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ABSTRACT
Accurate segregation of the duplicated genome in mitosis is essential for maintaining genetic stability.
Errors in this process can cause numerical and/or structural chromosome abnormalities – hallmark
genomic features commonly associated with both tumorigenesis and developmental disorders. A cell-
based approach was recently developed permitting inducible missegregation of the human
Y chromosome by selectively disrupting kinetochore assembly onto the Y centromere. Although this
strategy initially requires several steps of genetic manipulation, it is easy to use, highly efficient and
specific for the Y without affecting the autosomes or the X, and does not require cell cycle synchronization
or mitotic perturbation. Here we describe currently available tools for studying chromosome segregation
errors, aneuploidy, and micronuclei, as well as discuss how the Y-specific missegregation system has
been used to elucidate how chromosomal micronucleation can trigger a class of extensive
rearrangements termed chromothripsis. The combinatorial use of these different tools will allow
unresolved aspects of cell division defects and chromosomal instability to be experimentally explored.
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Introduction

Chromosome segregation errors during mitotic and meiotic cell
divisions give rise to aneuploidy, an abnormal number of
chromosomes. Aneuploidy can be frequently detected in the
genome of cancer cells1 or individuals with developmental disor-
ders, and is the leading cause of spontaneous miscarriages after
fertilization. Emerging evidence also suggests a link between
errors in mitosis and the formation of structural chromosomal
translocations.2 A primary cause of mitotic errors is the failure
to correctly attach the spindle apparatus to kinetochores, large
multi-protein complexes that assemble at the centromere of
each chromosome and directly bind to spindle microtubules
during mitosis.3 Microtubule forces and microtubule-associated
motors facilitate the movement of mitotic chromosomes4 for
alignment in metaphase and the physical separation of sister
chromatids during anaphase, the stage of mitosis in which iden-
tical sets of chromosomes are segregated to each spindle pole to
form the genomes of 2 daughter cells.

Errors during these processes can occur through several pos-
sible routes, some of which can escape surveillance by the
mitotic checkpoint (or spindle assembly checkpoint), which
safeguards against chromosome segregation defects: microtu-
bules can fail to attach to one or both kinetochore(s) before
anaphase onset, microtubules from the same pole can attach to
both kinetochores of a sister chromatid pair (syntelic), or
microtubules from both poles can attach to the same kineto-
chore of a sister chromatid pair (merotelic).5 Each of these
aberrant attachments can cause chromosomes to misalign in

metaphase and/or lag behind during anaphase. Missegregated
chromosomes can also become damaged during cytokinesis2 or
encapsulated into structures called micronuclei that are spa-
tially isolated from the primary nucleus in interphase. Micro-
nuclei were underappreciated for decades until recent
sequencing efforts showed that complex structural rearrange-
ments reminiscent of cancer-associated chromothripsis6 could
be formed on micronucleated chromosomes.7,8

Because chromosome segregation errors rarely occur in
genetically stable human cells, several experimental tools are
available to induce and/or investigate the complex effects9 of
chromosome segregation errors, aneuploidy, and/or micronuclei.
Here we review the advantages and limitations of current
approaches, which can be broadly categorized into 2 primary
types: those that provoke the missegregation of chromosomes at
random versus those that are specific for either an artificial or
authentic chromosome. Additionally, we describe the develop-
ment of a recent method to selectively induce missegregation of
the human Y chromosome10 – a strategy that has provided key
insights into the mechanistic consequences of chromosome seg-
regation errors and its role in driving chromothripsis.

Generating segregation errors at random

A spectrum of chemical inhibitors (summarized in Table 1) can
be used to trigger defects in mitosis and thereby increase the
frequency of random chromosome segregation errors. One
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class of such inhibitors includes nocodazole and colcemid,
which interferes with microtubule polymerization. These agents
are typically added to an asynchronous cell population to first
induce mitotic arrest through chronic activation of the mitotic
checkpoint. Subsequent removal of the inhibitor allows re-poly-
merization of spindle microtubules but frequently causes one or
a few kinetochores to form improper attachments. This proce-
dure therefore causes one or a few chromosomes to missegre-
gate in one or both daughter cells following the exit from
mitosis. A non-chemical approach that similarly blocks micro-
tubule polymerization is through transient exposure to cold
temperatures.11 On the opposite end, compounds such as taxol
and its derivatives12 stabilize microtubules, preventing the
dynamic growth and shrinkage that are required for kineto-
chore attachment and correction of any attachment errors.13

Other types of mitosis-arresting compounds include monas-
trol14 and STLC (S-trityl-L-cysteine),15 each of which inhibits
the kinesin motor protein Eg5 and disrupts bipolar spindle for-
mation,16 or GSK923295,17 which inhibits the CENP-E kine-
sin-like motor protein whose motive force is needed to power
congression of initially misaligned chromosomes.18

Although these mitotic inhibitors are specific for their pro-
posed targets, the efficiency of generating chromosome misse-
gregation using these approaches is low due to the requirement
for mitotic entry and arrest, requiring long inhibition incuba-
tion times as only »1–5% of cycling cell populations are
actively in mitosis. Accumulated mitotic cells are then
harvested (most easily by ‘mitotic shake-off’ or tapping of the
culture dishes) and allowed to re-adhere in drug-free medium.
A fraction of these cells subsequently develops one or more
chromosome segregation errors as they exit from an extended
mitosis and progress into G1. A large number of initial cells are
therefore required to produce a small proportion of cells with
missegregated chromosomes. Because cells are exposed to a
prolonged mitosis, DNA damage and/or partial apoptotic
responses can also be triggered19 even after completion of a
normal, error-free division.20

An alternative approach to arresting cells in mitosis is to
instead override the mitotic checkpoint, which allows cells to
prematurely proceed into anaphase before forming stable
microtubule attachments to all kinetochores. Unlike agents that
block mitosis, overriding the mitotic checkpoint is an efficient
approach to produce segregation errors and does not require
the use of cell cycle synchronization. Inhibitors of the Mps1

kinase, including reversine21 or AZ3146,22 are commonly used
and can effectively cause premature anaphase onset in a broad
number of cell types. The concentration of reversine can also
be titrated to allow tight control over the severity of chromo-
some segregation errors such that low doses can trigger one
error in a few cells and high doses can cause multiple errors in
many cells.23

These chemical approaches are commercially available,
highly specific, easy to use, and applicable to a broad number
of cell lines, thereby serving as valuable tools to study many
aspects of normal and defective mitoses. A major disadvantage,
however, is that these errors occur by chance and which chro-
mosome undergoes missegregation (either into an incorrect
daughter cell or a micronucleus) occurs at random. In the con-
text of a diploid human cell, the probability of missegregating a
specific autosomal chromosome-of-interest is »2 out of 46 (or
»4.3%). Although random chromosome approaches can avoid
potentially confounding chromosome-specific effects, it is par-
ticularly problematic for determining the fate of a missegre-
gated chromosome since one cannot easily discriminate
normally segregated vs. a missegregated chromosome in the
immediate or subsequent cell cycles. Chromosomes sequestered
in micronuclei are visually distinguishable during interphase
until the nuclear envelope disassembles at the onset of mitosis.
Approaches that can fluorescently label a specific chromosome
or locus are possible24-28; however, significant cell-to-cell vari-
ability poses another challenge such that the chromosome in
one micronucleus is different from another micronucleus in
adjacent cells.

Avoiding randomness: Chromosome-specific approaches

The second category of approaches bypasses the specificity
issue raised from chemical methods by targeting only a specific
chromosome, including artificially created DNAs. Human arti-
ficial chromosomes (HACs) are ‘microchromosome-like’ DNA
structures that span up to 10 megabases in length – one-fifth
the size of the smallest human chromosome – that are created
de novo or generated from a severely truncated chromosome.
HACs have been engineered to harbor many features of
authentic chromosomes, including a centromere, telomeres,
and protein-coding genes, which can then be introduced, repli-
cated, and maintained in host cells. Using the bacterial tetracy-
cline operon/repressor system, HACs have also been designed

Table 1. Summary of available tools and approaches to study cell division defects and/or chromosome segregation errors.

Approach Inhibited target
Error

efficiency
Initial manipulation

required? Inducible?
Prolonged mitosis

required?
Trackable
system?

Random Nocodazole Microtubules Low No Yes Yes No
Colcemid Microtubules Low No Yes Yes No
Taxol Microtubules Low No Yes Yes No
Monastral Eg5 Low No Yes Yes No
STLC Eg5 Low No Yes Yes No
GSK923295 CENP-E Low No Yes Yes No
Reversine Mps1 High No Yes No No
AZ3146 Mps1 High No Yes No No

Selective Human artificial
chromosome

HAC
centromere

High Yes Yes No Yes

Microcell-mediated
chromosome transfer

None N/A Yes No No Yes

CENP-A replacement Y centromere High Yes Yes No Yes
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with an inactivatable centromere29,30 that can be induced to
missegregate, some of which subsequently enter micronuclei-
like structures and acquire DNA damage.31 HACs are excellent
tools for studying chromosome missegregation rates,32,33

although they can become intrinsically unstable in the absence
of selection34 and/or prone to unwanted recombination over an
extended period. Whether the chromatin structure of HACs
are similar to those of actual chromosomes has not been firmly
established, but the sequence elements of artificially generated
HACs do not generally reflect those typical of a human chro-
mosome. Advances in synthetic chromosome technologies, as
recently reported in yeast,35 may also represent a possible next-
generation class of artificial DNA tools.

Techniques involving microcell-mediated chromosome trans-
fer (MMCT) have long been used to introduce HACs or entire
(or parts of) genuine chromosomes from one cell into recipient
host cells.36 This is achieved by incorporating mitotic chromo-
somes into microcells (structures resembling micronuclei), in
vitro purification and fusion of microcells with a host cell line
through polyethylene glycol treatment, electrofusion, or with the
use of Sendai viruses, and selection for a gene (i.e., a selectable
marker or a fluorescent reporter) encoded by the transferred
chromosome. MMCT permits studying the long-term effects of
aneuploidy as it allows the generation of cells carrying addi-
tional chromosomes,37-40 although the early consequences
immediately following a chromosome missegregation event will
almost certainly have been missed after the long experimental
procedure to create the cells-of-interest. Like MMCT, Robertso-
nian translocations (caused by a fusion at or near the centro-
mere between 2 acrocentric chromosomes to produce a single
derivative chromosome carrying 2 non-homologous long arms)
have also been cleverly exploited to generate trisomic mouse cell
lines that harbor an additional copy of a defined chromosome.41

A chromosome-specific missegregation strategy:
Inactivating the Y centromere

An alternative approach involves missegregating a specific
chromosome-of-interest through inactivation of its centromere
– a specialized chromosomal locus designated for assembly of
the kinetochore. Such an approach was originally established in
Saccharomyces cerevisiae by forcing transcription through its

nucleosome-sized point centromeres.42,43 By contrast, metazo-
ans harbor megabase-long, heterochromatic centromeres that
are epigenetically defined by the histone H3 variant Centro-
mere Protein A (CENP-A). Centromere maintenance and func-
tion occurs through a 2-step mechanism.44 In the first step,
nascent CENP-A molecules are loaded into CENP-A-contain-
ing centromeric nucleosomes at the exit of mitosis45 via its cen-
tromere-specific chaperone HJURP.46,47 In the second step,
CENP-A utilizes its 2 terminal tails to directly and indirectly
recruit CENP-C, the primary nucleator of the kinetochore,44 to
the centromere via functionally redundant mechanisms.

A gene replacement approach was recently developed10 in
an established human colorectal cancer cell line (DLD-1 cells
with p53-inactivated) in which endogenous CENP-A proteins
can be completely replaced by a chimeric CENP-A variant that
does not support kinetochore assembly at centromeres lacking
CENP-B (which binds to 17 base pair motif sequences called
CENP-B boxes). Interestingly, only the Y chromosome centro-
mere is deficient of CENP-B boxes; this is true in most of
human genomes with rare exceptions being those harboring a
neocentromere, as later discussed.

The replacement strategy requires at least 3 steps of genetic
manipulation: 1) tagging the endogenous CENPA alleles with a
»25 kDa auxin-inducible degron (AID) sequence [which can be
achieved using standard genome editing technologies such as
CRISPR/Cas9], 2) stable and high expression of the E3 ubiquitin
ligase TIR1 [derived from the rice plant Oryza sativa], whose
activation by indole-3-acetic acid (an auxin hormone) triggers
ubiquitination and subsequent proteasome-mediated destruction
of AID-tagged proteins, and 3) introduction of a doxycycline-
inducible gene encoding the CENP-A chimera (called CENP-
AC–H3) wherein the final 6 amino acids of CENP-A are swapped
with the corresponding 3 amino acids from histone H3. This
carboxy-tail chimera fails to support kinetochore formation at
centromeres to which CENP-B is not bound.

Addition of doxycycline and auxin (both of which are
non-toxic and cost effective) to the culture medium triggers
CENP-A degradation and rescue with the chimeric variant,
thereby producing an epigenetically marked yet non-functional Y
centromere. Auxin-dependent degradation occurs much more
rapidly (t1/2 of 9 minutes for removal of AID-tagged CENP-A48)
than centromeric chromatin replication, with wild-type or

Figure 1. Swapping out CENP-A at the centromere with an inducible gene replacement strategy. Gene editing is first used to add an auxin-inducible degron (AID)
sequence to endogenous CENP-A, which undergoes rapid TIR1 E3 ubiquitin ligase-dependent degradation in the presence of the plant hormone auxin. Degraded
CENP-AAID is then rescued by a doxycycline-inducible gene encoding a CENP-A/histone H3 carboxy-tail chimera (CENP-AC-H3) that does not support kinetochore assembly
specifically on the Y centromere, thereby producing Y chromosome-selective segregation errors in the subsequent mitosis.
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chimeric CENP-A loading through HJURP restricted to a 1–
2 hour window after mitotic exit.45 Pre-loading of the chimeric
CENP-A at centromeres can be achieved by a low basal expres-
sion level due to intrinsic ‘leakiness’ of the promoter in the
absence of doxycycline and/or by pre-induction with doxycycline
for one or 2 cell cycle(s) before inducing auxin-mediated degra-
dation of endogenous CENP-A (Fig. 1). Following doxycycline
and auxin addition and CENP-A degradation, newly synthesized
CENP-A chimeras are loaded into centromeric chromatin. As
recent
evidence has also indicated that CENP-A is not required for
maintaining centromere function in mitosis after kinetochore
assembly has been established during the prior interphase,48 the
rapid removal of CENP-A from centromeres leaves kinetochores
intact on all centromeres except for the Y centromere (onto
which a kinetochore had not assembled). As anticipated, this
procedure efficiently triggers Y chromosome alignment failure
and missegregation without extending the duration of mitosis.10

Given that Y centromere position is maintained epigenetically by
directed assembly of the CENP-A chimera, whether re-establish-
ing endogenous CENP-A can cause centromere reactivation –
and if so, to what extent – seems likely but has not been experi-
mentally established.

Although the strategy discussed here requires initial genetic
manipulations, selective (and likely transient) centromere inacti-
vation overcomes several limitations of currently available tools
while retaining several key advantages. It neither requires nor
causes arrest in mitosis as with microtubule-based drugs, and it
is highly efficient in generating segregation errors in a large
number of asynchronous cells as with Mps1 kinase inhibitors.
This approach allows an authentic human chromosome to be
studied as with MMCT, while also enabling the early events to
be tracked over multiple cell cycles as with HAC-based systems.
The Y is a bona fide chromosome spanning »57 megabases and
represents the third smallest chromosome in the male human
genome (it is larger than chromosomes 21 and 22) – over 5 times
the size of the largest artificial HAC. Outside of XY pairing and
recombination during male meiosis, the Y segregates through
the same biological mechanisms as its autosomal counterparts in
mitosis and is also transcriptionally active in somatic cultured
cells (although only few genes are expressed).

Notwithstanding these advantages, there are also techni-
cal challenges involving the Y chromosome: only male cell
lines can be used, and Y chromosome sequencing analysis
can be complicated by regions of highly repetitive or palin-
dromic sequences, as well as sequences sharing similarity to
ones on the X chromosome. With the exception of a »30
megabase-long heterochromatic region on the distal Yq
arm, however, the sequence of the euchromatic portion of
Yp and Yq comprising »27 megabases has been determined
to 99% completion.49

The fate of missegregated chromosomes

Following centromere inactivation, missegregated Y chromo-
somes are subjected to several possible fates (Fig. 2). Because
the Y is not essential for the growth of somatic cells in culture,
whole-chromosome loss occurs most frequently, which may be
avoided by introducing a selectable or fluorescent reporter into
the Y. Chromosome gains also occur that produce daughter
cells harboring multiple copies of the Y, although this is
unlikely to trigger an aneuploidy-specific proteome imbalance
response50 considering that the Y contains only »78 protein-
coding genes.49

The most noteworthy fate for centromere-inactivated Y
chromosomes is a significant enrichment for Y-containing
micronuclei, the frequency of which peaks at »48 hours
after addition of doxycycline and auxin. High-throughput
sequencing of purified micronuclear DNAs revealed up to a
40-fold selective enrichment for the Y chromosome without
changes to the autosomes or the X. Micronucleated Y
chromosomes acquire DNA damage during interphase, con-
sistent with micronucleation of random chromosomes,31,51

and subsequently undergo extensive fragmentation or shat-
tering upon chromosome condensation in mitosis.10,52

These events give rise to multiple, distinct fragments that
are subjected to DNA double-strand break repair in the
subsequent interphase, the majority of which are re-ligated
by classical non-homologous end joining. Use of this
approach has therefore identified the stepwise mechanisms10

contributing to how chromothripsis can be formed on ini-
tially micronucleated chromosomes.7,8

Figure 2. A catastrophic fate for centromere-inactivated Y chromosomes. Following centromere inactivation using the CENP-A replacement strategy, the Y chromosome
fails to properly congress during metaphase and subsequently missegregates in anaphase to produce aneuploid daughter cells with loss, gains, or micronucleation of the
Y chromosome. When sequestered in a micronucleus, the Y chromosome undergoes extensive fragmentation in the next mitosis. The resulting fragments incorporate
back into the nucleus for subsequent re-ligation by classical non-homologous end joining during interphase.
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Future applications and closing remarks

Although the described centromere-specific inactivation
approach is currently limited to the Y chromosome centro-
mere that is inherently devoid of CENP-B boxes, the same
strategy may also be applied to chromosomes containing an
epigenetically active centromere at an otherwise non-centro-
meric region.53 Over 100 examples of these ‘neocentro-
meres’ have been documented in the human context,
and several cell lines have been established with a single
chromosome harboring an active neocentromere with corre-
sponding silencing of the original centromere54 through an
unknown mechanism. Because neocentromeres assembled
onto 21 out of 22 autosomes and both sex chromosomes
have been reported,55,56 it is in principle possible to create
unique missegregation systems for all but one human
chromosome. Like the Y centromere, these neocentromeres
are deficient in CENP-B boxes and are therefore subjected
to the same regulatory mechanisms for kinetochore assem-
bly (that is, full dependence on the carboxy-terminal tail of
CENP-A). One caveat is that many of the reported neocen-
tromere-containing cell lines proliferate poorly in culture
and may be difficult to genetically engineer. MMCT of the
neocentromere-containing chromosome into an amenable
host cell line may represent a feasible approach to develop
chromosome-specific missegregation tools for autosomes.

Recognizing that there are multiple methods commonly
used to generate chromosome segregation errors (with a
particular focus here on chemical tools, artificial DNAs, and
chromosome-specific centromere inactivation approaches),
it is important to note that there is no ‘one size fits all’
method that is suitable for all experiments. Instead, the
advantages of each approach should be exploited and likely
used in combination to dissect the complex relationships
between errors in cell division, aneuploidy, and structural
chromosomal rearrangements. The cadre of tools available
today, and those coming in the future, will permit detailed
examination of both the short- and long-term consequences
of chromosome segregation errors.
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