contributing reads. In this example, edges a->b and d->e have two contributing reads,

which can each have distinct sequence between the two markers.

We call coverage of a vertex or edge the number of reads “contributing” to it.
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In this example, vertices a, b, d, e have coverage 2 and vertices c, x have coverage

1. Edges a->b and d->e have coverage 2, and the remaining edges have coverage 1.

The construction of the marker graph was illustrated above for two reads, but

the Shasta assembler constructs a global marker graph which takes into account all

oriented reads:

• The process starts with a distinct vertex for each marker of each oriented read.

Note that at this stage the marker graph is large (∼ 2× 1010 vertices for a human

assembly using default assembly parameters).

• For each marker alignment corresponding to an edge of the read graph, we merge

vertices corresponding to aligned markers.

• Of the resulting merged vertices, we remove those whose coverage in too low or two

high, indicating that the contributing reads or some of the alignments involved are

probably in error. This is controlled by assembly parameters MarkerGraph.minCoverage

(default 10) and MarkerGraph.maxCoverage (default 100), which specify the min-

imum and maximum coverage for a vertex to be kept.

• Edges are created. An edge v0->v1 is created if there is at least a read contribut-

ing to both v0 and v1 and for which all markers intervening between v0 and v1

belong to vertices that were removed.

Note that this does not mean that all vertices with the same marker sequence

are merged - two vertices are only merged if they have the same marker sequence, and

if there are at least two reads for which the corresponding markers are aligned.
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Figure C.7: (A) A marker graph with linear sequence of edges colored. (B) The corresponding
assembly graph. Colors were chosen to indicate the correspondence to marker graph edges.

Given the large number of initial vertices involved, this computation is not

trivial. To allow efficient computation in parallel on many threads a lock-free im-

plementation of the disjoint data set data structure [136], is used for merging ver-

tices. Some code changes were necessary to permit large numbers of vertices, as the

initial implementation by Wenzel Jakob only allowed for 32-bit vertex ids (https:

//github.com/wjakob/dset).

Assembly graph

The Shasta assembly process also uses a compact representation of the marker

graph, called the assembly graph, in which each linear sequence of edges is replaced by

a single edge (Fig. C.7).

The length of an edge of the assembly graph is defined as the number of marker

graph edges that it corresponds to. For each edge of the assembly graph, an average

coverage is also computed, by averaging the coverage of the marker graph edges it

corresponds to.
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Using the marker graph to assemble sequence

The marker graph is a partial description of the multiple sequence alignment

between reads and can be used to assemble consensus sequence. One simple way to do

that is to only keep the “dominant” path in the graph, and then traverse that path from

vertex to edge to vertex, assembling run-length encoded sequence as follows:

1. On a vertex, all reads have the same sequence, by construction: the marker se-

quence associated with the vertex. There is trivial consensus among all the reads

contributing to a vertex, and the marker sequence can be used directly as the

contribution of the vertex to assembled sequence.

2. For edges, there are two possible situations plus a hybrid case:

• 2.1. If the adjacent markers overlap, in most cases all contributing reads

have the same number of overlapping bases between the two markers, and

we are again in a situation of trivial consensus, where all reads contribute

the same sequence, which also agrees with the sequence of adjacent vertices.

In cases where not all reads are in agreement on the number of overlapping

bases, only reads with the most frequent number of overlapping bases are

taken into account.

• 2.2. If the adjacent markers don’t overlap, then each read can have a different

sequence between the two markers. In this situation, we compute a multiple

sequence alignment of the sequences and a consensus using the spoa library

[92] (https://github.com/rvaser/spoa). The multiple sequence alignment
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is computed constrained at both ends, because all reads contributing to the

edge have, by construction, identical markers at both sides.

• 2.3. A hybrid situation occasionally arises, in which some reads have the two

markers overlapping, and some do not. In this case we count reads of the

two kinds and discard the reads of the minority kind, then revert to one of

the two cases 2.1 or 2.2 above.

This is the process used for sequence assembly by the current Shasta imple-

mentation. It requires a process to select and define dominant paths, which is described

in the next section. It is algorithmically simple, but its main shortcoming is that it does

not use for assembly reads that contribute to the abundant side branches. This means

that coverage is lost, and therefore the accuracy of assembled sequence is not as good

as it could be if all available coverage was used. Means to eliminate this shortcoming

and use information from the side branches of the marker graph could be a subject of

future work on the Shasta assembler.

The process described above works with run-length encoded sequence and

therefore assembles run-length encoded sequence. The final step to create raw assem-

bled sequence is to compute the most likely repeat count for each sequence position in

run-length encoding. After some experimentation, this is currently done by choosing as

the most likely repeat count the one that appears the most frequently in the reads that

contributed to each assembled position.

A simple Bayesian model for repeat counts resulted in a modest improvement
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in the quality of assembled sequence. But the model appears to sensitive to calibration

errors, and therefore it is not used by default in Shasta assemblies. However, it is used

by MarginPolish, as described below.

Selecting assembly paths in Shasta

The sequence assembly procedure described in the previous section can be

used to assemble sequence for any path in the marker graph. This section describes the

selection of paths for assembly in the current Shasta implementation. This is done by

a series of steps that “remove” edges (but not vertices) from the marker graph until

the marker graph consists mainly of linear sections which can be used as the assembly

paths. For speed, edges are not actually removed but just marked as removed using a

set of flag bits allocated for this purpose in each edge. However, the description below

will use the loose term “remove” to indicate that an edge was flagged as removed.

This process consists of the following three steps, described in more detail in

the following sections:

• TransitiveReduction: Approximate transitive reduction of the marker graph.

• Pruning:Pruning of short side branches (leaves).

• BubbleRemoval:Removal of bubbles and super-bubbles.

The last step, removal of bubbles and superbubbles, is consistent with Shasta’s

current assembly goal which is to compute a mostly monoploid assembly, at least on

short scales.
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TransitiveReduction:

The goal of this step is to eliminate the side branches in the marker graph,

which are the result of errors. Despite the fact that the number of side branches is

substantially reduced thanks to the use of run-length encoding, side branches are still

abundant. This step uses an approximate transitive reduction of the marker graph

which only considers reachability up to a maximum distance, controlled by assembly

parameter MarkerGraph.maxDistance (default 30 marker graph edges). Using a maxi-

mum distance makes sure that the process remains computationally affordable, and also

has the advantage of not removing long-range edges in the marker graph, which could

be significant.

In detail, the process works as follows. In this description, the edge being

considered for removal is the edge v0→v1 with source vertex v0 and target vertex v1.

The first two steps are not really part of the transitive reduction but are performed by

the same code for convenience.

• All edges with coverage less than or equal to MarkerGraph.lowCoverageThreshold

are unconditionally removed. The default value for this assembly parameter is 0,

so this step does nothing when using default parameters.

• All edges with coverage 1 and for which the only supporting read has a large

marker skip are unconditionally removed. The marker skip of an edge, for a

given read, is defined as the distance (in markers) between the v0 marker for
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that read and the v1 marker for the same read. Most marker skips are small,

and a large skip is indicative of an artifact. Keeping those edges could result in

assembly errors. The marker skip threshold is controlled by assembly parameter

MarkerGraph.edgeMarkerSkipThreshold (default 100 markers).

• Edges with coverage greater than MarkerGraph.lowCoverageThreshold (default

0) and less than MarkerGraph.highCoverageThreshold (default 256), and that

were not previously removed, are processed in order of increasing coverage. Note

that with the default values of these parameters all edges are processed, because

edge coverage is stored using one byte and therefore can never be more than 255 (it

is saturated at 255). For each edge v0→v1, a https://en.wikipedia.org/wiki/

Breadth-first_searchBreadth-First Search (BFS) in the marker graph is per-

formed starting at source vertex v0 and with a limit of MarkerGraph.maxDistance

(default 30) edges distance from vertex v0. The BFS is constrained to not use

edge v0→v1. If the BFS reaches v1, indicating that an alternative path from

v0 to v1 exists, edge v0→v1 is removed. Note that the BFS does not use edges

that have already been removed, and so the process is guaranteed not to affect

reachability. Processing edges in order of increasing coverage makes sure that low

coverage edges the most likely to be removed.

The transitive reduction step is intrinsically sequential and so it is currently

performed in sequential code for simplicity. It could be in principle be parallelized, but

that would require sophisticated locking of marker graph edges to make sure independent
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threads don’t step on each other, possibly reducing reachability. However, even with

sequential code, this step is not computationally expensive, taking typically only a small

fraction of total assembly time.

When the transitive reduction step is complete, the marker graph consists

mostly of linear sections composed of vertices with in-degree and out-degree one, with oc-

casional side branches and bubbles or https://arxiv.org/abs/1307.7925superbubbles,

which are handled in the next two phases described below.

Pruning

At this stage, a few iterations of pruning are done by simply removing, at each

iteration, edge v0→v1 if v0 has in-degree 0 (that is, is a backward-pointing leaf) or

v1 has out-degree 0 (that is, is a forward-pointing leaf). The net effect is that all side

branches of length (number of edges) at most equal to the number of iterations are

removed. This leaves the leaf vertex isolated, which causes no problems. The number

of iterations is controlled by assembly parameter MarkerGraph.pruneIterationCount

(default 6).

BubbleRemoval

The marker graph now consists of mostly linear section with occasional bubbles

or superbubbles [137]. Most of the bubbles and superbubbles are caused by errors, but

some of those are due to heterozygous loci in the genome being assembled. Bubbles

and superbubbles of the latter type could be used for separating haplotypes (phasing)

- a possibility that will be addressed in future Shasta releases. However, the goal of
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Figure C.8: (A) A simple bubble. (B) A superbubble.

the current Shasta implementation is to create a monoploid assembly at all scales but

the very long ones. Accordingly, bubbles and superbubbles at short scales are treated

as errors, and the goal of the bubble/superbubble removal step is to keep the most

significant path in each bubble or superbubble.

The Fig. C.8 shows typical examples of a bubble and superbubble in the

marker graph.

The bubble/superbubble removal process is iterative. Early iterations work

on short scales, and late iterations fork on longer scales. Each iteration uses a length

threshold that controls the maximum number of marker graph edges for features to be

considered for removal. The value of the threshold for each iteration is specified using

assembly parameter MarkerGraph.simplifyMaxLength, which consists of a comma-

separated string of integer numbers, each specifying the threshold for one iteration in

the process. The default value is 10,100,1000, which means that three iterations of this
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process are performed. The first iteration uses a threshold of 10 marker graph edges,

and the second and third iterations use length thresholds of 100 and 1000 marker graph

edges, respectively. The last and largest of the threshold values used determines the

size of the smallest bubble or superbubble that will survive the process. The default

1000 markers is equivalent to roughly 13 Kb. To suppress more bubble/superbubbles,

increase the threshold for the last iteration. To see more bubbles/superbubbles, decrease

the length threshold for the last iteration, or remove the last iteration entirely.

The goal of the increasing threshold values is to work on small features at first,

and on larger features in the later iterations. The choice of MarkerGraph.simplifyMaxLength

could be application dependent. The default value is a reasonable compromise useful if

one desires a mostly monoploid assembly with just some large heterozygous features.

Each iteration consists of two steps. The first removes bubbles and the second

removes superbubbles. Only bubbles/superbubbles consisting of features shorter than

the threshold for the current iteration are considered:

1. Bubble removal

• An assembly graph corresponding to the current marker graph is created.

• Bubbles are located in which the length of all branches (number of marker

graph edges) is no more than the length threshold at the current iteration.

In the assembly graph, a bubble appears as a set of parallel edges (edges with
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the same source and target).

• In each bubble, only the assembly graph edge with the highest average cov-

erage is kept. Marker graph edges corresponding to all other assembly graph

edges in the bubble are flagged as removed.

2. Superbubble removal:

• An assembly graph corresponding to the current marker graph is created.

• Connected components of the assembly graph are computed, but only con-

sidering edges below the current length threshold. This way, each connected

component corresponds to a “cluster” of “short” assembly graph edges.

• For each cluster, entries in the cluster are located. These are vertices that

have in-edges from a vertex outside the cluster. Similarly, out-edges are

located (vertices that have out-edges outside the cluster).

• For each entry/exit pair, the shortest path is computed. However, in this

case the “length” of an assembly graph edge is defined as the inverse of

its average coverage - that is, the inverse of average coverage for all the

contributing marker graph edges.

• Edges on each shortest path are marked as edges to be kept.

• All other edges internal to the cluster are removed.

When all iterations of bubble/superbubble removal are complete, the assem-
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bler creates a final version of the assembly graph. Each edge of the assembly graph

corresponds to a path in the marker graph, for which sequence can be assembled using

the assembleSequence method described above. Note, however, that the marker graph

and the assembly graph have been constructed to contain both strands. Special care is

taken during all transformation steps to make sure that the marker graph (and there-

fore the assembly graph) remain symmetric with respect to strand swaps. Therefore,

the majority of assembly graph edges come in reverse complemented pairs, of which we

assemble only one. It is however possible but rare for an assembly graph to be its own

reverse complement.

Assembly parameters selection The sequence of computational steps out-

lined above depends on a number of assembly parameters, like for example the length

and fraction of k-mers used as markers, the parameters controlling the LowHash itera-

tion, and so on. In Shasta, all of these parameters are exposed as command line options

and none of them are hardcoded or hidden. Our error analysis shows that the set of

assembly parameters we used (the default values for Shasta 0.1.0) gave satisfactory as-

sembly results for our data. However we do not claim that the same choices would

generalize to other situations. Additional work will be needed to find parameter sets

that work for lower or higher coverage, for genomes of different sizes and characteristics,

or for different types of long reads.

237



High performance computing techniques employed by Shasta The

Shasta assembler is designed to run on a single machine with an amount of memory

sufficient to hold all of its data structures (1-2 TB for a human assembly, depending

on coverage). All data structures are memory mapped and can be set up to remain

available after assembly completes. Note that using such a large memory machine does

not substantially increase the cost per CPU cycle. For example, on Amazon AWS the

cost per virtual processor hour for large memory instances is no more than twice the

cost for laptop-sized instances.

There are various advantages to running assemblies in this way:

• Running on a single machine simplifies the logistics of running an assembly, versus

for example running on a cluster of smaller machines with shared storage.

• No disk input/output takes place during assembly, except for loading the reads in

memory and writing out assembly results plus a few small files containing summary

information. This eliminates performance bottlenecks commonly caused by disk

I/O.

• Having all data structures in memory makes it easier and more efficient to exploit

parallelism, even at very low granularity.

• Algorithm development is easier, as all data are immediately accessible without

the need to read files from disk. For example, it is possible to easily rerun a specific

portion of an assembly for experimentation and debugging without any wait time

for data structures to be read from disk.
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• When the assembler data structures are set up to remain in memory after the

assembler completes, InspectingResults.htmlit is possible to use the Python

API or the Shasta http server to inspect and analyze an assembly and its data

structures (for example, display a portion of the read graph, marker graph, or

assembly graph).

• For optimal performance, assembler data structures can be mapped to Linux 2

MB pages (“huge pages”). This makes it faster for the operating system to al-

locate and manage the memory, and improves TLB efficiency. Using huge pages

mapped on the hugetlbfs filesystem (Shasta executable options --memoryMode

filesystem --memoryBacking 2M) can result in a significant speed up (20-30%)

for large assemblies. However it requires root privilege via sudo.

To optimize performance in this setting, the Shasta assembler uses various

techniques:

• In most parallel steps, the division of work among threads is not set up in advance

but decided dynamically (“Dynamic load balancing”). As a thread finishes a

piece of work assigned to it, it grabs another chunk of work to do. The process

of assigning work items to threads is lock-free (that is, it uses atomic memory

primitives rather than mutexes or other synchronization methods provided by the

operating system).

• Most large memory allocations are done via mmap and can optionally be mapped

to Linux 2 MB pages backed by the Linux hugetlbfs. This memory is persistent
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until the next reboot and is resident (non-pageable). As a result, assembler data

structures can be kept in memory and reaccessed repeatedly at very low cost.

This facilitates algorithm development (e. g. it allows repeatedly testing a single

assembly phase without having to rerun the entire assembly each time or having

to wait for data to load) and postprocessing (inspecting assembly data structures

after the assembly is complete). The Shasta http server and Python API take

advantage of this capability.

• The Shasta code includes a C++ class (class shasta::MemoryMapped::Vector) for

conveniently handling these large memory-mapped regions as C++ containers

with familiar semantics.

• In situations where a large number of small vectors are required, a two-pass process

is used (class shasta::MemoryMapped::VectorOfVectors). In the first pass, one

computes the length of each of the vectors. A single large area is then allocated

to hold all of the vectors contiguously, together with another area to hold indexes

pointing to the beginning of each of the short vectors. In a second pass, the vectors

are then filled. Both passes can be performed in parallel and are entirely lock-

free. This process eliminates memory allocation overhead that would be incurred

if each of the vectors were to be allocated individually.

Thanks to these techniques, Shasta achieves close to 100% CPU utilization

during its parallel phases, even when using large numbers of threads. However, a number

of sequential phases remain, which typically result in average CPU utilization during a
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large assembly around 70%. Some of these sequential phases can be parallelized, which

would result in increased average CPU utilization and improved assembly performance.

MarginPolish

Throughout we used MarginPolish (https://github.com/ucsc-nanopore-cgl/

MarginPolish) version 1.0.0.

MarginPolish is an assembly refinement tool designed to sum over (marginalize)

read to assembly alignment uncertainty. It takes as input a genome assembly and set

of aligned reads in BAM format.

It outputs a refined version of the input genome assembly after attempting to

correct base-level errors in terms of substitutions and indels (insertions and deletions).

It can also output a summary representation of the assembly and read alignments as

a weighted partial order alignment graph (POA), which is used by the HELEN neural

network based polisher described below.

It was designed and is optimized to work with noisy long ONT reads, although

parameterization for other, similar read types is easily possible. It does not yet consider

signal-level information from ONT reads. It is also currently a haploid polisher, in that

it does not attempt to recognize or represent heterozygous polymorphisms or phasing

relationships. For haploid genome assemblies of a diploid genome it will therefore fail

to capture half of all heterozygous polymorphisms.

Algorithm Overview MarginPolish works in overview as follows:
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1. Reads and the input assembly are converted to their run-length encoding (RLE)

(see Shasta description above for description and rationale).

2. A restricted, weighted Partial Order Alignment [92] (POA) graph is constructed

representing the RLE input assembly and potential edits to it in terms of substi-

tutions and indels.

3. Within identified regions of the POA containing likely assembly errors:

• A set of alternative sequences representing combinations of edits are enumer-

ated by locally traversing the POA within the region.

• The likelihood of the existing and each alternative sequence is evaluated given

the aligned reads.

• If an alternative sequence with higher likelihood than the current reference

exists then the assembly at the location is updated with this higher likelihood

sequence.

4. Optionally, the program loops back to step 2 to repeat the refinement process (by

default it loops back once).

5. The modified RLE assembly is expanded by estimating the repeat count of each

base given the reads using a simple Bayesian model. The resulting final, polished

assembly is output. In addition, a representation of the weighted POA can be

output.
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Innovations Compared to existing tools MarginPolish is most similar to

Racon [94], in that they are comparable in speed, both principally use small-parameter

HMM like models and both do not currently use signal information. Compared to

Racon MarginPolish has some key innovations that we have found to improve polishing

accuracy:

• MarginPolish, as with our earlier tool in the Margin series [2], uses the forward-

backward and forward algorithms for pair hidden Markov models (HMMs) to sum

over all possible pairwise alignments between pairs of sequences instead of the

single most probable alignment (Viterbi). Considering all alignments allows more

information to be extracted per read.

• The POA graph is constructed from a set of weights computed from the posterior

alignment probabilities of each read to the initial assembled reference sequence

(see below), the result is that MarginPolish POA construction does not have a

read-order dependence. This is somewhat similar to that described by HGAP3

[138]. Most earlier algorithms for constructing POA graphs have a well known

explicit read order dependence that can result in undesirable topologies [92].

• MarginPolish works in run-length encoded space, which results in considerably

less alignment uncertainty and correspondingly improved performance.

• MarginPolish, similarly to Nanopolish [139], evaluates the likelihood of each alter-

native sequence introduced into the assembly. This improves performance relative

to a faster but less accurate algorithm that traces back a consensus sequence
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through the POA graph.

• MarginPolish employs a simple chunking scheme to break up the polishing of the

assembly into overlapping pieces. This results in low memory usage per core and

simple parallelism.

Below steps 2, 3 and 5 of the MarginPolish algorithm are described in detail.

In addition, the parallelization scheme is described.

Partial Order Alignment Graph Construction To create the POA we

start with the existing assembled sequence s = s1, s2, . . . sn and for each read r =

r1, r2, . . . , rm in the set of reads R use the Forward-Backward algorithm with a stan-

dard 3-state, affine-gap pair-HMM to derive posterior alignment probabilities using

the implementation described in [106]. The parameters for this model are specified

in the polish.hmm subtree of the JSON formatted parameters file, including “pol-

ish.hmm.transitions”, and “polish.hmm.emissions”. Current defaults were tuned via

expectation maximization [70] of R9.4 ONT reads aligned to a bacterial reference; we

have observed the parameters for this HMM seem robust to small changes in base-

caller versions. The result of running the Forward-backward algorithm is three sets of

posterior probabilities:

• Firstly match probabilities: the set of posterior match probabilities, each the prob-

ability P (ri ⋄ sj) that a read base ri is aligned to a base sj in s.

• Secondly insertion probabilities: the set of posterior insertion probabilities, each
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the probability P (ri ⋄−j) that a read base ri is inserted between two bases sj and

sj+1 in s, or, if j = 0, inserted before the start of s, or, if j = n, after the end of

s.

• Thirdly deletion probabilities, the set of posterior deletion probabilities, each the

probability P (−i ⋄ sj) that a base sj in s is deleted between two read bases ri

and ri+1. (Note, because a read is generally an incomplete observation of s we

consider the probability that a base in s is deleted before the first position or after

the last position of a read as 0).

As most probabilities in these three sets are very small and yet to store and compute all

the probabilities would require evaluating comparatively large forward and backward

alignment matrices we restrict the set of probabilities heuristically as follows:

• We use a banded forward-backward algorithm, as originally described here [140].

To do this we use the original alignment of the read to s as in the input BAM file.

Given that s is generally much longer than each read this allows computation of

each forward-backward invocation in time linearly proportional to the length of

each read, at the cost of restricting the probability computation to a sub-portion

of the overall matrix, albeit one that contains the vast majority of the probability

mass.

• We only store posterior probabilities above a threshold

(polish.pairwiseAlignmentParameters.threshold, by default 0.01), treating

smaller probabilities as equivalent as zero.
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The result is that these three sets of probabilities are a very sparse subset of

the complete sets.

To estimate the posterior probability of a multi-base insertion of a read sub-

string ri, ri+1, . . . rk at a given location j in s involves repeated summation over terms

in the forward and backward matrices. Instead to approximate this probability we

heuristically use:

P (ri, ri+1, . . . rk ⋄ −j) = argmin
l∈[i,k]

P (rl ⋄ −j)

the minimum probability of any base in the multi-base insertion being individ-

ually inserted at the location in s as a proxy, a probability that is an upper-bound on

the actual probability.

Similarly we estimate the posterior probability of a deletion involving more

than one contiguous base s at a given location in a read using analogous logic. As we

store a sparse subset of the single-base insertion and deletion probabilities and given

these probability approximations it is easy to calculate all the multi-base indel prob-

abilities with value greater than t by linear traversal of the single-based insertion and

deletion probabilities after sorting them, respectively, by their read and s coordinates.

The result of such calculation is expanded sets of insertion and deletion probabilities

that include multi-base probabilities.

To build the POA we start from s, which we call the backbone. The backbone

is a graph where each base sj in s corresponds to a node, there are special source and

sink nodes (which do not have a base label), and the directed edges connect the nodes
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for successive bases sj , sj+1 in s, from the source node to the node for s1, and, similarly,

from the node for sn to the sink node.

Each non-source/sink node in the backbone has a separate weight for each

possible base x ∈ {A,C,G, T}. This weight:

w(j, x) =
∑
r∈R

∑
i

⊮x(ri)P (ri ⋄ sj)

where ⊮x(ri) is an indicator function that is 1 if ri = x and otherwise 0,

corresponds to the sum of match probabilities of read elements of base x being aligned

to sj . This weight has a probabilistic interpretation: it is the total number of expected

observations of the base x in the reads aligned to sj , summing over all possible pairwise

alignments of the reads to s. It can be fractional because of the inherent uncertainty of

these alignments, e.g. we may predict only a 50% probability of observing such a base

in a read.

We add deletion edges, which connect nodes in the backbone. Indexing the

nodes in the backbone from 0 (the source) to the source n + 1 (the sink), a deletion

edge between positions j and k in the backbone corresponds to the deletion of bases

j, j + 1, . . . k − 1 in s. Each deletion edge has a weight equal to the sum of deletion

probabilities for deletion events that delete the corresponding base(s) in s, summing over

all possible deletion locations in all reads. Deletions with no weight are not included.

Again, this weight has a probabilistic interpretation: it is the expected number of times

we see the deletion in the reads, and again it may be fractional.
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Figure C.9: A) An example POA, assuming approximately 30x read coverage. The backbone is shown
in red. Each non-source/sink node has a vector of weights, one for each possible base. Deletion edges
are shown in teal, they also each have a weight. Finally insertion nodes are shown in brown, each also
has a weight. (B) A pruned POA, removing deletions and insertions that have less than a threshold
weight and highlighting plausible bases in bold. There are six plausible nucleotide sequences represented
by paths through the POA and selections of plausible base labels: G;AT;A;T;A;C:A, G;AT;A;T;A;C:G,
G;A;T;A;C:A, G;A;T;A;C:G, G;A;C:A, G;A;C:G. To avoid the combinatorial explosion of such enu-
meration we identify subgraphs (C) and locally enumerate the possible subsequences in these regions
independently (dotted rectangles identify subgraphs selected). In each subgraph there is a source and
sink node that does not overlap any proposed edit.

We represent insertions as nodes labelled with an insertion sequence. Each

insertion node has a single incoming edge from a backbone node, and a single outgoing

edge to the next backbone node in the backbone sequence. Each insertion is labeled

with a weight equal to the sum of probabilities of events that insert the given insertion

sequence between the corresponding bases in s. The resulting POA is a restricted form

of a weighted, directed acyclic graph (Fig. C.9(A) shows an example).

Frequently either an insertion or deletion can be made between different suc-
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cessive bases in s resulting in the same edited sequence. To ensure that such equivalent

events are not represented multiple times in the POA, and to ensure we sum their

weights correctly, we ‘left shift’ indels to their maximum extent. When shifting an indel

results in multiple equivalent deletion edges or insertions we remove the duplicate ele-

ments, updating the weight of the residual element to include the sum of the weights of

the removed elements. For example, the insertion of ‘AT’ in Fig. C.9 is shifted left to its

maximal extent, and could include the merger of an equivalent ‘AT’ insertion starting

two backbone nodes to the right.

Local Haplotype Proposal After constructing the POA we use it to sample

alternative assemblies. We first prune the POA to mark indels and base substitutions

with weight below a threshold, which are generally the result of sequencing errors (Fig.

C.9(B)). Currently this threshold (polish.candidateVariantWeight=0.18, established

empirically) is normalized as a fraction of the estimated coverage at the site, which

is calculated in a running window around each node in the backbone of 100 bases.

Consequently if fewer than 18% of the reads are expected to include the change then

the edit is pruned from consideration.

To further avoid a combinatorial explosion we sample alternative assemblies

locally. We identify subgraphs of s containing indels and substitutions to s then in each

subgraph, defined by a start and end backbone vertex, we enumerate all possible paths

between the start and end vertex and all plausible base substitutions from the backbone

sequence. The rationale for heuristically doing this locally is that two subgraphs sep-
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Figure C.10: Visual representation of run length inference. This diagram shows how a consen-
sus run length is inferred for a set of aligned lengths (X) that pertain to a single position. The lengths
are factored and then iterated over, and log likelihood is calculated for every possible true length up
to a predefined limit. Note that in this example, the most frequent observation (4bp) is not the most
likely true length (5bp) given the model.

arated by one or more anchor backbone sites with no plausible edits are conditionally

independent of each other given the corresponding interstitial anchoring substring of s

and the substrings of the reads aligning to it. Currently, any backbone site more than

polish.columnAnchorTrim=5 nodes (equivalent to bases) in the backbone from a node

overlapping a plausible edit (either substitution or indel) is considered an anchor. This

heuristic allows for some exploration of alignment uncertainty around a potential edit.

Given the set of anchors computation proceeds by identifying successive pairs of anchors

separated by subgraphs containing the potential edits, with the two anchors considered

the source and sink vertex.

A Simple Bayesian Model for Run-length Decoding Run-length en-

coding allows for separate modelling of length and nucleotide error profiles. In par-

ticular, length predictions are notoriously error prone in nanopore basecalling. Since
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homopolymers produce continuous signals, and DNA translocates at a variable rate

through the pore, the basecaller often fails to infer the true number of bases given a

single sample. For this reason, a Bayesian model is used for error correction in the

length domain, given a distribution of repeated samples at a locus.

To model the error profile, a suitable reference sequence is selected as the truth

set. Reads and reference are run-length encoded and aligned by their nucleotides. The

alignment is used to generate a mapping of observed lengths to their true length (y, x)

where y = true and x = observed for each position in the alignment. Observations from

alignment are tracked using a matrix of predefined size (ymax = 50, xmax = 50) in which

each coordinate contains the corresponding count for (y, x). Finally the matrix is nor-

malized along one axis to generate a probability distribution of P (X|yj) for j in [1, ymax].

This process is performed for each of the 4 bases.

With enough observations, the model can be used to find the most probable

true run length given a vector of observed lengths X. This is done using a simple

log likelihood calculation over the observations xi for all possible true lengths yj in

Y , assuming the length observations to be independent and identically distributed.

The length yj corresponding to the greatest likelihood P (X|yj , Base) is chosen as the

consensus length for each alignment position (Fig. C.10).

Training

To generate a model, we ran MarginPolish with reads from a specific basecaller

version aligned to a reference (GRCh38) and specified the --outputRepeatCounts flag.
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This option produces a TSV for each chunk describing all the observed repeat counts

aligned to each backbone node in the POA. These files are consumed by a script in

the https://github.com/rlorigro/runlength_analysis repository, which generates

a RLE consensus sequence, aligns to the reference, and performs the described process

to produce the model.

The allParams.np.human.guppy-ff-235.json model used for most of the

analysis was generated from HG00733 reads basecalled with Guppy Flipflop v2.3.5

aligned to GRCh38, with chromosomes 1, 2, 3, 4, 5, 6, and 12 selected. The model

allParams.np.human.guppy-ff-233.json was generated from Guppy Flipflop v2.3.3

data and chromosomes 1-10 were used. This model was also used for the CHM13 anal-

ysis, as the run-length error profile is very similar between v2.3.3 and v2.3.1 (v2.3.5 has

a drastically different error profile, as is shown below in Fig. C.13).

Parallelization and Computational Considerations

To parallelize MarginPolish we break the assembly up into chunks of size

polish.chunkSize=1000 bases, with an overlap of polish.chunkBoundary=50 bases.

We then run the MarginPolish algorithm on each chunk independently and in paral-

lel, stitching together the resulting chunks after finding an optimal pairwise alignment

(using the default hmm described earlier) of the overlaps that we use to remove the du-

plication. We can further parallelize the algorithm across machines or processes using

a provided Toil script CITE:PMID: 28398314.

Memory usage scales with thread count, read depth, and chunk size. For
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this reason, we downsample reads in a chunk to polish.maxDepth=50× coverage by

counting total nucleotides in the chunk Nc and discarding reads with likelihood 1 −

(chunkSize+2 ∗ chunkBoundary) ∗ maxDepth/Nc. With these parameters, we find that

2GB of memory per thread is sufficient to run MarginPolish on genome-scale assemblies.

Across 13 whole-genome runs, we averaged roughly 350 CPU hours per gigabase of

assembled sequence.

HELEN: Homopolymer Encoded Long-read Error-corrector

for Nanopore

HELEN is a deep neural network based haploid consensus sequence polisher.

HELEN employs a multi-task recurrent neural network (RNN) [93] that takes the

weights of the partial order alignment (POA) graph of MarginPolish to predict a base

and a run-length for each genomic position. MarginPolish constructs the POA graph by

performing multiple possible alignments of a single read that makes the weights asso-

ciative to the correct underlying base and a run-length. The RNN employed in HELEN

takes advantage of the transitive relationship of the genomic sequence and associative

coupling of the POA weights to the correct base and run-length to produce a consensus

sequence with higher accuracy.

The error-correction with HELEN is done in three steps. First, we generate

tensor-like images of genomic segments with MarginPolish that encodes POA graph

weights for each genomic position. Then we use a trained RNN model to produce
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predicted bases and run-lengths for each of the generated images. Finally, we stitch the

chunked sequences to get a contiguous polished sequence.

Image Generation

MarginPolish produces an image-like summary of the final POA state for use

by HELEN. At a high level, the image summarizes the weighted alignment likelihoods

of all reads divided into nucleotide, orientation, and run-length.

The positions of the POA nodes are recorded using three coordinates: the

position in the backbone sequence of the POA, the position in the insert sequences

between backbone nodes, and the index of the run-length block. All backbone positions

have an insert coordinate of 0. Each backbone and insert coordinate includes one or

more run-length coordinate.

When encoding a run-length, we divide all read observations into blocks from 0

to 10 inclusive (this length is configurable). For cases where no observations exceed the

maximum run-length, a single run-length image can describe the POA node. When an

observed run-length exceeds the length of the block, the run-length is encoded as that

block’s maximum (10), and the remaining run-length is encoded in successive blocks.

For a run-length that terminates in a block, its weight is contributed to the run-length

0 column in all successive blocks. This means that the records for all run-length blocks

of a given backbone and insert position have the same total weight. As an example,

consider three read positions aligned to a node with run-lengths of 8, 10, and 12. These

require two run-length blocks to describe: the first block includes one 8 and two 10s,
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(i)
Assembly sequence: GGAAAAAAAACATTTTAAAA
True sequence:         GGAAAAAAAA - - TTTTAAAA

Assembly sequence in run-length: G A A C A T A
2 5 3 1 1 4 4

Truth sequence in run-length: G A A - - T A
2 5 3 0 0 4 4

(ii)
Assembly sequence: ATGAAA - - CTTG
True sequence:         ATGAAAGGCTTG

Assembly sequence in run-length: A T G A C T G
1 1 1 3 1 2 1

Truth sequence in run-length: A T G A G C T G
1 1 1 3 2 1 2 1

a.

b.

(i)

(ii)

Figure C.11: MarginPolish Images A graphical representation of images from two labeled regions
selected to demonstrate: the encoding of a single POA node into two run-length blocks (i), a true
deletion (i), and a true insert (ii). The y-axis shows truth labels for nucleotides and run-lengths, the
x-axis describes features in the images, and colors show associated weights.
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and the second includes two 0s and one 2.

The information described at each position (backbone, insert, and run-length)

is encoded in 92 features: each nucleotide {A, C, T, G} and run-length {0, 1, .., 10},

plus a gap weight (for deletions in read alignments). The weights for each of these 45

observations are separated into forward and reverse strand for a total of 90 features.

The weights for each of these features are normalized over the total weight for the record

and accompanied by an additional data point describing the total weight of the record.

This normalization column for the record is an approximation of the read depth aligned

to that node. Insert nodes are annotated with a binary feature (for a final total of 92);

weights for an insert node’s alignments are normalized over total weight at the backbone

node it is rooted at (not the weight of the insert node itself) and gap alignment weights

are not applied to them.

Labeling nodes for training requires a truth sequence aligned to the assembly

reference. This provides a genome-scale location for the true sequence and allows the its

length to help in the resolution of segmental duplications or repetitive regions. When

a region of the assembly is analyzed with MarginPolish, the truth sequences aligned to

that region are extracted. If there is not a single truth sequence which approximately

matches the length of the consensus for this region, we treat it as an uncertain region

and no training images are produced. Having identified a suitable truth sequence, it is

aligned to the final consensus sequence in non-run-length space with Smith-Waterman.

Both sequences and the alignment are then run-length encoded, and true labels are

matched with locations in the images. All data between the first and last matched
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nodes are used in the final training images (leading and trailing inserts or deletes are

discarded). For our training, we aligned the truth sequences with minimap2 using the

asm20 preset and filtered the alignments to include only primary and supplementary

alignments (no secondary alignments).

Fig. C.11 shows a graphical representation of the images. On the y-axis we

display true nucleotide labels (with the dash representing no alignment / gap) and true

run-length. On the x-axis the features used as input to HELEN are displayed: first

the normalization column (the total weight at the backbone position), second the insert

column (the binary feature encoding whether the image is for a backbone or insert

node), forty-eight columns describing the weights associated with read observations

(stratified by nucleotide, run-length, strand), and two columns describing weights for

gaps in read alignments (stratified by strand). In this example, we have reduced the

maximum run-length per block from 10 to 5 for demonstrative purposes.

We selected these two images to highlight three features of the model: the way

multiple run-length blocks are used to encode observations for a single node, and the

relevant features around a true gap and a true insert that enable HELEN to correct

these errors.

To illustrate multiple run length blocks, we highlight two locations on on image

(i). The first are the nodes labeled (A,5) and (A,3). This is the labeling for a true (A,8)

sequence separated into two blocks. See that the bulk of the weight is on the (A,5)

features on the first block, with most of that distributed across the (A,1-3) features on

the second. Second, observe the nodes on (i) labeled (T,4) and (T,0). Here we show
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the true labeling of a (T,4) sequence where there are some read observations extending

into a second run-length block.

To show a features of a true gap, note on (i) the non-insert nodes labeled (-,0).

We know that MarginPolish predicted a single cytosine nucleotide (as it is a backbone

node and the (C,1) nodes have the bulk of the weight. Here, HELEN is able to use the

low overall weight (the lighter region in the normalization column) at this location as

evidence of fewer supporting read alignments and can correct the call.

The position labeled (G,2) on (ii) details a true insertion. It is not detected

by MarginPolish (as all insert nodes are not included in the final consensus sequence).

Read support is present for the insert, less than the backbone nodes in this image but

more than the other insert nodes. HELEN can identify this sequence and correct it.

Finally, we note that the length of the run length blocks results in streaks at

multiples of this length (10) for long homopolymers. The root of this effect lies in the

basecaller producing similar prediction distributions for these cases (ie, the run length

predictions made by the basecaller for a true run length of 25 are similar to the run

length predictions made for a true run length of 35, see Fig. 3.4b Guppy 2.3.3). This

gives the model little information to differentiate upon, and the issue is exacerbated by

the low occurrence of long run lengths in the training data. Because the model divides

run length observations into chunks of size 10, it tends to call the first chunks correctly

(having length 10) but has very low signal for the last chunk and most often predicts 0.
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Figure C.12: The sequence-to-sequence model implemented in Helen.

The model

We use a sequence transduction model for consensus polishing. The model

structure consists of two single-layer gated recurrent neural units (GRU) for encoding

and decoding on top of two linear transformation layers. The two linear transformation

layers independently predict a base and a run-length for each position in the input

sequence. Each unit of the GRU can be described using the four functions it calculates:

rt = Sigmoid(Wirxt +Whrh(t−1))

ut = Sigmoid(Wiuxt +Whuh(t−1))

nt = tanh(Winxt + rt ∗ (Whnh(t−1)))

ht = (1− ut) ∗ nt + ut ∗ h(t−1)

(C.1)
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For each genomic position t, we calculate the current state ht from the new state nt

and the update value ut applied to the output state of previous genomic position h(t−1).

The update function ut decides how much past information to propagate to the next

genomic position. It multiplies the input xt with the weight vector Wiu and multiplies

the hidden state of the previous genomic position h(t−1). The weight vectors decide

how much from the previous state to propagate to the next state. The reset function

rt decides how much information to dissolve from the previous state. Using a different

weight vector, the rt function decides how much information to dissolve from the past.

The new memory state nt is calculated by multiplying the input xt with the weight

vector Win and applying a Hadamard multiplication ∗ between the reset function value

and a weighted state of the previous hidden state h(t−1). The new state captures the

associative relationship between the input weights and true prediction. In this setup,

we can see that rt and ut can decide to hold memory from distant locations while nt

captures the associative nature of the weights to the prediction, helping the model to

decide how to propagate genomic information in the sequence. The output of each

genomic position ht can be then fed to the next genomic position as a reference to the

previously decoded genomic position. The final two layers apply linear transformation

functions:

Bt = ht ∗W T

Rt = ht ∗W T

(C.2)

The two linear transformation functions independently calculate a base prediction Bt

and a run-length prediction Rt from the hidden state output of that genomic position
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ht. The model operates in hard parameter sharing mode where the model learns to

perform two tasks in equation C.2 using the same set of underlying parameters from

equation C.1. The ability of the model to reduce the error rate of the assemblies from

multiple samples with multiple assemblers shows the generalizability and robustness we

achieve with this method.

Sliding window mechanism

One of the challenges of this setup is the sequence length. From the functions of

recurrent units in equation C.1, we see that each state is updated based on the previous

state and associated weight. Due to the noisy nature of the data, if the sequence length

is too long, the back-propagation becomes difficult over noisy regions. On the other

hand, a small sequence length would make the program very slow. We balance the

run-time and accuracy by using a sliding window approach.

During the sliding-window, we chunk the sequence of thousand bases to multi-

ple overlapping windows of length 100. Starting from the leftmost window, we perform

prediction on sequence pileups of the window and transmit the hidden state of the cur-

rent window to the next window and slide the window by 50 bases to the right. For each

window, we collect all the predicted values and add it to a global sequence inference

counter that can keep track of predicted probabilities of base and run-length at each

position. Lastly, we aggregate the probabilities from the global inference counter to gen-

erate a sequence. This setup allows us to utilize the minibatch feature of the popular

neural network libraries allowing inference on a batch of inputs instead of performing
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inference one at a time.

Training the model

HELEN is trained with a gradient descent method. We use Adaptive Moment

Estimation (Adam) method to compute gradients for each of the parameters in the

model based on a target loss function. Adam uses both decaying squared gradients

and the decaying average of gradients, making it suitable to use with recurrent neural

networks[93]. Adam performs gradient optimization by adapting the parameters to set

in a way that minimizes the value of the loss function.

We perform optimization through back-propagation per window of the input

sequence. From equation C.2, we see that we get two vectors B = [B1, B2, B3...Bn] and

R = [R1, R2, R3...Rn] containing base and run-length predictions for each window of

size n. From the labeled data we get two more such vectors TB = [TB1, TB2, TB3, ...TBn]

and TR = [TR1, TR2, TR3, ...TRn] containing the true base and true rle values of each

position in the window. From these loss function the loss L is calculated:

LB(B, TB) = −B[TB] + log
(∑

j exp(B[j])
)

LR(R, TR) = weight[TR]
(
−R[TR] + log

(∑
j exp(R[j])

))
L = LB + LR

(C.3)

In equation C.3, LB calculates the base prediction loss and LR calculates the rle pre-

diction loss. The rle class distribution is heavily biased toward lower run-length values,

so, we apply class-wise weights depending on the observation of per class to make the
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learning process balanced between classes. The optimizer then updates the parameters

or weights W of the model from equation C.1 and equation C.2 in a way that minimizes

the value of the loss function. We can see that the loss function is a summation of the

two independent loss functions but the underlying weights from the recurrent neural

network belongs to the same set of elements in the model. In this setting, the model

optimizes to learn both task simultaneously by updating the same set of weights.

Sequence stitching

To parallelize the polishing pipeline, MarginPolish chunks the genome into

smaller segments while generating images. Each image segment encodes a thousand

nucleotide bases, and two adjacent chunks have 50 nucleotide bases overlap between

them. During the inference step, we save all run-length and base predictions of the

images, including their start and end genomic positions.

For stitching, we load all the image predictions and sort them based on the

genomic start position of the image chunk and stitch them in parallel processes. For

example, if there are n predictions from n images of a contig and we have t available

threads, we divide n prediction chunks into t buckets each containing approximately

n/t predicted sequences. Then we start t processes in parallel where each process

stitches all the sequences assigned to it and returns a longer sequence. For stitching

two adjacent sequences, we take the overlapping sequences between the two sequence

and perform a pairwise Smith-Waterman alignment. From the alignment, we pick an

anchor position where both sequences agree the most and create one sequence. After all
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the processes finish stitching the buckets, we get t longer sequences generated by each

process. Finally, we iteratively stitch the t sequences using the same process and get

one contiguous sequence for the contig.

Generating trained models

In supplementary tables D.16, D.19 and D.18 we report several models for

HELEN. The models are trained on different sets of data with varying Guppy base-caller

versions. We discuss three trained models: r941 flip235 v001.pkl, r941 flip233 v001.pkl,

and r941 flip231 v001.pkl to use with HELEN for different versions of the ONT Guppy

base-callers. Due to the difference in the error profile of different versions of the Guppy

base-caller, we trained three different models.

Table C.1: Description of trained models for HELEN.

Model Name Base caller version Training sample Training region Testing region

r941 flip235 v001.pkl Guppy 2.3.5 HG002 Chr1-19, Chr21-22 Chr20

r941 flip233 v001.pkl Guppy 2.3.3 HG002 Chr1-19, Chr21-22 Chr20

r941 flip231 v001.pkl Guppy 2.3.1 CHM13 Chr1-6 Chr20

The r941 flip235 v001.pkl is trained on HG002 base called with Guppy

2.3.5. The model is trained on the high confidence regions of all autosomes and tested

on Chr20. The training script trained the model for 80 hours on 10 epochs, which

generated 10 trained models. We picked the model that has the best performance on
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Figure C.13: Run-length confusion in different versions of Guppy base caller

Chr20 as the final model.

The CHM13 data from T2T consortium [84] were base called with Guppy 2.3.1.

The error profile of Guppy 2.3.1 is significantly different than Guppy 2.3.5. Figure C.13

shows the difference in underlying error profile of HG00733 sample for two different

versions of Guppy. We trained r941 flip233 v001.pkl Model on HG002 Guppy 2.3.3

data. Although the error profile of Guppy 2.3.1 and Guppy 2.3.3 are similar, the reported

base qualities are different. So, we trained another model r941 flip231 v001.pkl on

Chr1-6 of CHM13 to see further improvement in the consensus quality of CHM13.

Implementation notes

We have implemented HELEN using python and C++ programming language.

We use PyTorch [141] deep neural network library for the model implementation. We

also use the Striped-Smith Waterman algorithm implementation to use during stitching

and Pybind11 [142] as a bridge between C++ and python methods. The image data

is saved using HDF5 file format. The implementation is publicly available via GitHub
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(https://github.com/kishwarshafin/helen).
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Appendix D

Shasta appendix

The following contains relevant figures and tables from the supplement of the

Shasta paper.

Supplementary Notes

Execution Parameters

Shasta

All Shasta runs used Shasta version 0.1.0 built from https://github.com/

chanzuckerberg/shasta. Rather than using the distributed version of the release,

the source code was rebuilt locally for best performance as recommended by Shasta

documentation.

The Shasta executable was run with the following command:

shasta --memoryMode filesystem --memoryBacking 2M
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Canu

Canu 1.8 from https://github.com/marbl/canu was run with the following

command:

canu -p asm -d asm genomeSize=3.1g

‘corMhapOptions=--threshold 0.8 --num-hashes 512

--ordered-sketch-size 1000 --ordered-kmer-size 14’

‘gridOptionsJobName=mom’

‘gridOptions=--time=240:00:00 --partition=norm’

‘stageDirectory=/lscratch/$SLURM_JOBID’

‘gridEngineStageOption=--gres=lscratch:100’

‘correctedErrorRate=0.105’

-nanopore-raw input.fastq.gz

Wtdbg2

Wtdbg2 version 2.3 from https://github.com/ruanjue/wtdbg2 was run with

the following commands:

wtdbg2 -t 0 -x ont -L 10000 -g 3.3g

-i reads1.fastq.gz -i reads2.fastq.gz -i reads3.fastq.gz

-o wtdbg2-assembly

wtpoa-cns -t 31 -i wtdbg2-assembly.ctg.lay.gz -f

-o wtdbg2-assembly.fa
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Flye

Flye version 2.4.2 from https://github.com/fenderglass/Flye was run with

the following command:

flye --nano-raw reads1.10kb.fastq.gz reads2.10kb.fastq.gz

reads3.10kb.fastq.gz

--genome-size 3.3g --out-dir flye --threads 123

Racon

We used a home-grown script to manage running 4 iterations of Racon, v1.3.2.

The code for the script can be found here https://github.com/rlorigro/nanopore_

assembly_and_polishing_assessment, and was run with the following command:

python3 nanopore_assembly_and_polishing_assessment/polish.py

--true_ref hg38.fa

--contigs assembly.fasta

--sequences reads.fasta

--output_dir racon

--n_passes 4

When run for the analysis to produce Supplemental Table D.22, the n passes

parameter was set to 1.
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Medaka

Medaka version 0.6.0-alpha.3 (https://github.com/nanoporetech/medaka)

was run with the following commands:

medaka consensus -i reads5.fasta -d assembly_racon4x.fasta

-o medaka -t 64 -m r941_flip235

medaka stitch medaka/consensus_probs.hdf medaka/consensus.fasta

No changes in the arguments were used for the analysis that produced Supple-

mental Table D.22. This includes the GPU mode, which is configured during compila-

tion.

Minialign

Minialign is bundled with Medaka, and was run with the following commands:

mini_align -i reads.fasta -r assembly.fasta

-P -m -p medaka/calls_to_draft -t 60

Minimap2, Samtools

Minimap2 version 2.15-r908-dirty from https://github.com/lh3/minimap2.

We used samtools 1.7 using htslib 1.7-2 for sorting and filtering. The following three

commands were piped into each other:

minimap2 -ax map-ont -t 70 assembly.fasta reads.fasta

samtools sort -@ 70

270



samtools view -hb -F 0x104 > align.bam

MarginPolish

MarginPolish 1.0.0 was compiled from https://github.com/UCSC-nanopore-cgl/

MarginPolish run with the following command:

marginPolish input.bam input.fa allParams.np.human.guppy-ff-235.json

-f -o output_location -t 70

When run to produce Supplemental Table D.22, MarginPolish was used com-

piled from the commit 4c1da1e1b3efc739e9c48913416efac619d3d40c on GitHub.

HELEN

HELEN version 0.1 from https://github.com/kishwarshafin/helen was

run with the following commands:

python3 /home/ubuntu/software/helen/call_consensus.py

-i images/ -b 1024 -w 16 -t 32 -m r941_flip235_v001.pkl -o out -g

python3 /home/ubuntu/software/helen/stitch.py

-i out/helen_predictions_05312019_183902.hdf -o out/

-p polished_assembly -t 32
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HiRise

HiRise was run via a docker container, with access given by Dovetail Genomics.

The HiRise version was v2.1.6, with the HiRise Helper version 2.1.10 and the HiRise

Utils version v2.1.7-3-g98c1a1b. Default parameters were used.

Long Ranger

The 10X Long Ranger Align pipeline (v2.2) was used for any alignment of 10X

reads to a reference. An example sequence of commands was:

longranger mkref assembly.fa

longranger align --id 10x-chm13-chrX-round1

--reference refdata-assembly --fastqs fastq/

Pilon

An example Pilon command (using v1.23) is below:

java -Xmx200G -jar pilon-1.23.jar --bam align.bam --genome assembly.fa

--threads 32 --output pilon-out

Trio-binning

For HG00733, the parental read sample accessions were obtained from 1000

genome database:

http://www.internationalgenome.org/data-portal/sample/HG00731
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http://www.internationalgenome.org/data-portal/sample/HG00732

Briefly, k-mers were counted with meryl, subtracted to generate maternal/paternal

sets, and any k-mers occurring less than 6 times for maternal k-mers and 5 times for

paternal k-mers were not used. Binning did not use normalization by k-mer set size.

This resulted in 35.2x maternal, 37.3x paternal, and 5.6x unclassified. Assembly did

not use the unclassified reads and ran with the command:

canu -p asm -d <mom/dad> ‘genomeSize=3.1g’

‘corMhapOptions=--threshold 0.8 --num-hashes 512

--ordered-sketch-size 1000 --ordered-kmer-size 14’

‘corMinCoverage=0’

Each haplotype assembly required approximately 100k CPU hours (4-5 days). A sub-

sequent run using Canu 1.8 and automated binning with the command:

canu -p asm -d asm ‘genomeSize=3.1g’

‘corMhapOptions=--threshold 0.8 --num-hashes 512

--ordered-sketch-size 1000 --ordered-kmer-size 14’

‘gridOptionsJobName=733_trio’

‘corMinCoverage=0’

-haplotypeMOM hg0732/*fastq.gz

-haplotypeDAD hg0731/*.fastq.gz

resulted in a similar classification split (35.1x dad, 36.7x mom, 5.6x unknown) and
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assembly (manual: dad=16.6 NG50, mom=18.1 NG50; automated: dad=14.1 NG50,

mom=19.9 NG50).

For HG0002, Illumina data for the parents was downloaded from the GIAB

ftp site:

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG003_NA24149_father

/NIST_HiSeq_HG003_Homogeneity-12389378/HG003_HiSeq300x_fastq/

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG004_NA24143_mother

/NIST_HiSeq_HG004_Homogeneity-14572558/HG004_HiSeq300x_fastq/

K-mers were counted as before, subtracted, and filtered to exclude k-mers occuring

less than 25 times in the maternal or paternal set. The classification resulted in 24x

maternal, 23x paternal, and 3.5x unknown. Only classified reads were used for assembly

with the command:

canu -p asm -d <mom/dad> ‘genomeSize=3.1g’

‘corMhapOptions=--threshold 0.8 --num-hashes 512

--ordered-sketch-size 1000 --ordered-kmer-size 14’

‘corMinCoverage=0’

Each haplotype assembly required approximately 100k cpu hours (4-5 days).

QUAST

When using QUAST to evaluate assembly statistics and run BUSCO, we used

the following command below. --large indicates that the genome is large, --fragmented

indicates the reference genome may be fragmented, --min-identity 80 indicates that
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alignments with identity less than 80% will be filtered, --conserved-genes-finding

indicates that BUSCO will be run to find universal single-copy orthologs, and eukaryote

indicates that the genome is from a eukaryote.

quast-lg.py --threads 12 -r truth_assembly.fa -o quast-out --large

--min-identity 80 --fragmented --conserved-genes-finding --eukaryote

assembly.fa

Benchmarking assemblies using Pomoxis

The truth assembly files and the reported error-rates are described in Online

methods.

To benchmark the assemblies, we used assess assembly pull 37 from Pomoxis

(https://github.com/nanoporetech/pomoxis/pull/37). This tool is developed and

suggested by the research group of Oxford Nanopore Technology. We added the func-

tionality to ignore large insertions and deletions. The installation instruction of Pomoxis

can be found on the github page https://github.com/nanoporetech/pomoxis. The

parameters we used are:

• -i: The input assembly (fasta).

• -r: The reference fasta file. (The truth assembly)

• -b: Bed file containing reference regions to assess.

• -p: Prefix of the output file names.
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• -c: Chunk size. Input reads/contigs will be broken into chunks prior to alignment.

• -t: Number of threads to use.

• -T: Trim consensus to primary alignments of truth to assembly.

• -l: Ignore insertions and deletions longer than this value, 0 means include every-

thing. (default 0)

We compared the HG002 samples, we gathered the truth assembly file, a bed

file describing the confident regions, and a shasta assembly and ran the following com-

mand.

assess_assembly -i hg002_shasta_assembly.fa -r hg002_truth_assembly.fa

-b hg002_confident.bed -p hg002_shasta_assessment

-c 1000 -l 50 -t 32 -T

In this setup, the assess assembly module computes the error rate of the in-

put hg002 shasta assembly.fa that aligns to the high-confidence region defined in the

hg002 confident.bed of hg002 truth assembly.fa assembly. Also, the -T parameter

limits the assessment to regions where there is an alignment between the truth and the

input assembly.

For HG00733 sample, we used the high-quality phased PacBio assembly. We

got hg00733 truth assembly.fa and the hg00733 shasta assembly.fa and ran the

following command for assessment.

assess_assembly -i hg00733_shasta_assembly.fa
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-r hg00733_truth_assembly.fa -p hg00733_shasta_assessment

-t 32 -c 1000 -l 50 -T

As the truth assembly of HG00733 does not define any high-confidence region, we do a

whole genome comparison where there is an alignment between the truth and the input

assembly enforced by the -T parameter. For CHM13 and all other assemblies, we used

the same command as HG00733. The output of this program reports different error

rates described in the online methods section.

Extracting common assembly regions

To create a bed file describing the regions where all the assemblers have an as-

sembly, we used mini align available https://github.com/nanoporetech/pomoxis/,

and bedtools which can be found in https://bedtools.readthedocs.io/en/latest/.

We first align the assembly to the truth assembly using mini align.

mini_align -P -m -c 100000 -r truth_assembly.fa

-i assembler_assembly.fa -t 64 -p assembler_2_truth

Then we extract the regions where the assemblers have an assembly:

bedtools bamtobed -i assembler_2_truth.bam > assembler.bed

Finally we do an intersection of all the bed files that we get from each assem-

blers. For HG002, we also included the high confidence region bed file.

multiIntersectBed -i <list_of_bed> | awk ’$4 == <number_of_beds>’
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> common_regions.bed

sort -k1,1 -k2,2n common_regions_between_assemblers_hg002.bed

> common_regions.sort.bed

bedtools merge -i common_regions.sort.bed

> common_regions_between_assemblers.bed

Extracting chrX from assemblies

To analyze subsets of the CHM13 assemblies which correspond to regions in

chrX, we used the following steps to extract contigs. Briefly, we align the assembly to

GRCh38, identify any assembly contig which had a primary or supplementary alignment

to chrX, and extract these segments.

minimap2 -ax asm20 -t 32 GRCh38.fa assembly.fa | samtools view -hb

> unsorted.bam

samtools sort -@ 32 unsorted.bam | samtools view -hb

> assembly.bam

samtools index -@ 32 assembly.bam

samtools view -F 0x104 assembly.bam chrX | awk ’{print $1}’ | sort | uniq

> segments.txt

extract_fasta_segments.py -i assembly.fa -s segments.txt

-o assembly.hg38_chrX.fa

The script extract fasta segments.py can be found at https://github.

com/tpesout/genomics_scripts.
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Supplementary Results

Shasta: assembling a human genome from nanopore reads in under 6

hours

Table D.1: QUAST assembly metrics of three samples on four assemblers before polishing, compared
against GRCh38 with no alternate contigs.

Sample Metric Shasta Wtdbg2 Flye Canu

HG00733

# contigs 2,150 5,086 1,852 778
Total length 2,783,599,890 2,792,376,827 2,816,034,584 2,900,719,051

N50 24,429,871 18,763,119 28,763,002 44,759,083
NG50 21,088,309 15,338,021 25,227,330 40,627,903

# disagreements 814 3,985 6,555 4,570
Genome fraction (%) 94.982 92.938 95.763 96.404

Duplication ratio 0.995 1.005 0.986 1.014
# mismatches per 100 kbp 156.21 248.78 506.12 231.24

# indels per 100 kbp 453.97 664.90 1,480.91 677.26
Total aligned length 2,775,307,347 2,742,343,142 2,769,440,009 2,858,769,830

NA50 16,052,981 9,106,500 18,577,806 21,157,324
NGA50 12,765,264 7,787,949 16,267,214 19,945,150

HG002

# contigs 1,847 5,310 1,627 767
Total length 2,801,200,983 2,793,889,694 2,819,241,152 2,901,099,163

N50 23,346,484 15,380,722 31,253,170 33,064,788
NG50 20,205,529 13,750,884 25,917,293 32,340,595

# disagreements 901 3,572 5,881 3,882
Genome fraction (%) 95.622 93.136 96.228 96.959

Duplication ratio 0.995 1.004 0.981 1.009
# mismatches per 100 kbp 167.75 261.72 549.10 231.39

# indels per 100 kbp 520.33 796.71 1,650.63 792.45
Total aligned length 2,792,458,737 2,743,401,414 2,768,347,339 2,863,787,213

NA50 16,068,951 8,564,600 18,803,788 21,330,391
NGA50 14,189,972 7,361,363 16,079,132 18,175,258

CHM13

# contigs 1,236 6,428 1,269 558
Total length 2,809,087,051 2,836,802,421 2,857,931,691 2,919,690,848

N50 46,037,322 15,522,332 36,829,446 80,507,947
NG50 41,091,906 14,039,241 35,319,460 79,504,166

# disagreements 1,051 4,202 5,452 4,768
Genome fraction (%) 95.307 93.124 96.022 96.553

Duplication ratio 1.000 1.017 0.997 1.014
# mismatches per 100 kbp 155.15 256.17 443.85 226.04

# indels per 100 kbp 358.45 535.46 1,023.79 484.46
Total aligned length 2,798,043,587 2,780,449,715 2,807,157,420 2,864,418,837

NA50 23,475,255 6,786,237 18,991,999 25,611,947
NGA50 18,990,051 5,892,796 17,032,972 23,819,455
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Figure D.1: Size distribution of structural variants (¿50 bp) extracted from the Shasta assembly graph
for HG002 and the structural variants in the Genome In A Bottle (GIAB) catalog for the same sample.
a) Full size distribution for deletions (top) and insertion (bottom), in log-scale. b) and c) zoom in the
two peaks caused by Alu (˜300 bp) and L1 (˜6 Kbp) insertion polymorphisms.
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Table D.2: QUAST disagreement count for four assemblers on different regions of the genome for
four samples. We report disagreements that happen in all chromosomes of GRCh38, then incrementally
exclude centromeric regions, segmental duplication regions (Seg Dups), and all other regions enriched
for SVs (chrY, acrocentric chromosome arms, and QH-regions)

Sample Assembler

Disagreements
in

GRCh38
autosomes

and
chrX, chrY

Disagreements
outside

centromeres

Disagreements
outside

centromeres
and

seg dups

Disagreements
outside

centromeres,
seg dups,
chrY,

acrocentric chr arms,
and QH-regions

HG002

Shasta 901 755 284 121
Flye 5881 1226 513 117
Canu 3882 2347 689 216

Wtdbg2 3572 1213 484 148

HG00733

Shasta 814 662 256 110
Flye 6555 1261 604 134
Canu 4570 2791 755 224

Wtdbg2 3985 1166 474 135

CHM13

Shasta 1051 795 333 129
Flye 5452 1228 448 107
Canu 4768 2764 864 164

Wtdbg2 4202 1519 592 249

Table D.3: Disagreement count in the intersection of the assemblies for each sample (see Online
Methods). Total Disagreements describes all disagreements found in 100bp windows before taking the
intersection; note that these counts are very close to those reported by QUAST. Consensus Disagree-
ments describes disagreements in the intersection of the four assemblies. Genome fraction describes
total coverage over GRCh38 for the consensus sequence.

Sample Assembler
Total

Disagreements
Consensus

Disagreements
Genome
Fraction

HG002

Shasta 863 179 87.16%
Flye 5823 178 87.16%
Canu 3779 328 87.16%

Wtdbg2 3509 215 87.16%

HG00733

Shasta 792 161 87.43%
Flye 6546 178 87.43%
Canu 4524 383 87.43%

Wtdbg2 3975 205 87.43%

CHM13

Shasta 1033 242 87.53%
Flye 5446 217 87.53%
Canu 4682 712 87.53%

Wtdbg2 4190 404 87.53%
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Table D.4: Disagreement count and fraction of genome covered on chromosome X for four assemblers
on CHM13 assemblies with no polishing, compared to the chromosome X assembly from the Telomere-
to-Telomere Consortium. These numbers were obtained via running QUAST.

Assembler Disagreements Genome Fraction

Shasta 5 97.73%

Wtdbg2 87 94.17%

Flye 18 98.41%

Canu 9 98.16%

Table D.5: BAC analysis on selected dataset. BACs were selected (31 of CHM13 and 16 of HG00733)
for falling within unique regions of the genome, specifically >10 Kb away from the closest segmental
duplication. Closed refers to the number of BACs for which 99.5% of their length aligns to a single
locus in the assembly. Attempted refers to the number of BACs which have an alignment for >5 Kb of
sequence with >90% identity to only one contig (BACs which have such alignments to multiple contigs
are excluded). Identity metrics are for closed BACs.

Sample Assembler
BAC counts Median Quality Mean Quality

Total Attempted Closed
Closed

of
attempted %

Identity
%

QV
Identity

%
QV

CHM13

Canu 31 31 30 96.77 99.40 22.18 99.34 21.84

Flye 31 31 31 100.00 97.58 16.17 97.65 16.28

Shasta 31 31 31 100.00 99.55 23.51 99.51 23.07

Wtdbg2 31 29 28 96.55 99.46 22.71 99.39 22.15

HG00733

Canu 16 16 15 93.75 98.74 18.98 98.61 18.56

Flye 16 16 16 100 97.99 16.97 98.01 17.02

Shasta 16 16 16 100 98.84 19.38 98.79 19.20

Wtdbg2 16 16 16 100 98.81 19.26 98.79 19.20

Table D.6: BAC analysis on full dataset, 341 on CHM13 and 179 on HG00733. Closed refers to the
number of BACs for which 99.5% of their length aligns to a single locus. Attempted refers to the number
of BACs which have an alignment for ¿5Kb of sequence with ¿90% identity to only one contig (BACs
which have such alignments to multiple contigs are excluded). Identity metrics are for closed BACs.

Sample
Assembler
Polisher

BAC counts Median Quality Mean Quality

Total Attempted Closed
Closed

of
attempted %

Identity
%

QV
Identity

%
QV

CHM13

Canu 341 309 287 92.88 99.22 21.07 98.93 19.7

Flye 341 227 202 88.98 97.54 16.09 97.51 16.03

Shasta 341 94 92 97.87 99.47 22.74 99.37 21.99

Wtdbg2 341 70 62 88.57 99.36 21.96 99.28 21.43

HG00733

Canu 179 137 124 90.51 98.73 18.95 98.43 18.05

Flye 179 98 80 81.63 98.09 17.18 97.76 16.49

Shasta 179 42 40 95.23 98.76 19.08 98.13 17.30

Wtdbg2 179 52 46 88.46 98.70 18.87 98.02 17.04
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Table D.7: BAC analysis intersection of attempted BACs by all four assemblers, 65 on CHM13 and
27 on HG00733. Closed refers to the number of BACs for which 99.5% of their length aligns to a single
locus. Attempted refers to the number of BACs which have an alignment for > 55Kb of sequence with
> 90% identity to only one contig (BACs which have such alignments to multiple contigs are excluded).
Identity metrics are for closed BACs.

Sample
Assembler
Polisher

BAC counts Median Quality Mean Quality

Total Attempted Closed
Closed

of
attempted %

Identity
%

QV
Identity

%
QV

CHM13

Canu 65 65 64 98.50 99.29 21.53 99.21 21.01

Flye 65 65 65 100.00 97.57 16.16 97.61 16.22

Shasta 65 65 65 100.00 99.50 23.03 99.41 22.33

Wtdbg2 65 65 59 90.80 99.39 22.17 99.29 21.49

HG00733

Canu 27 27 26 96.30 98.66 18.76 98.54 18.37

Flye 27 27 27 100.00 98.07 17.14 98.08 17.16

Shasta 27 27 27 100.00 98.80 19.23 98.30 17.71

Wtdbg2 27 27 26 96.30 98.75 19.01 98.53 18.32

Table D.8: Base-level accuracies on four different assemblers for three samples. Analysis is performed
with whole-genome truth sequences.

Sample Assembler
Percentage Errors

Balanced Identity Deletion Insertion

HG002
Guppy 2.3.5

Shasta 0.975% 0.061% 0.849% 0.065%
Wtdbg2 1.181% 0.080% 1.073% 0.029%
Canu 1.400% 0.065% 1.316% 0.020%
Flye 1.636% 0.068% 0.450% 1.118%

HG00733
Guppy 2.3.5

Shasta 1.062% 0.083% 0.887% 0.093%
Wtdbg2 1.217% 0.108% 1.059% 0.051%
Canu 1.328% 0.074% 1.224% 0.031%
Flye 1.854% 0.089% 0.445% 1.320%

CHM13
Guppy 2.3.1

Shasta 0.540% 0.039% 0.430% 0.072%
Wtdbg2 0.689% 0.068% 0.583% 0.038%
Canu 0.705% 0.038% 0.643% 0.024%
Flye 2.213% 0.051% 0.448% 1.715%
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Table D.9: Base-level accuracies on four different assemblers for three samples in the regions of
intersection of the assemblies. Analysis is performed only on regions where all assemblers have an
assembled sequence.

Sample Assembler
Percentage Errors

Balanced Identity Deletion Insertion

HG002
Guppy 2.3.5

Shasta 0.943% 0.056% 0.823% 0.064%
Wtdbg2 1.145% 0.077% 1.041% 0.028%
Canu 1.319% 0.050% 1.253% 0.016%
Flye 1.554% 0.063% 0.432% 1.059%

HG00733
Guppy 2.3.5

Shasta 1.021% 0.064% 0.875% 0.083%
Wtdbg2 1.162% 0.088% 1.034% 0.041%
Canu 1.307% 0.065% 1.213% 0.030%
Flye 1.847% 0.068% 0.431% 1.348%

CHM13
Guppy 2.3.1

Shasta 0.513% 0.016% 0.406% 0.048%
Wtdbg2 0.660% 0.054% 0.575% 0.030%
Canu 0.692% 0.027% 0.645% 0.021%
Flye 2.198% 0.036% 0.460% 1.702%

Table D.10: Runtime and cost of three assembly workflows on Amazon Web Services (AWS) platform.

Method Sample Minutes
Threads
Used

Peak
Memory

AWS Instance
Type

AWS Instance
Cost

WTDBG2
HG00733 2971 63 365 r5a.16xlarge $3.62
GM24385 1752 63 293 r5a.16xlarge $3.62
CHM13 1655 63 312 r5a.16xlarge $3.62

WTDBG2
(wtpoa-cns)

HG00733 248 31 12 r5a.16xlarge $3.62
GM24385 274 24 12 r5a.16xlarge $3.62
CHM13 257 31 12 r5a.16xlarge $3.62

Flye
HG00733 3421 123 1013 x1.32xlarge $13.34
GM24385 3749 64 727 x1.16xlarge $6.67
CHM13 4084 126 911 x1.32xlarge $13.34

Shasta

HG00733 298 128 966 x1.32xlarge $13.34
HG01109 355 128 - x1.32xlarge $13.34
HG01243 296 128 - x1.32xlarge $13.34
HG02055 309 128 - x1.32xlarge $13.34
HG02080 276 128 - x1.32xlarge $13.34
HG02723 373 128 - x1.32xlarge $13.34
HG03098 238 128 - x1.32xlarge $13.34
HG03492 200 128 - x1.32xlarge $13.34
GM24385 240 128 692 x1.32xlarge $13.34
GM24149 427 128 - x1.32xlarge $13.34
GM24143 451 128 - x1.32xlarge $13.34
CHM13 317 128 - x1.32xlarge $13.34
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Table D.11: Runtime breakdown for each step of the Shasta assembler.

Sample Input MinHash Alignments
Marker
graph

creation

Transitive
reduction

Assemble Output Other Total

HG00733 30 9 93 73 17 15 2 55 298

HG01109 29 10 136 89 16 17 2 53 355

HG01243 23 7 104 73 16 15 2 51 296

HG02055 25 9 113 73 15 15 2 53 309

HG02080 22 7 95 67 15 14 2 49 276

HG02723 29 9 146 89 19 16 2 59 373

HG03098 23 8 73 53 14 14 2 47 238

HG03492 19 7 57 44 11 14 2 40 200

GM24385 20 7 92 49 12 13 2 41 240

GM24149 34 11 149 124 21 18 2 64 427

GM24143 35 11 168 120 24 18 2 69 451

CHM13 21 6 173 67 12 13 2 46 345

Average 26 8 117 77 16 15 2 52 317

Percent
of total

8% 3% 37% 24% 5% 5% 1% 17% 100%

Table D.12: Structural variants extracted from HG002 assembly graph compared to GIAB SV set in
high-confidence regions.

Metric
HG002

TP FP FN Precision Recall F1

Total 2961 1580 1202 0.6521 0.7117 0.6806
Inserts 2152 1203 810 0.6414 0.7117 0.7289
Deletes 809 377 392 0.6821 0.6681 0.6750
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Contiguously assembling MHC haplotypes

Table D.13: CHM13 MHC unpolished Shasta assembly as compared to the nearest matching haplotype
in hg38 (GL000251.2)

Assembler Best Contig Disagreements Largest Aligned Mismatch Rate Indel Rate

Shasta 62 6 2,788,362 0.00296 0.00399
Canu tig00589784 5 2,792,139 0.00331 0.00607
Flye contig 115 6 2,787,570 0.00543 0.01106

wtdbg2 ctg25 32 1,819,753 0.00553 0.00576

Table D.14: QUAST results for the HG00733 trio-binned maternal reads, using all four assemblers.

Metric
HG00733-Mother

Shasta Wtdbg2 Flye (initial) Canu

# contigs 1,934 4,028 1,634 877
Total length 2,754,225,214 2,690,619,717 2,791,893,188 2,829,920,708

N50 9,071,623 14,125,235 25,658,831 19,451,828
NG50 7,702,138 10,217,387 23,775,989 16,507,795

# disagreements 705 3,661 6,082 2,161
Genome fraction (%) 90.824 87.373 92.121 92.298

Duplication ratio 0.993 0.996 0.982 0.999
# mismatches per 100 kbp 194.15 287.89 549.61 232.72

# indels per 100 kbp 576.55 859.83 1585.30 724.67
Total aligned length 2,748,135,723 2,650,821,801 2,751,532,754 2,798,797,021

NA50 7,805,090 7,615,651 15,615,208 11,947,316
NGA50 6,339,949 5,584,544 12,833,996 10,085,023
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Table D.15: HG00733 Maternal trio binned MHC unpolished Shasta assembly as compared to the
nearest matching haplotype in hg38 (GL000255.1)

Assembler Best Contig Disagreements Largest Aligned Mismatch Rate Indel Rate

Shasta 226 0 4,289,729 0.00206 0.00538
Canu tig00002130 0 4,289,729 0.00182 0.00676
Flye contig 295 0 4,289,729 0.00579 0.01759

wtdbg2 ctg36 23 1,418,939 0.00592 0.00905
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Deep neural network based polishing achieves QV30 long-read only

polishing accuracy

Table D.16: Base-level accuracies comparing Racon & Medaka and MarginPolish & HELEN pipelines
on Shasta assemblies for three samples. Analysis is performed with whole-genome truth sequences.

Sample
Polisher Percentage Errors

Method Model Balanced Identity Deletion Insertion

HG002
Guppy 2.3.5

Shasta Unpolished 0.975% 0.061% 0.849% 0.065%
Racon 4x 0.665% 0.054% 0.579% 0.032%
Medaka r941 flip235 0.393% 0.051% 0.303% 0.039%

MarginPolish guppy ff235 0.372% 0.043% 0.248% 0.081%
HELEN rl941 flip235 0.279% 0.038% 0.171% 0.070%

HG00733
Guppy 2.3.5

Shasta Unpolished 1.062% 0.083% 0.887% 0.093%
Racon 4x 0.715% 0.080% 0.570% 0.066%
Medaka r941 flip235 0.455% 0.075% 0.311% 0.069%

MarginPolish guppy ff235 0.460% 0.063% 0.278% 0.118%
HELEN rl941 flip235 0.388% 0.066% 0.202% 0.120%

CHM13
Guppy 2.3.1

Shasta Unpolished 0.540% 0.039% 0.430% 0.072%
Racon 4x 0.367% 0.037% 0.199% 0.131%
Medaka r941 flip213 0.329% 0.033% 0.037% 0.259%

MarginPolish guppy ff233 0.281% 0.027% 0.071% 0.184%
HELEN rl941 flip233 0.206% 0.027% 0.062% 0.117%
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Table D.17: QUAST results for the Shasta assemblies for all samples, post polishing with
MarginPolish-HELEN.

Sample
#

contigs
Total length N50 NG50

# mis-
assemblies

Genome
fraction
(%)

#
mismatches

per
100 kbp

# indels
per

100 kbp

Total aligned
length

NA50 NGA50

GM24143 2,042 2,802,437,249 23,531,777 19,936,924 970 95.025 128.63 142.77 2,794,379,803 16,323,510 13,840,294
GM24149 2,368 2,816,566,939 20,798,256 17,752,973 990 95.416 130.54 134.60 2,806,847,428 13,174,778 12,128,076
GM24385 1,685 2,819,474,365 23,520,830 20,346,145 960 95.609 127.44 152.17 2,810,951,083 16,200,287 14,315,298
HG00733 1,962 2,800,357,697 24,600,414 21,701,762 877 94.976 126.23 137.92 2,792,792,711 16,156,822 12,971,070
HG01109 2,111 2,820,988,852 21,532,001 18,279,481 1,033 95.564 136.51 140.59 2,811,696,923 13,162,850 12,012,786
HG01243 1,936 2,819,065,027 22,753,128 20,884,160 920 95.521 137.50 143.02 2,810,262,570 16,040,951 14,115,348
HG02055 1,903 2,819,836,390 17,485,643 16,302,857 971 95.592 142.23 162.43 2,810,300,557 13,840,319 12,123,357
HG02080 1,814 2,803,471,776 18,701,305 15,584,440 920 95.045 128.16 134.35 2,794,749,368 12,401,739 11,561,569
HG02723 1,813 2,805,268,038 25,163,327 20,265,678 1,110 95.062 143.30 147.09 2,796,332,696 15,390,923 13,175,818
HG03098 1,790 2,811,295,217 22,571,315 19,620,076 986 95.395 144.36 170.40 2,802,844,336 14,045,283 12,089,849
HG03492 1,811 2,811,690,127 24,629,163 22,891,947 854 95.364 126.61 147.22 2,804,103,412 16,317,390 12,930,516
CHM13 1,186 2,819,245,173 46,206,794 41,255,275 1,107 95.281 136.58 140.38 2,808,536,514 23,540,225 19,532,176

Table D.18: Base-level accuracies comparing Racon & Medaka and MarginPolish & HELEN pipelines
against CHM13 Chromosome-X. The truth Chromosome-X sequence used reflects the most accurate
haploid truth sequence available.

Sample
Polisher Percentage Errors

Method Model Balanced Identity Deletion Insertion

CHM-13
Chromosome-X

Shasta Unpolished 0.469% 0.014% 0.404% 0.051%
Racon 4x 0.313% 0.017% 0.192% 0.104%
Medaka r941 flip213 0.110% 0.012% 0.035% 0.063%

MarginPolish guppy ff233 0.215% 0.008% 0.055% 0.153%

HELEN
rl941 flip233 0.143% 0.007% 0.041% 0.095%
rl941 flip231 0.064% 0.006% 0.036% 0.022%

Figure D.2: Log frequency of each run length as found in the GRCh38 reference for all bases A,C,G,T
up to 100bp. Run lengths greater than 15 account for approximately 0.012% of all homopolymer runs
in GRCh38.
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Table D.19: Base-level accuracies improvements with MarginPolish and HELEN pipeline on four
different assemblers for two samples. Analysis is performed with whole-genome truth sequences.

Sample
Polisher Percentage Errors

Method Model Balanced Identity Deletion Insertion

HG00733
Guppy 2.3.5

Shasta Unpolished 1.062% 0.083% 0.887% 0.093%
MarginPolish guppy ff235 0.460% 0.063% 0.278% 0.118%

HELEN rl941 flip235 0.388% 0.066% 0.202% 0.120%
Wtdbg2 Unpolished 1.217% 0.108% 1.059% 0.051%

MarginPolish guppy ff235 0.538% 0.083% 0.333% 0.122%
HELEN rl941 flip235 0.473% 0.089% 0.257% 0.127%
Canu Unpolished 1.328% 0.074% 1.224% 0.031%

MarginPolish guppy ff235 0.438% 0.050% 0.290% 0.098%
HELEN rl941 flip235 0.355% 0.050% 0.206% 0.099%
Flye Unpolished 1.854% 0.089% 0.445% 1.320%

MarginPolish guppy ff235 0.425% 0.062% 0.257% 0.106%
HELEN rl941 flip235 0.356% 0.064% 0.183% 0.109%

CHM13
Guppy 2.3.1

Shasta Unpolished 0.540% 0.039% 0.430% 0.072%
MarginPolish guppy ff233 0.281% 0.027% 0.071% 0.184%

HELEN rl941 flip233 0.206% 0.027% 0.062% 0.117%
Wtdbg2 Unpolished 0.689% 0.068% 0.583% 0.038%

MarginPolish guppy ff233 0.361% 0.049% 0.112% 0.201%
HELEN rl941 flip233 0.296% 0.053% 0.115% 0.129%
Canu Unpolished 0.705% 0.038% 0.643% 0.024%

MarginPolish guppy ff233 0.255% 0.013% 0.075% 0.168%
HELEN rl941 flip233 0.173% 0.012% 0.058% 0.103%
Flye Unpolished 2.213% 0.051% 0.448% 1.715%

MarginPolish guppy ff233 0.256% 0.022% 0.058% 0.176%
HELEN rl941 flip233 0.185% 0.024% 0.052% 0.109%

Table D.20: Single-chromosome error rates after polishing with short reads. 10X Chromium reads for
sample CHM13 were used to polish via Pilon polishing software. The top half of the table shows the
results of three rounds of Pilon, starting from the CHM13 Shasta chrX assembly that had been polished
with MarginPolish and HELEN. The bottom half shows the results of three rounds of Pilon, starting
from the raw Shasta assembly.

Sample Assembly
Percentage Errors Q Scores

Balanced Identity Deletion Insertion Balanced Identity Deletion Insertion

CHM13
ChrX

Shasta (polished) 0.064% 0.006% 0.036% 0.022% 31.92 42.40 34.42 36.51

Pilon 1x 0.025% 0.004% 0.012% 0.008% 36.06 43.75 39.16 40.75
Pilon 2x 0.023% 0.004% 0.012% 0.007% 36.29 43.51 39.32 41.34

CHM13
ChrX

Shasta (raw) 0.468% 0.014% 0.404% 0.051% 23.29 38.57 23.94 32.95
Pilon 1x 0.449% 0.011% 0.395% 0.043% 23.48 39.78 24.03 33.68
Pilon 2x 0.425% 0.011% 0.373% 0.041% 23.71 39.49 24.29 33.84
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Table D.21: Runtime and cost of two polishing workflows on Amazon Web Services (AWS) platform.

Method Sample Minutes
Threads
Used

Peak
Memory

Instance
Type

Instance
Cost

Racon (4x)
HG00733 3099 62 574 r5a.24xlarge $5.42
GM24385 2342 62 501 r5a.24xlarge $5.42
CHM13 3700 62 281 r5a.24xlarge $5.42

Medaka
mini align

HG00733 611 62 101 c5.18xlarge $3.06
GM24385 489 62 115 c5.18xlarge $3.06
CHM13 810 60 143 c5.18xlarge $3.06

Medaka
call consensus

HG00733 8611 62 164 c5n.18xlarge $3.89
GM24385 3355 62 150 c5n.18xlarge $3.89
CHM13 2532 62 149 c5n.18xlarge $3.89

MarginPolish

HG00733 680 90 66 m5.metal $4.61
HG01109 912 70 57 c5.18xlarge $3.06
HG01243 835 70 65 c5.18xlarge $3.06
HG02055 733 70 77 c5.18xlarge $3.06
HG02080 793 70 64 c5.18xlarge $3.06
HG02723 1000 64 60 c5.18xlarge $3.06
HG03098 852 70 78 c5.18xlarge $3.06
HG03492 777 70 80 c5.18xlarge $3.06
GM24385 842 70 66 c5.18xlarge $3.06
GM24149 1037 64 103 c5.18xlarge $3.06
GM24143 1051 64 84 c5.18xlarge $3.06
CHM13 739 70 65 c5.18xlarge $3.06

HELEN
consensus

HG00733 216 8 GPUs - p2.8xlarge $7.20
HG01109 204 8 GPUs - p2.8xlarge $7.20
HG01243 233 8 GPUs - p2.8xlarge $7.20
HG02080 212 8 GPUs - p2.8xlarge $7.20
HG03098 216 8 GPUs - p2.8xlarge $7.20
GM24385 208 8 GPUs - p2.8xlarge $7.20
GM24143 226 8 GPUs - p2.8xlarge $7.20

HELEN
stitch

HG00733 59 32 - p2.8xlarge $7.20
HG01109 50 32 - p2.8xlarge $7.20
HG01243 49 32 - p2.8xlarge $7.20
HG02080 54 32 - p2.8xlarge $7.20
HG03098 65 32 - p2.8xlarge $7.20
GM24385 68 32 - p2.8xlarge $7.20
GM24143 62 32 - p2.8xlarge $7.20
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Table D.22: Runtime and cost of two polishing workflows run on a 29 Mb contig from the HG00733
Shasta assembly. MarginPolish uses an improved stitch method not used in original runs and Racon
was run once instead of four times as was done in the full runs. All runs were configured to use 32
CPUs, except for the GPU runs which were performed with 16 CPUs and 1 GPU (Tesla P100).

Application Runtimes Avg Runtime

MarginPolish
16.6

16.4616.47
16.31

HELEN consensus
(CPU)

97.46
95.8695.55

94.56

HELEN consensus
(GPU)

1.63
1.671.72

1.65

HELEN stitch
0.76

0.780.78
0.80

Racon 1x
52.00

52.0452.15
51.98

mini align
3.01

3.003.00
2.98

Medaka
(CPU)

17.26
17.0116.78

16.98

Medaka consensus
(GPU)

10.55
10.6210.73

10.57

Medaka stitch
(GPU)

0.68
0.680.68

0.68
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Long-read assemblies contain nearly all human coding genes

Table D.23: Transcript-level analysis with Comparative Annotation Toolkit (CAT) of MarginPolish
& HELEN and Racon & Medaka on three samples from Shasta assemblies.

Metric
HG002 HG00733 CHM13

HELEN MEDAKA HELEN MEDAKA HELEN MEDAKA

Transcripts Found
Total 83093 83105 83002 82928 82833 82807
Percent 99.536 99.551 99.427 99.339 99.225 99.194

Full mRNA Coverage
Total 25721 20367 28612 26573 40132 38081
Percent 30.811 24.397 34.274 31.832 48.074 45.617

Full CDS Coverage
Total 41396 36248 45104 43956 53089 52297
Percent 49.588 43.421 54.030 52.655 63.595 62.646

Transcripts With
Frameshift

Total 35339 40783 31333 32647 23261 24441
Percent 42.332 48.854 37.534 39.108 27.864 29.278

Transcripts With
Original Introns

Total 76880 76883 76618 76463 76807 76803
Percent 92.094 92.098 91.780 91.594 92.006 92.002

Transcripts With
Full CDS Coverage

Total 41396 36248 45104 43956 53089 52297
Percent 49.588 43.421 54.030 52.655 63.595 62.646

Transcripts With
Full CDS Coverage
And No Frameshifts

Total 41245 36158 44982 43860 52966 52160

Percent 49.407 43.313 53.884 52.540 63.448 62.482

Transcripts With
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 41021 35952 44692 43546 52616 51807

Percent 49.139 43.067 53.536 52.163 63.028 62.059
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Table D.24: Gene-level analysis with Comparative Annotation Toolkit (CAT) of MarginPolish &
HELEN and Racon & Medaka on three samples from Shasta assemblies.

Metric
HG002 HG00733 CHM13

HELEN MEDAKA HELEN MEDAKA HELEN MEDAKA

Genes Found
Total 19536 19531 19537 19511 19505 19490
Percent 99.268 99.243 99.273 99.141 99.111 99.035

Genes With
Frameshift

Total 10933 12165 9941 10081 7300 7564
Percent 55.554 61.814 50.513 51.225 37.093 38.435

Genes With
Original Introns

Total 18212 18198 18151 18113 18217 18202
Percent 92.541 92.47 92.231 92.038 92.566 92.49

Genes With
Full CDS Coverage

Total 11070 10066 11812 11756 13648 13534
Percent 56.25 51.148 60.02 59.736 69.35 68.77

Genes With
Full CDS Coverage
And No Frameshifts

Total 12454 11570 13127 13081 14625 14562

Percent 63.283 58.791 66.702 66.468 74.314 73.994

Genes With
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 12422 11539 13098 13042 14603 14531

Percent 63.12 58.633 66.555 66.27 74.202 73.836

Missing Genes
Total 144 149 143 169 175 190
Percent 0.732 0.757 0.727 0.859 0.889 0.965
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Table D.25: Transcript-level analysis with Comparative Annotation Toolkit (CAT) of four HG00733
assemblies polished with MarginPolish and HELEN.

Metric
HG00733

Flye
HELEN

Canu
HELEN

Wtdbg2
HELEN

Shasta
HELEN

Transcripts Found
Total 83267 83334 81484 82974
Percent 99.745 99.825 97.609 99.394

Full mRNA Coverage
Total 33078 28488 28889 30378
Percent 39.624 34.126 34.606 36.390

Full CDS Coverage
Total 41396 44877 45321 46965
Percent 59.754 53.758 54.290 56.259

Transcripts With
Frameshift

Total 27293 32230 29525 29657
Percent 32.694 38.608 35.368 35.526

Transcripts With
Original Introns

Total 77412 77583 74683 76613
Percent 92.731 92.936 89.462 91.774

Transcripts with
Full CDS Coverage

Total 49883 44877 45321 46965
Percent 59.754 53.758 54.290 56.259

Transcripts with
Full CDS Coverage
And No Frameshifts

Total 49766 44737 45217 46802

Percent 59.614 53.590 54.165 56.064

Transcripts with
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 49459 44412 44924 46505

Percent 59.247 53.201 53.814 55.708

295



Table D.26: Gene-level analysis with Comparative Annotation Toolkit (CAT) of four HG00733 as-
semblies polished with MarginPolish and HELEN

Metric
HG00733

Flye
HELEN

Canu
HELEN

Wtdbg2
HELEN

Shasta
HELEN

Genes Found
Total 19563 19629 19174 19528
Percent 99.405 99.741 97.429 99.228

Genes With
Frameshift

Total 8698 10160 9323 9464
Percent 44.197 51.626 47.373 48.089

Genes With
Original Introns

Total 18345 18460 17709 18154
Percent 93.216 93.801 89.985 92.246

Genes With
Full CDS Coverage

Total 12966 11889 11817 12207
Percent 65.884 60.412 60.046 62.027

Genes With
Full CDS Coverage
And No Frameshifts

Total 14145 13221 13047 13419

Percent 71.875 67.18 66.296 68.186

Genes With
Full CDS Coverage
And No Frameshifts
And Original Introns

Total 14124 13193 13017 13396

Percent 71.768 67.038 66.143 68.069

Missing Genes
Total 117 51 506 152
Percent 0.595 0.259 2.571 0.772

Table D.27: BUSCO results of three samples using two polishing workflows on Shasta assemblies.

Sample Metric
Shasta

MarginPolish
HELEN

Shasta
Racon (4x)
Medaka

HG00733

Complete BUSCOs (C) 87.20% 87.10%
Complete and single-copy BUSCOs (S) 84.20% 83.80%
Complete and duplicated BUSCOs (D) 3.00% 3.30%

Fragmented BUSCOs (F) 4.60% 5.30%
Missing BUSCOs (M) 8.20% 7.60%

HG002

Complete BUSCOs (C) 89.40% 88.80%
Complete and single-copy BUSCOs (S) 84.80% 85.80%
Complete and duplicated BUSCOs (D) 4.60% 3.00%

Fragmented BUSCOs (F) 3.60% 4.30%
Missing BUSCOs (M) 7.00% 6.90%

CHM13

Complete BUSCOs (C) 86.50% 86.80%
Complete and single-copy BUSCOs (S) 82.50% 82.80%
Complete and duplicated BUSCOs (D) 4.00% 4.00%

Fragmented BUSCOs (F) 5.90% 5.30%
Missing BUSCOs (M) 7.60% 7.90%
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Table D.28: BUSCO results for four assemblers on HG00733, post polishing with MarginPolish and
HELEN.

Metric
HG00733

Flye Canu Wtdbg2 Shasta
Complete BUSCOs (C) 87.50% 89.80% 85.80% 87.20%

Complete and single-copy BUSCOs (S) 84.50% 86.80% 82.20% 84.20%
Complete and duplicated BUSCOs (D) 3.00% 3.00% 3.60% 3.00%

Fragmented BUSCOs (F) 5.30% 3.00% 6.30% 4.60%
Missing BUSCOs (M) 7.20% 7.20% 7.90% 8.20%
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Comparing to a PacBio HiFi Assembly

Table D.29: CHM13 QUAST results for Shasta, MarginPolish, HELEN and PacBio HiFi assembly.
Stratified disagreement counts were added after manual determination.

Metric
CHM13

Nanopore
Shasta

MarginPolish, HELEN

PacBio-HiFi
Canu
Racon

# contigs 1622 5206
Total length 2819245173 3031026325

N50 46206794 29522819
NG50 41255275 29092230

# disagreements 1107 8666
# disagreements outside Centromeres 801 2999

# disagreements outside centromeres and Seg Dups 314 893
Genome fraction (%) 95.281 97.030

# mismatches per 100 kbp 136.58 274.84
# indels per 100 kbp 140.38 32.99
Total aligned length 2808536514 2954558720

NA50 23540225 20440378
NGA50 19532176 20029136
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Table D.30: Disagreement count in the intersection of the assemblies between the PacBio-HiFi and the
Shasta assembly of CHM13. Total Disagreements is all disagreements found in 100bp before windows
before taking the intersection, note it is very close to that reported by QUAST. Consensus disagreements:
Disagreements in the intersection of the four assemblies.

Sample Assembler
Total

disagreements
Consensus

disagreements

CHM13
PacBio-HiFi 8469 594

Shasta 1073 380

Table D.31: CHM13 Chromosome-X error rate analysis with Pomoxis for Shasta, MarginPolish,
HELEN, and PacBio HiFi assembly.

Sample
Sequencing
Platform

Method Percentage errors
Assembler Polisher Balanced Identity Deletion Insertion

CHM13
Chr-X

PacBio HiFi Canu Racon 0.008% 0.001% 0.004% 0.003%

Nanopore Shasta
MarginPolish &

HELEN
0.064% 0.006% 0.036% 0.022%
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Figure D.3: Contig NGx for CHM13 Shasta-HELEN nanopore assembly vs Canu CCS (HiFi) assembly
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Figure D.4: Contig NGAx for CHM13 Shasta-HELEN nanopore assembly vs Canu CCS (HiFi)
assembly
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7/3/2019 Dot: Interactive dot plot for genome-genome alignments

https://dnanexus.github.io/dot/ 1/2

Click	and	drag	to	zoom	in,	double-click	to	zoom	out.

UCSC	reference	database: hg38

UCSC	(hg38):	chr1:0-248956422	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr1:0-248956422)
UCSC	(hg38):	chr2:0-242193529	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr2:0-242193529)
UCSC	(hg38):	chr3:0-198295559	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr3:0-198295559)
UCSC	(hg38):	chr4:0-190214555	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr4:0-190214555)
UCSC	(hg38):	chr5:0-181538259	(https://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&position=chr5:0-181538259)
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Figure D.5: Dotplot for the scaffolded HG002 assembly, aligned with GRCh38. Blue dots represent
unique alignments and orange dots represent repetitive alignments.

Assembling, polishing and scaffolding 11 human genomes at near chro-

mosome scale

Table D.32: QUAST results for all 11 Shasta assemblies scaffolded with HiRise, post polishing with
MarginPolish-HELEN

Sample
#

contigs
Total length N50 NG50

# mis-
assemblies

# scaffold
gap

extensive
mis-

assembies

Genome
fraction
(%)

#
mismatches

per
100 kbp

# indels
per

100 kbp

Total aligned
length

NA50 NGA50

GM24143 1,184 2,802,523,049 129,960,437 128,216,303 1,466 4 95.027 128.28 142.79 2,792,775,664 20,657,530 16,966,477
GM24149 1,323 2,816,683,224 129,643,816 128,275,807 1,530 11 95.417 130.24 134.58 2,804,735,382 18,446,390 15,435,923
GM24385 1,019 2,819,527,260 118,169,209 102,591,941 1,335 6 95.606 127.19 152.25 2,809,570,528 22,369,161 16,601,924
HG00733 1,056 2,800,455,909 129,857,865 118,785,172 1,337 8 94.974 126.16 138.09 2,791,610,554 22,141,375 17,570,210
HG01109 1,156 2,821,098,626 130,282,751 130,166,418 1,529 5 95.559 136.73 140.63 2,809,413,640 19,932,703 17,228,023
HG01243 1,006 2,819,162,443 128,571,344 118,762,399 1,381 7 95.517 137.47 143.03 2,808,041,766 22,146,722 17,559,055
HG02055 977 2,819,933,140 130,184,428 128,180,737 1,387 8 95.587 141.91 162.46 2,809,195,864 21,057,279 18,446,049
HG02080 934 2,803,570,658 129,931,575 128,451,196 1,470 9 95.041 127.98 134.36 2,793,854,132 20,418,609 16,379,851
HG02723 982 2,805,356,030 130,365,062 128,975,828 1,499 9 95.06 143.45 147.13 2,794,747,200 20,232,566 17,865,825
HG03098 926 2,811,385,538 130,040,472 128,535,908 1,439 4 95.391 144.36 170.40 2,801,774,564 22,165,948 17,439,948
HG03492 901 2,811,782,250 130,277,907 100,251,163 1,381 7 95.362 126.54 147.23 2,803,106,787 20,001,587 16,836,756
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