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Quantum computers are expected to surpass conventional computers in tasks like integer

factoring and quantum system simulation. In quantum programming, entangling operations

between qubits are crucial. However, the program qubits are mapped to physical qubits

within a quantum computing architecture that often features restricted connectivity, meaning

that entangling operations can only be applied between specific pairs of qubits. As a result,

it is essential to determine the map from program qubits to physical qubits throughout

the computation. Additionally, it may be necessary to introduce new operations to ensure

the quantum program conforms to the connectivity constraints. This challenge is known as

layout synthesis for quantum computing. In this dissertation, we explore layout synthesis for

quantum architectures, focusing on static architectures primarily based on superconducting

circuits, as well as dynamic architectures based on neutral atoms. Given that fault tolerance

is required for large-scale quantum computing, we also investigate program synthesis for a

promising fault-tolerant quantum architecture based on surface codes.
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CHAPTER 1

Introduction

Over the past few decades, information technology has greatly benefited from Moore’s law

and Dennard scaling: as semiconductor transistors shrink, more can be packed into a com-

puting chip, enabling larger chips that consume the same amount of power per unit area

while also running faster. However, as transistor sizes approach the physical limits, drastic

innovations are required to continue advancing computing capabilities.

One major direction is quantum computing, as there are problems—such as integer fac-

toring—which are widely believed to be unsolvable with polynomially many classical oper-

ations but can be solved with polynomially many quantum operations [Sho94]. This has

driven rapid advancements in scaling up quantum computing hardware which leads to the

focus of this dissertation: layout synthesis for quantum computing.

At a high level, quantum registers in real quantum computers have limited connectiv-

ity—a constraint too nuanced for programmers to handle directly. Layout synthesis addresses

this challenge by determining how quantum data move within the quantum computer, en-

suring that quantum algorithms can be executed correctly.

1.1 Concepts in Gate-Based Quantum Computing

For the purposes of this dissertation, only basic concepts in quantum computing are required.

Readers seeking more in-depth background can refer to textbooks on quantum computing

and quantum information, such as [NC10].
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1.1.1 Quantum States

A qubit (quantum bit) is in a quantum state |ψ〉 represented by a vector with unit norm in

the two-dimensional complex vector space

|ψ〉 =


α
β


 with |α|2 + |β|2 = 1. (1.1)

We can decompose the vector with the standard basis

|ψ〉 =


α
β


 = α


1

0


+ β


0

1


 = α|0〉+ β|1〉. (1.2)

We use the ket notation |0〉 and |1〉 to represent basis states, which correspond to the basis

vectors. The coefficients of basis states, α and β, are dubbed amplitudes. In contrast, a bit

is either 0 or 1, but cannot be a linear combination, i.e., superposition, of 0 and 1.

However, we cannot directly access the amplitudes of a quantum state in general. The

only way we can extract information from a qubit is by measurements. When we prepare

α|0〉+β|1〉 and measure it in basis {|0〉, |1〉}, we always receive either 0 or 1. The probability

of receiving 0 and 1 are |α|2 and |β|2, respectively. If we receive 0, the qubit switches to

state |0〉 after the measurement; if we receive 1, the qubit switches to state |1〉 after the

measurement. Thus, a measurement “collapses” the superposition to one of the basis states.

Mathematically, the collapse projects the state onto basis states and normalize it, i.e., scaling

the vector so that the norm is 1.

A global phase is a complex number with unit norm, i.e., eiθ. A global phase does change

the measurement probabilities since they are squared norms of amplitudes, which means the

global phase will cancel out, e.g., |αeiθ|2 = |α|2.

The basis {|0〉, |1〉} is known as the computational basis but we can use other bases in the

measurement, e.g., the Hadamard basis |±〉 := (|0〉±|1〉)/
√

2. Then, after the measurement,

the state can be either in |+〉 or |−〉. The probability of getting |+〉 and |−〉 are respectively

2



|〈+|ψ〉|2 =

∣∣∣∣∣∣∣

(
1 1

)

√
2
·


α
β




∣∣∣∣∣∣∣

2

=
|α + β|2

2
, |〈−|ψ〉|2 =

∣∣∣∣∣∣∣

(
1 −1

)

√
2

·


α
β




∣∣∣∣∣∣∣

2

=
|α− β|2

2
, (1.3)

where 〈+| called ‘bra +’ is the Hermitian conjugate of |+〉. In the matrix form, Hermitian

conjugate is the transpose of complex conjugate, so a bra, being the conjugate of a ket,

corresponds to a row vector. Thus, the product of a bra and a ket, 〈ψ|φ〉, is a complex

number, which quantifies the overlap between the two. The braket notation 〈ψ|φ〉 is just the

inner product in the vector space, 〈ψ, φ〉. The vector form of |+〉 in the Hadamard basis is

[1, 0]T (where the superscript T means transpose) because |+〉 = 1 · |+〉+ 0 · |−〉. This is the

same as the vector form of |0〉 in the computational basis. (We use brackets in the vector

instead of parentheses to signify that it is associated with the Hadamard basis.) Similarly,

the vector form of |−〉 in the Hadamard basis is the same with the vector form of |1〉 in the

computational basis. When the basis is not specified, usually it is the computational basis

and measurements are also in the computational basis.

A quantum state of a larger system consisting of n qubits is a vector with unit norm in

the 2n dimensional complex vector space. For instance, a general two-qubit state is

|φ〉 =




α

β

γ

λ




= α




1

0

0

0




+β




0

1

0

0




+γ




0

0

1

0




+λ




0

0

0

1




= α|0〉|0〉+β|0〉|1〉+γ|1〉|0〉+λ|1〉|1〉, (1.4)

where the basis vectors are 4-dimensional. By writing several kets consecutively, we mean

their tensor product and neglect the symbol ⊗ for convenience. A general tensor product

state of two individual qubits, |ψ0〉 and |ψ1〉, is

|ψ1〉|ψ0〉 := |ψ1〉 ⊗ |ψ0〉 =


α
β


⊗


α

′

β′


 =




α


α

′

β′




β


α

′

β′







=




αα′

αβ′

βα′

ββ′



, (1.5)
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where the tensor product is computed by multiplying the operand after the ⊗ to each element

in the operand before the ⊗. By combining Equation 1.2 and Equation 1.5, we can verify

that our definition of two-qubit computational basis states is consistent with the vectors in

Equation 1.4, e.g., |0〉|0〉 is indeed (1, 0, 0, 0)T .

A general two-qubit state, Equation 1.4, does not necessarily have the product form in

Equation 1.5. This means that there are many two-qubit states where the qubits cannot be

considered individuals. In this case, the two qubits are entangled.

With multi-qubit states, it is common to omit the normalization factor for convenience

during computations. For instance, if we measure the first qubit in Equation 1.4 and the

measurement yields 0, we typically express the resulting state as |0〉(α|0〉 + β|1〉). Techni-

cally, the state should be normalized as |0〉
(

α√
|α|2+|β|2

|0〉+ β√
|α|2+|β|2

|1〉
)

, but this can be

cumbersome, particularly if there are further computational steps. (Note that
√
|α|2 + |β|2

might not equal 1; instead, it is the total state norm,
√
|α|2 + |β|2 + |γ|2 + |λ|2, that equals

1.) Therefore, we often skip normalization in intermediate steps and apply it only at the

end of the computation to simplify the expressions. This approach is especially useful when

we encounter zeros, such as 〈1|0〉, where normalization is not applicable. By ignoring nor-

malization at first, we maintain uniformity in mathematical expressions, and the terms with

zeros can be dropped in the end.

1.1.2 Quantum Gates

A quantum gate transforms an input state to an output state. Since general quantum

states are complex vectors with unit norms, a general transform between states only needs

to preserve the norm. Such transforms are unitary. The quantum state of n qubits has

dimension 2n, so the quantum gates are in the unitary group U(2n). For example, some

4



common single-qubit gates are X, H, S, and T . † means Hermitian conjugation.

X =


0 1

1 0


 , Z =


1 0

0 −1


 , H =

√
2

2


1 1

1 −1


 ,

S =


1 0

0 i


 , S† =


1 0

0 −i


 , T =


1 0

0 eiπ/4


 , T † =


1 0

0 e−iπ/4


 .

(1.6)

Some common two-qubit gates are CZ, CNOT, and SWAP.

CZ =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



, CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



, SWAP =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1



. (1.7)

The CNOT (controlled-NOT) gate, operates by leaving the second qubit unchanged when

the first qubit is in the |0〉 state, and by applying an X gate (which flips the amplitudes) to

the second qubit when the first qubit is in the |1〉 state. Thus, CNOT is also known as CX

(controlled-X). Mathematically, the effect of a CNOT can be expressed as:

CNOT

[
|0〉(α′|0〉+β′|1〉)

]
= |0〉(α′|0〉+β′|1〉), CNOT

[
|1〉(α′|0〉+β′|1〉)

]
= |1〉(β′|0〉+α′|1〉).

(1.8)

Thus, the first qubit is typically referred to as the control qubit, and the second as the

target qubit. However, it is important to note that the CNOT gate does not simply “do

nothing” to the control qubit, especially when the control qubit is in a superposition. This is

a key difference between the quantum CNOT gate and classical gates. To illustrate, consider

applying a CNOT gate to a product two-qubit state (Equation 1.5):




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







αα′

αβ′

βα′

ββ′




=




αα′

αβ′

ββ′

βα′



6=


α
β


⊗


β

′

α′


 =




αβ′

αα′

ββ′

βα′



. (1.9)

5



The CNOT gate flips the lower half of the state vector. As a result, the vector after applying

the CNOT gate is different from the tensor product of the original control state and the

flipped target state. In general, the state after a CNOT no longer has a product form,

indicating that the qubits are entangled by the CNOT.

We present another interesting aspect of the CNOT gate by changing the basis. The

Hadamard basis we have introduced |±〉 can transform to and from the computational basis

{|0〉, |1〉} by, no surprise, the Hadamard gate (H in Equation 1.6). Since {|0〉, |1〉} are

eigenvectors of Z and |±〉 are eigenvectors of X, they are also called Z basis and X basis,

respectively. Let us consider the matrix form of the CNOT gate in the X basis:

(H ⊗H)† · CNOT · (H ⊗H) =

1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



·




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



· 1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




=




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0



.

(1.10)

Recall that |+〉 = [1, 0]T and |−〉 = [0, 1]T in X basis. Let us apply the CNOT gate to some

product states:




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0







1


1

0




0


1

0







=




1


1

0




0


1

0






,




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0







1


0

1




0


0

1







=




0


0

1




1


0

1






. (1.11)

We can observe that the effect of the CNOT gate in the X basis is: when the second qubit

is in the state |+〉, nothing happens; when the second qubit is in the state |−〉, the first

qubit is flipped from |+〉 to |−〉. Thus, if we consider the action of CNOT in the X basis,

we should call the second qubit as the control qubit and the first qubit as the target qubit.

The roles of control and target is reversed compared to the case in the Z basis! This further

implies that we cannot interpret the CNOT gate in a classical sense.
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Given all these gates, a natural question is: are they sufficient? NAND gates are sufficient

for universal classical computing. It turns out that CNOT and the generic single-qubit gate

below are sufficient for universal quantum computing [NC10]

U3(θ, φ, λ) :=


 cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) eiλ+iφ cos(θ/2)


 . (1.12)

We call U3 a parametrized gate or a programmable gate. It is actually a family of gates which

can be instantiated to specific gates by assigning values to the parameters, e.g., U3(θ =

π/2, λ = π, φ = 0) is just H. There are other universal quantum gate sets, but we refrain

from exhibiting them here since they are irrelevant for now.

Another important gate is CCNOT, or Toffoli. It flips the last qubit with X if the first

two qubits are in |11〉; otherwise, it does nothing. The projector to |11〉 is |11〉〈11|: applying

it to a quantum state |φ〉, the 〈11| first produces the amplitude which is the “overlap” of

|φ〉 and 〈11|. Then, the amplitude is multiplied to |11〉 for the component of |11〉 inside |φ〉.
The projector of the subspace orthogonal to |11〉 is I ⊗ I − |11〉〈11|. Therefore, the matrix

form of CCNOT is

CCNOT = (I ⊗ I − |11〉〈11|)⊗ I + |11〉〈11| ⊗X =




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




. (1.13)

Similarly, the matrix form of CNOT can also be derived from the projector description:

CNOT= |0〉〈0| ⊗ I + |1〉〈1| ⊗ X where the first qubit is the control, and the second qubit

is the target. In general, any Boolean logic circuit can be first expanded to a Boolean

7



g1: CX q[2],q[1]
g2: CX q[3],q[4]
g3: u1 q[3]
g4: u2 q[4]
g5: u3 q[5]
g6: CX q[1],q[5]
g7: u4 q[1]
g8: CX q[4],q[3]
g9: CX q[5],q[2]

a) b) q1
q2
q3

q4

q5

g1

g2
u1

u2

u3

g3

g4

g5

g6
u4 g7

g8

g9

Figure 1.1: An example of unitary quantum program/circuit. a) A quantum program con-

sisting of 9 gates on 5 program qubits. b) Circuit diagram of the quantum program. Each

horizontal wire is a program qubit. Time goes from left to right. The arrow means a depen-

dency chain (g2, g3, g8).

reversible circuit, for which Toffoli is sufficient, and the Toffoli gates can be decomposed into

single-qubit and two-qubit gates.

An important relation between two gates is commutation. If the result of first applying

gate 0 followed by gate 1 is the same as the result of applying them in the reversed order,

we say these two gates commute. If two gates act on disjoint qubits, they always commute.

For gates acting on the same qubit, it is nontrivial to judge in general. T and CZ commute

because they are both diagonal matrices; but X and H do not commute, since XH 6= HX.

1.1.3 Quantum Circuits

A quantum algorithm manipulates a set of qubits with quantum gates. Most notably, Shor’s

algorithm can factor a number N with O(polylog N) quantum gates, whereas the best known

classical algorithm needs Θ(N) operations [Sho94]. The readers can refer to a recent survey

[DMB23] for a comprehensive list of quantum algorithms.

Quantum algorithms can be expressed in many forms, some very abstract. For our

purposes, it suffices to conceptualize them as quantum programs written in some quantum

computing instruction set. For example, in Figure 1.1a, there are several single-qubit and

8



two-qubit gates on five program qubits. A quantum program is often visualized as a quantum

circuit, like the one in Figure 1.1b. The terms ‘quantum program’ and ‘quantum circuit’

are used interchangeably throughout this dissertation. In a circuit diagram, each program

qubit is depicted as a horizontal wire, and as time progresses from left to right, gates on

the wire are applied to this qubit. In our example, u1, u2, u3, and u4 are instances of U3

(Equation 1.12), each black dot represents the control qubit of a CNOT (Equation 1.7), and

each ⊕ symbolizes the target qubit of a CNOT.

While a quantum circuit does not explicitly schedule the gates, it does encode their

relative order. In our example, there are three gates g2, g3, and g8 that act sequentially on

q3. This means g3 must follow g2, and g8 must follow g3. We refer to this type of relative

ordering as a dependency. When multiple dependencies are linked head-to-tail, they form a

dependency chain. For instance, (g2, g3, g8) is a dependency chain of length 3.

It is possible to partition a circuit into layers so that, within each layer, a qubit is involved

in at most one gate. If two gates have a dependency, they cannot be placed in the same

layer, but some flexibility remains. For example, g3 could be placed in the same layer as g5

or g6. The minimum number of layers in a quantum circuit is referred to as its depth, which

corresponds to the length of the longest dependency chain. The width of a circuit is simply

the number of qubits.

Since the unitary gates belong to the unitary group, multiplying them according to the

order specified in a circuit results in a unitary transformation, which we term a unitary

circuit. However, a general quantum circuit includes components beyond unitary gates.

For example, Figure 1.2a illustrates a circuit for the quantum approximate optimization

algorithm (QAOA) [FGG14], where H, U(C, γ), and e−iβX are unitary. This circuit also

includes qubit initializations represented by |0〉 and measurements indicated by the meter

symbols. Additionally, this algorithm features an outer layer optimization loop: based on the

measurement results, a classical optimizer tunes the parameters (βs and γs) in the quantum

circuit and reruns it. Such quantum circuits with tunable parameters are referred to as
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variational quantum circuits.

Measurements can occur not only at the end of a circuit but also in the middle, i.e.,

mid-circuit readouts. Figure 1.2b depicts a quantum convolutional neural network (QCNN)

[CCL19] circuit, where the uis are unitary gates. In this example, mid-circuit readouts

apply feed-forward gates: if the outcome of the measurement is 1, a corresponding single-

qubit gate, vi, is applied. This type of circuit is referred to as a dynamic circuit because the

operations implemented on the quantum computer depend on measurement results known

only at runtime. In contrast, the QAOA circuit parameters are determined by a classical

optimizer before each execution of the circuit.

Another important family of circuits is the parity measurement circuit. When all qubits

are measured, as in Figure 1.2a, the quantum state is projected onto the computational basis

(|0...0〉, |0...1〉, ..., |1...1〉). However, sometimes the goal is to measure only the parity of a

subset of qubits, which differs from measurement in the computational basis. For instance,

measuring a Bell state |Φ+〉 := (|00〉 + |11〉)/
√

2 in the computational basis collapses the

superposition to either |00〉 or |11〉. Conversely, measuring the parity of the two qubits does

not collapse the superposition, as both |00〉 and |11〉 have even parity, preserving the state

|Φ+〉 after the measurement. A parity measurement circuit is illustrated in Figure 1.2c. An

ancilla qubit (the top wire) is used to collect the parity. For each qubit whose parity is to be

measured, a CNOT gate is applied, controlled by this qubit and targeting the ancilla. The

ancilla is initialized to |0〉 and each CNOT flips the ancilla if the controlling qubit is |1〉. An

even number of flips cancels out, leaving the ancilla state as the parity of the other qubits,

which is then measured at the end. This circuit measures the parity of four qubits in the Z

basis. A similar circuit for measuring parity in the X basis is shown in Figure 1.2d. Several

arguments can explain why this circuit measures the X parity. One elegant approach uses

the insight from Equation 1.11: in the X basis, the roles of control and target in a CNOT are

reversed. The initialization followed by an H gate equates to an initialization in the X basis

into |+〉; similarly, the final measurement preceded by an H gate equates to a measurement
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Fig. 4: Overview of QC architecture evaluation

The NISQ applications are introduced in Sec. VI. All
of the application benchmarks, the QC architectures under
evaluation, and technology specifications should be input to
the optimal compiler we have just introduced. The compilation
output should be an architecture-compatible quantum circuit.
We introduce our figure of merit (FOM) in NISQ evaluation
in Sec. VII. It turns out that we cannot only consider absolute
performance because it may lead us to architectures that are
too costly. Instead, we propose to use the circuit fidelity
normalized by the hardware cost as the FOM. Different
QC technologies have different engineering challenges, so
naturally we have to consider both architecture and technology
when estimating the hardware cost.

The QEC evaluation is introduced in Sec. VIII. We are still
in the early days of QEC when the demonstration of full-
scale FTQC is not practical. The focus is on reducing logical
error rates of a single logical qubit. Thus, our FOM is simply
embeddability of QEC code. It turns out that our chosen FOM
has an impact on the architecture space in consideration, so
we specify the choice of architectures in Sec. IX.

Finally in Sec. X, we present our results combining both
QEC and NISQ aspects.

VI. NISQ APPLICATIONS AND THEIR COMPILATION

Currently, leading quantum computers have 50 to 100 phys-
ical qubits [6], [17] and error-prone gates without noise being
significantly suppressed by QEC. Nevertheless, the quantum
computational supremacy experiment [6] demonstrates that
even NISQ technology is more powerful than any classical
computing technology on some tasks. Thus, one of the main
directions of QC research is the identification and imple-
mentation of real-life NISQ applications that outperform their
classical counterparts.

A. Quantum Approximate Optimization Algorithm

The objective of a discrete optimization problem can be
defined as the number of satisfied clauses. For example, we
can formulate the MAXCUT problem in this way. Suppose

. . .

. . .

. . .

. . .

|0i H

U(C, �1)

e�i�1X

U(C, �p)

e�i�pX
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(a) Full QAOA circuit

U(C, �)

e�i�ZZ
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e�i�ZZ

e�i�ZZ

=

(b) Phase-splitting operator (If a wire goes through a gate, then the gate does
not operate on that wire, i.e. qubit.)

Fig. 5: Applying QAOA to the MAXCUT problem

we have a graph G = (V, E), where |V | = n and |E| = m.
A cut, separating V into two disjoint sets of vertices, can be
encoded by an n-bit string s, where si = 0 or 1 indicating in
which set of vertices vi is. Then, the objective is

C =
X

(vj ,vk)2E

sj � sk, (3)

because if sj � sk = 0, vj and vk belongs to the same set of
vertices, then edge (vj , vk) is not cut; if sj � sk = 1, vj and
vk belongs to different vertices, then (vj , vk) is cut.

QAOA aims to solve discrete optimization problems ap-
proximately with a quantum circuit consisting of 2p groups of
gates [15]

U(B, �p)U(C, �p)...U(B, �1)U(C, �1)|si, (4)

where |si is the initial state produced by applying H gate on
all qubits at |0i, �1, ..., �p and �1, ..., �p are parameters. The
quantum circuit of applying QAOA to MAXCUT is shown
in Fig. 5a. U(B, �j), named mixing operator, is a layer of
single-qubit gates e�i�jX on all of the n qubits. U(C, �j),
named phase-splitting operator consists of m two-qubit gates
e�i�jZkZl on all of the qubit pairs (k, l) corresponding to an
edge in the graph (vk, vl) 2 E. For instance, Fig. 5b shows the
phase-splitting operator for a 4-vertex complete graph, so there
is an e�i�ZZ gate acting on every pair of qubits. After applying
2p alternating mixing operator and phase-splitting operators to
|si, the resulting quantum state is measured to calculate the
objective function. Then, classical optimizers derive � and �
parameters to use in the next cycle, as shown in Fig. 5a.

The mixing operators are directly executable on many NISQ
architectures [1], [21]. However, the phase-splitting operators,
consisting of m parameterized two-qubit gates, pose an inter-
esting and often challenging compilation problem because a
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2]T . The measurements are de-
noted as the meters on the far right. In this example, the
outcome has 50%-chance of being 00 and 50%-chance of
being 11, but never 01 or 10.

To execute a quantum circuit, logic synthesis is first per-
formed to translate the original gates into hardware-native
gates. For example, KAK decomposition [45] translates an
arbitrary two-qubit gate into three CX gates and some single-
qubit gates, which are all supported by IBM quantum comput-
ers [1]. After logic synthesis, two-qubit gates acting on any
pair of qubits are allowed. This may conflict with connectivity
constraints of the architecture that imposes a coupling graph
as the ones shown in Fig. 1. To resolve this issue, we have to
perform layout synthesis [44] that includes mapping the qubits
in the quantum circuit to physical qubits and scheduling the
gates with possible swaps. When the qubits required by some
two-qubit gate are not adjacent, one needs to insert SWAP
gates that exchange the quantum states of two physical qubits,
thus changing the mapping; or one can directly execute a long-
range gate with some overhead, e.g., a bridge gate [41].

III. MOTIVATION

We shall give a simple example of architecture evaluation.
A stabilizer circuit consisting of initialization, two H gates,
four CX gates, and a measurement is shown in Fig. 3 [16].
(The meaning of this circuit shall be introduced in Sec. VIII.
For now we kindly ask the reader to assume it is an important
workload.) We consider compiling the stabilizer circuit to the
three five-qubit IBM architectures in Fig. 1. Using an optimal
compiler [43] with depth as objective, the results for the
Yorktown architecture, Fig. 1a, are depth 8 and gate count
8 without any overhead. This is expected since the four CX
gates can be embedded to the coupling graph by mapping
the first qubit in the circuit to the central physical qubit in
Yorktown. The results for the Ourense architecture, Fig. 1b,
are depth 9 and gate count 11, 12.5% and 37.4% higher
than those of the Yorktown architecture, respectively. The
reason for this overhead is that the Ourense coupling graph
does not contain any degree-4 vertex, so the four CX gates
cannot all be satisfied by any initial mapping, which means

SWAP gates are needed. The layout synthesis results for the
Athens architecture in Fig. 1c, are depth 10 and gate count
14, 24% and 75% higher than those of Yorktown, respectively.
Compared to Ourense, Athens does not even have any degree-
3 vertex, so the results are worse. However, we shall show
later that high-degree vertices comes with higher cost.

Architectures in Fig. 1 seem similar, since they all have
five qubits, and Ourense and Athens even have the same
number of connections. However, their overheads for running
the stabilizer circuit workload are very different, even if the
compiler is optimal. Therefore, to deploy QC applications, it
is important to first evaluate existing architectures to find the
best candidate. Such evaluation is also essential when choosing
proposed architecture designs with an application in mind.

IV. THE AVAILABILITY OF OPTIMAL COMPILATION

We have divided the compilation into logic synthesis and
layout synthesis in Sec. II. We believe that layout synthesis
is more important for architecture evaluation. The native
gates supported by quantum computers are usually decided
by fundamental physics, but the coupling graphs have con-
siderably more degrees of freedom. In fact, the native gate
set of IBM quantum computers has not changed greatly since
the beginning of their cloud QC service, but very different
coupling graphs coexist [1]. In contrast, for many circuits,
especially variational circuits, generic single-qubit and two-
qubit gates often have a canonical decomposition to the native
gate sets [45]. Additionally, since QEC codes will greatly
influence architecture design in the near future, it is important
to note that different QEC codes often require the same set of
native gates, but very different qubit connections.

To evaluate the architectures, an optimal and scalable layout
synthesis tool is required. Otherwise, the overheads in the eval-
uation results may be influenced by sub-optimal compilation;
or only very small instances can be evaluated due to the huge
compilation cost. Compiler development is much more agile
than QC hardware fabrication, so it is necessary to ask the
compiler for an optimality guarantee so that the evaluations
offer sound advice.

There have been some works on optimal SWAP insertion,
but these suffer from very high cost in both space and time
[41], [46], [47]. Heuristic approaches often produce sub-
optimal results due to early termination in branch-and-bound
search [21], [22], [27], [29], [31], [42], [48]. We are excited
about the recent progress on a scalable and optimal (in SWAP
count and near-optimal in depth) layout synthesis tool [43]
which uses much more efficient variable encoding to represent
the layout synthesis solution space, called transition-based op-
timal layout synthesizer for quantum computing (TB-OLSQ).
It achieves the same results with a strictly optimal approach on
verifiable instances and performs better than leading heuristic
layout synthesis tools on fidelity and gate cost optimization.
With TB-OLSQ, we believe that this is the right time (and
the first opportunity) to perform the proposed architecture
evaluation, similar to the burst of FPGA architecture studies in
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To execute a quantum circuit, logic synthesis is first per-
formed to translate the original gates into hardware-native
gates. For example, KAK decomposition [45] translates an
arbitrary two-qubit gate into three CX gates and some single-
qubit gates, which are all supported by IBM quantum comput-
ers [1]. After logic synthesis, two-qubit gates acting on any
pair of qubits are allowed. This may conflict with connectivity
constraints of the architecture that imposes a coupling graph
as the ones shown in Fig. 1. To resolve this issue, we have to
perform layout synthesis [44] that includes mapping the qubits
in the quantum circuit to physical qubits and scheduling the
gates with possible swaps. When the qubits required by some
two-qubit gate are not adjacent, one needs to insert SWAP
gates that exchange the quantum states of two physical qubits,
thus changing the mapping; or one can directly execute a long-
range gate with some overhead, e.g., a bridge gate [41].

III. MOTIVATION

We shall give a simple example of architecture evaluation.
A stabilizer circuit consisting of initialization, two H gates,
four CX gates, and a measurement is shown in Fig. 3 [16].
(The meaning of this circuit shall be introduced in Sec. VIII.
For now we kindly ask the reader to assume it is an important
workload.) We consider compiling the stabilizer circuit to the
three five-qubit IBM architectures in Fig. 1. Using an optimal
compiler [43] with depth as objective, the results for the
Yorktown architecture, Fig. 1a, are depth 8 and gate count
8 without any overhead. This is expected since the four CX
gates can be embedded to the coupling graph by mapping
the first qubit in the circuit to the central physical qubit in
Yorktown. The results for the Ourense architecture, Fig. 1b,
are depth 9 and gate count 11, 12.5% and 37.4% higher
than those of the Yorktown architecture, respectively. The
reason for this overhead is that the Ourense coupling graph
does not contain any degree-4 vertex, so the four CX gates
cannot all be satisfied by any initial mapping, which means

SWAP gates are needed. The layout synthesis results for the
Athens architecture in Fig. 1c, are depth 10 and gate count
14, 24% and 75% higher than those of Yorktown, respectively.
Compared to Ourense, Athens does not even have any degree-
3 vertex, so the results are worse. However, we shall show
later that high-degree vertices comes with higher cost.

Architectures in Fig. 1 seem similar, since they all have
five qubits, and Ourense and Athens even have the same
number of connections. However, their overheads for running
the stabilizer circuit workload are very different, even if the
compiler is optimal. Therefore, to deploy QC applications, it
is important to first evaluate existing architectures to find the
best candidate. Such evaluation is also essential when choosing
proposed architecture designs with an application in mind.

IV. THE AVAILABILITY OF OPTIMAL COMPILATION

We have divided the compilation into logic synthesis and
layout synthesis in Sec. II. We believe that layout synthesis
is more important for architecture evaluation. The native
gates supported by quantum computers are usually decided
by fundamental physics, but the coupling graphs have con-
siderably more degrees of freedom. In fact, the native gate
set of IBM quantum computers has not changed greatly since
the beginning of their cloud QC service, but very different
coupling graphs coexist [1]. In contrast, for many circuits,
especially variational circuits, generic single-qubit and two-
qubit gates often have a canonical decomposition to the native
gate sets [45]. Additionally, since QEC codes will greatly
influence architecture design in the near future, it is important
to note that different QEC codes often require the same set of
native gates, but very different qubit connections.

To evaluate the architectures, an optimal and scalable layout
synthesis tool is required. Otherwise, the overheads in the eval-
uation results may be influenced by sub-optimal compilation;
or only very small instances can be evaluated due to the huge
compilation cost. Compiler development is much more agile
than QC hardware fabrication, so it is necessary to ask the
compiler for an optimality guarantee so that the evaluations
offer sound advice.

There have been some works on optimal SWAP insertion,
but these suffer from very high cost in both space and time
[41], [46], [47]. Heuristic approaches often produce sub-
optimal results due to early termination in branch-and-bound
search [21], [22], [27], [29], [31], [42], [48]. We are excited
about the recent progress on a scalable and optimal (in SWAP
count and near-optimal in depth) layout synthesis tool [43]
which uses much more efficient variable encoding to represent
the layout synthesis solution space, called transition-based op-
timal layout synthesizer for quantum computing (TB-OLSQ).
It achieves the same results with a strictly optimal approach on
verifiable instances and performs better than leading heuristic
layout synthesis tools on fidelity and gate cost optimization.
With TB-OLSQ, we believe that this is the right time (and
the first opportunity) to perform the proposed architecture
evaluation, similar to the burst of FPGA architecture studies in
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Fig. 7: Quantum convolutional neural network on 8 qubits

The mixing operators are directly executable on many NISQ
architectures [1], [21]. However, the phase-splitting operators,
consisting of m parameterized two-qubit gates, pose an inter-
esting and often challenging compilation problem because a
non-planar G mapped to architectures laid out on a 2D surface
would require two-qubit gates on distant pairs of qubits [7].

In computational chemistry, there is an important NISQ
application quite similar to QAOA—variational quantum
eigensolver (VQE). However, the ansätze in VQE, which
corresponds to mixing and phase-splitting operators in QAOA,
can often be easily mapped to architectures. We observe that
ansätze in leading VQE are either QC hardware-efficient by
themselves [23], or can be decomposed to quantum circuits
requiring only a linear connectivity [9], [26], which can be
simply mapped to a chain of qubits on quantum architec-
tures [8]. We are more interested in applications which pose
nontrivial compilation tasks because we can compare the
post-compilation overheads to evaluate how well the given
architectures support these applications. Thus, we shall not
use VQE in the following evaluations. For more information
on VQE, please see the recent survey [30].

B. Quantum Convolutional Neural Network

In theoretical physics, a valuable and computationally inten-
sive problem is to recognize symmetry-protected topological
phase (SPT) [36]. More concretely, the input of the problem
is a quantum state, possibly very complicated. The output of
the problem is just whether this state lies in the SPT area
in the whole state space or not. Recently, a NISQ solution to
one-dimensional SPT—QCNN was presented [11]. An 8-qubit
QCNN is shown in Fig. 7, where V s stand for generic single-
qubit gates and Us for generic two-qubit gates, and the meter
with the vertical double line stands for using the measurement
outcome as control. When we measure parts of the qubits, part
of the state space ‘collapses’. This reduces the complexity
of the state. This process is similar to pooling in traditional
CNN, so the controlled-V gates are called the pooling layer in
QCNN whereas the U gates are called the convolution layer.
For 1D SPT, the authors of [11] provided exact parameters
for U and V . They also demonstrate variationial training
of QCNN to solve other problems. Hybrid quantum-classical

CNN is also projected, say, by measuring all the qubits after
the second layer and feeding the measurement results to a
classical CNN [4]. We observe that QCNN poses interesting
compilation problems. Although the first convolution layer
only requires linear connectivity, the non-nearest neighbour
interactions are required in the second and third convolution
layer. Note that classically controlled-V gates do not require
any connection on the quantum architecture.

C. Non-Variational Applications

The three applications listed above allocate part or even
most of the reasoning to classical computers in the form
of optimization. This diverges from the traditional sense of
quantum algorithm, like Shor’s factoring algorithm where the
output can be easily read off from measurement outcome.
Although some estimations suggest that Shor’s algorithm is
not very feasible for NISQ technology [19], we do not want
to rule out all existing and future quantum algorithms on
arithmetic and algebraic problems. In this regard, we include in
our evaluation some arithmetic quantum circuits which serve
as infrastructure to a lot of such algorithms [5], [32]. They are
not designed to work efficiently for any specific architecture,
so they serve as good benchmarks used in our architecture
evaluation.

VII. FOM IN NISQ EVALUATION

A. Circuit Fidelity Estimation

For NISQ applications, circuit fidelity is probably the most
important factor because it measures the success rate of the
probabilistic outcome. Our model of fidelity is

f = f
|g2|
2 ⇤ exp

✓
�M · D � 2|g2| � |g1|

T

◆
, (5)

where f2 is the fidelity of two-qubit gate, |g2| is the number of
two-qubit gates, M is the number of qubits in the benchmark
program, D is the final depth, and |g1| is the number of single-
qubit gates. T is coherence time divided by the time it takes to
execute a two-qubit gate, which means the maximal number
of non-parallel two-qubit gates before decoherence. We use
f2 = 99% and T = 1000, which are sensible for near-future
technology [6], [18].

The inverse exponential term models the decoherence of
the architecture. Supposed that every qubit at every time step
takes one slot, then there are M · D slots in total. Every two-
qubit gate takes two slots, and every single-qubit gate takes
one slot, so there are MD� 2|g2| � |g1| remaining idle slots.
In every time step, qubits that are not being operated by gates
effectively go through an idleness gate with fidelity e�1/T .

In this fidelity model, we ignored the imperfect fidelity of
single-qubit gates, because 1) single-qubit gates are generally
much more accurate than two-qubit gates, so they do not
contribute much to the overall result; and 2) the values are
mainly for comparison between architectures, so the part of
single-qubit gate cancels out. Let us assume there is another
multiplicand f

|g1|
1 where f1 is the single-qubit gate fidelity.

Since we assume that the architectures can execute any kind of
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The NISQ applications are introduced in Sec. VI. All
of the application benchmarks, the QC architectures under
evaluation, and technology specifications should be input to
the optimal compiler we have just introduced. The compilation
output should be an architecture-compatible quantum circuit.
We introduce our figure of merit (FOM) in NISQ evaluation
in Sec. VII. It turns out that we cannot only consider absolute
performance because it may lead us to architectures that are
too costly. Instead, we propose to use the circuit fidelity
normalized by the hardware cost as the FOM. Different
QC technologies have different engineering challenges, so
naturally we have to consider both architecture and technology
when estimating the hardware cost.

The QEC evaluation is introduced in Sec. VIII. We are still
in the early days of QEC when the demonstration of full-
scale FTQC is not practical. The focus is on reducing logical
error rates of a single logical qubit. Thus, our FOM is simply
embeddability of QEC code. It turns out that our chosen FOM
has an impact on the architecture space in consideration, so
we specify the choice of architectures in Sec. IX.

Finally in Sec. X, we present our results combining both
QEC and NISQ aspects.

VI. NISQ APPLICATIONS AND THEIR COMPILATION

Currently, leading quantum computers have 50 to 100 phys-
ical qubits [6], [17] and error-prone gates without noise being
significantly suppressed by QEC. Nevertheless, the quantum
computational supremacy experiment [6] demonstrates that
even NISQ technology is more powerful than any classical
computing technology on some tasks. Thus, one of the main
directions of QC research is the identification and imple-
mentation of real-life NISQ applications that outperform their
classical counterparts.

A. Quantum Approximate Optimization Algorithm

The objective of a discrete optimization problem can be
defined as the number of satisfied clauses. For example, we
can formulate the MAXCUT problem in this way. Suppose

. . .

. . .

. . .

. . .

|0i H

U(C, �1)

e�i�1X

U(C, �p)

e�i�pX

|0i H e�i�1X e�i�pX

|0i H e�i�1X e�i�pX

|0i H e�i�1X e�i�pX

Classical Optimizer

(a) Full QAOA circuit

U(C, �)

e�i�ZZ

e�i�ZZ

e�i�ZZe�i�ZZ

e�i�ZZ

e�i�ZZ

=

(b) Phase-splitting operator (If a wire goes through a gate, then the gate does
not operate on that wire, i.e. qubit.)

Fig. 5: Applying QAOA to the MAXCUT problem

we have a graph G = (V, E), where |V | = n and |E| = m.
A cut, separating V into two disjoint sets of vertices, can be
encoded by an n-bit string s, where si = 0 or 1 indicating in
which set of vertices vi is. Then, the objective is

C =
X

(vj ,vk)2E

sj � sk, (3)

because if sj � sk = 0, vj and vk belongs to the same set of
vertices, then edge (vj , vk) is not cut; if sj � sk = 1, vj and
vk belongs to different vertices, then (vj , vk) is cut.

QAOA aims to solve discrete optimization problems ap-
proximately with a quantum circuit consisting of 2p groups of
gates [15]

U(B, �p)U(C, �p)...U(B, �1)U(C, �1)|si, (4)

where |si is the initial state produced by applying H gate on
all qubits at |0i, �1, ..., �p and �1, ..., �p are parameters. The
quantum circuit of applying QAOA to MAXCUT is shown
in Fig. 5a. U(B, �j), named mixing operator, is a layer of
single-qubit gates e�i�jX on all of the n qubits. U(C, �j),
named phase-splitting operator consists of m two-qubit gates
e�i�jZkZl on all of the qubit pairs (k, l) corresponding to an
edge in the graph (vk, vl) 2 E. For instance, Fig. 5b shows the
phase-splitting operator for a 4-vertex complete graph, so there
is an e�i�ZZ gate acting on every pair of qubits. After applying
2p alternating mixing operator and phase-splitting operators to
|si, the resulting quantum state is measured to calculate the
objective function. Then, classical optimizers derive � and �
parameters to use in the next cycle, as shown in Fig. 5a.

The mixing operators are directly executable on many NISQ
architectures [1], [21]. However, the phase-splitting operators,
consisting of m parameterized two-qubit gates, pose an inter-
esting and often challenging compilation problem because a

4

control

target

ancilla
MXX

Z
MZZ

X

MX

Z

a

b

c

Figure 1.2: Examples of general circuits. a) Quantum approximate optimization algorithm

circuit with initializations, parameterized unitary gates, measurements, and an outer layer

classical optimizer. b) Quantum convolutional neural network circuit with mid-circuit read-

outs and feed-forward gates. c) Z-parity, d) X-parity measurement circuit. e) A CNOT

implemented with measurements and feed-forward gates. a, b, and c are measured results.

11



in the X basis. In the interim, the four reversed CNOTs collect the X parity to the ancilla

qubits because, in the X basis, the roles of control and target are reversed.

Figure 1.2e displays a quantum circuit equivalent to a CNOT gate, implemented using

parity measurements and feed-forward single-qubit gates, which is useful because parity

measurements are native to certain quantum architectures (Section 9.3.1). Demonstrating

that this circuit functions as a CNOT is more elegantly done via ZX calculus, detailed in

Section 9.1.4. However, we present a proof using previously introduced concepts, utilizing bit

variables a, b, and c to denote the measurement results. The subscripts C, T , and A stand

for the control, target, and ancilla qubits, respectively. If a = 0, the XX parity measurement

projects the state onto the even parity subspace. The projector is expressed as II+XX
2

because

for a state |ψ〉 in the even parity subspace, XX|ψ〉 = |ψ〉, so II+XX
2
|ψ〉 = |ψ〉. Conversely, if

|φ〉 is in the odd parity subspace, XX|φ〉 = −|φ〉, so the projector to the odd parity subspace

is II−XX
2

. In summary, the XX measurement is expressed as (IT IA + (−1)aXTXA)/2. Feed-

forward gates are conditionally activated based on the measurement results a, b, and c, such

as applying Za
C : if the parity is even (a = 0), nothing is done; otherwise, a Z gate is applied

the control qubit. The final measurement of the ancilla is denoted by 〈+|AZc
A: a result of

c = 0 leads to a |+〉 state; otherwise, it results in |−〉.

(〈+|AZc
AZ

c
CIT ) ·

(
ICIA + (−1)bZCZA

2
Xb
T

)
·
(
IT IA + (−1)aXTXA

2
Za
C

)
|0〉A

(1)
=
(
〈+|AZc

AZ
c
CX

b
T + (−1)b〈+|AZc+1

A Zc+1
C Xb

T

)
· (Za

CIT |0〉A + (−1)aZa
CXT |1〉A)

(2)
= 〈+|Zc|0〉 Za+c

C Xb
T + (−1)b〈+|Zc+1|0〉 Za+c+1

C Xb
T

+ (−1)a〈+|Zc|1〉 Za+c
C Xb+1

T + (−1)a+b〈+|Zc+1|1〉 Za+c+1
C Xb+1

T

(3)
= Za+c

C Xb
T + (−1)bZa+c+1

C Xb
T + (−1)a+cZa+c

C Xb+1
T + (−1)a+b+c+1Za+c+1

C Xb+1
T

(4)
=





II + ZI + IX − ZX if a+ c = 0 and b = 0

ZI + II − ZX + IX if a+ c = 1 and b = 0

IX − ZX + II + ZI if a+ c = 0 and b = 1

ZX − IX − ZI − II if a+ c = 1 and b = 1

(1.14)
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In step (1), the first two expressions are combined, and the third is multiplied by |0〉A.

Constants are ignored for simplicity. Step (2) expands and simplifies the terms, so that

all the ancilla terms are combined. In step (3), we compute the ancilla terms to numbers,

e.g., 〈+|Zc|1〉 = (−1)c. This results in a sum of four terms each defined by measurement

results. We observe a and c always appear as a + c, leading to the expansion in step (4),

which presents the cases for possibilities of a + c and b. Note that II + ZI + IX − ZX =

(I +Z)I + (I −Z)X = |0〉〈0| ⊗ I + |1〉〈1| ⊗X is a CNOT. Thus, all four possible outcomes

correspond to a CNOT, demonstrating that the described circuit functions as a CNOT. The

case of a+ c = b = 1 includes a global phase of −1, which is irrelevant to the functionality.

1.2 Status of Quantum Computing Hardware

Since the discovery of quantum algorithms with potential runtime advantages over classical

algorithms, significant progress has been made in scaling up quantum computing hardware

to run these algorithms. In Figure 1.3, we present data showing the number of physical

qubits (on a logarithmic scale) versus the release dates of quantum computers in recent

years. While this collection does not capture all existing quantum computers, the data

reveal that the maximum number of physical qubits has roughly grown exponentially, i.e.,

linear in a logarithmic scale.

The scale of a quantum computer, characterized by the number of physical qubits, is

not the only metric that matters; the quality of qubits and quantum gates is also crucial.

However, as long as the scale increases, we encounter growing complexity in compilation, as

researchers aim to run increasingly larger quantum circuits on the hardware.

In classical computers, bits are generally encoded as voltage and can be easily “cloned”

from one location on the chip to another through electric wires. Gates are physical entities

that produce new bits based on the input bits. In contrast, in most quantum computing

platforms, qubits themselves are physical entities. Moving qubits is much more complex than
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Sources of data are as follows. Google Sycamore: [AAB19], Google Sycamore2.0: [MVM23], USTC Zuchongzhi: [WBC21],

IBM Osprey: https://link.aps.org/doi/10.1103/PhysRevLett.127.180501, IBM Eagle: https://www.ibm.com/quantum/bl

og/127-qubit-quantum-processor-eagle, IBM Condor: https://www.ibm.com/quantum/blog/quantum-roadmap-2033, IBM

Rüschlikon: https://uk.newsroom.ibm.com/2017-05-17-IBM-Builds-Its-Most-Powerful-Universal-Quantum-Computing-

Processors, IonQ Aria: https://aws.amazon.com/blogs/quantum-computing/amazon-braket-launches-ionq-aria-with

-built-in-error-mitigation/, IonQ Forte: https://ionq.com/news/ionqs-most-powerful-quantum-system-ionq-fort

e-now-available-through-the, Quantinuum H2: https://www.quantinuum.com/news/quantinuums-h-series-hits-56-p

hysical-qubits-that-are-all-to-all-connected-and-departs-the-era-of-classical-simulation, Quantinuum H1-1:

https://www.quantinuum.com/news/quantinuum-completes-hardware-upgrade-achieves-20-fully-connected-qubits,

Harvard: [BLS24], ColdQuanta: [GSS22], All Rigetti data points: https://www.rigetti.com/what-we-build.

Figure 1.3: Scaling of the number of physical qubits in recent years.
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moving classical bits because quantum states cannot be cloned [WZ82, Die82]. Multi-qubit

gates are not physical entities but joint operations on multiple qubits, requiring these qubits

to be moved to adjacent locations.

In this section, we introduce three leading quantum computing platforms: supercon-

ducting circuits, trapped ions, and neutral atoms. This section is not intended to be an

all-inclusive review of these platforms. Additionally, significant progress has also been made

on other platforms, such as nuclear magnetic resonance (NMR) [LBP16], semiconductor

spins [BLP23], and nitrogen-vacancy (NV) centers [PM21]. We shall not go into details on

these platforms since they have not yet matched the scale or quality achieved by the first

three platforms.

1.2.1 Superconducting Circuits

A superconducting quantum architecture can be represented by a coupling graph. A few

examples are shown in Figure 1.4 including a recent IBM chip, Torino. In these graphs, each

node represents a physical qubit, and each edge represents a coupler between two qubits. For

instance, Torino has 133 qubits connected in a heavy-hexagon connectivity [CZY20]. The

qubits and couplers are constructed from nanofabricated circuit components, resulting in a

fixed coupling graph, which is why this type of architecture is referred to as static.

During operation, the chip must be cooled to near absolute zero temperature, in the milli-

Kelvin regime, so that certain components become superconducting, allowing the quantum

effects to emerge. Each qubit is connected to several control lines that extend from room

temperature to the cryogenic environment. Single-qubit gates are applied by sending signals

through these control lines. In current architectures, these control lines are independent.

This independence allows for the simultaneous application of different single-qubit gates to

any arbitrary set of qubits. However, this paradigm may need to change in the future, as it

is not feasible to cool down the large number of control wires required [ALF17]. As a result,

individual qubits might no longer be independently and simultaneously addressable.
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a) Rigetti Aspen-4 [CBG21]

b) IBM Falcon [JJB21] c) Google Sycamore [AAB19]

Taken on August 15, 2024 from https://

quantum.ibm.com/services/resources.

d) IBM Torino

Figure 1.4: Coupling graphs of some existing superconducting quantum architectures.

Multi-qubit gates are crucial for quantum algorithms. In superconducting circuits, only

two-qubit gates are typically engineered. To perform such a gate, the two qubits must be

adjacent on the coupling graph. By sending signals through the control lines of the two

qubits and the coupler, a two-qubit entangling gate is executed. When two qubits are not

adjacent, they cannot perform a direct two-qubit gate because there is no coupler to mediate

their interaction. To resolve this issue, a SWAP gate (Equation 1.7) can be used to logically

exchange the quantum data between two physical qubits. By performing a series of SWAP

gates, two qubits can be brought adjacent on the coupling graph, allowing the desired two-

qubit entangling gate to be applied.

In classical circuit design, gate fidelity is rarely a concern because fabrication processes

are very mature to ensure that gates almost never produce errors under specified working

conditions (one error in ∼ 1027 operations [SRA11]). However, quantum states are much

more fragile, so quantum computing requires careful attention to fidelity.

There are various sources of noise in quantum computing, with decoherence being one

of the most significant. Quantum data in a qubit degrade over time. The metric that
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quantifies this “lifetime” of a qubit is known as the decoherence time. Calibration data for

quantum computers usually provides two values, T1 and T2, corresponding to different types

of decoherence. We use the smaller of these two as the decoherence time. Ideally, quantum

algorithms should complete within a fraction of the decoherence time, as fidelity decreases

rapidly when this limit is approached.

The number of gate layers that can be applied depends on the ratio of gate duration to

decoherence time. For example, IBM’s Torino chip has 133 qubits with a median decoherence

time of 119 us.1 The gate duration is 68 ns, allowing for over a thousand layers of gates.

There are, however, several caveats to this estimation. 1) Measuring qubits at the end of

a computation takes significantly longer than applying gates—for instance, Torino requires

1.56 us for measurements, though this is still small compared to the decoherence time. 2)

Apart from decoherence, other types of noise listed in the next paragraph further limit the

scale of circuits that can be run reliably. 3) To satisfy the connectivity constraints between

qubits, additional gates like SWAPs may need to be inserted into the circuit, which further

reduces the feasible circuit size.

In addition to decoherence, other types of noise affect operations on physical qubits,

including single-qubit gates, two-qubit entangling gates, and SPAM (state preparation and

measurement). Within SPAM, state preparation typically just involves cooling the qubits for

a sufficient period of time, so the primary concern is the fidelity of measurements. Generally,

for superconducting circuits, measurements have lower fidelity than two-qubit entangling

gates, which in turn have lower fidelity than single-qubit gates. For instance, the mean

error rates for measurements, two-qubit gates, and single-qubit gates on the Torino chip are

1.89%, 0.315%, and 0.0312%, respectively.1 In superconducting circuits, running gates in

parallel can reduce fidelity due to crosstalk between circuit components. When all two-qubit

gates are executed simultaneously, the fidelity of each gate corresponds to the EPLG (error

per layered gate) [MHP23]. For Torino, the EPLG is 0.662%, significantly higher than the

1 All Torino data are taken on August 15, 2024 from https://quantum.ibm.com/services/resources.
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0.315% error rate for isolated two-qubit gates.

1.2.2 Trapped Ions

Compared to superconducting circuits, trapped-ion based quantum computers generally fea-

ture fewer qubits but higher gate fidelity. For example, Quantinuum H2 boasts 56 qubits

with a typical SPAM error rate of 0.15%, a two-qubit gate error rate of 0.15%, and a single-

qubit gate error rate of 0.003%.2 The H2 utilizes a fabricated chip with numerous electrodes

forming a ‘race track’-shaped trapping electrical potential, along which the ions can be

moved [MBA23]. Unlike superconducting circuits, the quantum states of ions do not require

a cryogenic environment, thus eliminating the need for cooling the chip to the milli-Kelvin

regime.

The number of gate layers that can be executed is influenced not only by decoherence

time and gate durations but also by the need to shuttle ions together for two-qubit gates,

as these movements are relatively slow. Quantinuum has implemented a physical swap

protocol that rotates two ions by 180 degrees to permute their order on the track. To

simplify programming, their system presents an all-to-all connectivity to the user, while the

backend automatically generates the necessary physical swaps. They define a depth-1 circuit

time as the sum of 1) time required to swap the qubits from a previous permutation to the

current one, 2) time to apply a layer of arbitrary single-qubit gates, and 3) time to apply a

layer of two-qubit gates in the current permutation. The typical memory error per qubit at

depth-1 circuit time is 0.05%, indicating the possibility of running over a thousand layers of

gates with overhead associated with connectivity constraints considered.

The relatively limited scale compared to superconducting circuits is due to the fact that

trapped ion chips are currently only one-dimensional because of the constraints of trapping

technology. For further scaling, a promising approach is the quantum charge-coupled device

2All Quantinuum H2 data are taken on August 18, 2024, from the data sheet available at https:

//www.quantinuum.com/hardware/h2.
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(QCCD) [KMW02] that lays out gate zones in 2D planes, allowing ions to shuttle between

them. Given that large-scale 2D ion trap architectures are still under development, and

hardware providers currently manage connectivity constraints internally, we do not focus on

trapped ions in this dissertation.

1.2.3 Neutral Atoms

Recently, neutral atoms trapped in arrays of optical tweezers have emerged as a promis-

ing platform for quantum computing. These systems are readily scalable, with up to 280

qubits demonstrated at Harvard [BLS24], and further significant increases in system size are

anticipated. The Harvard machine reports error rates of 0.2% for measurements, 0.5% for

two-qubit gates, and 0.08% for single-qubit gates.

The architecture, known as dynamically field-programmable qubit arrays [BLS22, TBL22,

TBL24, TLC24], features reconfigurable qubit connectivity that can be dynamically altered

during computation, as depicted in Figure 1.5. This flexibility is achieved using a 2D grid

of acousto-optic deflector (AOD) traps that can move within the plane, with the ability to

adjust their spacing. Given the qubits’ decoherence time of 1.5 s and assuming that each

layer of gates involves five movements taking typically 200 us each [BLS22], this architecture

could potentially support running over a thousand gate layers. However, gate fidelity and

the variable duration of rearrangements for different layers must be considered to get an

accurate estimation.

1.3 Layout Synthesis for Static Quantum Architectures

As discussed in the previous section, various quantum computing platforms exhibit distinct

connectivity constraints among their qubits. The central focus of this dissertation, layout

synthesis, aims to transform quantum programs to ensure they can be executed under these

connectivity constraints.
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Figure 1.5: The dynamically field-programmable qubit arrays (DPQA) architecture. a)

Non-local connectivity of DPQA. Atoms are kept in traps generated by a 2D acousto-optic

deflector (AOD, dashed grid) and a spatial light modulator (SLM, all others). Entangling

two-qubit gates are enabled by a Rydberg laser illuminating the plane (glow). Only when two

atoms are within the Rydberg blockade range rb can they perform an entangling gate (pairs

in colored ovals). We can change the location of AOD atoms, and transfer atoms between

AOD and SLM traps [BTM07] in the middle of computation (each arrow corresponding to

some AOD reconfiguration). Through such reconfigurations, new non-local connectivities

are established (oval dashes), i.e., different pairs of atoms can now perform entangling gates.

(This caption continues on the next page.)
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(previous page) b) Structure of compiled results. We discretize space by prescribing interac-

tion sites shown as the proximity of integer points in the plane. The distance between sites

is sufficient to suppress Rydberg interaction strengths [BLS22, EBK23] so the two-qubit en-

tangling gates can only take place within sites. A compiler places the qubits in the quantum

circuit to atoms in SLM or AOD at a specific interaction site in the beginning of execution.

The time is discretized by setting stages when two-qubit gates are performed. After each

stage, some AOD movements and atom transfers serve as routing for the gates executed at

the next stage.

∀V∈U (4)
v1
v2

v3
v4

v5 v7
v8v6

KAK

Figure 1.6: KAK decomposition. For any V that is a 4-by-4 unitary matrix, the correspond-

ing two-qubit gate can be decomposed into 3 CNOTs and 8 single-qubit gates.

Before engaging in layout synthesis, it is essential to confirm that the quantum circuit is

expressed using the native gate set of the hardware. Gates not included in this set must be

decomposed into a series of executable gates from the set. Most near-term quantum algo-

rithms, fortunately, are primarily composed of single-qubit and two-qubit gates. Moreover,

canonical decompositions exist for any arbitrary two-qubit gate into single-qubit unitaries

and CNOTs [VW04, PCS20], as depicted in Figure 1.6. Other important multi-qubit gates

in quantum computing also have efficient decompositions [BBC95]. These decompositions

are similar to logic synthesis in electronic design automation.

We posit that layout synthesis presents a more formidable challenge than gate decompo-

sition. This stems from the observation that while the native gates are determined by the

fundamental physics underlying the quantum computing platform, the design of coupling

graphs offers greater flexibility. Indeed, the native gate set of IBM quantum computers has

remained largely unchanged since the inception of their cloud-based quantum computing
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OPENQASM 2.0;

include "qelib1.inc";

qreg q[3]; // Initiate

// 3 logical qubits

h q[2]; //g1
cnot q[1], q[2]; //g2
tdg q[2]; //g3
cnot q[0], q[2]; //g4
t q[2]; //g5
cnot q[1], q[2]; //g6
tdg q[2]; //g7
cnot q[0], q[2]; //g8
t q[1]; //g9
t q[2]; //g10
cnot q[0], q[1]; //g11
h q[2]; //g12
t q[0]; //g13
tdg q[1]; //g14
cnot q[0], q[1]; //g15

a) Toffoli program.

g4 g8 g11 g13 g15
q0 • • • T •

g2 g6 g9 g14
q1 • • T T †

g1 g3 g5 g7 g10 g12
q2 H T † T T † T H

b) Toffoli circuit diagram.

q0

q1

q2

g2, g6

g11, g15

g4, g7

c) Qubit interaction graph of Toffoli.

Figure 1.7: Toffoli circuit. Single-qubit gates are colored gray. Identical two-qubit gates

applied at different times have the same color, e.g., g2 and g6 are orange because they are

both CNOT(q1, q2) but at different times.

service, as the core qubit technology has not changed drastically. However, quantum com-

puters featuring vastly different coupling graphs have been introduced over recent years, as

evidenced by the variations shown in Figure 1.4.

1.3.1 Problem Statement

A static architecture, such as superconducting circuits, has fixed connectivity between qubits,

represented by a coupling graph G = (P,E). For illustrative purposes, consider a small 5-

qubit architecture displayed on the left of Figure 1.8a. In this graph, each vertex represents

a physical qubit, and each edge allows the application of two-qubit entangling gates between

connected vertices. We address the layout synthesis problem for the Toffoli circuit depicted

in Figure 1.7b on the 5-qubit architecture, which comprises 9 single-qubit gates and 6 two-
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p4 p2

p3 p1 p0

physical qubits

q0

q1

q2

program qubits

a) Initial placement for Toffoli circuit

g̃4 g̃8 g̃14 g̃16 g̃18
q0 p0 • • p0 • T •

g̃2 g̃6 g̃9 g̃11 g̃12 g̃13 g̃17
q1 p3 • • T • • p1 T †

g̃1 g̃3 g̃5 g̃7 g̃10 g̃15
q2 p1 H T † T T † T • p3 H

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b) Scheduled Toffoli circuit

Figure 1.8: Layout synthesis for the Toffoli circuit on a 5-qubit architecture.

qubit gates. Here, the cardinality |g| = 1 if g is a single-qubit gate and |g| = 2 if it is a

two-qubit gate. The notation g ∪ g′ and g ∩ g′ represent the sets of qubits involved in g or

g′ and in both g and g′, respectively. For instance, in Figure 1.7b, q1, q2 ∈ g2, q0 ∈ g13, and

|g4| = |g6| = 2.

Layout synthesis has to produce an initial placement, which maps program qubits to

physical qubits, a gate scheduling, which records the execution time of gates, and possibly

some SWAP gates to adhere to connectivity constraints.

The initial placement is a map π0 : Q→ P to facilitate subsequent gate scheduling. By

constructing a qubit interaction graph from all the two-qubit gates as shown in Figure 1.7c,

we can determine if this graph can be embedded into the coupling graph so that there is no

need for further transformations in gate scheduling. Typically, not all two-qubit gates can
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be directly mapped to edges in the coupling graph due to topological differences, such as

the absence of triangles in the coupling graph but presence in the qubit interaction graph.

Nonetheless, a valid initial placement is depicted in Figure 1.8a where π0(q0) = p0, π0(q1) =

p3, and π0(q2) = p1.

Gate scheduling determines the spacetime coordinates (tj, xj) for each gate, indicating

when and where gates are applied. Single-qubit gates are assigned to a physical qubit, while

two-qubit gates are assigned to an edge in the coupling graph. SWAP gates are strategically

placed to ensure all two-qubit gates are executable. Since only SWAP gates are inserted

and all the input gates are contained in the scheduled gate list, the functionality of input

circuit remains unchanged after the layout synthesis process. An example of valid, though

not necessarily optimal, gate scheduling is shown in Figure 1.8b. Time coordinates for all

gates are indicated at the bottom, with space coordinates derived from the mapping, e.g.,

x1 = p1, x2 = (p3, p1), and so forth. The three CNOTs g̃11, g̃12, and g̃13 perform a SWAP

operation, adjusting the qubit mapping to enable the execution of subsequent gates like g̃14

and g̃18. (We use tilde to denote that a gate is scheduled.)

Below, we provide a formal definition of layout synthesis for static quantum architectures.

Input A coupling graph G = (P,E) and a list of quantum gates g1...gM acting on program

qubit set Q. All the input gates are in the native gate set of the architecture. Program

qubits are less or equal than physical qubits, i.e., |Q| ≤ |P |.

Output An initial mapping π0 : Q → P , and a scheduled quantum circuit consists of a

new list of gates g̃1...g̃M̃ , including SWAP gates, where each gate has a spacetime coordinate

(tj, xj).

Constraints

Feasible two-qubit gates: all the two-qubit gates in the scheduled circuit must be on

two qubits adjacent in the coupling graph. Formally, for j = 1 to M̃ , if |g̃j| = 2, then xj ∈ E.

Executing all gates: all input gates should be executed. Formally, there is an injective
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map f : {1, ...,M} → {1, ..., M̃} such that gi = g̃f(i) for i = 1 to M .

Respecting dependencies: for i, i′ = 1 to M , if i < i′ and gi∩gi′ 6= ∅ then tf(i) < tf(i′).

Objective The objective of layout synthesis can vary. For example, we may minimize the

circuit depth T , which is the maximum time coordinate of all the scheduled gates, i.e.,

T := maxj=1,...,M̃ tj. Alternatively, we may minimize the number of additional gates M̃ −M ,

or the fidelity of the scheduled circuit. With fidelity as the objective, more input information

may be required such as the single-qubit gate fidelity of all qubits and the two-qubit gate

fidelity of all couplers.

1.3.2 NP-Hardness Results

It is natural to assess the computational complexity of layout synthesis before setting out

to formulate specific solutions. We have provided a proof when the objective is to mini-

mize circuit depth in [TC21b] which we present below. Several related results have been

established, e.g., determining the minimal number of SWAP gates to insert is NP-hard by

a reduction from the token swapping problem in [SSC18]. Furthermore, the NP-hardness

of depth-optimal initial placement, without explicit modeling SWAP gates and scheduling,

is established in [MFM08]. The NP-hardness of depth-optimal layout synthesis for QAOA

circuits, given different architectural assumptions (certain edges between physical qubits are

special-purposed for certain types of gates), is proven in [BKM18] through reduction from

3-SAT. Our proof is based on the Hamiltonian cycle problem, inspired by [MFM08]. How-

ever, our definition of the layout synthesis problem is different from theirs and the reduction

is also different.

Theorem 1. Depth-optimal layout synthesis is NP-hard.

Proof. The problem of depth-optimal layout synthesis is not easier than its decision version:

whether the depth of a scheduled circuit can be lower than a certain value. We reduce an

arbitrary Hamiltonian cycle problem on graph G = (P,E) with |P | = N to a depth-decision
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layout synthesis problem.

The circuit in this layout synthesis problem comprises N layers, each with a two-qubit

gate gl = CNOT(ql, q(l+1) modN), while every other qubit at each level is occupied by single-

qubit gates. The coupling graph in this layout synthesis problem is directly G. Then, we ask

whether the circuit can be scheduled on G with depth N as the layout synthesis problem.

Suppose the layout synthesis determines that it is indeed possible to schedule the gates

with N layers, then there are no additional gates inserted because every qubit in our circuit

depends on some gates in the previous layer. If a gate is inserted, some dependency chains

are necessary to lengthen in the scheduling, and the depth after layout synthesis cannot be

N . Because there are no new gates, the map from program to physical qubits, π, never

changes, and gate CNOT(ql, ql+1) are executed on some edge (π(ql), π(ql+1)) in the coupling

graph, which means that (π(q1), π(q2), ..., π(qN), π(q1)) is a Hamiltonian cycle.

Conversely, if the layout synthesis determines that there is no solution with N layers,

there is no Hamiltonian cycle in G. For contradiction, suppose there is a Hamiltonian cycle

(p1, p2, ..., pN , p1), then initial placement π : qi 7→ pi for i = 1 to N enables all gates to

execute in N layers without any additional gates.

Therefore, an NP-complete problem, Hamiltonian cycle, is reducible to the depth-decision

layout synthesis. This means the depth-decision layout synthesis problem is NP-complete

and thus the depth-optimal layout synthesis problem is NP-hard.

This theorem also allows us to establish the NP-hardness of gate-optimal and fidelity-

optimal layout synthesis.

Corollary 1.1. Gate-optimal layout synthesis is NP-hard.

Proof. The decision version of gate-optimal layout synthesis involves determining if there

is a layout synthesis solution with less than a certain number of gates. Specifically, it

can determine whether there is a solution without any additional gates. On the family
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of instances constructed in the proof for Theorem 1, a solution without additional gates is

necessary to have a fixed map from program to physical qubits. Therefore, if the gate-decision

layout synthesis can be determined, we can use the result to determine the Hamiltonian cycle

problem. Since the latter is NP-complete, the former is NP-complete, and thus the gate-

optimal layout synthesis problem is NP-hard.

Note that this proof covers scenarios where circuit transformations in layout synthesis

utilize constructs other than SWAPs, such as bridge gates [SSC18], so we term the prob-

lem gate-optimal rather than SWAP-optimal layout synthesis. Based on this result, it is

straightforward to prove fidelity-optimal layout synthesis is NP-hard assuming the fidelity

model is the product of all gate fidelities.

Corollary 1.2. Fidelity-optimal layout synthesis is NP-hard.

Proof. The decision version of fidelity-optimal layout synthesis involves determining if there

is a layout synthesis solution with fidelity higher than certain constant. Specifically, it can

determine whether there is a solution for the layout synthesis instances constructed in the

proof of Theorem 1 with fidelity fN
2−N assuming the fidelity of all types of gates is f .

Since the quantum circuit has N two-qubit gates and N2 − 2N single-qubit gates, a layout

synthesis solution with a fidelity of fN
2−N is necessary to have no additional gates, thus a

fixed map from program to physical qubits. Therefore, if fidelity-decision layout synthesis

can be determined, we can use the result to determine the Hamiltonian cycle problem. Since

the latter is NP-complete, the former is NP-complete, and thus the fidelity-optimal layout

synthesis problem is NP-hard.

1.3.3 Previous Work

In the most general sense, layout synthesis is generating a quantum circuit that satisfies con-

nectivity constraints and fulfills the functionality of the input circuit. Previous works on this

problem include [WIP07, MFM08, HNY11, SSP13, SSP14, KDS16, KDS18, WLD14, SSC18,
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ZPW18, CSU19, IRI19, WBZ19, SSC19, CDD19, BSA19, LWD15, VDR17, VDR18, BDB18,

ZW19, KHD19, TQ19, LDX19, MBJ19, MLM19, AAG19]. They can also be characterized

by the optimization metrics used. It can be the additional “cost”, which is usually propor-

tional to the number of additional gates [MFM08, HNY11, SSP13, WLD14, LWD15, KDS16,

KDS18, SSC18, CSU19, CDD19, IRI19, ZPW18, ZW19, SSC19, WLD14, WBZ19]; or circuit

depth [WIP07, VDR17, BDB18, VDR18, BSA19]; or circuit fidelity [TQ19, AAG19, MBJ19,

MLM19]; or a mix of the above [LDX19, KHD19]. We further compare these works in a few

aspects.

First, these works may have some variations on the problem in mind. [WIP07, HNY11,

SSP13, WLD14, LWD15, KDS16, KDS18, MBJ19] only focus on multidimensional array

coupling graphs (linear array for 1D, grid for 2D, and so on). [ZW19] focuses specifically

on SU(4) circuits, where all gates are two-qubit generic unitaries, and includes post-layout-

synthesis optimization. [AAG19] does not focus on deriving a layout synthesis solution but

adjusting the mapping after layout synthesis to improve fidelity.

In the problem statement presented above, we assume that all dependencies are respected.

However, if some gates commute, changing their relative order does not alter the functionality

of the circuit. The dependencies are respected in previous works listed above except [IRI19,

VDR17, VDR18, BDB18]. [IRI19] considers a few basic commutation rules, but the solutions

it compares to do not use dependencies to encode the relative orders between the gates.

Thus, it is unclear whether the gain of [IRI19] is because of commutations or encoding with

dependencies. [VDR17, VDR18, BDB18] consider the layout synthesis of QAOA circuits

which are special because all the two-qubit gates used in the U(C, γ) parts (see Figure 1.2a)

commute with each other.

Since layout synthesis is NP-hard, we can also categorize previous works into heuristic

ones and exact/optimal ones. The worst-case runtime of the latter scales exponentially in

problem size because of the computational complexity of the problem.

In general, the heuristic works formulate layout synthesis as a search problem [SDC20,
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SPS20, ZHQ21, ZPW18, MFM08, KHD19, LDX19, HNY11, SSP13, KDS16, KDS18, SSC18,

CSU19, CDD19, IRI19, ZW19, SSC19]. We focus on the approaches that can target arbitrary

coupling graphs because existing coupling graphs are generally not n-dimensional arrays.

In the search algorithms, the state is (G,Π) where G contains the gates that have been

considered and Π is the current qubit mapping; the action leading to another state is either

changing Π by SWAPs or appending some gates into G if they only act on adjacent qubits

under the current mapping; the cost of a Π-change is often evaluated by looking ahead a few

more steps in the search tree. At the beginning of the search, G is just empty and there are

a few different ways to find the initial mapping Π0. [MFM08, SSC18, SDC20] use the earlier

two-qubit gates to construct an interaction graph between program qubits and apply existing

graph isomorphism algorithms from this graph to the coupling graph. In [SSC18], the qubit

interaction graph is additionally weighted by the number of two-qubit gates between this

qubit pair. [ZPW18, ZW19, SPS20, ZHQ21, CDD19, IRI19] start the search with some Π0

and expand the search tree a few times. Then, they select the best mapping so far and use it

as the real initial mapping. [LDX19] searches for the final mapping of the reversed program

and uses it as Π0 for the original program. [CSU19, SSC19] leverage existing token swapping

algorithms to derive efficient sets of SWAPs to transform from Π to the next mapping.

In theory, one can derive the optimal solution by fully expanding the search tree in the

heuristic search approaches, but in practice, the exact/optimal approaches formulate the

qubit mapping into mathematical programming and apply a solver: [LWD15, WLD14] use

PBO (pseudo Boolean optimizer), [MBJ19, WBZ19, MLM19] use satisfiability modulo the-

ories (SMT) solvers, [SSP14, BSA19, NBG22] use integer programming (IP) solvers, and

[BDB18, VDR17, VDR18] use temporal planners. To reduce runtime, many works com-

promise by slicing the program and only considering the next slice when inserting SWAPs

[MLM19, SSP14, BSA19, NBG22].

The layout synthesis problem is still quite new to compiler and design automation com-

munities, so the name of the problem varies. It can be placement [MFM08, WLD14], rout-

29



ing [CDD19], compiling quantum circuits [IRI19, ZW19, MBJ19, VDR17, VDR18, BDB18,

MLM19], quantum circuit transformation [CSU19], mapping circuits to quantum architec-

tures [ZPW18, WLD14, LWD15, WBZ19, KHD19, BSA19, LDX19], conversion [HNY11] or

optimization [SSP13] of circuits in quantum architecture, realization of quantum circuits

[KDS16, KDS18], or qubit allocation [SSC18, TQ19, AAG19, SSC19].

Despite all these efforts, we discovered that the heuristic approaches are still far from

optimal, and the scalability of the optimal approaches can still be significantly improved, as

specified in later chapters.

1.4 The Challenge of Layout Synthesis for Dynamic Quantum Ar-

chitectures

In contrast to static architectures, the connectivity between qubits in dynamic architectures

can be adjusted during computation. For instance, qubits can be moved using AODs in

neutral atom arrays, as illustrated in Figure 1.5. Therefore, layout synthesis for dynamic

architectures must also track the state of the architecture itself.

One possible approach is to extend the concept of the coupling graph to be time-

dependent: at any given moment t, the coupling graph is Gt = (P,Et). Assuming that

no physical qubits are created or destroyed during computation, the physical qubit set P

remains unchanged, allowing us to assign fixed labels p1, p2, . . . , pN . However, the edge set Et

may change during circuit execution. For example, a simple dynamic architecture is shown

in Figure 1.9, where diamonds represent fixed physical qubits and circles represent movable

qubits that can shift left or right. The initial state of this architecture, G0, is shown in

Figure 1.9a, with the edge set E0 = {(p1, p5), (p2, p6), (p3, p7), (p4, p8)}.

During circuit execution, a dynamic architecture can transition from one state to another,

represented as traveling on a “meta-graph”M = (G,∆), where each vertex itself is a possible

coupling graph, i.e., a state of the architecture, and each edge δ represents a feasible state
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a) G0: the initial state.
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b) G1: the state after shifting some qubits.
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c) Meta-graph.

Figure 1.9: A hypothetical dynamic architecture. Diamonds and circles are physical qubits.

t τX τCZ τδ τCZ τX
p1 X [q1] CZ [q1, q2] δ I X [q1]

p2 X [q3] CZ [q3, q4] δ CZ [q2, q3] X [q3]

p3 X [q5] CZ [q5, q6] δ CZ [q4, q5] X [q5]

p4 X [q7] CZ [q7, q8] δ CZ [q6, q7] X [q7]

p5 X [q2] CZ [q1, q2] δ CZ [q2, q3] I

p6 X [q4] CZ [q3, q4] δ CZ [q4, q5] I

p7 X [q6] CZ [q5, q6] δ CZ [q6, q7] I

p8 X [q8] CZ [q7, q8] δ I I

Figure 1.10: Layout synthesis for the hypothetical dynamic architecture: a schedule of gates

and architecture state transitions. Time goes from left to right. For every qubit, each block

is either a gate or a state transition. Qubits in the same CZ gate are connected by a curve.

transition. For simplicity, we consider only one other state, G1, as shown in Figure 1.9b. In

this example, M has two vertices, G0 and G1, and two transitions: right-shift δ = (G0, G1)

and left-shift δ′ = (G1, G0), as illustrated in Figure 1.9c.

Suppose our quantum program consists of a layer of single-qubit gates on all qubits,

followed by CZ gates on (q1, q2), (q2, q3), ..., (q7, q8), and concludes with some other single-

qubit gates on q1, q3, q5, and q7. A valid layout synthesis result is shown in Figure 1.10,

where we execute four CZ gates under architecture state G0, perform a state transition δ,

and execute three more CZ gates under state G1. In this figure, the map from program to

physical qubits is π : Q→ P with π(q1) = p1, π(q2) = p5, π(q3) = p2, π(q4) = p6, π(q5) = p3,

π(q6) = p7, π(q7) = p4, π(q8) = p8, and it remains unchanged because there are no SWAPs.

However, using the coupling graph directly as the state of the architecture has limitations,
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as it only encodes connectivity and omits other critical information such as the specific

location of qubits. Therefore, in layout synthesis for dynamic architectures, we still leverage

the concept of a time-dependent architecture state, but the state representation is customized

to the specific architecture. For neutral atom arrays, we represent the state directly with

the locations of the qubits in xy-coordinates. The coupling between qubits is derived as a

property of the state, depending on the distance between coordinates. Further details on

this will be provided in later chapters.

A key hardware assumption of the DPQA architecture is that the Rydberg laser globally

excites all qubits. An individually addressed Rydberg laser has also been demonstrated, but

the two-qubit gate fidelity so far at 92.5% [GSS22] is much lower than the global approach.

Previous studies on layout synthesis for neutral atom arrays have been mainly focusing on

architectures with individual addressability, where the qubits can be routed logically with

SWAP gates like on static architectures. Baker et al. [BLD21] covered the layout synthesis

under such a hardware setting. Li et al. [LZC23] further considered the detailed durations for

different gates in the scheduling. Patel et al. [PST22] proposed a method of logic resynthesis

to leverage three-qubit gates available on neutral atoms. The SWAPs for routing qubits can

sometimes become ‘free lunch’ after the resynthesis. Some works also utilize the movement

capabilities on neutral atoms. Brandhofer et al. [BBP21] targeted an architecture with a

more restricted kind of movement, ‘1D displacement’. Nottingham et al. [NPW23] and

Schmid et al. [SPK23] proposed to combine the SWAP and AOD movement capabilities for

routing qubits. However, the SWAPs still rely on individual addressability.

1.5 The Challenge of Layout Synthesis for Fault-Tolerant Quan-

tum Architectures

We can try our best to reduce the overhead error incurred in layout synthesis, such as by

minimizing the depth or the number of SWAPs. However, this approach does not remove
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or correct any errors. Quantum algorithms of interest, e.g., [Sho99], use millions or trillions

of operations, which is a much higher requirement than what state-of-the-art quantum com-

puters, as introduced in Section 1.2, can achieve. This gap can be crossed using quantum

error correction (QEC) [CRS98, DKL02, Got97]. We will introduce QEC and fault-tolerant

quantum computing (FTQC) that operates on top of QEC in more detail in Chapter 9. As

large-scale FTQC has yet to be realized, there are many possibilities for how such architec-

tures might be designed, leaving the layout synthesis formulation somewhat indeterminate.

We will focus on a hypothetical architecture based on surface codes, which is a promising

candidate for realizing FTQC [FMM12, Lit19a, LN22].

In this code, physical qubits are laid out as illustrated in Figure 1.11a. Only nearest-

neighbor connections are required. There are two types of qubits: data qubits to encode

quantum data, and syndrome qubits to detect errors. In every QEC round, each syndrome

qubit measures a stabilizer which is the parity of the four neighbor data qubits (or fewer if

on boundaries) along the X or Z basis. With these measurements, errors can be inferred,

tracked, and corrected in the classical control software.

We opt for lattice surgery [FG19, HFD12, Lit19a] as the FTQC scheme because it has

a much lower resource overhead compared to alternative schemes like braiding [FMM12,

RHG07]. In lattice surgery, logical qubits are defined on patches of surface code. The

simplest kind of patch is a tile, e.g., the two tiles at the bottom of Figure 1.11b. A tile has

two types of boundaries, X (red) or Z (blue), predicated by the type of 2-body stabilizer

on that boundary. Tiles can be merged to larger patches. Reversely, patches can be split

to smaller patches. The number of physical data qubits in a tile is d × d, where d is the

code distance which is the length of the longest error chain that can be caught. Since the

merging and splitting in lattice surgery only concern the boundaries of tiles, we treat a tile

as the basic unit in space in this architecture, independent from the code distance. Similarly,

d QEC rounds are needed after every layer of operations, so we treat d QEC rounds as one

unit of time in this architecture. When the boundaries of patches sweep through time, the
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Figure 1.11: Fault-tolerant quantum computing based on surface codes. a) The layout

of physical qubits. Red faces stand for four-body or two-body X stabilizers; blue faces

are Z stabilizers. We shall use color mapping (X,Y ,Z) 7→ (R,G,B) in this dissertation.

b) An example logical operation: merging two separate tiles to a rectangular patch. The

stabilizers (faces in part a), for the left tile in the beginning are drawn. The two-body

stabilizers determine the type of boundaries. The X boundaries (red) are those that touch

XX stabilizers (red triangles); the Z boundaries (blue) are those that touch ZZ stabilizers

(blue triangles). d QEC rounds are performed after the merge. (Some rounds are omitted

in the drawing.) In the 3D spacetime, the boundaries of code patches (on the qubit plane)

sweeping through time produce “pipes”. c) A sketch of the fault-tolerant architecture.

Logical qubits (tiles with colored boundaries) can interact on the same type of boundary.
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FTQC procedure becomes “pipes” in the 3D spacetime, exemplified by Figure 1.11b.

In Figure 1.11c, we try to extend the coupling graph notion to this architecture. The

figure represents a moment in time during the computational process (which is a cross section

of pipe diagrams like Figure 1.11b) where each square is a tile of surface code. We identify

three key differences in the layout synthesis for this fault-tolerant architecture compared to

layout synthesis problems we introduced previously.

First, the connectivity constraints between qubits are more complex than simple ad-

jacency requirements. Assuming the architecture employs superconducting circuits with

nearest-neighbor connectivity [FMM12], the qubit connectivity at the logical level is also

2D nearest-neighbor. However, not all such connections are included in Figure 1.11c. This

is because the interaction between tiles is contingent not only on their adjacency but also

on the orientation of their boundaries. For instance, qubits 1 and 5 have X boundaries in

the vertical direction and Z boundaries in the horizontal direction, facilitating interaction

between them. Conversely, qubits 1 and 2 have different orientations and cannot interact.

Second, the use of ancillas becomes crucial. Ancillas are represented by tiles without

colored boundaries and are capable of interacting with all neighboring tiles, serving as inter-

mediaries for logical operations. For example, qubits 4 and 12 can interact through ancilla

8, while qubits 3 and 10 can interact via ancillas 6 and 7. In the latter case, if this is a layout

synthesis for static architectures, qubits 6 and 10 need to be swapped, and so do qubits 3

and 7, to enable interaction between qubits 3 and 10. However, fault-tolerant architectures

allow for leveraging paths consisting of multiple ancillas to facilitate long-range interactions,

where the length of the path does not impact the logical circuit depth, which remains at one

unit of time [Lit19a]. This capability significantly alters the dynamics of layout synthesis.

Nonetheless, there are specific restrictions on interactions through ancilla paths: the end-

points of the path must have matching boundaries. For example, qubits 4 and 10 cannot

interact through the path 6-7-8 because this path connects a Z boundary (top of 10) to

an X boundary (bottom of 4). Furthermore, multiple paths cannot intersect; for instance,
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the paths 10-6-7-3 and 4-8-12 can be activated simultaneously, but the paths 2-6-7-8-12 and

3-7-11 cannot, as these two paths would intersect at ancilla 7.

Third, the connection between logic and layout is much stronger. While unitary gates

are still useful for understanding algorithms in fault-tolerant quantum computing, the native

operations may not be unitary. For example, parity measurements can be implemented with

lattice surgery and thus are native to this architecture, whereas the CNOT is not native.

Consequently, logic synthesis should generate circuits using parity measurements and other

native operations, such as decomposing the CNOT as shown in Figure 1.2e and proved in

Section 1.1.3. However, in generating such a circuit, the layout must also be considered,

particularly the orientation issue mentioned earlier. In the example of Figure 1.2e, the

ancilla must interact with the control qubit on a Z boundary and with the target qubit on

an X boundary. If we want to apply a CNOT with qubit 5 as control and qubit 10 as target,

the ancilla can be 9 but not 6, because 9 exposes the correct boundaries (Z boundary with

5 and X boundary with 10), whereas 6 does not. If we wish to use 6 as the ancilla, some

different decomposition of the CNOT is required. Therefore, logic and layout synthesis are

tightly interconnected for this fault-tolerant architecture.
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CHAPTER 2

Overview

In Chapter 1, we introduced three distinct layout synthesis problems for static, dynamic,

and fault-tolerant architectures, respectively. This chapter provides an overview of our con-

tributions to these problems, with detailed discussions to follow in subsequent chapters, as

summarized by Figure 2.1. Based on the nature of these problems and the historical research

context, we adopted three high-level methodologies.

For static architectures, which have been the subject of research for over a decade as

discussed in Section 1.3.3, we employed a measure-then-improve methodology. Initially, we

assessed how close existing solutions at the time were to being optimal. Upon discovering

significant gaps in optimality, we developed new approaches aimed at closing these gaps.

The topic of layout synthesis for dynamic architectures is relatively nascent, with limited

prior work. Consequently, our methodology here focused on the precise formulation of the

layout synthesis problem. A clear problem formulation generally facilitates the direct ap-

plication of modern automated reasoning tools that can solve limited-size layout synthesis

problems. Insights from our initial investigations also led us to refine the problem formula-

tion, enabling efficient and near-optimal solutions.

With fault-tolerant architecture, Section 1.5 has pointed out a strong interplay between

logic and layout. Accordingly, our methodology involved breaking the abstraction layers of

logic and layout, addressing them as a unified task. While it may be necessary to separate

these tasks in the future, our approach has proven effective for hyper-optimizing limited-scale

subroutines, which can be integrated into larger computational procedures.

37



Layout Synthesis for Quantum Computing

Static

Chap3 QUEKO: layout 
synthesis examples with 
known optimal.

Chap4 OLSQ: optimal layout 
synthesis with satisfiability 
modulo theories (SMT).

Chap5 OLSQ-GA: extend 
OLSQ with gate absorption.

Chap6 OLSQ-DPQA: SMT formulation 
for layout synthesis for DPQA.

Chap7 Enola: efficient and near-optimal 
layout synthesis for DPQA. 

Chap8: depth-optimal addressing in 2D 
qubit array using 1D-product controls.

Dynamic

(2D Surface Code)
Fault-Tolerant

Types of 
Architectures:

Chap9: Background on 
fault-tolerant quantum 
computing (FTQC).

Chap10 LaSsynth: 
synthesis of subroutines 
for FTQC based on 2D 
surface codes.

(DPQA, Dynamically Field-
Programmable Qubit Arrays)

Figure 2.1: Roadmap of this dissertation. The dashes connecting ‘Fault-Tolerant’ signify

that our contribution in this branch synthesizes logic and layout together. In comparison,

on the other two branches, the focus of our contributions is layout.

2.1 The Measure-Improve Process in Layout Synthesis for Static

Quantum Architectures

The layout synthesis problem is representative of many problems in electronic design au-

tomation or, broadly, in computer science: the complexity is NP-hard, and they can be

formulated into some kind of mathematical programming and solved with exponential run-

time. To solve large instances of these problems, one approach is to accelerate the solver,

often in a domain-specific way. Another approach is to develop heuristic methods that run

faster but are not optimal. How do we evaluate these heuristics? A common way is using a

set of representative applications as the benchmark and comparing the results by different

heuristics. However, because of the complexity of the problem, we do not know the optimal

result of these benchmarks, so we do not know how much room of improvement there is.

If, after substantial research, the improvements are diminishing, the community may be in

a dilemma: is it possible that the current heuristics are very close to optimal and further
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each one.

Figure 2.2: The placement problem in classical circuit design.

research will produce diminishing returns; or is there still significant room requiring fresh

ideas and more efforts? We cannot be certain about both possibilities since deriving opti-

mal solution for large instances takes astronomical time. In this case, it would be helpful

if there were benchmarks with known optimal solution and the size of these benchmarks

should be large enough to imitate real applications. With such benchmarks, we can measure

the sub-optimality of the heuristics and improve them if there is still significant room.

One such benchmark set in classical circuit design is PEKO [CCR04], placement examples

with known optimal. Before placement, the circuit is represented as connected modules shown

as Ci, i ∈ [4], in Figure 2.2a. The input of the problem is a netlist where each net connects

two or more pins on different modules. In our example, there is a 2-pin net connecting C1

and C4, and a 4-pin net connecting all the modules. After placing the modules on the chip

area, manufacturers need to implement the nets with wires, as shown in Figure 2.2b. This
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example is not ideal since the total wirelength can be reduced if we place the modules closer

together, e.g., by putting the modules at the four cells in the bottom right corner. Despite

the fact that placement is known to be NP-hard [SB80], Chang et al. [CCR04] presented a

way of constructing placement examples with known optimal wirelength from locally optimal

nets, as illustrated in Figure 2.2c. That is, one follows the net size distribution specification.

For each net of size r, one connects pins from d√re × d√re adjacent modules. Since all the

nets are among adjacent modules, the total wirelength cannot be reduced. Thus, we know

the optimal wirelengths of PEKO benchmarks by construction. The PEKO benchmarks

were used to measure optimality of leading placers at that time and showed 2x optimality

gap, which spurred the community to invest more efforts into the placement problem. This

led to a wirelength reduction equivalent to two generations of hardware scaling in Moore’s

law [Sem07], but from better placement algorithms.

2.1.1 Measuring Optimality with QUEKO

To measure the optimality of existing layout synthesis solutions for static quantum architec-

tures, we developed QUEKO [TC21b] – quantum mapping examples with known optimal,

inspired by PEKO. We used QUEKO to evaluate the optimality of layout synthesis tools

at the time, including Cirq from Google [Dev21], Qiskit from IBM [AAA21], t|ket〉 from

Quantinuum (Cambridge Quantum Computing at the time) [SDC20], and leading academic

work at the time [ZPW18]. To our surprise, despite over a decade of research and devel-

opment by academia and industry on compilation and synthesis for quantum circuits, we

were still able to demonstrate large optimality gaps: 1.5-12x on average on a smaller device

and 5-45x on average on a larger device at the time. This suggests substantial room for

improvement of the efficiency of quantum computer by better layout synthesis tools. For

more detailed information about QUEKO, please refer to Chapter 3.
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2.1.2 Closing the Optimality Gap with OLSQ

After the optimality gaps are revealed by QUEKO, we set out to close the gaps with OLSQ –

optimal layout synthesis for quantum computing [TC20] where we encode the layout synthesis

problem for static architectures to satisfiability modulo theories (SMT) and invoke an SMT

solver [dB08] for optimal solutions.

SMT is an extension of satisfiability (SAT) that accommodates a broader range of vari-

able types beyond binary variables, as well as diverse types of constraints that go beyond

the conjunctive normal form. We can encapsulate the variable definitions and constraints

expressed with these variables in an SMT model. When provided with a model, an SMT

solver can check whether it is satisfiable. If so, the solver returns the variable assignments

which completely encode the layout synthesis solution. If the model is not satisfiable, some

of our bounds, e.g., depth, are too small for valid variable assignments that will satisfy all

the constraints, so we need to adjust these bounds.

Compared to the previous optimal approaches, the main contribution of OLSQ is reducing

the number of variables. In [WBZ19], there is a binary variable xΠ,t at each time step

t for every possible map from program to physical qubits Π : Q → P . Note that there

are exponentially many possible maps with respect to the number of qubits, so there are

exponentially many variables. In comparison, at each time step, OLSQ only has linearly

many variables in the number of qubits, which is an improvement over previous works.

By slightly changing our formulation, we arrive at an approximate synthesizer that is even

more efficient, TB-OLSQ, where ‘TB’ stands for ‘transition-based’. TB-OLSQ outperformed

some leading heuristic approaches at the time [SDC20, MLM19], in terms of additional gate

cost, by up to 100%, and also fidelity, by up to 10x, on a comprehensive set of benchmark

programs and architectures. For a family of QAOA circuits, we further adjust TB-OLSQ by

taking commutation into consideration, achieving up to 75% reduction in depth and up to

65% reduction in additional cost compared to the tool used in a leading QAOA study at the
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Figure 2.3: SWAP absorption. In the first step, we compute the matrix product, W , of the

SWAP and the gate V ; in the second step, we apply the KAK decomposition to W .

time [HSN21]. For more detailed information about OLSQ, please refer to Chapter 4.

2.1.3 Exploring Larger Solution Space with OLSQ-GA

Given domain knowledge, we can further improve solution quality. One example is the tech-

nique of gate absorption, resulting in OLSQ-GA [TC21a] where we combine layout synthesis

with part of logic synthesis, i.e., implementing programmable two-qubit gates using the KAK

decomposition as shown in Figure 1.6. If a SWAP gate is directly after another two-qubit

gate, e.g., in a QAOA circuit or other important circuits for chemistry [KMW18] or ma-

chine learning [CCL19], we can combine these two gates by computing the matrix product

of them and synthesis this product, as illustrated by Figure 2.3. The cost of implementing

the gate induced by the product is much less than the cost of implementing the original

two gates separately. On a set of QAOA benchmarks, OLSQ-GA reduces depth by up to

50.0% and SWAP count by 100% compared to TB-OLSQ, which translates to 55.9% fidelity

improvement. For more detailed information about OLSQ-GA, please refer to Chapter 5.

2.2 Inventing and Refining Formulations in Layout Synthesis for

Emerging Dynamic Quantum Architectures

Compared to static architectures, dynamic architectures are still nascent. The dynamically

field-programmable qubit arrays (DPQA) based on neutral atoms were demonstrated only

in 2022 [BLS22]. For such emerging architectures, the initial step in addressing the lay-
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out synthesis problem is to develop a sound formulation. Essentially, formulation involves

translating the problem as understood from hardware developers into mathematical vari-

ables and constraints. Once the problem is formulated, it may sometimes be straightforward

to develop algorithms that directly solve the mathematical representation. However, it is

more common to rely on existing tools as “oracles” to solve the mathematical problem. For

instance, we might use SMT solvers, as previously mentioned, or solvers of graph theory

problems. Bridging the gap between the physical realities of the hardware and the abstract

mathematical models can often be complex, which is the value of a few of our contributions.

A story from The History of Herodotus (Book 1, lines 53 and 91) about the ancient king

Croesus illustrates the complexities involved in dealing with oracles. Croesus, pondering

whether to wage a war against the Persians, sent messengers to the temples to dedicate

offerings and inquire of the Oracles. The Oracles cryptically replied that ‘if Croesus marched

against the Persians, he would destroy a great empire’. Interpreting this as a favorable

prophecy, Croesus mobilized an army and initiated the war. Unfortunately, the campaign

failed, and Croesus was captured by the Persian ruler, Cyrus. When Croesus later sent

messengers again to confront the prophetess, he was informed that he should have further

inquired whether the empire that the oracle referred to is his own empire or that of Cyrus,

so his failure to seek clarification was the reason for his downfall. While the mathematical

solvers we use are not as inscrutable as divine oracles, the task of formulating problems

for these solvers presents similar challenges. Formulation requires setting constraints that

exclude all scenarios which invalidate a solution. This task can be demanding because, when

gaining insights into a problem, our focus tends to be on what constitutes a valid or good

solution, rather than on avoiding all possible invalid solutions. For solvers, however, the

principle is akin to a legal maxim: everything which is not explicitly forbidden is allowed.

This characteristic is both a strength, as it often surpasses human intuition in solution space

exploration, and a source of difficulty in ensuring that problem formulations are precise and

comprehensive.
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2.2.1 Axiomatic Formulation of the Dynamically Field-Programmable Qubit

Arrays Architecture and its Layout Synthesis with OLSQ-DPQA

Before embarking on the layout synthesis for the newly developed architecture, dynamically

field-programmable qubit arrays, it is crucial to first accurately characterize the architecture

itself. Typically, this involves writing several paragraphs that describe the architectural

principles and discuss properties relevant to layout synthesis. However, this approach can

lead to confusion if too many details are included. To introduce structure and clarity into

this description, adopting an axiomatic approach can be particularly effective.

Centuries ago, René Descartes, while contemplating philosophy in his chamber, realized

that existing metaphysics at his time was a web of dubious arguments and ideas. To establish

a solid foundation for metaphysics, he introduced a single axiom: Cogito, ergo sum (I think,

therefore I am). Similarly, Spinoza, in his work Ethics, Demonstrated in Geometrical Order,

applied this methodological rigor to ethics—a field seemingly unrelated to geometry. By

presenting a small set of definitions and axioms, Spinoza employed logical deductions, akin

to those in Euclidean geometry, to derive ethical propositions.

While the complexities of our new architecture are certainly less than those of ethics, we

endeavor to adopt a similar axiomatic approach. By defining axioms which are implications

of the physics of the architecture, we ensure that any layout synthesis formulation adhering

to these axioms is considered correct. Just like many of Spinoza’s ethical axioms are subject

to debate today, our implications may also become outdated in the future. Nonetheless,

the structured approach still provides a means to trace the deductions and examine the

consequences for layout synthesis should any axiom change. The DPQA implications are

detailed further in Section 6.1. For an overview, however, we will use natural language to

describe the architecture in this section, providing readers with a glimpse of what the layout

synthesis problem entails.

In the DPQA architecture, qubits are captured in two kinds of traps. A spatial light
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Figure 2.4: Operations in dynamically field-programmable qubit arrays. a) Qubits (blue

dots) can transfer between SLM traps (circles) and AOD traps (intersections of red lines).

AOD rows and columns can move while preserving their relative order. b) A global Rydberg

laser excites all qubits. A two-qubit gate is applied if two qubits are in the Rydberg range.

modulator (SLM) generates an array of static traps, as indicated by the 3-by-3 circle array

in Figure 2.4a. Seven of these traps are occupied by qubits. A 2D acousto-optic deflector

(AOD) generates mobile traps that can travel in the plane. The AOD traps are intersections

of a set of rows and columns. In our example, there are two rows (r0 and r1) and two columns

(c0 and c1). When we align the AOD traps with SLM traps and ramp up the AOD intensity,

qubits are transferred from the SLM to the AOD. In Figure 2.4a, three qubits (q0, q4, and

q6) get transferred to the AOD. Then, the AOD row r0 shifts upward while the AOD column

c0 shifts to the right, taking the qubits in the AOD along. This movement yields the new

configuration shown in Figure 2.4b. At this point, if we reverse the movement and wind

down the AOD, the three qubits would be transferred back to the SLM. A major constraint

of the movements is that the order of AOD columns cannot change, e.g., c0 cannot move

past c1 to the right side. The order of rows also cannot change. An order violation may

cause the qubits in the AOD to collide and be lost.
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A global Rydberg laser, which excites all qubits to potentially entangle with each other,

induces the two-qubit operation in DPQA. The range of this interaction is named the Rydberg

range, rb, illustrated by the half-transparent blue spheres in Figure 2.4b. If two qubits are

within rb of each other, a two-qubit gate is applied. In our example, three gates are applied:

(q0, q1), (q2, q4), and (q3, q6). We call these parallel gates induced by the Rydberg laser

a Rydberg stage in the circuit execution. Across the stages, qubits can be rearranged to

different interaction sites to interact with different qubits. These sites are represented by

the gray regions in Figure 2.4a. They center at integer points in the coordinate system and

are separated sufficiently by 2.5rb so that two-qubit interactions can only happen between

qubits at the same site. Note that, even if a qubit is alone during a Rydberg stage so that

it does not go through a gate, such as q5 in Figure 2.4b, it still gets excited by the Rydberg

laser and accumulates error. Therefore, we should minimize the number of stages to reduce

these side effect errors.

With time discretized to Rydberg stages and space discretized to interaction sites, in

OLSQ-DPQA [TBL22, TBL24], we formulate the layout synthesis for DPQA as SMT models,

which can be solved by existing solvers optimally in terms of the number of stages. For a

set of benchmark circuits generated by random graphs with complex connectivities, OLSQ-

DPQA reduces the number of two-qubit entangling gates on small problem instances by 1.7x

compared to near-optimal compilation results on a static 2D grid architecture. To further

improve scalability and practicality of the method, we introduced a greedy heuristic inspired

by the iterative peeling approach in classical integrated circuit routing [CHS93]. Using a

hybrid approach that combined the greedy and optimal methods, we demonstrated that our

DPQA-based compiled circuits featured reduced overhead scaling compared to the static 2D

grid architecture, resulting in 5.1x fewer two-qubit gates for 90 qubit quantum circuits. For

more detailed information about OLSQ-DPQA, please refer to Chapter 6.
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2.2.2 Refined Formulation Enabling Efficient and Near-Optimal Layout Syn-

thesis for Dynamically Field-Programmable Qubit Arrays with Enola

While the SMT formulation in OLSQ-DPQA adheres to all the physical implications, con-

sidered as the axioms of the architecture, it misses certain opportunities by combining a

Rydberg stage with only one movement. This is more of a design compromise than a flaw of

the formulation. If more movements are considered, they must be treated as separate stages,

necessitating the introduction of a binary variable for each stage to determine whether the

Rydberg laser should be activated. Some stages are purely for rearrangement, requiring

the deactivation of this variable to prevent unwanted Rydberg interactions. Incorporating

these activation variables and rearrangement stages into the SMT model is feasible but will

further lengthen the runtime of the SMT solver, so we opt to not do so in OLSQ-DPQA.

This limitation leads to sub-optimal fidelity in layout synthesis results.

Motivated by this observation, we refined the DPQA layout synthesis formulation to

a few tasks: scheduling which assigns two-qubit gates to Rydberg stages, placement which

maps the qubits to sites at different stages, and routing which transfers and moves qubits be-

tween stages. As a result, we developed Enola (efficient and near-optimal layout synthesizer

for atom arrays) [TLC24] that has both better quality and scalability than OLSQ-DPQA.

The quality improvements of Enola are mainly due to the reduction of Rydberg stages.

Specifically, we can model two-qubit gates as edges in a qubit interaction graph so that

the scheduling task becomes an edge coloring in the graph. Suppose the optimal number

of Rydberg stages is Sopt. Leveraging an efficient and provably near-optimal edge-coloring

algorithm [MG92], Enola manages to schedule the gates to Sopt or Sopt +1 stages. The place-

ment problem is solved by simulated annealing to reduce the qubit traveling distance, and

the routing solution is generated by solving independent sets to avoid AOD order violations.

For the 90-qubit QAOA 3-regular MaxCut benchmarks, Enola produces 3.7x fewer stages

and improves the overall fidelity by 5.9x compared to OLSQ-DPQA. Furthermore, Enola

can handle much larger circuits because it consists of scalable algorithms. We demonstrate
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compiling circuits with up to 10,000 qubits in 30 minutes, compared to OLSQ-DPQA’s 90

qubits in a day. For more detailed information about Enola, please refer to Chapter 7.

2.2.3 Formulation of Addressing 2D Qubit Arrays with 1D-Product Controls

In the two DPQA layout synthesis contributions discussed earlier, we did not specifically

address the issue of picking up atoms, as our fidelity analysis (Figure 7.1) indicated that this

was not a bottleneck at the moment. However, we now shift our focus to this issue, which

is closely related to the 1D-product nature of Acousto-Optic Deflectors (AODs).

In Chapter 8, we consider the problem of achieving depth-optimal AOD addressing, which

we formulate as exact binary matrix factorization (EBMF) [TPC24]. We present an SMT

formulation for this problem and an effective heuristic dubbed row packing. The combined

algorithm, SAP (SMT and packing), finds high-quality heuristic solutions quickly and then

iteratively approaches the optimal solution.

The NP-hardness of EBMF indicates the hardness of optimally picking up atoms in

DPQA. Based on this result, we are able to prove the NP-hardness of routing in Section 8.5,

one of the three tasks in the formulation of Enola. However, it should be noted that picking

up atoms is not the bottleneck of fidelity, so a high-performant heuristic approach like the

row packing algorithm suffices.

2.3 Synthesis of Subroutines for Surface-Code Fault-Tolerant Quan-

tum Architectures with LaSsynth

As discussed in Section 1.5, the logic and layout synthesis are closely connected with each

other when we use lattice surgery to interact multiple qubits in a surface-code fault-tolerant

architecture. Thus, we break the separation between logic and layout and formulate a

wholistic synthesis problem for logic and layout. In contrast to previous works that aims
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to be end-to-end compilers for fault-tolerant quantum computing (FTQC), the focus of our

contribution is hyper-optimizing certain limited-size logical blocks we named lattice-surgery

subroutines (LaS). Given the frequent use of these blocks, it becomes crucial to optimize their

design in order to minimize the overall spacetime volume of FTQC. We define the variables to

represent LaS and the constraints on these variables. Leveraging this formulation, we develop

a synthesizer for LaS, LaSsynth [TNG24], that encodes a LaS construction problem into a

SAT instance, subsequently querying SAT solvers for a solution. Starting from a baseline

design, we can gradually invoke the solver with shrinking spacetime volume to derive more

compact designs. Due to our foundational formulation and the use of SAT solvers, LaSsynth

can exhaustively explore the design space, yielding optimal designs in volume. For example,

it achieves 8% and 18% volume reduction respectively over two states-of-the-art human

designs for the 15-to-1 T-factory, a bottleneck in FTQC. Since T-factories can occupy 30%

of the spacetime volume in Shor’s algorithm [GE21], our result potentially reduces resource

requirement of Shor’s algorithm by 30%×18%=5.4%. For more detailed information about

LaSsynth, please refer to Chapter 10.
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CHAPTER 3

QUEKO: Optimality Benchmarks for Layout Synthesis

for Static Quantum Architectures

In this chapter, we provide the construction of QUEKO benchmarks and the optimality

experiments of existing layout synthesis tools at the time [TC21b].

3.1 QUEKO Benchmarks Construction

QUEKO is inspired by PEKO [CCR04], placement examples with known optimal. Placement

is a crucial step in classical integrated circuit design, where modules are placed on a chip

with the objective of minimizing total wirelength. Although this problem is NP-hard, the

PEKO algorithm is able to generate benchmarks with known optimal solutions.

Similarly, for a generic input quantum circuit and a generic coupling graph, layout syn-

thesis with optimal depth is NP-hard, which was proved in Section 1.3.2. However, it is

feasible to construct some benchmarks with known optimal solutions. Given a target cou-

pling graph G and a target depth T , we can construct a depth-optimal circuit. Then, by

re-labelling the qubits, we derive a QUEKO benchmark.

Additionally, QUEKO can be customized for a given feature: gate density vector (d1, d2).

The two components intuitively stand for the densities of single-qubit gates and two-qubit

gates in the whole circuit. Suppose a circuit has n program qubits, M1 single-qubit gates,

M2 two-qubit gates, and the longest dependency chain of length l, then d1 = M1/(n · l) and

d2 = 2M2/(n · l). For example, in Figure 1.7b, n = 3, l = 11, M1 = 9, and M2 = 6, so
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d1 ≈ 0.27 and d2 ≈ 0.36. Likewise, we can extract (d1, d2) from other existing circuits with

known functionalities, so that the QUEKO benchmarks imitate some real-world circuits and,

at the same time, have known optimal depths.

The construction of QUEKO, as shown in Algorithm 1, starts with checking the validity

of input data by calculating the number of single-qubit and two-qubit gates M1 and M2.

If M1 + M2 < T , then there would be too few gates to generate a circuit with depth T ; if

M1 + 2M2 > N · T , then there would be too many gates for the given depth and coupling

graph. We define the matching bound u of a graph G to be the minimal size of maximal

matchings of G. This means we can find at least u edges in G that pair-wisely share no

vertices. If M2 > u · T , then there could be too many two-qubit gates for the given depth

and coupling graph. In short, if M1 + M2 < T , M1 + 2M2 > N · T , or M2 > u · T , we

return an error to reject the input data. Otherwise, we proceed to three phases: backbone

construction, sprinkling, and scrambling.

3.1.1 Backbone Construction Phase

This phase “grows” a sequence of T gates, each depending on the previous one, constituting

a dependency chain of length T . This chain serves as the “backbone” of the circuit. For

example, we start from the coupling graph as Figure 3.1a, and pick three executable gates g̃1,

g̃2, and g̃3 whose spacetime coordinates are (1, (p0, p1)), (2, p1), (3, (p1, p2)). They constitute

a dependency chain of length T = 3, since all of them act on p1. This is shown in Figure 3.1b,

where gates at different layers are put on different “slices” from left to right. The “backbone”

is colored green. Note that if the given graph is directed, then we make sure that the direction

of the two-qubit gate we choose is consistent with the direction of the corresponding edge.

Thus, our construction also works for directed coupling graphs.

To be more rigorous,1 we first choose a random node or edge of G as x1. In every

1It may be worthwhile to review Section 1.3.1 to get familiar with some notation we use below.
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Algorithm 1 QUEKO construction, part 1

Input: a coupling graph G = (P,E) with |P | = N and its matching bound u, a depth

target T , and a gate density vector (d1, d2).

Output: QUEKO benchmark g1g2...gM1+M2 , where M1 and M2 are the numbers of single-

gates and two-qubit gates, respectively.

1: M1 ← dd1 ·N · T e, M2 ← dd2 ·N · T/2e
2: if M1 +M2 < T or M1 + 2M2 > N · T or M2 > u · T then

3: return error: input data not admissible

4: end if

5: m1 ← 0, m2 ← 0 . how many single-qubit gates and two-qubit gates we have used

6: for i = 1 to T do . Backbone construction phase

7: j ← rand({1, 2}) . randomly decide single-qubit or two-qubit gate

8: if j = 2 and m2 < M2 then

9: xi ← rand(E)

10: while i > 1 and xi ∩ xi−1 = ∅ do

11: xi ← rand(E)

12: end while

13: ti ← i, m2 ← m2 + 1

14: else

15: xi ← rand(P )

16: while i > 1 and xi ∩ xi−1 = ∅ do

17: xi ← rand(P )

18: end while

19: ti ← i, m1 ← m1 + 1

20: end if

21: end for
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Algorithm 1 QUEKO construction, part 2

22: for i = T + 1 to M1 +M2 do . Sprinkling phase

23: j ← rand({1, 2})
24: if j = 2 and m2 < M2 then

25: (ti, xi)← rand({1, 2, ..., T} × E)

26: while ∃l ∈ {1, ..., i} such that ti = tl and xi ∩ xl 6= ∅ do

27: (ti, xi)← rand({1, 2, ..., T} × E)

28: end while

29: m2 ← m2 + 1

30: else

31: (ti, xi)← rand({1, 2, ..., T} × P )

32: while ∃l ∈ {1, ..., i} such that ti = tl and xi ∩ xl 6= ∅ do

33: (ti, xi)← rand({1, 2, ..., T} × P )

34: end while

35: m1 ← m1 + 1

36: end if

37: end for

38: τ ← a random map from P to Q . Scrambling phase

39: for i = 1 to M1 +M2 do

40: if xi = (p, p′) ∈ E then

41: gi ← two-qubit gate(τ(xi.p), τ(xi.p
′))

42: else

43: gi ← single-qubit gate(τ(xi))

44: end if

45: end for

46: sort gi according to ti, i = 1 to M1 +M2 . Output phase

47: return g1g2...gM1+M2
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e) Output circuit 1D diagram.

OPENQASM 2.0;

include "qelib1.inc";

qreg q[5];

cnot q[0],q[2]; //g1(g̃1)
cnot q[3],q[1]; //g2(g̃7)
x q[2]; //g3(g̃2)
x q[3]; //g4(g̃4)
x q[4]; //g5(g̃6)
cnot q[2],q[4]; //g6(g̃3)
x q[0]; //g7(g̃5)

f) Output QASM code (In-

side the parentheses are the

corresponding gates before

the scrambling phase).

Figure 3.1: QUEKO construction.
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iteration afterwards, we randomly choose xk that overlaps with xk−1. Thus, xk ∩ xk−1 6= ∅,
which enforces tk > tk−1 = k − 1 by dependency constraint. On the other hand, since

g̃k is executable, it can at most take a single layer, i.e., the optimal tk = tk−1 + 1 = k.

Gate sequence g̃1, g̃2, ..., g̃T constitutes a dependency chain of length T . Because of this

“backbone”, the final depth of the scheduled circuit cannot be lower than T . Note that we

do not need to use any SWAP gates for backbone construction.

3.1.2 Sprinkling Phase

The backbone construction phase uses T gates in total, we then randomly “sprinkle” the rest

M1 + M2 − T gates, e.g., g̃4, g̃5, g̃6, g̃7 shown in Figure 3.1c. We randomly select spacetime

coordinates (ti, xi), (1 ≤ ti ≤ T ) that do not overlap with any existing gates with time

coordinate ti. Since all the time coordinates of gates sprinkled are less or equal to T , the

backbone is not lengthened in this phase. After sprinkling, a circuit with gates g̃1...g̃M1+M2

is created. Its gates are all executable; its depth is T ; its gate density vector approximates

(d1, d2). (There could be minor rounding errors in the ceiling function.)

It is worthy of noting that though only one longest dependency chain is explicitly gener-

ated in the backbone construction phase, the sprinkling phase may implicitly generate more.

For example, g̃4 depends on g̃7; if we “sprinkles” a gate on p4 at layer 3, then another de-

pendency chain of length 3 would exist in the output circuit. The higher the gate densities,

the more likely that these implicit longest dependency chains are generated.

3.1.3 Scrambling Phase

As shown in Figure 3.1d, we generate a random map τ from physical qubits to program

qubits and apply τ to the space coordinates of g̃1g̃2...g̃M1+M2 . For instance, x1 = (p0, p1),

so the resulting gate g1 is a two-qubit gate on program qubits τ(p0) = q0 and τ(p1) = q2;

x7 = (p3, p4), so g7 is a two-qubit gate on τ(p3) = q1 and τ(p4) = q3; g6 is a single-qubit
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gate on τ(p2) = q4... The specific types of single-qubit gates and two-qubit gates are not

important, since QUEKO is only for layout synthesis, not for circuit optimization. For

simplicity, we use X as the single-qubit gate and CNOT as the two-qubit gate.

3.1.4 Output

Sort the gates g1g2...gM1+M2 according to the time coordinates to transfer the timing infor-

mation originally in these time coordinates to the relative order inside the output gate list.

The result is a QUEKO benchmark, as shown in Figure 3.1e and Figure 3.1f.

As we have proven, the depth of the output circuit is at least T because of the backbone.

A layout synthesis tool can meet the optimum by finding the initial mapping that is the

inverse of the scrambling map τ . Therefore, QUEKO circuits have known optimal depth T .

Note that QUEKO circuits also have known optimal gate count M1+M2. Since we assume

that, in layout synthesis, all the input gates need to be executed, the result produced by the

tools has at least as many gates as the QUEKO circuit. The optimal gate count is also met

with the optimal initial mapping τ−1, since no SWAP gates are needed in this case.

3.2 Optimality Study with QUEKO

3.2.1 Experimental Setup

To evaluate layout synthesis tools with QUEKO, coupling graphs, depths and sizes, and gate

density vectors are required. We specify the choice of these parameters and the choice of tools

to evaluate in this subsection. Because of the randomness in our construction, we generate

ten QUEKO benchmarks for each triplet of the parameters. These benchmarks along with

the generating script are made open-source2 under the BSD license. For evaluation, we fed

each one of these benchmarks to four layout synthesis tools, as shown in Figure 3.3. All

2https://github.com/UCLA-VAST/QUEKO-benchmark
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p4 p2

p3 p1 p0

a) IBM’s Ourense coupling graph.

b) Rigetti’s Aspen-4 coupling graph.
c) IBM’s Tokyo coupling graph.

d) IBM’s Rochester coupling graph. e) Google’s Sycamore coupling graph.

Figure 3.2: Examples of coupling graphs for quantum architectures.

the experiments were run on a Ubuntu 16.04 server, which has two Intel Xeon E5-2699v3 as

CPUs and 128GB main memory.

3.2.1.1 Coupling Graph

We used representative coupling graphs from three quantum hardware providers. Sycamore

from Google [AAB19], Tokyo and Rochester from IBM3, and Aspen-4 from Rigetti4. The

3https://quantum-computing.ibm.com/

4https://www.rigetti.com/qpu
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coupling graphs of these architectures are shown in Figure 3.2. Sycamore has 54 qubits,

of which 53 are active; Rochester also has 53 qubits but with sparser connectivity. Aspen-

4 has 16 qubits, and Tokyo has 20 qubits with greater connectivity. We have only listed

superconducting architectures, but QUEKO directly generalizes to other technologies as long

as the basic quantum gates are single-qubit and two-qubit gates, and the coupling graph is

fixed.

3.2.1.2 Depth and Size

We constructed two sets of benchmarks with different depth ranges. The corresponding

size of these benchmarks can be deduced from the depth and the gate density vector, as

shown in Algorithm 1. The first set has depths from 5 to 45, which is the near-term feasible

benchmarks (BNTF). In fact, one of the largest quantum circuits executed at the time has

depths 41 [AAB19], which is about the same with the upper bound of BNTF. We intended to

find out the layout synthesis performance within the current execution capacity. The sizes

of BNTF benchmarks range from 37 to 1727 quantum gates. The second set of benchmarks,

denoted as BSS has depth from 100 to 900 which are benchmarks for scaling study. BSS

represents the performance of these tools when the decoherence time of quantum hardware

improves in the future. The sizes of BSS benchmarks range from 1136 to 34506 quantum

gates.

3.2.1.3 Gate Density Vector

We picked two special gate density vectors in the experiment: (0.51, 0.4) based on the quan-

tum circuits used in Google’s quantum supremacy experiment [AAB19], denoted “QSE”

below, and (0.27, 0.36) based on the Toffoli circuit, denoted “TFL” below. It is beneficial

to study QSE, since it was the only circuit at the time with which experimental quantum

computing has shown a clear advantage. We chose the TFL because existing logic synthesis
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Figure 3.3: Workflow of the optimality experiments using QUEKO. ‘CX gate’ is also known

as CNOT. Zulehner et al. is from [ZPW18].

algorithms are based largely on reversible logic synthesis, which uses TFL as a fundamental

element [SPM03]. Some BNTF have TFL density and others have QSE density. All BSS have

QSE density. We also swept through possible gate density vectors and generated benchmarks

for impact of gate density (BIGD).

3.2.1.4 Layout Synthesis Tools

At the time, Google, IBM, and Rigetti were considered front-runners of superconducting

quantum computing. Inside their quantum programming frameworks (Cirq, Qiskit, and

pyQuil), there are tools for layout synthesis. Unfortunately, pyQuil does not provide options

to breakdown the whole compilation into optimization and layout synthesis, so pyQuil was

excluded from the experiments. We also included a recent academic work from Zulehner et
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al. [ZPW18], which is open-source.

We used greedy router in Cirq version 0.6.0 as one of the layout synthesis tools, as

shown in Figure 3.3. At the time, only one router named greedy had been released, which

contains an initial placement policy, and a SWAP insertion policy based on heuristic search.

Note that greedy router does not transform the gates into gates that are native on Google

architectures so the resulting circuit it produces contains the original input gates and SWAP

gates it inserts. For a fair comparison of depth, in all the experiments, we decompose SWAP

gates inserted by the tools to three CNOT gates, like in Figure 1.8b.

Qiskit offers the most precise control over the so-called “transpiler”. The transpilation is

divided into individual passes, and users can define their own “pass manager” to make use

of various transpiling modules that are offered. For the layout synthesis problem, there are

Layout modules generating initial mapping and Swap modules inserting SWAP gates to the

circuit to enable two-qubit gates. Among the various combinations, we chose DenseLayout

and StochasticSwap as shown in Figure 3.3, which seemed to have the best overall perfor-

mance at the time. DenseLayout maps the program qubits to an area on the coupling graph

with dense connections. StochasticSwap perturbs the distance matrix of physical qubits

and performs heuristic search for SWAP gates. The version of Qiskit in the experiments is

0.14.1.

Another highly competitive router, t|ket〉, comes from Cambridge Quantum Computing,

which becomes part of Quantinuum. Graph Placement uses graph monomorphism to derive

initial mapping. Route performs heuristic search for SWAP gates. We used t|ket〉 version

0.4.1 in the experiments.

Since all the tools evaluated use heuristics at some stages, sub-optimality is expected.

Note that we only use default setup on all the modules in all the tools. Changing setup

parameters in some of these modules specifically for QUEKO benchmarks may lead to better

performance in the following experiments, but may lead to worse performance on other

circuits.
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Figure 3.4: Performance of layout synthesis tools on BNTF (lines are average).

3.2.2 Experimental Results

3.2.2.1 Performance on BNTF

In Figure 3.4, the horizontal axis is the optimal depth, and the vertical axis is the depth

ratio, which is the depth of layout synthesis result divided by the optimal depth T . In

the case of a smaller architecture (Aspen-4) and sparser circuits (TFL), the optimality gap

on average is about 12x for [ZPW18], 10x for Cirq, 5x for Qiskit and 1.5x for t|ket〉. In

the case of a larger architecture (Sycamore) and denser circuits (QSE), the optimality gap

on average is about 11x to 14x for Qiskit. The optimality gaps of Cirq and t|ket〉 grow

with depth correspondingly from 35x to 50x and from 1x to 5x. Zulehner et al. is not in

Figure 3.4b, because for the larger architecture, it took so much memory that the operating

system constantly killed it before finishing. This also happens sometimes for the smaller

architecture experiments, so there are fewer blue data points than the other types of points

in Figure 3.4a.
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Figure 3.5: t|ket〉 and Qiskit performance on BSS (lines are average).

3.2.2.2 Performance on BSS

We studied further scaling of t|ket〉 and Qiskit on different architectures as shown in Fig-

ure 3.5. The optimality gaps on average by t|ket〉 are about 5x to 7x for Rochester, 3x

to 4x for Sycamore, 3x for Tokyo, and 2x for Aspen-4. Note that for a fixed depth and a

fixed architecture, the optimality gaps by t|ket〉 varies rather widely. t|ket〉 managed to find

the optimal mappings for some QUEKO benchmarks. In general, as the depth increases,

the depth ratio by Qiskit decreases at first and then converges to a value. The reason for

this phenomenon may be that as the circuit deepens, the influence of initial placement gets

smaller than the influence of SWAP insertion. For Qiskit, the optimality gaps on Rochester

decreased from 13x to 10x on average; on Sycamore, Tokyo and Aspen-4 are about 8x,

5x, and 4x on average. It can be seen that larger architectures (Rochester and Sycamore)

bring about larger optimality gaps. If the number of physical qubits is close, then richer

connectivity (Sycamore versus Rochester) brings about smaller optimality gaps.
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d2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0 1.23 1.59 1.99 2.16 2.8 2.61 2.09 1.91
0.1 1.18 1.55 1.85 1.78 2.73 1.92 2.08
0.2 1.24 1.67 1.68 2.27 2.25 2.42
0.3 1.53 1.85 2.43 2.66 2.34
0.4 1.61 2.0 2.4 2.73

d1 0.5 1.86 1.85 2.82
0.6 1.96 2.38
0.7 1.97

a) t|ket〉 performance in depth ratio

d2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0 2.49 3.16 3.96 4.49 5.1 5.55 5.95 6.1
0.1 2.12 3.09 3.87 4.53 5.05 5.58 5.92
0.2 2.25 3.27 3.97 4.53 5.29 5.56
0.3 2.26 3.26 3.87 4.73 5.09

d1 0.4 2.23 3.25 3.98 4.72
0.5 2.18 3.37 4.05
0.6 2.14 3.13
0.7 2.18

b) Qiskit performance in depth ratio

Figure 3.6: t|ket〉 and Qiskit performance on BIGD (data are 10-time average).

3.2.2.3 Performance on BIGD

To better understand the impact of gate density on layout synthesis performance, we fixed

the architecture to Tokyo and the depth to 45 and swept through possible gate densities. The

results are shown in Figure 3.6. Fixing a column, the single-qubit gate density increases as

we go down, Qiskit seems to be rather insensitive to this change, which is sensible since the

single-qubit gates do not induce difficulty in layout synthesis. However, t|ket〉 is still sensitive

to this change. Both tools are more sensitive to the change in the horizontal direction than

in the vertical direction. Since the challenge to layout synthesis comes mainly, if not solely,

from the two-qubit gates, this result is expected. The depth ratio of t|ket〉 decreases when

the two-qubit gate density is very high. This is because when the circuit is dense with two-

qubit gates, graph monomorphism algorithms can extract more information from the first

few layers to narrow down better initial mappings.
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CHAPTER 4

OLSQ: Optimal Layout Synthesis for Static Quantum

Architectures

In this chapter, we present our formulation of layout synthesis for static architectures, which

results in a tool, OLSQ [TC20]. We shall motivate the work by analyzing the opportunities

in formulation, and then dive in our approach. Additionally, we introduce two important

relaxations to OLSQ: 1) structuring circuits as gate blocks with a fixed qubit mapping, and

transitions between these blocks, and 2) removing the dependency constraints when all gates

commute.

Let us first review some notations using the running example of this chapter: layout

synthesis of a quantum adder circuit [AMM13] in Figure 4.1 onto the coupling graph in

Figure 4.2a. In the circuit, g0 is an X gate on program qubit q0; g3 is a CNOT gate, on q2

and q3. To make a distinction between single-qubit and two-qubit gates, we separate them

into two lists G1 and G2. For gl ∈ G1, we use gl.q to denote the program qubit it operates

on; for gl ∈ G2, we use gl.q and gl.q
′. For example, g0.q = q0, g5.q = q1, g3.q = q2, g3.q

′ = q3.

The quantum architecture is described by a coupling graph G = (P,E), where P =

{p0, p1, ..., pN−1} is the set of physical qubits and E = {e0, e1, ..., eK−1} is the set of (undi-

rected) connections between them. (There are, in total, N physical qubits and K edges.)

The coupling graphs used in this paper are displayed in Figure 4.2. We denote an edge as

(ek.p, ek.p
′), e.g., in Figure 4.2a, e1.p = p0 and e1.p

′ = p2. In addition, fidelity information

can be provided as three functions: f0 : P → [0, 1] for measurements, f1 : P → [0, 1] for

single-qubit gates, and f2 : E → [0, 1] for two-qubit gates.
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q0 X T • • T † •
g0 g4 g14

q1 X T • T †
g1 g5 g8 g12 g15 g18

q2 • T • • T † •
g6 g11 g16

q3 H T † • T S • H
g2 g3 g7 g9 g10 g13 g17 g19 g20 g21 g22

Figure 4.1: Circuit diagram for quantum adder.

p0

p1

p2

p3

p4

e0

e1

e2

e3

e4

e5

a) IBM QX2. b) (Part of) Google Sycamore.

c) Rigetti Aspen-4. d) IBM Melbourne.

Figure 4.2: Coupling graphs of some quantum architectures.
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q0
p3 X T • • • p2 • T † •

g0 g4 g14

q1
p2 X T • • p3

T †
g1 g5 g8 g12 g15 g18

q2
p0 • T • p0 • T † •

g6 g11 g16

q3
p1 H T † p1 • T S • H

g2 g3 g7 g9 g10 g13 g17 g19 g20 g21 g22

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 4.3: OLSQ layout synthesis result for the quantum adder circuit.

The output of layout synthesis is the spacetime coordinates (tl, xl) for all the input gates

and the SWAPs inserted, and a final qubit mapping π : Q → P providing which physical

qubit to measure for each program qubit. We show a layout synthesis result of the running

example in Figure 4.3. In this diagram, gates are aligned according to their time coordinates,

e.g., t0 = t1 = t2 = 0 and t10 = 8; the space coordinates of single-qubit gates can be read off

from the mapping displayed above the wires, e.g., q0 is mapped to p3 at time 0, so x0 = p3;

the space coordinates of two-qubit gates can be deduced from the mapping, e.g., at time 8,

q3 and q0 are mapped correspondingly to p1 and p2, so x10 = e2 because e2 connects p1 and

p2. The mapping remains the same as the previous time step if it is not displayed, e.g., q1

is still mapped to p2 at time 1, so x5 = p2. Thus, the final mapping is just the last mapping

displayed, π(q0) = p2, π(q1) = p3, π(q2) = p0, and π(q3) = p1. A SWAP consisting of three

CNOTs is inserted on e3 between p2 and p3. We use the last time step each SWAP takes as

its time coordinate (in this case, 7).

The inserted SWAP in this example is absolutely necessary. The quantum program has

two-qubit gates between q0 and q1 (g8, g12, and g18), q1 and q2 (g11), q2 and q3 (g3, g9, g13,

and g19), and finally q3 and q0 (g10 and g21). This means, without any SWAPs, the program

qubits must be mapped to a set of physical qubits connected like a square. However, the
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Figure 4.4: Immediate dependencies in the quantum adder circuit. Red arrows are used

in OLSQ. Green arrows are those imposed implicitly by the approach of [WBZ19]. Brown

means imposed by both OLSQ and [WBZ19].

coupling graph, Figure 4.2a, does not contain such a structure.

In layout synthesis, we need to avoid collisions : if two gates gl and gl′ act on the same

qubit, then they cannot be executed at the same time, i.e., tl 6= tl′ . For example, t5 6= t8

because both g5 and g8 act on q1. In general, we also have to respect dependencies : if gl

and gl′ act on the same qubit and l < l′, then their relative order should not change, i.e.,

tl < tl′ . If there are no gates between these two gates, it is called an immediate dependency.

Immediate dependencies of the quantum adder circuit are shown as red and brown arrows

in Figure 4.4.

4.1 Opportunities in Layout Synthesis Formulation

Prior to OLSQ, there have been multiple exact or optimal approaches to layout synthesis,

as discussed in Section 1.3.3. We find that they generally process the quantum circuit either

gate-by-gate or layer-by-layer, which imposes some unnecessary constraints than arranging

the gates with dependency. We shall illustrate this point with the running example. In this

case, [WBZ19] returns a solution with two SWAPs, but one SWAP would be enough as shown
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in Figure 4.3. This is because when arranging gate-by-gate, there is an implicit dependency

between each two-qubit gate and the one after it, which are shown as blue and brown arrows

in Figure 4.4. Specifically, there is a dependency from g10 to g11, which means that in their

result t10 < t11, but in the optimal solution, Figure 4.3, t10 > t11. In fact, when we manually

impose an additional dependency from g10 to g11 in our tool OLSQ (to be specified later

in the chapter), it gives a solution with two SWAPs as well. In essence, the gate list is

only one of the topological orderings of the dependency graph like Figure 4.4. If we use a

gate-by-gate arrangement with the input gate list order, the result certainly respects all the

dependencies, but some of these are unnecessary and may lead to sub-optimality. OLSQ

actually reconstructs the dependency graph from the gate list and thus effectively explores

all topological orderings. As for arranging layer-by-layer, in the layout synthesis instance

above, suppose we assign g8 and g9 as the first layer, g10 and g11 as the second layer, g12 and

g13 as the third layer. Then there must be at least one SWAP inserted between layer one and

two; otherwise, there is a mapping that can satisfy all the two-qubit connections required by

g8, g9, g10, and g11. This is to say the coupling graph contains a square-like structure, which

is impossible in Figure 4.2a. Similarly, there must be at least one SWAP inserted between

layer two and three. Thus, at least two SWAPs are required, which is sub-optimal compared

to Figure 4.3.

4.2 Our Approach

In this section, we discuss preprocessing, the objectives, the variable encoding scheme, and

the constraints of our tool OLSQ, optimal layout synthesizer for quantum computing. Then,

we introduce some variations to the notion of time to make the synthesizer transition-based

(TB-OLSQ), which greatly increases efficiency with little or no performance degradation.

Lastly, we consider commutation to improve TB-OLSQ for QAOA circuits.
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4.2.1 Preprocessing

From the input program, we derive a collision list C: if two gates gl and gl′ with l < l′, act on

the same program qubit, then we append (gl, gl′) to C. By default, we use the collision list

as the dependency list D. Users are also welcome to input their own D based on knowledge

of the program. With the dependency list, we can also derive the longest dependency chain

with O(L2) time. This serves as a lower bound of depth to the layout synthesis result because

the dependency chain can only be lengthened by SWAPs and cannot be shortened in any

case. We will need a time coordinate upper bound T in the formulation. In the hope of a

depth-optimal result, we use the longest dependency chain length as T in the beginning.

We also need to extract some features of the coupling graph G = (P,E) where P con-

tains all the physical qubits and E contains all the edges between them. We compute an

overlapping edge pair set O: ∀e, e′ ∈ E, e′ 6= e, if e and e′ share some node, append the pair

(e, e′) to O. We also compute an incident edge set Ep for each node p: ∀e ∈ E, if e = (·, p)
or e = (p, ·), we append e to Ep. It is straightforward that Ep ⊂ E and ∪p∈PEp = E.

4.2.2 Encoding Variables

• Mapping πq,t: at time step t, program qubit q is mapped to physical qubit πq,t ∈ P .

• Time coordinates tl: gate gl is being executed at time tl, 0 ≤ tl ≤ T − 1.

• Space coordinates xl: if gl ∈ G1, then program qubit gl.q is mapped to physical qubit

xl ∈ P ; if gl ∈ G2, then the two physical qubits, to which gl.q and gl.q
′ are mapped,

are connected by edge xl ∈ E.

• Use of SWAP gate σk,t: if σk,t = 1, then there is a SWAP on edge ek and the last time

step it takes is t (as SWAPs may take multiple time steps); otherwise, σk,t = 0.
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4.2.3 Constraints

Note that we differentiate variable assignment, =, and comparison, ==, in this chapter.

The latter returns true if and only if the equality holds. There is an additional parameter

S in our model which stands for the number of time steps a SWAP requires. S can be set

according to different architectures. We set S = 3 as default, as seen in Figure 4.3.

4.2.3.1 Injective Mapping

Different program qubits should be mapped to different physical qubits at any specific time

πq,t 6= πq′,t for 0 ≤ t ≤ T − 1, q, q′ ∈ Q and q 6= q′ (4.1)

4.2.3.2 Avoiding Collisions and Respecting Dependencies

tl < tl′ for (gl, gl′) ∈ D (4.2)

4.2.3.3 Consistency between Mapping and Space Coordinates

There are two ways we can derive where a gate gl is at physically: 1) directly through its

space coordinate xl; 2) indirectly from the mapping of the program qubit(s) it acts on at its

time coordinate, i.e., πgl.q,tl for single-qubit gates; these two should be consistent.

(tl == t)⇒ (πgl.q,t == xl) for 0 ≤ t ≤ T − 1, gl ∈ G1 (4.3)

[(tl == t) ∧ (xl == e)]⇒ {[(πgl.q,t == e.p) ∧ (πgl.q′,t == e.p′)]∨

[(πgl.q,t == e.p′) ∧ (πgl.q′,t == e.p)]} for 0 ≤ t ≤ T − 1, gl ∈ G2, e ∈ E
(4.4)

70



4.2.3.4 Proper SWAP Insertion

Since a SWAP takes S time steps, before time S − 1, no SWAPs can finish:

σk,t = 0 for 0 ≤ t ≤ S − 2, 0 ≤ k ≤ K − 1 (4.5)

A SWAP cannot overlap with other SWAPs on the same edge:

(σk,t == 1)⇒ (σk,t′ == 0) for S−1 ≤ t ≤ T−1, t−S+1 ≤ t′ ≤ t−1, 0 ≤ k ≤ K−1 (4.6)

If two edges overlap in space, the SWAPs on them cannot overlap in time:

(σk,t == 1)⇒ (σk′,t′ == 0) for S − 1 ≤ t ≤ T − 1, t− S + 1 ≤ t′ ≤ t, (ek, ek′) ∈ O (4.7)

A SWAP should not overlap with any input single-qubit gates at any time:

{(tl == t′) ∧ [(xl == ek.p) ∨ (xl == ek.p
′)]} ⇒ (σk,t == 0)

for S − 1 ≤ t ≤ T − 1, t− S + 1 ≤ t′ ≤ t, 0 ≤ k ≤ K − 1, gl ∈ G1

(4.8)

A SWAP on ek should not overlap with any input two-qubit gates on the same edge or the

edges that overlap at any time:

[(tl == t′) ∧ (xl == ek′)]⇒ (σk,t == 0)

for gl ∈ G2, S − 1 ≤ t ≤ T, t− S + 1 ≤ t′ ≤ t, (ek, ek′) ∈ O or k′ = k
(4.9)

4.2.3.5 Mapping Transformations by SWAP Gates

Mapping at the next time step is the same with the current one if there are no SWAPs

finished on all the edges in the incident edge set Ep:


(πq,t == p) ∧


 ∧

ek∈Ep

σk,t == 0




⇒ (πq,t+1 == p) for 0 ≤ t ≤ T − 2, p ∈ P, q ∈ Q

(4.10)

If there is a SWAP finished at t, there can only be one. (Otherwise, the two SWAPs are

on two edges that overlap. This case would be ruled out by Equation 4.7.) The mapping at

71



t+ 1 is then transformed by the SWAP:

[(πq,t == ek.p) ∧ (σk,t == 1)]⇒ (πq,t+1 == ek.p
′)

[(πq,t == ek.p
′) ∧ (σk,t == 1)]⇒ (πq,t+1 == ek.p)

for 0 ≤ t ≤ T − 2, 0 ≤ k ≤ K − 1, q ∈ Q

(4.11)

4.2.4 Objectives

With the set of variables defined above, it is easy to construct the common objectives. In

fact, as long as a quantity can be defined from the above variables, it can be the objective.

1) Depth: d := max0,1,...,L−1 tl. We do not need to consider the time coordinates of the

inserted SWAPs because, if a SWAP has an even larger time coordinate than d defined

above, it finishes after all the input gates, thus has no effects on the program and should be

ignored.

2) SWAP cost: c :=
∑K−1

k=0

∑T−1
t=0 σk,t.

3) (log-) Fidelity:

f :=
∑

p∈P

log f0(p)

[∑

q∈Q

(πq,T−1 == p)

]
+
∑

p∈P

log f1(p)

[∑

gl∈G1

(xl == p)

]

+
∑

e∈E

log f2(e)

[∑

gl∈G2

(xl == e)

]
+

K−1∑

k=0

log fSWAP(ek)

[
T−1∑

t=0

σk,t

]
,

(4.12)

where f0, f1, and f2 are given as input to the layout synthesis problem. fSWAP(e) is the fidelity

of a SWAP on edge e, which should be computed from the provided single-qubit and two-

qubit gate fidelity, depending on how SWAPs are implemented on the specific architecture.

In our case, a SWAP consists of three CNOT gates, so log fSWAP = 3 log f2. To use addition

rather than multiplication in the objective, we take the log of f0, f1, and f2. To be compatible

with other data and variables, which are all integers, we scale up every log fidelity value by

1000 and round it to the nearest integer.
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Table 4.1: Complexity of OLSQ and related works. L2 is the two-qubit gate count. N is the

physical qubit count. T is the time coordinate upper bound. I is the number of layers of

gates. L is the total gate count. B is the number of gate blocks.

internal solver number of variables number of constraints

[WBZ19] SMT O(L2 ·N !) O(L2 ·M ·N !)

[BSA19] ILP O(T · (N4 + I)) O(T · (N4 + I2 +N · L))

OLSQ SMT O(T ·N + L) O(T ·N · L)

TB-OLSQ SMT O(B ·N + L) O(B ·N · L)

4.2.5 Complexity Analysis

In our formulation, there are in total MT + 2L + KT + 2N + 2K variables. For regular

planar graphs, which most coupling graphs are, the number of edges is usually asymptotically

linear to the number of nodes. For example, in a grid, each edge connects two nodes and

each node spans out four edges, so K/N ≈ 2. Therefore, the total number of variables in

our formulation is O(NT ) where N is the physical qubit count and T is the time coordinate

upper bound. The total search space is then exponential to N and T . This is expected

from the NP-hardness of the problem (Section 1.3.2). However, as shown in Table 4.1, this

formulation still has exponentially fewer variables compared to [WBZ19] because they have

a variable for each permutation of qubits at each time. OLSQ also has polynomially fewer

variables than [BSA19], because they also require variables encoding the mapping from pairs

of program qubits to pairs of physical qubits at each time step. Also, it is straightforward

from Table 4.1 that our formulation reduces the number of constraints significantly.
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4.2.6 Remark on the Optimality of OLSQ

After we passed the variables, one of the objectives, and the constraints to Z3 SMT solver

[dB08], it would either return a model containing all the variable values that optimizes the

given objective, or return ‘unsatisfiable’. As mentioned before, we initially set the time

coordinate upper bound T to the largest length of dependency chain. However, it may be

the case that on the given architecture, it is impossible to find a solution with this upper

bound. Thus, if the model is unsatisfiable, we geometrically increase T each time by (1+ ε)x

until it is satisfiable. We set ε = 0.3 in our experiment. This means that OLSQ is optimal

up to a certain time coordinate upper bound T . For depth optimization, the optimality

is guaranteed. However, for SWAP cost and fidelity optimization, sometimes increasing T

even more can lead to better results. However, this is a very rare case as we shall see in the

evaluations, especially when the longest dependency chain in the input quantum program is

already of considerable length.

4.2.7 TB-OLSQ: Rethinking Time Coordinates

In the example of quantum adder, the time upper bound is T = 15. However, the mapping

to physical qubits changed only once at time step 8. Thus, for any specific program qubit q,

the variables πq,t are the same from t = 0 to 7 and t = 8 to 14. This is a huge redundancy.

In addition, the total search space for the solver is exponential to N and T . Although a

cutting edge quantum processor at the time had only N = 53 [AAB19], T as determined by

quantum programs can easily grow to be quite large.

These two observations motivate us to improve efficiency of OLSQ by rethinking time

coordinates. Instead of keeping πq,t for all t, it turns out that we can keep only these

variables between two transitions of the qubit mapping. Formally, a transition is a set of

parallel SWAP gates. In the quantum adder example, there is only one transition, and the

transition consists of only one SWAP on edge e3 = (p2, p3). SWAPs on overlapping edges
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q0
p3 X T • × p2 • T † •

g0 g4 g14

q1
p2 X T • × p3

T †
g1 g5 g8 g12 g15 g18

q2
p0 • T • p0 • T † •

g6 g11 g16

q3
p1 H T † p1 • T S • H

g2 g3 g7 g9 g10 g13 g17 g19 g20 g21 g22
gate block 0 transition 0 gate block 1

Figure 4.5: The quantum adder circuit in transition-based model. Two ‘x’s connected by a

vertical line segment represent a SWAP gate.

cannot be in parallel, according to Equation 4.7, so e1, e2, e4, and e5 cannot be in the same

transition with e3. However, e0 and e3 together is a valid transition.

Now, we consider a new model of execution which separates the input gates and the

inserted SWAPs: executing some input gates, then a few SWAPs to make transition(s) in

mapping, execute some more input gates, and make other transition(s), ... We can have

consecutive transitions without executing any input gates in between. This model is similar

to the one in [WBZ19], but gates later in the input can appear at the front as long as

permitted by dependency, which they do not allow. The quantum adder example in this

model is shown in Figure 4.5, where we first execute the gates in gate block 0, then a SWAP

to make transition 0, finally the gates in gate block 1. In this transition-based model, there is

no notion of precise time. Instead, all the gates in a gate block are at the same coarse-grain

time step and share the same mapping. This way, the number of mapping variables greatly

decreases. In this particular example, there are only 8 mapping variables compared to the

original 60 mapping variables.

With slight changes of formulation, OLSQ can be made transition-based. We change the

< in Equation 4.2 to ≤, since now even if two input gates have dependency, they can still be
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assigned to the same gate block, meaning their coarse-grain time coordinates can still be the

same. We set S = 1 and remove Equation 4.8 and Equation 4.9. SWAP gates are separated

from input gates in the current model, so we do not need to consider overlaps of input gates

with them. S = 1 because we are using a coarse-grain time model.

The coarse-grain time upper bound T is initially set to 1, so the solver will search for a

solution without any transition. If the solver returns ‘unsatisfiable’, we will increase T by

1 each time until it finds a solution that optimizes the given objective. The value of depth

would just be T − 1, since there are exactly T − 1 gate blocks in the resulting circuit. If

SWAP cost or fidelity is set as objective, TB-OLSQ will find the optimal solution that has

up to T − 1 transitions. Just like OLSQ, there may be better solutions if T is increased

even more. After a solution such as Figure 4.5 is returned, we can use as-soon-as-possible

(ASAP) scheduling to derive all the exact time coordinates of the gates. After scheduling,

the resulting format is exactly the same as that of OLSQ. We shall show that TB-OLSQ

produced near-optimal solution with orders-of-magnitude speedup compared to OLSQ.

4.2.8 QAOA-OLSQ: Removing False Dependencies

One of the most important concepts in quantum mechanics is commutation. In the case of

quantum computing, if two gates gl and gl′ (l < l′) commute, we can change their relative

order without invalidating the whole program. This means that even if they consecutively

act on the same qubit qm, tl is not necessarily smaller than tl′ . Since commutation is purely

logical and has nothing to do with the architecture, one may think that it is solely the job

of logic synthesis to experiment with the commutation relations. Like many other related

works, both OLSQ and TB-OLSQ assume that any commutation is performed prior to layout

synthesis and thus will indeed add (gl, gl′) as a dependency, eliminating the possibility of

tl > tl′ . However, it turns out that more knowledge of dependencies in layout synthesis is

very beneficial — especially on the QAOA programs [FGG14, HWO19].

The quantum circuit in QAOA first sets the qubits to the equal superposition state by
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q0 H
ZZ(γ)

Rx(β)

q1 H
ZZ(γ)

Rx(β)

q2 H
ZZ(γ)

Rx(β)

q3 H
ZZ(γ)

Rx(β)

q4 H Rx(β)

a) Original QAOA program.

q0
ZZ(γ)

q1
ZZ(γ)

q2
ZZ(γ)

q3
ZZ(γ)

q4

b) Better phase separation.

Figure 4.6: Sketch of the QAOA circuit.

applying H gates on all the qubits. Then it goes into many iterations. Each iteration has

two stages: phase separation and mixing. A simple QAOA program with only one iteration

is shown in Figure 4.6a [GJE20]. Phase separation is implemented by a few ZZ gates, which

are two-qubit gates with a parameter γ; mixing is implemented by Rx gates on all the qubits.

The specific functions of these gates are not of concern to layout synthesis; what matters is

on which qubit(s) they act. Since single-qubit gates are always executable, the mixing stage

does not require layout synthesis. However, phase separation may contain a ZZ gate on

any pair of qubits, which means that layout synthesis is required to move the non-adjacent

qubits together when a ZZ gate needs to act on them.

If we input the QAOA program, Figure 4.6a, and IBM QX2 coupling graph, Figure 4.2a,
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to OLSQ or TB-OLSQ, the best result is probably just an identity mapping and the output

looks the same with Figure 4.6a. OLSQ and TB-OLSQ cannot reduce depth because the

four ZZ gates all depend on the gate before it, imposing the default dependencies. The par-

ticularity of QAOA is that all the ZZ gates commute, which means even both ZZ(γ)(q2, q3)

and ZZ(γ)(q3, q4) act on q3, the latter can actually commute ‘through’ the former. As a

result, we have a better phase separation subroutine, as shown in Figure 4.6b, which has

smaller depth. Current qubits still have short ‘lifetimes’ and many QAOA applications have

large numbers of iterations, so reducing depth is crucial.

We can improve TB-OLSQ for the phase separation stage of QAOA with the knowledge

of commutation. Previously, we treated every collision as a dependency. However, in the

phase separation stage, all the ZZ gates are commutable, so none of the collisions are real

dependencies. Thus, we simply remove the constraints in Equation 4.2 in TB-OLSQ. Up to

this point, the result would be blocks of original ZZ gates with the fewest transitions possible

to make all the qubit pairs adjacent required by these ZZ gates. Inside the ZZ gate blocks,

there may be further opportunities to reduce depth with the help of commutation. Therefore,

we input this result to OLSQ with depth as objective and, again, remove the constraints

in Equation 4.2. Since the gates are already mapped to valid edges on the coupling graph,

OLSQ does not need to insert any new SWAPs. Thus, we disable all the σk,t variables in

OLSQ for speedup. In the end, we derive the spacetime coordinates of the ZZ gates and the

SWAPs. The depth of this result is optimized by the two passes of TB-OLSQ and OLSQ.

4.3 Evaluation

The evaluations were run on a Ubuntu 16.04 server with two Intel Xeon E5-2699v3 CPUs

and 128GB memory. Wille et al. [WBZ19] and TriQ [MLM19] were built with Cmake 3.13.4

and GNU Make 4.1. The version of Python was 3.8.2. The versions of Python packages used

were Cirq 0.8.0, Pytket 0.5.4, Qiskit 0.18.0, and Z3-Solver 4.8.7.0. We linked the Z3 library
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contained in Z3-Solver package to Wille et al. and TriQ when building.

We selected a comprehensive set of benchmarks from various sources including [AMM13,

NRS18, GJE20, TC21b]. We used the fidelity profile of IBM QX2, Figure 4.2a, and IBM

Melbourne, Figure 4.2d, from [MLM19]. To evaluate fidelity, we input the result from

different synthesizers to Qiskit, decomposed, and calculated the product of all gate fidelity.

We made OLSQ, the benchmarks, and detailed results open-source.1

4.3.1 OLSQ versus Previous Optimal Approaches

The leading exact approach at the time was by Wille et al. [WBZ19]. The coupling graph

in their original paper is directed, which means that CNOT gates can only execute in one

direction. However, the edges in our formulation are bi-directional. For fair comparison,

we input each bi-directional edge as two uni-directional edges to their software. We observe

that, compared to the cases where directed coupling graphs are used, their software runs

significantly faster. Thus, the runtime data we collect, for comparison with OLSQ, are

smaller than those appeared in the original reference [WBZ19]. Since Wille et al. aims to

minimize SWAP cost, it is most appropriate to compare it against OLSQ with SWAP cost

as objective, denoted as OLSQ-SWAP below. We find that, on all instances of benchmark

program and architecture, OLSQ-SWAP matches their performance and sometimes is even

better. All the data for these evaluations are presented in Table 4.2.

Wille et al. have a set of variables denoting whether each qubit permutation is performed

between two two-qubit gates. So, the number of variables in their formulation is proportional

to N !, where N is the physical qubit count. This complexity explosion can be observed from

the two examples in Figure 4.7, where the runtime of [WBZ19] is nearly exponential. The

runtime of OLSQ-SWAP does not show this exponential growth. Wille et al. also rely on pre-

processing to derive a function from each qubit permutation to its SWAP cost. Suppose each

1https://github.com/UCLA-VAST/OLSQ
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Number of Physical Qubits
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Benchmark 4mod5-v1 22
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100
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104

Number of Physical Qubits

t/s

Benchmark adder

Wille et al.

OLSQ-SWAP

Figure 4.7: Runtime scaling of Wille et al. [WBZ19] and OLSQ-SWAP. The devices with 5,

6, 8, and 16 qubits are IBM QX2, a 2 by 3 grid, a 2 by 4 grid, and Rigetti Aspen-4. Dashed

line is an exponential fit of Wille et al.’s results.

function value takes 4 byte of memory, then, even for device with qubit count N = 12, the

memory required is 2 terabytes. As examples, we evaluate three layout synthesis instances of

QUEKO benchmarks for Aspen-4, Figure 4.2c. All these evaluations of [WBZ19] are aborted

because our server runs out of the memory limit we set (32GB). In contrast, OLSQ-SWAP

reaches the optimal SWAP cost (0) within a relatively short period of time.
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4.3.2 TB-OLSQ versus Heuristic Approaches

One of the leading industry works at the time, t|ket〉 [SDC20], mainly focuses on optimizing

SWAP cost. We compare it with TB-OLSQ with SWAP cost set as objective, denoted as

TB-OLSQ-SWAP below. One of the leading academic works at the time, TriQ [MLM19],

mainly focuses on optimizing fidelity, so we compare it to TB-OLSQ with fidelity set as

objective, denoted as TB-OLSQ-Fidelity below. The data are presented in Table 4.3 which

is summarized by Figure 4.8.

For the relatively small-scale experiments with IBM QX2 and Aspen-4 architectures, we

can compare OLSQ and TB-OLSQ by contrasting the corresponding rows in Table 4.2 and

Table 4.3. We find that TB-OLSQ-SWAP has no observable degradation on CNOT cost

compared to OLSQ-SWAP on these benchmarks, neither does TB-OLSQ-Fidelity compared

to OLSQ-Fidelity on fidelity. This means that our transition-based approach is almost exact;

it also hugely increases efficiency, e.g. solving queko 15 1 takes the former 9E4 seconds while

taking the latter 30 seconds.

As displayed in Figure 4.8, compared to t|ket〉, TB-OLSQ-SWAP often reduces the CNOT

cost by large margins, 69.2% in geometric mean. Compared to TriQ, TB-OLSQ-Fidelity often

increases the fidelity, even up to 10.0x on some larger programs. In some cases, TriQ has

slightly better fidelity results by leveraging larger depths. This is expected since TB-OLSQ-

Fidelity optimizes fidelity with the fewest transitions possible, but the number of transitions

has no direct link to fidelity, so it is possible to find solutions with higher fidelity and more

transitions. However, compared to TriQ, the fidelity loss of OLSQ in these cases remains

less than 5%.

4.3.3 QAOA-OLSQ

Arute et al. [HSN21] is considered a leading work on QAOA implementation at the time,

where t|ket〉 is used to solve layout synthesis of QAOA programs for 3-regular graphs. We
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Figure 4.9: Evaluation of QAOA-OLSQ and t|ket〉 [SDC20].

conduct evaluation with the same settings in [HSN21]: the coupling graph is part of Google

Sycamore with 23 physical qubits, as shown in Figure 4.2b. We generate random 3-regular

graphs with node count M from 10 to 22. (Graph theory shows that the product of M

and the vertex degree must be even, so M must be even.) Then, for each edge (i, j) in a

3-regular graph, we append a corresponding gate ZZ(qi, qj) to the phase separation stage.

The phase separation is given to t|ket〉, TB-OLSQ, and QAOA-OLSQ for layout synthesis

and their results are fed to Cirq for statistics on SWAP cost and depth. We consider all

ZZ gates and SWAP gates to have unity depth. As shown in Figure 4.9, even without

considering the commutation relations, TB-OLSQ reduces depth by 59.5% in geometric

mean and reduces SWAP cost by 29.4% in geometric mean. QAOA-OLSQ further reduces

both depth and SWAP cost, by 70.2% and 53.8% in geometric mean compared to t|ket〉. All

these experimental data are provided in Table 4.4.
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CHAPTER 5

OLSQ-GA: Optimal Layout Synthesis with SWAP

Gate Absorption for Static Quantum Architectures

With OLSQ, we may insert some additional SWAPs to the circuit in layout synthesis. Would

it be nice if these SWAPs were “free”? In some cases, this is possible by synthesizing other

gates differently so that the functionality of the SWAP is integrated with existing gates. In

Section 5.1, we explain how this “free lunch” SWAP works. In Section 5.2, we present the

OLSQ-GA formulation which extends from OLSQ. In Section 5.3, we evaluate OLSQ-GA

against previous works on QAOA benchmarks. In Section 5.4, we perform some analysis on

the structure of optimal solutions and discuss our speedup strategies.

5.1 “Free Lunch” for Layout Synthesis: SWAP Absorption

Because of the generality of U(4) gates, we can leverage SWAP absorption to reduce explicit

SWAPs and depth. Suppose a gate W acts on two qubit pi and pj. Immediately before or

after W , a SWAP on pi and pj is inserted. As illustrated in Figure 2.3, we can actually

compute the matrix of SWAP ·W and, after the layout synthesis, decompose the updated

matrix. This way, the updated gate still has the decomposition in Figure 1.6, just with

different single-qubit gates, which means the SWAP is absorbed into W with practically no

cost. In some literature, this process is called ‘implementing a mirrored gate’ [JJB21].

Consider layout synthesis for Figure 5.1a, a program for general chemical simulation

which consists of 10 two-qubit gates on 5 qubits, onto the coupling graph Figure 5.1b The
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g0(q0 , q1); g1(q0 , q2); g2(q0 , q3); g3(q0 , q4); g4(q1 , q2);

g5(q1 , q3); g6(q1 , q4); g7(q2 , q3); g8(q2 , q4); g9(q3 , q4);

a) A general chemical simulation on 5 qubits. The quantum program is read from left to right, and

from top to bottom.

p0 p1 p2 p3 p4
e0 e1 e2 e3

b) The coupling graph of a linear architecture to run simulation.

Figure 5.1: Example layout synthesis problem.

gates in this program are fermionic simulation gates with different parameters [FND20] that

commute with each other.

fSim(θ, φ) =




1 0 0 0

0 cos θ −i sin θ 0

0 −i sin θ cos θ 0

0 0 0 e−iφ



. (5.1)

In Figure 5.2a, we show a solution by SABRE [LDX19] which does not exploit the

commutations, i.e., all the dependencies are respected. However, in our simulation example,

there are many commutations, indicating opportunities for depth and SWAP optimization.

The solution in Figure 5.2b produced by TB-OLSQ [TC20] is optimal with 6 SWAPs

without consideration of absorption. There is an opportunity to reduce 2 SWAPs in the

dashed box, with the absorption of the SWAP before g3 and the SWAP after g5. For g5, we

can compute the product

fSwap · fSim =




1 0 0 0

0 −i sin θ cos θ 0

0 cos θ −i sin θ 0

0 0 0 −e−iφ



, (5.2)
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a) SABRE [LDX19] solution with 6 SWAPs and depth 12. With post-processing, 4 SWAPs can be

absorbed, and the depth becomes 9.
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p1
g1
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q2
q0
q4
q1
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g6
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q1 g0

g7
g2

g8
q4
q3
q2
q1
q0

g9

g4

b) TB-OLSQ [TC20] solution with 6 SWAPs and depth 8. The two steps inside the dashed box can

be combined with SWAP absorption as post-processing, then it would have 4 SWAPs and depth 7.

p2
p3

p0

p4

p1

t =   0          1          2          3          4

q0
q2
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q1
q3 g5

g8

q0
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q4
q1

g2

g6

q2
q3
q0
q1
q4

g7
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q0
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g4

g3

c) OLSQ-GA solution with no explicit SWAPs and depth 5. The SWAPs inside the boxes are

absorbed.

Figure 5.2: Layout synthesis solutions of 5-qubit chemical simulation on a linear architecture.

Connected crosses are SWAPs. At each time step, which program qubit locates at which

physical qubit is shown.
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and then pass this new matrix to the KAK decomposition subroutine. The notation ‘fSwap’

in the above equation is a fermionic SWAP used in chemical simulation. It is different from

the normal form in Equation 1.7 in that the bottom right element is −1 instead of 1, but this

does not affect the SWAP absorption technique. The fSim gate can be decomposed in the

form of Figure 1.6, and the new matrix, Equation 5.2, is still in this form, just with different

single-qubit gates. In this sense, the absorbed SWAP has been performed with no cost.

Figure 5.2c shows a layout synthesis solution by OLSQ-GA, the tool to be presented in

this chapter, which explores SWAP absorption automatically as part of the layout synthesis.

It makes use of 6 absorbed SWAPs and no explicit SWAPs. The achieved depth is 5, which

is better than the post-processing solution shown in Figure 5.2b.

There have been a limited number of works taking advantage of SWAP absorption.

[ZW19] extended the A* search with SWAP absorption by making the cost of a SWAP

to be 0 if it is immediately after a U(4) gate. The most relevant work is a layout synthesis

tool from IBM [NBG22, JJB21], which formulates the problem in binary integer program-

ming (BIP) and solves it using a proprietary solver, CPLEX. For the example in [JJB21],

OLSQ-GA finds an optimal solution with the same quality (depth 11, 8 SWAPs). On this

very example, the solution of [ZW19] has depth 15 and 11 SWAPs. (This is the best case

out of 10 trials since its A* algorithm has some randomness.) In comparison, the solution of

SABRE has depth 12 and 9 SWAPs [JJB21].

For QAOA and chemical simulation, there is a known optimal layout synthesis solution

to the instances with “all-to-all” interactions, like Figure 5.1. In this solution, the gates are

arranged in alternating matchings, and each with an absorbed SWAP gate. This corresponds

to the most general kind of chemical simulation program, where every qubit has a gate with

every other qubit, so the optimal solution has depth n − 1 with a total of
(
n
2

)
two-qubit

gates. [KMW18] provides more details on this optimal layout synthesis solution. Such

solution also works for QAOA for complete graphs, i.e., the Sherrington-Kirkpatrick model

[HSN21]. However, for problems with fewer gates than the all-to-all interactions, we may not
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need
(
n
2

)
gates. In this case, the depth-optimal solution is less structured, and OLSQ-GA is

helpful to find it.

5.2 Formulation of OLSQ-GA

In this section, we present optimal layout synthesizer for quantum computing with gate

absorption, OLSQ-GA, which formulates the layout synthesis with SWAP absorption into

an SMT model [dB08]. There are two inputs to the program as in Figure 5.1: the quantum

program consisting of two-qubit gates to map like shown in Figure 5.1a, and the coupling

graph of the architecture like shown in Figure 5.1b. The objective of OLSQ-GA is to find a

solution with optimal depth or SWAP count as expressed in the following subsection. It is

also possible to set the objective to other quantities built from the variables.

5.2.1 Variables

There are 4 groups of variables in OLSQ-GA: mapping, spacetime coordinates, absorbed

SWAP, and explicit SWAP. The total number of variables is |Q|T + 2|G|+ 2|E|T , where |Q|
is the number of qubits in the program, T is the number of time steps, |G| is the number of

gates, and |E| is the number of edges in the coupling graph. We use q to represent program

qubits, p for physical qubits, and e for edges in the coupling graph. We shall use the example

in Figure 5.2c for illustration throughout this section.

The mapping variables πq,t = p means that, at time t, program qubit q is mapped to

physical qubit p, e.g., πq0,0 = p0 and πq1,0 = p3.

The spacetime coordinates of gate g, (tg, xg) = (t, e) means that g is scheduled at time t

and locates on edge e in the coupling graph, e.g., the spacetime coordinates for g0 is (3, e2)

where e2 = (p2, p3).

A set of absorbed SWAP binary variables αe,t’s are introduced. If αe,t = 1, then there is
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an absorbed SWAP on edge e at time t, e.g., αe3,0 = 1 since there is a SWAP absorbed by

g5 on edge e3 = (p3, p4) at time 0.

Similarly, a set of explicit SWAP binary variables σe,t’s are introduced. σe,t = 1 if and only

if there is an explicit SWAP on edge e at time t. There is no explicit SWAP in Figure 5.2c,

but in Figure 5.2b, σe1,1 = 1 since there is a SWAP on edge e1 = (p1, p2) at time 1.

With these variables, the optimization objectives can be easily expressed. Depth is

defined as the largest time coordinate of any gate, T = maxg tg; SWAP count is the sum of

all explicit SWAP variables, S =
∑

e,t σe,t; an estimation of fidelity can be the product of a

decoherence factor with all gate fidelity

f = e
− |Q|·T−2(|G|+S)

|Q|·T0 f
|G|+S
U , (5.3)

where |Q| is the number of program qubits, T is the depth, |G| is the number of gates, S

is the SWAP count, and T0 and fU are hardware factors. T0 is the decoherence time of

a qubit divided by the duration of a U(4) gate, and fU is the fidelity of a U(4) gate. In

physics, decoherence is characterized by an exponential decay with respect to time. So, in

Equation 5.3, on the power of the e is the negation of the ratio between the total idle time

and the total coherence time.

5.2.2 Constraints

There are five sets of constraints: dependencies, mapping implied by spacetime coordinates,

no overlaps, SWAP absorption, and mapping transformation.

Dependencies: For example, tg4 > tg0 and tg4 > tg1 . However, if there is a region in the

quantum program where all the gates commute with each other, we can simply change the

larger-than relation > to non-equality 6=. Since the simulation gates commute, the actual

constraints are tg4 6= tg0 and tg4 6= tg1 .

Mapping implied by spacetime coordinates: when gate g acts on program qubit (q, q′) at
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time t on edge e = (p, p′),

(tg == t ∧ xg == e) ⇒ [(πq,t == p ∧ πq′,t == p′) ∨ (πq,t == p′ ∧ πq′,t == p)] . (5.4)

The left-hand side checks the spacetime coordinates of the gate (t, e), while the right-hand

side means that, at this time, the mapping of q and q′ must be the two physical qubits on

e, e.g., since g8 is at time 0 and on edge e1 = (p1, p2), its two program qubits q2 and q4

should be mapped to p1 and p2. When we specify an edge with two vertices, there are two

possibilities πq2,0 = p1 and πq4,0 = p2, or πq2,0 = p2 and πq4,0 = p1, which is how the right

hand side of Equation 5.4 got its form. In our example, the former case is true.

No overlaps: there are only two types of gates in our layout synthesis solution, U(4)

gates from the program and the explicit SWAPs. The U(4) gates cannot overlap with each

other by the dependency constraints, so we only need to consider the overlaps between U(4)

gates and SWAPs, and among SWAPs themselves. For two incident edges e and e′, any gate

g, and any time t,

σe,t == 1 ⇒ σe′,t == 0, (5.5)

(tg == t ∧ xg == e) ⇒ σe′,t == 0, (5.6)

e.g., there can be no explicit SWAP on edge e0 = (p0, p1) or e2 = (p2, p3) at time 0 since

there is a gate g8 on an incident edge e1 = (p1, p2) at time 0. In Figure 5.2b, there is a SWAP

scheduled at time 1 on e1, so there cannot be any other SWAPs or U(4) gates on incident

edges e0 or e2 at time 1.

SWAP absorption: without constraints, an absorbed SWAP can happen on any edge at

any time, which is clearly not possible. If there is an absorbed SWAP on edge e at time t,

there should also be some U(4) gate, i.e., for any time t and edge e,

αe,t == 1 ⇒
∨

g

(tg == t ∧ xg == e) , (5.7)

e.g., if there is an absorbed SWAP on e3 = (p3, p4) at time 0, then there must be a gate (g5

in our example) having spacetime coordinates (0, e3).
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Mapping transformation: there are two sources of change for the layout synthesis solution:

absorbed and explicit SWAPs. If either one of them is 1, we deduce the new mapping from

the old mapping, i.e., for any qubit q, any time t, and any edge e = (p, p′),

[πq,t == p ∧ (σe,t == 1 ∨ αe,t == 1)] ⇒ πq,t+1 == p′,

[πq,t == p′ ∧ (σe,t == 1 ∨ αe,t == 1)] ⇒ πq,t+1 == p,
(5.8)

e.g., q1 is mapped to p3 at time 0, but there is an absorbed SWAP on edge e3 = (p3, p4). As

a result, at time 1, q1 is mapped to p4. Similarly, the mapping of q3 changes from p4 to p3

at time 1. Thus, g9 acting on q3 and q4 can be executed at time 1 on e2 = (p2, p3), but not

at time 0 because of the mapping. On the other hand, if there are no SWAPs, absorbed or

explicit, on any edge going into the current physical qubit, the mapping remains unchanged

from t to t+ 1, i.e., for any qubit q, any time t, and any physical qubit p,

πq,t == p ∧


∑

e∈Ep

σe,t == 0


 ∧


∑

e∈Ep

αe,t == 0




 ⇒ πq,t+1 == p, (5.9)

where Ep is the set of edges incident on physical qubit p. For instance, at time 1, there is

neither absorbed nor explicit SWAP on e0 or e1, so the mapping of q2 remains at p1.

5.3 Evaluation of OLSQ-GA

QAOA can be adapted to many optimization problems. One of the promising candidates is

the MAX-CUT problem on 3-regular graphs [HWO19]. A QAOA program typically consists

of p iterations (p ∈ N), and each iteration consists of two stages: phase-splitting and mixing.

The mixing stage only has single-qubit gates, so there is no layout synthesis issue. The phase-

splitting stage, however, presents an interesting layout synthesis problem. Specifically, for

the MAX-CUT problem on a graph G = (V,E), each qubit encodes a vertex, and we need

to apply a two-qubit gate on every edge of G. These gates are all commutable. A state-of-

the-art experimental work at the time used a heuristic compiler [SDC20] and coupling graph

in Figure 5.3, but the quality of the result dropped quickly with increasing problem sizes.
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Figure 5.3: Part of the Google Sycamore architecture [HSN21]. Four different colors represent

four maximal matchings of the coupling graph.
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Figure 5.4: Depth results by SABRE, TB-OLSQ, and OLSQ-GA.

We implemented OLSQ-GA1 with Z3 SMT solver [dB08] and generated four 3-regular

graphs of sizes 8, 10, 12, and 14 with the NetworkX package [HSS08] as the benchmark, sim-

ilar to the setting in Google’s experimental work [HSN21]. We evaluated OLSQ-GA against

two tools with the same benchmark: SABRE [LDX19], and TB-OLSQ [TC20]. Although

SABRE is not exactly what was used in [HSN21], it is also considered to be a state-of-the-art

for heuristic layout synthesis [JJB21]. TB-OLSQ uses an optimal approach but does not take

the gate absorption into consideration. We set the number of SWAPs as the objective in

OLSQ-GA. The depth, SWAP count, and fidelity of the layout synthesis solutions for the

1https://github.com/UCLA-VAST/OLSQ/tree/GateAbsorption
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Figure 5.5: SWAP count results by SABRE, TB-OLSQ, and OLSQ-GA. Note that OLSQ-

GA managed to insert no explicit SWAP gates, so there are no gray bars in the graph above.
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Figure 5.6: Fidelity results by SABRE, TB-OLSQ, and OLSQ-GA.

phase-splitting stage of a single iteration in QAOA are shown in Figure 5.4, Figure 5.5, and

Figure 5.6 respectively. The fidelity is estimated by Equation 5.3 with slightly optimistic

parameters T0 = 50 and fU = 0.99, which means that decoherence time is 50x the U(4)

gate duration, and each U(4) gate fidelity is 99%. As we can see, the heuristic tool, without

consideration of the SWAP absorption or commutation, returns solutions with the highest

depth and SWAP counts, and thus the lowest fidelity. The results of TB-OLSQ are already

significantly better than the heuristic results. OLSQ-GA performs the best of all three.

Compared to TB-OLSQ, it reduces depth by up to 50.0% and SWAP count by 100% while

improving fidelity by 9.45%. Compared to SABRE, it reduces depth by up to 80.0%, SWAPs
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by 100% and improves fidelity by up to 49.1%.

Note that all the layout synthesis solutions for one iteration can easily extend to multiple

iterations: we can simply reverse the order of all the gates and append this reversed circuit

as the second iteration. Of course, in the new iteration, there are different parameters in the

gates, but the layout synthesis problem can be solved just for one iteration. This way, the

final mapping of all the odd iterations is the same as the final mapping of the first iteration,

and the final mapping of the even iterations is just the initial mapping. The total fidelity of

all iterations is the product of fidelity of each, so the total fidelity would be exponential to

the single-iteration fidelity. Since the QAOA circuits with more iterations contain the QAOA

circuits with less iterations, in the ideal case, the quality of QAOA results should increase

as the number of iteration p increases. However, in the leading experimental work at the

time [HSN21], such a trend is only observed on hardware-native graphs, not the generated

3-regular graphs like what we use in this chapter. Without quantum error correction, the

fidelity of the whole circuit is only going to decrease as the number of gates increases.

However, the quality of the QAOA results is not proportional to the circuit fidelity, which

is why some improvements are still observed.

Apart from still-low gate fidelity, we believe one of the reasons is the sub-optimal com-

pilation for layout synthesis, e.g., authors of [HSN21] report that the depth of the heuristic

mapping solutions for a single QAOA iteration is approximately the size of the 3-regular

graph. In comparison, the depth of OLSQ-GA results stays as a constant (3 or 4), which

is way less than the size of the graphs (8 to 14), and the same or lower than the hardware-

native graphs. This suggests that, using OLSQ-GA, the existing hardware capability could

also demonstrate improvements with more iterations for 3-regular graphs. Figure 5.7 shows

the fidelity of three mapping approaches with up to 5 iterations. As the number of itera-

tions increases, the advantage of OLSQ-GA becomes more visible: compared to TB-OLSQ,

it gains fidelity by 30.5% for 3 iterations, and 55.9% for 5 iterations; compared to SABRE,

the improvements are 231% are 636%.
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Figure 5.7: Fidelity of multiple iterations of QAOA-14 (QAOA for the 3-regular graph with

14 vertices) by SABRE, TB-OLSQ, and OLSQ-GA.

5.4 Solution Space Reduction

The solution space of SMT models for OLSQ-GA may be reduced with adding more con-

straints, thus speeding up the solver. We shall present two techniques in this section: using

alternating matchings pattern and setting initial mapping.

5.4.1 Analysis on Optimal Mapping Solutions

In graph theory, matching is a set of pair-wise nonadjacent edges, none of which are self-

loops. The U(4) gates executing at the same time step t consist of a matching on the coupling

graph, Mt. In general, we have the following theorem.

Theorem 2. In a depth-optimal layout synthesis solution, for any t, Mt ∪Mt+1 cannot be a

matching for the coupling graph.

Proof: If Mt∪Mt+1 is a matching in a depth-optimal layout synthesis solution S, we can

move all of Mt+1 \Mt to time t, and absorb all of Mt+1 ∩Mt to the corresponding gates in

Mt. (Note that, due to the generality of U(4), not only SWAPs, but also any U(4) gate can
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be absorbed into another U(4) gate.) Then we get a new layout synthesis solution S ′ where

the time step t+ 1 is not needed, which contradicts the fact that S is depth-optimal. �

For example, in Figure 5.2b, M1 = M2 = {(p1, p2), (p3, p4)}, so M1 ∪M2 = M1 = M2 is

a matching of the coupling graph, Figure 5.1b. The gates at time 2 can be absorbed into

gates at time 1.

Analyzing the solution in Figure 5.2c, we can observe a pattern: the gates alternate

between two matchings M0 = {(p1, p2), (p3, p4)} and M1 = {(p0, p1), (p2, p3)}. In fact, for

linear architecture, we can formalize this observation. We call the edges in M0 even edges,

and edges in M1 odd edges.

Corollary 2.1. For the layout synthesis problem of programs with commutation to a linear

architecture with coupling graph G = (P,E) where P is the set of physical qubits, and E =

{(pi, pi+1)|i = 0, ..., |P | − 2}, there is always an depth-optimal layout synthesis solution such

that the time steps alternate between sets of even edges and sets of odd edges.

Proof: From Theorem 2, Mt ∪Mt−1 cannot be a matching. For the linear architecture,

this means that there are both odd and even edges in Mt ∪Mt−1, since with only odd or

even edges, Mt ∪Mt−1 would still be a matching. By absorbing and moving, we can always

build new time steps t − 1 and t such that t − 1 only has gates on even edges, and t only

has gate on odd edges. Since Mt ∪Mt−1 has both even and odd edges, none of the two new

time steps can be empty. As a result, we have constructed a new optimal solution satisfying

the alternating matchings pattern with the same depth. �

5.4.2 Implementing Alternating Matchings Pattern

For linear architecture, Corollary 2.1 leads to a great reduction in solution space of the

layout synthesis problem without loss of optimality. In the OLSQ-GA formulation, this can

be achieved by assigning values to many explicit SWAP and space variables for U(4) gates.
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Table 5.1: OLSQ-GA speedup with extra constraints. The architectures for simulation and

QV64 are linear. The architecture for QAOA is shown in Figure 5.3. Baseline is the runtime

in seconds. ‘init.’ means fixing initial mapping. ‘match.’ means using alternating matchings

pattern. The asterisk (*) means that the mapping solution using the corresponding tech-

nique(s) may not be optimal. However, the depth of the two cases with data shown above

matched the depth certificate as in Section 5.4.3, so these solutions are indeed optimal.

problem objective baseline match. init. both

5-qubit simulation SWAP 4.74E0 1.40x 2.58x 2.44x

QV64 Depth 2.40E2 6.35x 5.00x 8.86x

SWAP 8.50E3 95.4x 53.0x 272x

QAOA-14, Sycamore Depth 1.65E5 8.41x* 522x* *

For all (t, ek) such that t− k = 1 mod 2, and all gate g,

σek,t = 0, (5.10)

tg == t ⇒ xg 6= ek. (5.11)

These constraints make sure that there are only gates on even edges at time steps 0, 2, 4, ...

And there are only gates on odd edges at time steps 1, 3, 5, ... If there is an even number of

edges in the linear architecture, these constraints suffice. However, if there is an odd number

of edges, we may need to try another case with t − k = 0 mod 2 instead of 1. The two

matchings have a different number of edges, so it matters which one we start from. Taking

the better result of the two cases, we derive the optimal result.

Since we have fixed some variables and added more constraints, the solution space for the

SMT solver to explore is smaller, which results in a faster runtime. Some speedup results are

shown in Table 5.1. For layout synthesis of the QV64 circuit [JJB21], alternating matchings

bring 95.4x speedup.
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For generic architectures, it is more complex. For example, for a 2D architecture like

Figure 5.3, there are four maximal matchings, shown in different colors, which are mutually

disjoint in a sense similar to M0 and M1. [HSN21] alternates among these matchings to

schedule a single QAOA iteration for hardware-native graphs: at each time step, a group

of gates with the same color are executed. However, the optimal layout synthesis solution

for other quantum circuits may use other possible ordering of these four matchings, or even

other possible matchings.

5.4.3 Depth Certificate

There is a generic case where we can guarantee optimal depth even with heuristics: we can

run two OLSQ-GA instances with the heuristics turned on and off. The two instances start

with a certain maximal depth. If the current maximal depth is too low to yield any solution,

OLSQ-GA would increase the maximal depth and start over. The exact instance explores a

larger solution space, so its runtime is longer. Meanwhile, it can output what is the maximal

depth currently being explored, e.g., 4, which serves as a certificate that no solutions with

depth less than 4 can be found. Now, if the heuristic instance returns a mapping solution

with depth 4, which takes less time than the exact instance, then the solution is optimal

because of the depth certificate by the exact instance. In Table 5.1, we also report the

speedup of the 14-qubit QAOA with alternating matchings, using depth as the objective.

For the SWAP count, the optimality argument would be harder to guarantee. However, if

the heuristic solution does not contain any explicit SWAPs, then it is optimal with respect

to SWAP count.

5.4.4 Setting Initial Mapping

Another technique to reduce solution space is to set initial mapping. If there are not too

many qubits, we can send instances with different initial mappings to different cores and
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perform the solving in parallel. For problems with a strong symmetry, we can set initial

mapping to “break” some symmetry without loss of optimality, e.g., in the 5-qubit all-to-all

chemical simulation, we can use arbitrary initial mapping, and the speedup is 2.58x. As

implementation, we can add these constraints to OLSQ-GA:

πqi,0 = pi for i = 0, ..., 4 (5.12)

If the gates are not commutable like in QV64, the initial mapping should enable some

gates to execute since the SWAPs before all the U(4) gates can simply be left out and we

set the initial mapping to be directly whatever mapping it is after these “prelude” SWAPs.

QV also has a special property that its first time step is a maximal matching consisting of

bn/2c gates. Being exhaustive, we can let each core in a computational cluster try one of the

bn/2c! 2n/2 possible initial mappings. The factorial term is the number of mappings from

the gates to edges on the coupling graph. The exponential term is for both directions of each

edge. Finally, note that, if the architecture is 1D and we reflect a mapping solution with

respect to the center, we get another solution with the same depth and SWAP count. Thus,

we can divide the possibilities of initial mapping by 2 in Equation 5.12. Using Sterling’s

approximation, the asymptotic of this value is
√
πn(n/e)n/2, which is approximately 35% of

all the possible initial mappings n!. For n = 6, the required core count is 192, which is not

too much in distributed computing. The best solution of all these cases is still guaranteed

to be optimal. We chose one possibility and achieved 53x speedup, as shown in Table 5.1.

With both alternating matching and initial mapping, we achieve up to 272x speedup.

We can also use the initial mapping results as the heuristic in Section 5.4.3. For example,

we used TB-OLSQ to derive an initial mapping for the 14-qubit QAOA and use it in OLSQ-

GA. The combined runtime of TB-OLSQ and OLSQ-GA is still 522x faster than the baseline.

However, note that combining alternating matchings and initial mapping may cause issues.

The initial mapper may not produce an alternating matchings solution. So, it cannot be

combined with alternating matchings to produce a depth-optimal solution.
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CHAPTER 6

OLSQ-DPQA: Layout Synthesis for Dynamically

Field-Programmable Qubit Arrays Based on

Satisfiability Modulo Theories

From this chapter, we embark on a journey of layout synthesis for the dynamically field-

programmable qubit arrays architecture (DPQA), which has dynamic connectivity among

qubits. As a first step, we summarize the physics of the architecture into several implications.

Then, we present an SMT formulation that generates layout synthesis solutions satisfying

all the implications.

6.1 The DPQA Architecture

In DPQA, each qubit is a single atom trapped in an individual optical tweezer, which enables

a deterministic control over the qubit position. The physics of atomic trapping, optical

tweezers, and entangling gates leads to several key implications. These implications serve

as the interface between physics and computer science where we reason about variables,

constraints, and optimization procedures. Thus, we enumerate the implications for reference.

For the specific parameters, we follow the leading experimental work [EBK23, BLS22].
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6.1.1 Atom Trapping

One trap cannot hold more than one atom. Otherwise, the atoms may expel each other out

of the trap.

Implication 1. One trap can hold zero or one atom at any time during the computation.

Two orthogonal optical components generate AOD (acousto-optic deflector) tweezers.

The X component produces a horizontal pattern, and the Y component multiplies this pat-

tern by a vertical pattern. In contrast, an arbitrary phase hologram on a spatial light

modulator produces SLM tweezers. As a result, we can place each SLM tweezer in an ar-

bitrary location. However, to enable massive parallelism of gate execution, the geometry of

the SLM and the AOD should be similar.

Implication 2. AOD and SLM optical trap arrays are rectangular arrays that extend in

the X and Y direction in the 2D plane.

For example, in Figure 6.4b, the AOD is a rectangular array with two rows and four columns,

indicated by the dashed grid. The dynamically programmable processor in [BLS22] uses up

to 24 qubits, but system sizes of 100s of qubits are attainable as was done in [EKC22], and

both SLM and AOD grids have been used in system sizes as large as 16x16 each [SAP22].

Because of the finite optical resolution of the microscope generating tweezers, traps of

the same array cannot be closer than a given minimum spacing. In [BLS22], it is 2 um.

Implication 3. There is a minimal separation between two rows or columns of traps in the

same array, ds.

6.1.2 Array Movements

AOD traps can move whereas SLM traps cannot. Thus, it may seem to some readers

that SLM is strictly less general than AOD, rendering the notion of SLM redundant for
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compilation. However, an advantage of SLM is that we can turn off the unused traps based

on the compilation result. As part of the architecture specification, we make a certain number

of SLM traps available to the compiler, but some of them are never used throughout the

compiled result. Then, we simply ignore them when we generate the SLM in the beginning of

the experiment, which saves some laser power. Although total laser power is not a bottleneck

at the moment, the savings of SLM are beneficial for future scaling-up. Thus, we keep SLM

in the formulation instead of just treating it as a special case of AOD.

Implication 4. If the array is the SLM type, the traps are stationary.

For example, q4 stays at the same place throughout Figure 6.4.

The control we have on the AOD traps are the Y coordinate of each row and the X

coordinate of each column.

Implication 5. If the array is the AOD type, a row/column of traps move together.

For example, from Figure 6.4b to 6.4c, the AOD row of q5, q3, and q1 moves upwards, and

the column of q2 and q3 moves to the right.

Per Implication 3, we cannot place two rows/columns too close together. If rows A and

B move across each other, they must have been closer than the minimum spacing at some

point, which is prohibited.

Implication 6. If the array is the AOD type, a row cannot cross over another row, a column

cannot move over another column.

In [BLS22], the relation between movement time t and travel distance D is set as t =

T0

√
D/D0 to maintain constant heating of the atoms during movements. We follow their

setting T0 =200 us and D0 =110 um so that the heating is sufficiently low.

106



6.1.3 Quantum Gates

Single-qubit gates are high-fidelity operations that are generically easy to perform locally

(see [LKS19]).

Implication 7. Arbitrary single-qubit gates can be addressed to each qubit individually.

We perform two-qubit operations with a specific type of laser to excite the atoms to

Rydberg state. In this state, atoms within a certain distance will interact strongly and cannot

be excited simultaneously. The characteristic distance of this interaction is the Rydberg

blockade radius rb (7.5 um in [BLS22]). This blockade mechanism is the basis of two-qubit

entangling gates; only if two atoms are within a rb of each other can they perform a two-qubit

gate. The specific gate implemented in [BLS22] is the Levine-Pichler CZ gate, which is a

special case of controlled-Rz gates available in DPQA [LKS19].

Implication 8. Two qubits q and q′ can only perform an entangling two-qubit gate when

they are within a blockade radius, i.e., |~xq − ~xq′ | ≤ rb, and they are both illuminated by the

Rydberg laser.

The Rydberg laser is global in the sense that it illuminates all the qubits, as done in

[EKC22, BLS22]. When we turn on the laser, we cannot “switch off” the interaction of a

pair if they are within range.

Implication 9. If q and q′ are within rb and illuminated by the Rydberg laser, they will go

through a two-qubit entangling gate.

If two atoms are sufficiently separated, > 2.5rb in practice, they will not interact even

if excited by the Rydberg laser. If there are more than two atoms that are not sufficiently

separated, they go through a joint quantum process which is not a well-defined gate.

Implication 10. For any three qubits q0, q1, and q2, at most one of the following is true

when the Rydberg laser is on: |~xq0 − ~xq1| < 2.5rb, |~xq1 − ~xq2| < 2.5rb, and |~xq2 − ~xq0| < 2.5rb.

That is, only disjoint pairs of qubits may entangle simultaneously.
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6.1.4 Error Source

Errors can occur during the gates or the idling time (including AOD movements, activation,

and deactivation). In the evaluation in this chapter, the average idling time is only 2.6% of

the qubit lifetime (coherence time) in the largest benchmark (90-node QAOA). Thus, the

idling time plays a relatively small role in the error source. In addition, the single-qubit

operations are significantly higher fidelity (99.99%) than the two-qubit entangling gates

(99.5%) [EBK23]. A global Rydberg laser for the two-qubit gates induces the same error

rate on all qubits whether they are involved with a two-qubit gate at this stage or not.

Implication 11. The main computational error source is the number of layers of two-qubit

gates.

6.1.5 Atom Transfer

So far, we have described atoms staying in their own individual tweezer traps, as was focused

on in the experiments of [BLS22]. However, it has previously been demonstrated that atoms

can be transferred between tweezer traps [BTM07] by reducing the intensity of one tweezer

trap while increasing or maintaining the intensity of another tweezer trap. In the system

considered here, in an AOD array, we can tune the individual intensity of AOD rows and

columns to transfer to/from SLM traps: e.g., Figure 6.4e, we turn off the leftmost AOD

column so that q5 is transferred to SLM.

6.1.6 Universality

With atom transfers, the architecture can perform universal quantum computing given a

large enough area. Figure 6.1 depicts a toy construction. We load the qubits to one SLM

row with sufficient separations between the traps. There is one AOD trap working as delivery.

Per Implication 7, single-qubit gates are always executable. To apply an entangling gate on

an arbitrary pair (qi, qj), we perform the 4-step procedure illustrated in Figure 6.1. Finally,
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q0 qi... qj -1 qj+1... ...

qj
2)

qj 3)
4)

qj1)

AOD

SLM

Figure 6.1: Universal quantum computing on DPQA with one AOD trap and one SLM row.

Single-qubit gates execute directly. To implement an entangling gate on an arbitrary qubit

pair: 1) pick up qj from SLM to AOD, so the original SLM trap is empty (dashes), 2) shift

the AOD trap up, 3) move the AOD trap horizontally until qi and qj align, then 4) shift the

AOD trap down to perform the gate.

we reverse the movements and put qj back to SLM. Now, we are ready for the next gate. With

this construction, we can execute any single-qubit and two-qubit gate, so the architecture can

perform universal QC. Of course, this construction is like the demonstration of the Turing

machine in classical computing where efficiency is not considered. For example, we can easily

put atoms in a square array that reduces the amount of time for movements.

6.2 Discretization of the Solution Space

As pointed out previously, we have the freedom to specify the locations of an AOD row

r as a function of time yr(t) and, similarly, xc(t) of an AOD column c. Modeling the

DPQA architecture based on these continuous functions is cumbersome and unnecessary for

a compiler. In fact, the time domain can be easily discretized to Rydberg stages like in

Figure 1.5b because we only care about the location of qubits when we turn on the Rydberg

laser to apply the entangling gates. As long as we do not violate the DPQA constraints, the

2D planar movements of AOD between any two stages can be straightforwardly interpolated.

We can implement single-qubit gates using individually addressable lasers between stages,

so we filter out the two-qubit gates and compile them. After this compilation, we can

reintroduce single-qubit gates. For more details on this, kindly refer to Section 6.5.
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0

0

ds

qi

qj

... 

...
 

... 

Figure 6.2: Discretization of space into interaction sites. The unit of X and Y is a sufficient

distance to prevent Rydberg interaction. Interaction sites, indicated by shades, are centered

at integer points on the 2D plane. A limited number of AOD rows or columns can stack

together at one site. The callout is zooming into a site with three AOD rows and three

columns.

There may be parallel executions of two-qubit entangling gates at different sites, so,

per Implication 10, the sites should be sufficiently separated to avoid unwanted Rydberg

interactions. Also, to maximize usage, the tiling pattern of the sites should accord to the

geometry of the tweezer arrays, which is a 2D grid per Implication 2. The interaction sites

are illustrated as shades in Figure 6.2. In fact, our effort in discretization is analogous to

that of Mead and Conway [MC80] in VLSI chip design where an abstract basic length unit

in semiconductor fabrication, λ, was introduced. The chip area is discretized to separated

“lines” of 2λ wide layout design. These dimensionless λ-rules helped the advancement of

automated layout tools despite the fast developments in the fabrication technology that

affects λ. Similarly, based on our discretization, our formulation holds even if the constants

rb, 2.5rb and ds change. It is crucial to retain this flexibility for possible adjustments in

physics experiments. For instance, we may want to excite the qubits to a higher Rydberg

state, leading to a bigger rb; or upgrading to higher-resolution microscope objective lenses,

leading to a smaller ds.
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We allow several rows or columns to “stack” together at one interaction site to support

gates between two AOD qubits. However, there is an upper bound on how many AOD

rows/columns can be stacked together at a site because these AOD rows/columns cannot

be too close to each other (Implication 3). We denote the maximal stacking factor as RSTK

and CSTK, respectively. They are decided by the minimal AOD row/column separation

ds and the Rydberg range rb. The callout in Figure 6.2 exhibits an extreme case where

we need to entangle two qubits qi and qj at opposite corners of the site. This requires

[(RSTK − 1)2 + (CSTK − 1)2]d2
s ≤ r2

b . With rb =7.5 um and ds =2 um, RSTK = CSTK = 3

satisfies the inequality.

In fact, the ticks on x and y axes in Figure 1.5b and Figure 6.4b-f indicate the interaction

sites. At each stage, per Implication 10, there can be at most two qubits. Thus, there are

five possible situations at a site: 1) empty, e.g., (0,1) at stage 0 (Figure 6.4b); 2) one SLM

qubit, e.g., (1,1) at stage 2 (Figure 6.4e) holds only q4; 3) one AOD qubit, e.g., (3,1) at stage

0 holds only q0; 4) one SLM qubit and one AOD qubit, e.g., (1,1) at stage 0 holds q4 and q2;

and 5) two AOD qubits, e.g., (1,0) at stage 0 holds q5 and q3.

The discretized coordinates (of interactions sites) are enough to specify AOD and SLM

qubit locations, but they are not sufficient as the state of the architecture because of the

stacking of rows/columns we just mentioned. For example, at stage 1 (Figure 6.4c), both

AOD rows are at y = 1. Because of Implication 6, the upper row cannot move across

the lower row, e.g., q2 cannot move below q3. With only coordinates, it is hard to enforce

constraints like this. Thus, as part of the architecture state, we also need to specify which

row and column each AOD qubit is in. Finally, we have to specify whether the qubit is in

SLM or AOD at each stage to handle atom transfers.

In conclusion, the computation progresses in multiple stages: stage 0, AOD movement 0,

stage 1, AOD movement 1, stage 2, ... At each stage, the architecture has a state consisting

of interaction site indices (specifying location), AOD row/column indices, and an array index

(specifying whether in SLM or AOD) for each qubit. During the AOD movement, the AOD
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row/column indices and the array index are invariant, but the site indices can change as

AOD traps move in space.

6.3 Optimal Compilation with SMT

With the discretization in the previous section, we can use variables and constraints to

encode the layout synthesis problem and then, we can invoke an SMT solver for optimal

solutions, as illustrated in Figure 6.3. We shall work through the example of compiling the

quantum circuit in Figure 6.4a to DPQA to explain the formulation.

6.3.1 Variables

Site indices xi,s and yi,s: at stage s, qubit qi is at interaction site (xi,s, yi,s), e.g., for q0 at

stage 0 (Figure 6.4b), x0,0 = 3 and y0,0 = 1; at stage 1 (Figure 6.4c), x0,1 = 3 and y0,1 = 1

still; at stage 2 (Figure 6.4e), y0,2 = 1 still, but x0,2 = 2 due to movements.

Array index ai,s: at stage s and the movement following it, if qi is in SLM, ai,s = 0; if

it is in AOD, ai,s = 1, e.g., for q5 at stages 0 and 1, a5,0 = a5,1 = 1; before stage 2, it is

transferred to SLM, so a5,2 = 0.

AOD column/row indices ci,s and ri,s: at stage s and the movement following it, qubit qi

is at AOD column ci,s and row ri,s, e.g., at stage 0, r5,0 = 0 and c5,0 = 0 for q5; r0,0 = 1 and

c0,0 = 3 for q0. (We index the row from below and the column from left.) Since it is unknown

in advance whether a qubit will be in AOD or SLM, we introduce the r and c variables for

all qubits, but only those for AOD qubits will play a role in constraints.

Time coordinate tj: gate gj is scheduled to stage tj, e.g., g0 in Figure 6.4a is on q2 and

q4 and at stage 0, so t0 = 0; g1 is also at stage 0 (Figure 6.4b), so t1 = 0. g7 and g8 are at

stage 3 (Figure 6.4f), so t7 = t8 = 3.

We provide the values of all the SMT variables in the running example in Table 6.1.

112



quantum circuit

architecture

0 1 2 3
x

y

0

2
1

3

Satisfiability 
Modulo Theories 

(SMT) solver

DPQA constraints

connectivity
>rb

interaction 
exactness <2.5rb

AOD qubits 
move in row/col move

AOD row/col 
cannot cross move

...

gate

Figure 6.3: Illustration of the OLSQ-DPQA approach. The input consists of the quantum

circuit to execute and the DPQA architecture specification, e.g., how large the plane is and

how many AOD rows and columns we can have. The compiled instructions have to respect

the constraints of DPQA. For example, when a two-qubit gate is executed, the two qubits

should be closer than rb and there cannot be another qubit nearby. Also, all traps in the

same AOD row/column move together and must stay in the same order from the beginning

to the end of the process. We formulate all the constraints to a satisfiability modulo theories

(SMT) model and use an existing SMT solver to find solutions, with which we can derive

valid DPQA instructions to run the circuit.

For array indices, we make the values for the last stage gray because they do not affect the

solution in any way. (Note that for S stages, there are only S − 1 movements in between;

and our convention is that the movement between si and si+1 is encoded in the a, c, and r

variables of si.) The bounds for site indices and AOD column/row indices are X = 4, Y = 2,

C = 4 and R = 2. Apart from the values for the last stage, some other values are also gray

because the corresponding qubit is in SLM in that stage. For convenience in comparing with

Figure 6.4, we also reorganize the values based on stages as follows.

stage0: [

{qubit: 0, a: 1, x: 3, y: 1, c: 3, r: 1},
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{qubit: 1, a: 1, x: 2, y: 0, c: 2, r: 0},

{qubit: 2, a: 1, x: 1, y: 1, c: 1, r: 1},

{qubit: 3, a: 1, x: 1, y: 0, c: 1, r: 0},

{qubit: 4, a: 0, x: 1, y: 1, c: 2, r: 1},

{qubit: 5, a: 1, x: 1, y: 0, c: 0, r: 0}

];

stage1: [

{qubit: 0, a: 1, x: 3, y: 1, c: 3, r: 1},

{qubit: 1, a: 1, x: 3, y: 1, c: 2, r: 0},

{qubit: 2, a: 1, x: 2, y: 1, c: 1, r: 1},

{qubit: 3, a: 1, x: 2, y: 1, c: 1, r: 0},

{qubit: 4, a: 0, x: 1, y: 1, c: 1, r: 0},

{qubit: 5, a: 1, x: 1, y: 1, c: 0, r: 0}

];

stage2: [

{qubit: 0, a: 1, x: 2, y: 1, c: 3, r: 1},

{qubit: 1, a: 1, x: 2, y: 0, c: 2, r: 0},

{qubit: 2, a: 1, x: 2, y: 1, c: 1, r: 1},

{qubit: 3, a: 1, x: 2, y: 0, c: 1, r: 0},

{qubit: 4, a: 0, x: 1, y: 1, c: 1, r: 0},

{qubit: 5, a: 0, x: 1, y: 0, c: 1, r: 1}

];

stage3: [

{qubit: 0, a: 1, x: 1, y: 1, c: 3, r: 1},

{qubit: 1, a: 1, x: 1, y: 0, c: 2, r: 0},

{qubit: 2, a: 0, x: 0, y: 1, c: 1, r: 1},

{qubit: 3, a: 1, x: 0, y: 0, c: 1, r: 0},
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{qubit: 4, a: 0, x: 1, y: 1, c: 2, r: 1},

{qubit: 5, a: 1, x: 1, y: 0, c: 3, r: 1}

].

6.3.2 Constraints

Constraints in this subsection come from physics implications on the architecture (circuit-

independent), or fundamental properties of quantum programs (circuit-dependent). Let us

use N for the number of qubits and G for the number of gates. Note that in the constraints

below, we use ‘==’ to denote the operation that returns Boolean true if the left-hand side

equals the right-hand side and returns false otherwise. ‘[A,B)’ means from A to B − 1. All

the concrete examples are from Figure 6.4, and the reader can plug in values from Table 6.1

for more examples.

6.3.2.1 Circuit-Independent Constraints

Upper bounding the variables: ∀i ∈ [0, N), s ∈ [0, S)

0 ≤ xi,s < X, (6.1)

similarly for y, c, and r with bounds Y , C, and R.

Stationary SLM enforces Implication 4: ∀i ∈ [0, N), ∀s ∈ [0, S − 1)

ai,s == 0 ⇒ (xi,s+1 == xi,s ∧ yi,s+1 == yi,s). (6.2)

For example, q4 is in SLM at stage 0, i.e., a4,0 = 0, so its site indices remain the same

between stage 0 and 1, i.e., x4,1 = x4,0 and y4,1 = y4,0.

AOD moves by whole rows/columns enforcing Implication 5: ∀i ∈ [0, N), ∀s ∈ [0, S−1)

ai,s == 1 ⇒ (ci,s+1 == ci,s ∧ ri,s+1 == ri,s). (6.3)
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Figure 6.4: A compiled program on DPQA. a) The quantum circuit to compile. b) Stage

0. Qubits are loaded to the corresponding traps before this stage: blue qubits are in SLM,

red qubits are in AOD. An AOD trap sits at every intersection of the AOD columns and

rows (x and y dashed lines). An open circle represents an unoccupied SLM trap. At stage

0, (q4, q2) and (q5, q3) are at same sites to enable a Rydberg interaction. Thus, two gates g0

and g1 are applied to these two pairs of qubits. After stage 0, the movement shifts the lower

AOD row from y = 0 to 1 and the middle two columns go from x = 1 and 2 to x = 2 and

3, respectively. c) Stage 1. Shadows of qubits indicate the direction of the movements from

the previous stage to the current one. d) The moment after the movement between stage

1 and 2. e) Stage 2. q5 is transferred from AOD to SLM (red to blue) after the movement

and before stage 2 by shifting the leftmost AOD column to align with the SLM trap at (1, 0)

and then turning off this column. f) Stage 3 finishing the circuit execution.
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Table 6.1: OLSQ-DPQA variable values in Figure 6.4.

aq,s q0 q1 q2 q3 q4 q5

s0 1 1 1 1 0 1

s1 1 1 1 1 0 1

s2 1 1 1 1 0 0

s3 1 1 0 1 0 1

gate qubits it acts on tg

g0 q2 and q4 0

g1 q3 and q5 0

g2 q0 and q1 1

g3 q2 and q3 1

g4 q4 and q5 1

g5 q0 and q2 2

g6 q1 and q3 2

g7 q0 and q4 3

g8 q1 and q5 3

xq,s q0 q1 q2 q3 q4 q5

s0 3 2 1 1 1 1

s1 3 3 2 2 1 1

s2 2 2 2 2 1 1

s3 1 1 0 0 1 1

yq,s q0 q1 q2 q3 q4 q5

s0 1 0 1 0 1 0

s1 1 1 1 1 1 1

s2 1 0 1 0 1 0

s3 1 0 1 0 1 0

cq,s q0 q1 q2 q3 q4 q5

s0 3 2 1 1 2 0

s1 3 2 1 1 1 0

s2 3 2 1 1 1 1

s3 3 2 1 1 2 3

rq,s q0 q1 q2 q3 q4 q5

s0 1 0 1 0 1 0

s1 1 0 1 0 0 0

s2 1 0 1 0 0 1

s3 1 0 1 0 1 1
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For example, q5 is in AOD at stage 0, i.e., a5,0 = 1, so when it arrives at stage 1, the

row/column index remains the same, i.e., c5,1 = c5,0 and r5,1 = r5,0, despite the changing site

indices, i.e., y5,1 6= y5,0.

Site order implying row/column order enforcing Implication 6 in the case of non-stacking

rows/columns: ∀i, i′ ∈ [0, N), ∀s ∈ [0, S)

xi,s < xi′,s ⇒ ci,s < ci′,s, yi,s < yi′,s ⇒ ri,s < ri′,s. (6.4)

For example, at stage 0, q5 is at x = 1 while q1 is at x = 2, so c5,0 < c1,0.

No crossing between AOD row/columns enforces Implication 6 in the case of stacked

rows/columns: ∀i, i′ ∈ [0, N), ∀s ∈ [0, S − 1)

(ai,s == 1 ∧ ai′,s == 1 ∧ ci,s < ci′,s) ⇒ xi,s+1 ≤ xi′,s+1,

(ai,s == 1 ∧ ai′,s == 1 ∧ ri,s < ri′,s) ⇒ yi,s+1 ≤ yi′,s+1.
(6.5)

For example, at stage 0, q1 is at row 0 and q0 is at row 1, so r1,0 < r0,0; at stage 1, q1 and q0

are both at y = 1, which satisfies y1,1 ≤ y0,1.

Maximal stacking as in Section 6.2: ∀i, i′ ∈ [0, N), ∀s ∈ [0, S)

(ai,s−1 == 1 ∧ ai′,s−1 == 1 ∧ ci,s−1 − ci′,s−1 ≥ CSTK) ⇒ xi,s > xi′,s,

(ai,s−1 == 1 ∧ ai′,s−1 == 1 ∧ ri,s−1 − ri′,s−1 ≥ RSTK) ⇒ yi,s > yi′,s.
(6.6)

(When s = 0, we replace the s− 1 above with 0; otherwise, it is indeed s− 1.) For example,

at stage 0, q5 is in column 0 while q0 is in column 3, c0,0 − c5,0 = 3 ≥ CSTK, so x0,1 > x5,1,

i.e., they cannot be at the same site at stage 1.

One atom, one trap. There cannot be two atoms in one trap, thus imposing Implication 1

and Implication 10. If both atoms are in AOD, either their row or column index is different;

if both are in SLM, either their site x or y index is different: ∀i ∈ [0, N), ∀i′ ∈ [i+1, N), ∀s ∈
[0, S)

(ai,s == 1 ∧ ai′,s == 1) ⇒ (ci,s 6= ci′,s ∨ ri,s 6= ri′,s),

(ai,s == 0 ∧ ai′,s == 0) ⇒ (xi,s 6= xi′,s ∨ yi,s 6= yi′,s).
(6.7)
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(Optional) No atom transfer by fixing array index (which is what we do in the evaluations

for the optimal compiler): ∀i ∈ [0, N), ∀s ∈ [0, S)

ai,s = ai,0. (6.8)

If it is allowed for an atom to transfer to an empty trap at the same site, i.e., forbidding

transfer when there are two atoms at a site, ∀i ∈ [0, N), ∀i′ ∈ [i+ 1, N), ∀s ∈ [0, S − 1)

(xi,s+1 == xi′,s+1 ∧ yi,s+1 == yi′,s+1) ⇒ (ai,s+1 == ai,s ∧ ai′,s+1 == ai′,s). (6.9)

6.3.2.2 Circuit-Dependent Constraints

Gate collision. If two gates act on the same qubit, they cannot be executed at the same

stage, e.g., g0 and g3 both act on q2, so t0 6= t3.

Gate dependence. If the order of execution between two gates cannot be changed, we

ensure this by tj < tj′ if gj′ depends on gj.

Connectivity ensures Implication 8. Two qubits should be at the same site in order for

an entangling gate to execute: ∀j ∈ [0, G), gj acting on qi and qi′ , ∀s ∈ [0, S)

tj == s ⇒ (xi,s == xi′,s ∧ yi,s == yi′,s). (6.10)

For example, g0 at stage 0 is on q2 and q4, so x2,0 = x4,0 and y2,0 = y4,0.

Interaction exactness enforces Implication 9. We pre-compute a list ρi,i′ for each pair

of qubits (qi and qi′) that contains all the j such that gj acts on this pair. In the example

of Figure 6.4, there is only one gate g2 acting on q0 and q1, so ρ0,1 = {2}; in contrast,

there is no gates on q0 and q8, so ρ0,8 = ∅. If ρi,i′ 6= ∅, then two qubits must be at the

same site at some stage, and one of the gates on them is being executed at this stage:

∀i ∈ [0, N), ∀i′ ∈ [i+ 1, N), such that ρi,i′ 6= ∅, ∀s ∈ [0, S)

(xi,s == xi′,s ∧ yi,s == yi′,s) ⇒


 ∨

j∈ρi,i′

tj == s


 . (6.11)
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Conversely, if ρi,i′ = ∅, the qubits should not be at the same site ever: ∀i ∈ [0, N), ∀i′ ∈
[i+ 1, N), such that ρ(i, i′) = ∅, ∀s ∈ [0, S)

xi,s 6= xi′,s ∨ yi,s 6= yi′,s. (6.12)

6.3.2.3 Enforcing Cardinality

There are two ways to enforce cardinality: implicitly in variable definition or explicitly with

a cardinality constraint. The implicit approach is mainly for dimensions involved in the

definition of the variables in the SMT model. Our arrays of variables have two dimensions:

the qubit and the stage, which means whatever the model can possibly express is a com-

putation using that many qubits and that many stages. The number of stages, S, in the

optimal compiler is bounded in this approach: we only construct variables for S stages. If S

is too small to execute the whole circuit, the model is unsatisfiable, so we need to add more

variables. When the model becomes satisfiable, we have not introduced more variables than

needed. Considering the exponential scaling of SMT solving to model size, we opt for the

implicit approach to force the cardinality of stages.

An example of the explicit approach appends the SMT model with a constraint like

∑

j∈[0,G),s∈[SLB,SUB)

ITE(tj = s, 1, 0) ≥M, (6.13)

where the stages between SLB and SUB are considered, and ITE(φ,w, z) means if the Boolean

expression φ evaluates to true, return value w, otherwise z. Essentially, the l.h.s. is counting

occurrences of a qubit pair appearing at the same site at the same stage. If this sum is

larger than M , then at least M gates are executed between stages SLB and SUB. There are

many ways to decompose the above equation to Boolean logic. We utilize the sequential

counter approach offered by PySAT [IMM18] later in Figure 6.5. As a result, there are some

intermediate Boolean variables introduced in the SMT model that do not correspond to any

configurations of DPQA, purely for the sake of the cardinality constraint.
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6.3.2.4 Scalability of the Model

The total number of variables in the optimal approach is 5NS + G where N is the number

of qubits, S is the number of stages, and G is the number of gates. The total number

of constraints is O(G2 + GS + N2S). However, some of the variables have larger bounds.

If we represent the integer variables by bit-vectors, the total number of bits to represent

the variables is NS log(2XY RC) + G log(S), where X and Y are the dimensions of the

interaction site grid, C and R are the number of AOD columns and rows. The worst-case

runtime of SMT solving is exponential, i.e., O((NSLMNAOD)NS · SG) where NSLM = XY is

the total number of SLM traps, and NAOD is the total number of AOD traps. In the shallow

circuit regime where S can be seen as a constant, and if the program is induced by sparse

graphs so that G = O(N), the number of bits required is O(N log(NSLMNAOD)) and the

number of constraints is O(N2). For each ‘peeling’ in the hybrid compiler to be introduced

in Section 6.4, S = 2.

6.3.3 Software Implementation

With an SMT solver, we are able to not only solve valid assignments to compile circuits,

but also guarantee the optimality of the solution with respect to some objective function,

presented as the optimal branch in Figure 6.5. To minimize the number of Rydberg stages,

S, we use relatively large spatial bounds (X, Y,R,C) which are more likely to yield satisfiable

models. We start by setting S to a lower bound, e.g., the critical path in the circuit, which is

3 for the one in Figure 6.4a. If the SMT solver returns unsatisfiable, we increase S and invoke

the solver again, until it finds a valid solution with Sopt stages. With this procedure, the

optimality is guaranteed since we have checked that any smaller S yield unsatisfiable SMT

models before finding the solution. If S increases beyond the number of gates, we conclude

that the spatial bounds are too small and increase them. The procedure will terminate since

any finite circuit of size P can be run in a finite spacetime volume bounded by P × P × P .

121



optimal

quantum circuit architecture specification

problem size?

generate 
#stage ≤ S
SMT model

small

greedy (iterative peeling)

instruction: init | rydberg | move | (de-)activate

generate single-step, 
#gate ≥ M SMT model

large

stitch partial solution

M ←M −1SAT?

SAT?

S ←S +1

solution post-processing / instruction generation

yes

yes

no

yes

no

no

animation: AOD moves and (de-)activations, and Rydberg

hybrid approach

<5% gates 
left?

Figure 6.5: Workflow of OLSQ-DPQA. The inputs to the compiler are the quantum circuit to

execute and the specifications of the DPQA architecture considered. If the problem is small,

the compiler directly takes the optimal approach by constructing an SMT model where all

the gates are applied to the first S stages. If the model is satisfiable, then we find a solution;

otherwise, we increase S and try again. Thus, we find a solution with the minimum number

of stages in the end, because lower-depth models are all checked and unsatisfiable. The

SMT solution goes through a post-processing to extract the instructions for executing the

quantum circuit on DPQA. (This caption continues on the next page.)
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(previous page) There are only five types of instruction: init for initialization; rydberg to

turn on the Rydberg laser and perform two-qubit gates; move for changing the coordinates of

AOD rows/columns; activate for turning on certain AOD rows/columns for atom transfer;

and deactivate for turning off certain AOD rows/columns. If the problem is large, the

compiler takes a hybrid approach by iteratively “peeling off” the maximum number of gates

possible. It generates a single-step (two-stage) SMT model with a constraint of executing

more than M gates in one step. After possible decreases of M , we find the solution with as

many gates executed in one step as possible. Then, we stitch this partial solution, which is

one “layer peeled off”, to the whole solution. When the problem becomes sufficiently small

(5% of gates left), the compiler switches to the optimal approach.

The variable assignments are not yet a DPQA executable. We need to post-process the

SMT solution to produce DPQA instructions. For example, we must know the beginning

and end coordinates of each AOD column, which are stored distributively in the xi,s and

ci,s variables. In the example of Figure 6.4, we find q2 is in column 1 and x = 1 at stage 0,

i.e., c2,0 = 1 and x2,0 = 1, and x = 2 at stage 1, i.e., when x2,1 = 2, we infer that the AOD

column 1 travels from x = 1 to x = 2. As such, the information in the SMT solution will be

translated to five types of basic DPQA instructions: init for initial qubit loading, rydberg

for illuminating the Rydberg laser, move for AOD movements, activate for activating AOD

rows/columns, and deactivate for deactivating AOD rows/columns. These instructions

are readily executable on DPQA, and our compiler can also generate animations from the

instructions to view the execution process in action.
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6.3.4 Evaluation

We benchmark the effectiveness of DPQA and our compiler, OLSQ-DPQA, on a set of

quantum circuits constructed using random graphs, as illustrated in Figure 6.6a. For a

given graph, we assign each node to a qubit and apply a two-qubit gate for every edge.

For simplicity, we consider problems where these gates are commutable, like the controlled-

Rz gates available on DPQA [LKS19, EBK23], so the compiler also explores freedom of

permuting gate ordering. Compiling these circuits is more challenging compared to generic

circuits due to the increased flexibility in commutation. For evaluations on realistic generic

circuits, please refer to Section 6.5.

We now compare our DPQA compilation results to the compilation results on static

planar architectures, where instead of physically moving qubits around, qubits are moved

around using two-qubit SWAP gates. As expected, DPQA combined with the optimal com-

piler requires significantly fewer two-qubit gates. We tested a few compilers that perform

layout synthesis for the static architecture by inserting SWAP gates: t|ket〉 [SDC20], a

heuristic compiler used in leading QAOA experiments [HSN21]; SABRE [LDX19], a heuris-

tic compiler integrated in leading quantum programming framework, Qiskit [AAA21]; and

TB-OLSQ2 [LKT23], a leading near-optimal compiler for static architectures. The gaps of

the two-qubit gate count for QAOA benchmarks with 22 nodes in the graph are 4.5x, 2.5x,

and 1.7x, respectively.
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Figure 6.6: (previous page) Evaluation of the optimal layout synthesis in OLSQ-DPQA.

a) Graph circuits. Given any graph, we treat each node as a qubit and add a two-qubit

entangling gate for every edge in the graph to construct the graph circuit. We assume the

gates are commutable, so gate order does not matter. The benchmarks used are graph circuits

generated by 3-regular graphs of size 10 to 22. For each size, we have 10 random graphs.

b) Comparison of infidelity caused by the Rydberg laser (performing two-qubit gates) and

the AOD movements. The latter is 27x smaller on average. We make such an estimation

using 99.5% two-qubit gate fidelity [EBK23] and a movement scheme that yields low atom

heating as in [BLS22]. c) Comparison of the number of two-qubit gates required on a static

planar architecture (Google’s Sycamore) and DPQA employing different compilers. Error

bars are standard deviations among 10 random graphs of the same size. The compilers are

t|ket〉 [SDC20], SABRE [LDX19] (integrated in Qiskit [AAA21]), and TB-OLSQ2 [LKT23].

TB-OLSQ2 is near-optimal for static architectures, but there is still a significant gap (1.7x)

between it and the optimal DPQA compiler, which mainly comes from SWAP gates inserted

on the static architecture, each requires three entangling gates (controlled Rz) [GJE20].

6.4 Hybrid Approach

The runtime for SMT solving scales exponentially in the worst case, so the optimal compiler

can take a very long time to solve certain cases, as seen in Figure 6.8b. Due to the complicated

constraints, it is also challenging to design near-optimal purely heuristic algorithms to search

the solution space of DPQA. Therefore, we adopt a two-level approach, as illustrated in the

hybrid approach in Figure 6.5. For large problems, at the higher level, we apply a greedy

heuristic in that, at every stage, we find the movement to maximize the number of gates to

execute in the next stage. We repeat this process until there are a sufficiently small number

of gates remaining and then switch to the optimal approach. This technique is inspired by

‘iterative peeling’ for multi-layer routing of classical circuits [CHS93].
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Figure 6.7: (previous page) One of the largest benchmarks we are able to compile with

OLSQ-DPQA. a,b) The 90-node 3-regular graph. The highlighted edges are gates executed

at the stages in c) and d), respectively. c) One stage of the compiled result. The dots are

qubits in SLM. The ovals indicate two-qubit gates performed at this stage, which have a

1-to-1 correspondence with the edges in a). After this stage, some qubits are transferred to

AOD and moved. d) The next stage. The red dots are the AOD qubits, and the arrows

indicate the parallel movements from c) to the current state. Readers are welcome to check

out our code base for this animation.

Specifically, if there are still gates to execute, we construct a “single-step” SMT model

with two stages and set the qubit location of the initial stage to that of the current stage in the

full solution. For instance, suppose the compiler has already processed g0 to g4 in Figure 6.4a

and progressed to stage 1 (Figure 6.4c). In the single-step model, all initial locations are set

by the previous partial solution, e.g., x4,0 = 1 since q4 at x = 1 in Figure 6.4c. Then, we

optimize the number of gates executed in the second stage in the single-step model with a

procedure similar to the one in the optimal approach, except that we decrease the number

of gates to execute in the second stage from an upper bound of M instead of increasing

the number of stages from a lower bound. The upper bound is the size of the maximum

matching of the graph constructed from the remaining gates. In our example, the remaining

gates g5 and g7 both act on q0, whereas g6 and g8 both act on q1, so only one gate in each

of these two pairs can be executed together, i.e., the size of the maximum matching is 2.

The compiler appends the single-step model with a constraint that says there are at least 2

gates executed at the next stage and invokes the SMT solver, which can find such a solution

(Figure 6.4e). We stitch this partial solution to the full solution, remove gates g5 and g6

which is a layer of gates “peeled off”, and continue to the next “peeling”. If there are only a

few gates remaining (we opt for 5%) the compiler switches to the optimal approach to solve

for the final stages.
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Figure 6.8: (previous page) Evaluation of the greedy-optimal hybrid approach in OLSQ-

DPQA. a) Comparison of the number of two-qubit gates required on a static planar ar-

chitecture (10x10 grid) using different compilers and DPQA. For DPQA, the number of

two-qubit gates scales as n, whereas for the state-of-the-art heuristic solver on the static

planar architecture, SABRE, scales as n1.52±0.02 where n is the number of qubits. DPQA

requires far fewer two-qubit gates, 5.1x less than SABRE, and scales linearly. b) Compari-

son of runtime of the optimal and hybrid approaches in OLSQ-DPQA. The benchmarks are

graph circuits with 10, 12, 14, 16, 18, 20, 22, 30, 40, 50, 60, 70, 80, and 90 qubits. We

generated 10 3-regular graphs of each size. In OLSQ-DPQA, we set the spatial bounds to

X = Y = R = C = 16. We used a desktop computer with an Intel Core i7-10700KF CPU

and 32 GB RAM and set the time limit to 105 seconds which is approximately a day. Note

that the compiler runtime can vary depending on the specific hardware and environment

where it is run. The timeout instances are 205, 225, and 228 for the optimal approach, 801,

900, 902, 906, 908, and 909 for the hybrid approach, where the subscripts are the indices of

the graph. All the random graphs used are provided in the code base. Since both of them

internally rely on SMT solving, the worst-case runtime scalings are both exponential in the

size of the graph with which we generate the quantum circuit. However, the hybrid approach

is significantly faster so that large instances can be solved (up to 90 qubits in time limit).

Compared to the optimal approach, the scaling of the hybrid approach is mainly related to

size rather than the specific graph, which is demonstrated by the much smaller spread of

data points at each size.
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The hybrid approach cannot fundamentally improve the runtime scaling from exponential

to polynomial because it still relies on SMT solving, but it greatly accelerates the process,

with some sacrifice on optimality. As exhibited in Figure 6.8b, it is much faster than the

optimal compiler and the divergence of runtime within benchmarks of the same size is also

much smaller. Within a reasonable amount of time (105 s ≈ a day), the hybrid compiler

managed to compile some 90-qubit circuits whereas the optimal compiler, in the worst case,

can only compile up to the 22-qubit circuit. We present one of the largest circuits compiled

in Figure 6.7 where part a and b exhibit the graph generating the quantum circuit which

has a complex connectivity, while part c and d are two stages in the program execution.

This hybrid approach is implemented in the OLSQ-DPQA, which is open-source under

the BSD 3-clause license.1 The code base includes Python scripts that 1) generate the SMT

models and iteratively invoke an SMT solver, Z3 [dB08] to solve them, 2) generate DPQA

instructions and animations based on SMT solutions, 3) draw plots in the evaluations. The

dependencies are Python packages z3-solver 4.12.1.0 [dB08], python-sat 0.1.8.dev1

[IMM18], networkx 3.0 [HSS08], and matplotlib 3.6.2 [Hun07]. The code base also

includes all SMT solutions in the evaluations and some example animations.

We compare the required number of two-qubit gates by DPQA and a static planar ar-

chitecture (10x10 grid) in Figure 6.8a. We find that the savings from DPQA on such a

large system is significant compared to the static architecture: 5.1x and 8.9x reduction in

the number of two-qubit gates, respectively, compared to the compilation results by SABRE

[LDX19] (as in qiskit 0.42.1 [AAA21]) and t|ket〉 [SDC20] (as in pytket 1.13.2). If the

heuristics place qubits in an
√
n-by-

√
n region, each gate may require O(

√
n) SWAPs to

route. Then, for O(n) gates, as in our benchmark set, O(n1.5) SWAPs are required. We

observe this scaling in the results of SABRE: with a log-log fitting, the number of two-qubit

gates scales in the 1.52± 0.02 power of the number of qubits. In comparison, DPQA routes

the gates by AOD movements instead of SWAPs, so the number of gates scales linearly.

1https://github.com/UCLA-VAST/DPQA
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Comparing the number of two-qubit gates is most suitable if the DPQA is equipped with an

individually addressable Rydberg laser (or other methods of turning off the Rydberg exci-

tation locally) that does not accumulate the same error on idling qubits (e.g., in [GSS22]).

Instead, if DPQA is equipped only with a global Rydberg laser that illuminates the whole

plane, although the number of two-qubit gates is greatly reduced, the effective number of

two-qubit gates, i.e., the number of qubits times the number of stages divided by 2, is only

slightly better (7%) than the SABRE results on the static architecture assuming that a

global Rydberg laser induces the similar error rate, at every stage, on idling qubits as well

as qubits involved in two-qubit gates [BLS22].

6.5 Handling Generic Quantum Circuits

Previously, our attention was primarily on the compilation of circuits comprised of com-

mutable two-qubit gates. We find that these circuits showcase the massive parallelism of

DPQA architecture. Also, the flexibility in commutation adds extra challenges to the com-

pilation problems. In generic circuits, e.g., Figure 6.9a, there are two notable differences.

Firstly, these circuits include single-qubit gates (e.g., g0 and g1). Secondly, the gates in

these generic circuits are not necessarily commutable. We assume a dependency in cases

where two gates act on the same qubit, dictating a fixed order; for instance, g0 and g3 both

acting on q1 means g3 must be scheduled after g0. Our software implementation includes

an all commutable flag as part of the problem specification. When this flag is inactive,

OLSQ-DPQA defaults to the workflow illustrated in Figure 6.9c: prior to compilation, we

remove all single-qubit gates to derive the dependency graph of two-qubit gates, as shown

in Figure 6.9b. Due to the dependencies, only the front layer of the graph, represented by

the red nodes (e.g., g2 and g3 initially), can be processed. OLSQ-DPQA compiles the qubit

movements for these gates, maximizing the number of executed gates, and removes them

from the dependency graph (grayed out nodes). Sometimes, not the entire front layer is
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Figure 6.9: Handling generic circuits in OLSQ-DPQA. a) Example circuit. b) Dependency

graph of two-qubit gates. c) Compilation process. OLSQ-DPQA is invoked 3 times. Each

time, only the front layer (red nodes) is processed. It is possible the entire front layer is not

executed, leading to the inclusion of the remaining nodes in the subsequent front layer (e.g.,

g8). d) Final result. Prior to each Rydberg stage, we execute all single-qubit gates that have

no dependency to any gates not yet executed.
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executed depending on the qubit locations (e.g., g5 is executed at s1 while g8 is not), leaving

the remaining gates for the next round. This process continues until all nodes are processed.

Finally, we reintroduce the single-qubit gates, as depicted in Figure 6.9d. Prior to each two-

qubit gate stage, we execute all single-qubit gates without dependencies at this point. For

instance, g7 only depends on g3, which is executed at s0, allowing g7 to be executed before

s1.

We benchmark OLSQ-DPQA on realistic generic circuits from QASMBench [LSK22],

detailed in Table 6.2. Specifically, we picked all the ‘medium’ and ‘large’ benchmarks with

fewer than 100 qubits and less than 1000 gates. Certain benchmarks share the same circuit

family but differ in size, such as various-sized adders. The 2Q depth of a circuit is the length

of the longest path in the two-qubit dependency graph like Figure 6.9b. For a static 10x10

grid qubit coupling graph, we utilized SABRE [LDX19] within Qiskit [AAA21] to layout

qubits and insert SWAPs. In contrast, OLSQ-DPQA relies solely on qubit movement to

route qubits, resulting in a reduction of two-qubit gates by 1.8x geomean, as shown in the

rightmost column of Table 6.2. While, in most instances, the number of two-qubit stages

(Rydberg) aligns closely with the 2Q depth of the circuit, OLSQ-DPQA may require a

larger number of stages. This arises from the fact that not all gates in the front layer can be

executed at every stage due to the specific qubit locations at that point. These front layers

are generally less complicated than random graphs. Consequently, even in cases where these

benchmarks have more gates than graph circuits in previous sections, the compiler runtime

tends to be shorter.
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CHAPTER 7

Enola: Efficient and Near-Optimal Layout Synthesis

for Dynamically Field-Programmable Qubit Arrays

The neutral atom hardware is advancing in a fast pace, as discussed in Section 1.2. Although

OLSQ-DPQA provides a solid foundation to the layout synthesis for DPQA, it does not scale

to the current maximum hardware capability. Additionally, as mentioned in Section 2.2.2,

there are some known compromises in the design of OLSQ-DPQA, which result in fidelity

decrease as we shall analyze in Section 7.1. This leads us to rethink the formulation and

decouple it into three tasks: scheduling in Section 7.3, placement in Section 7.4, and routing

in Section 7.5. Specifically, the scheduling is based on a provably near-optimal graph edge

coloring algorithm, Misra-Gries, which is introduced in Section 7.2. Based on the refined

formulation, we develop a new layout synthesis tool for DPQA, Enola, featuring efficient and

high-quality solution, as we will see in the evaluations in Section 7.6.

7.1 Motivation: Fidelity Analysis

We model three error sources: imperfect gates, atom transfers, and qubit decoherence. The

parameters follow leading experiments [BLS22, BLS24] and are summarized in Figure 7.1c.

Single-qubit gates have the fidelity f1 = 99.97% and the duration TRam = 625 ns. These

gates can be individually addressed to corresponding qubits [TPC24], so there are no side

effect errors on other qubits. We make the same assumption as in Section 6.5 that the single-

qubit gates are first removed so that the compiler only handles the two-qubit gates. Then,
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Figure 7.1: OLSQ-DPQA and Enola error breakdown. The benchmarks are 3-regular Max-

Cut QAOA circuits used in [TBL24]. For the 90-qubit circuits, Enola reduces two-qubit gate

stages by 3.7x and improves the overall fidelity by 5.9x.

the single-qubit gates are inserted back to the compiled results. Two-qubit gates have the

fidelity f2 = 99.5% and the duration TRyd = 360 ns. The other qubits are also excited by the

Rydberg laser, e.g., q5 in Figure 2.4b, each has the fidelity fexc = 99.75%. Atom transfers

have the fidelity ftrans = 99.9% and the duration Ttrans = 15 us. Note that multiple transfers

can be simultaneous, e.g., the three transfers in Figure 2.4a are simultaneous and take 15 us.

The coherence time of qubits is T2 = 1.5 s. The decoherence effect of a qubit q is modelled

by a multiplicative factor 1− Tq/T2 where Tq is its idling time, i.e., the total duration of the

procedure carried out on DPQA minus any time spent on gates or transfers. The majority

of Tq is spent on AOD movements. The move distance, d, and time, t, follow the relation

d/t2 = a = 2750 m/s2 [BLS22], e.g., if d = 110 um, then t = 200 us.
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The overall fidelity is computed by

f = (f1)g1 ·
two-qubit gate︷ ︸︸ ︷

(f2)g2 · (fexc)
|Q|S−2g2 ·

atom transfer︷ ︸︸ ︷
(ftrans)

Ntrans ·
decoherence︷ ︸︸ ︷∏

q∈Q

(1− Tq/T2) , (7.1)

where g1 and g2 are the number of single-qubit and two-qubit gates, respectively, Q is

the set of qubits, S is the number of stages, |Q|S − 2g2 calculates the qubits affected by

the Rydberg laser but does not perform a gate, and Ntrans is the total number of atom

transfers. Since we only focus on two-qubit gates, the term (f1)g1 is a constant and we

ignore it from now on. As an example, we calculate the fidelity for the process in Figure 2.4.

There are 3 two-qubit gates so (f2)g2 = 0.99503 = 0.9851. Only q5 is excited but does not

perform a gate so (fexc)
|Q|S−2g2 = f 7×1−2×3

exc = 0.9975. Thus, the total two-qubit gate term

is 0.9851 × 0.9975 = 0.9826. Since there are 3 atom transfers in Figure 2.4a, the atom

transfer term is (ftrans)
Ntrans = 0.99903 = 0.9970. The longest movement belongs to q4: it

travels a
√

2 site separation, i.e.,
√

2 × 2.5rb = 21.21 um. Thus, the AOD movement from

Figure 2.4a to Figure 2.4b takes t = (21.21 um / 2750 m/s2)0.5 = 87.82 us. This is the Tq

for the moving qubits q0, q4, and q5. The other four qubits are additionally idling during the

atom transfer, so their Tq = 87.82 us + Ttrans = 102.82 us. Therefore, the decoherence term

is [1 − 87.82/(1.5 × 106)]3 × [1 − 102.82/(1.5 × 106)]4 = 0.9996. Finally, the overall fidelity

is f = 0.9826× 0.9970× 0.9996 = 97.92%.

In Section 6.4, OLSQ-DPQA compiles a set of QAOA circuits designed for the MaxCut

problem on 3-regular graphs with the number of qubits ranging from 30 to 90. We evaluate

the compiled results with our fidelity model and present the breakdown in Figure 7.1a. Note

that, to draw the figure, we take the logarithm of the fidelity terms so that they are additive.

At 90 qubits, the two-qubit gate fidelity term is 0.0414, the atom transfer term is 0.592, and

the decoherence term is 0.223. Thus, the dominating error source are the two-qubit gates.

However, there is a gap between the number of stages achieved by OLSQ-DPQA, on average

14.6 for 90 qubits, and the theoretical lower bound, 3, because each qubit is only involved

in 3 two-qubit gates. With our compiler, Enola, only 4 stages are produced, pushing the
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two-qubit fidelity term to 0.406. This effect is evident in the great decrease of the two-qubit

gate portion in Figure 7.1b compared to Figure 7.1a.

7.2 Misra-Gries Algorithm for Edge Coloring

For a graph G = (V,E), an edge coloring is a function φ : E → Z that assigns different values

to edges incident on the same node, ensuring φ(e) 6= φ(e′) for e, e′ ∈ E where e 6= e′ and

e∩ e′ 6= ∅. We will use the coloring problem shown in Figure 7.2a as the running example in

this section. The minimum number of colors required to achieve an edge coloring is termed

the chromatic index, χ′(G). Vizing’s theorem [Viz65] states that, for any simple undirected

graph G, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1, where ∆(G) is the maximum degree of any node in G.

The algorithm by Misra and Gries [MG92] is a constructive proof of Vizing’s theorem that

computes an edge coloring in O(|V | · |E|) time, using no more than ∆(G) + 1 colors, at most

one more than optimal. In our example, the algorithm produces a coloring with four colors,

as shown in Figure 7.2o, while an optimal solution in Figure 7.2b uses three colors.

Before delving into the algorithm, we define some key concepts. A color is free on a node

u if no incident edge of u uses this color. A fan F [1 : k] for a node X is a non-empty sequence

of distinct nodes where (X,F [k]) is uncolored and the color of each edge (X,F [i− 1]) is free

at node F [i] for 1 < i ≤ k. An example fan for node 3 includes nodes 2 and 5 (Figure 7.2c).

Throughout Figure 7.2, purple dots indicate nodes in a fan, and purple arrows indicate the

order within a fan. Rotating a fan involves shifting the color of edge (X,F [i−1]) to (X,F [i])

for 1 < i ≤ k, and leaving (X,F [1]) uncolored. This operation maintains a valid coloring:

1. Removing the color from (X,F [1]) is valid since it becomes uncolored.

2. Since the color of (X,F [i− 1]) is free at node F [i], it can be assigned to (X,F [i]).

3. Node X simply experiences a rotation of colors without the introduction of new colors.

A maximal fan of X is one that cannot be extended by adding more neighbors of X. For
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Figure 7.2: Misra-Gries algorithm. a) Edge coloring problem. Dashes means uncolored. b)

The optimal solution with three colors. c) Rotating a fan F . d) Inverting a cdX-path where

c is red, d is green, and X is 0. e-o) Step-by-step execution of the Misra-Gries Algorithm.

The final result has four colors. This algorithm guarantees one more color from optimal.
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instance, in Figure 7.2c, the fan at node 3 is maximal because the color red from edge (3, 1)

is not free on nodes 2 or 5, preventing the inclusion of node 1. A subfan of F [1 : k] includes

a contiguous sequence of nodes from the fan, starting from any F [w], w ∈ {1, ..., k}, to F [k].

A cdX-path is a maximal path through node X, alternating between colors c and d.

Inverting this path involves swapping c and d along the path, resulting in a valid coloring:

1. For nodes on the path but not endpoints, swapping colors of two incident edges main-

tains valid coloring.

2. If a node u is an endpoint, and suppose edge (u, v) with color c is on the path, then

d must be free for u. Otherwise, there is some edge (u,w) with color d which can be

added to the path, violating the maximality in the definition of a cdX-path. Since d is

free for u, we can switch the color of (u, v) to d.

The benefit of inverting a cdX-path is that if X is an endpoint, inverting the path frees a

specific color for X. For example, Figure 7.2d exhibits the coloring after switching red-green

path 0-2-4-5 in Figure 7.2c. With this switch, red is freed for node 0. A cdX-path can have

only one color if there is only one edge, e.g., 1-3 is a red-green path. If X has no edges with

color c or d, there is no cdX-path, e.g., node 1 has no blue-green path.

The Misra-Gries algorithm is presented as Algorithm 2. We exhibit a step-by-step exe-

cution in Figure 7.2e-o. The algorithm colors one edge with each iteration in the while loop.

In Figure 7.2e, we choose X = 0 and v = 1. Then, the maximal fan only has one node v.

We pick color c = red (free for X) and d = green (free for v). There is no cdX-path, so there

is nothing to invert. As a result, we set the color of edge (0,1) to green.

In Figure 7.2f, the maximal fan, F , of node 0 now consists of both nodes 1 and 2. We

pick free colors c = red and d = cyan. There is still no cdX-path. On line 8 of Algorithm 2,

we pick a subfan of F such that it starts with a node, w, with free color d = cyan. In our

example, the subfan can be just the whole fan, so w = 1. Rotating the subfan sets the color

of (0,2) to green. Then, we set the color of (0,1) to d = cyan.
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Algorithm 2 Misra-Gries Edge Coloring Algorithm

Input: Simple undirected graph G = (V,E)

Output: Edge coloring φ of G

1: S ← E

2: while S 6= ∅ do

3: (X, v)← any edge in S

4: F [1 : k]← a maximal fan of X with F [k] = v

5: c← a free color of X

6: d← a free color of v

7: Invert cdX-path if it exists

8: Find a subfan [F [w], F [w + 1], ..., F [k]] of F [1 : k] such that d is free on F [w]

9: φ((X,w))← d

10: S ← S \ {(X, v)}
11: end while

In Figure 7.2g, the maximal fan further includes node 6. We pick color c = red (free for

X = 0) and d = green (free for v = 6). There is a cdX-path 0-2. Thus, we invert the path

resulting in setting the color of (0,2) to red, exhibited in Figure 7.2h. This is necessary since

we are going to assign d = green to some fan edges, so we need to free it from existing fan

edges such as (0,2). Again, the subfan can be the whole fan, so w = 1, and we rotate the

fan and set color of (X,w) = (0, 1) to d = green.

The subfan sometimes cannot be the whole fan. For example, a few iterations down, in

Figure 7.2n, the maximal fan of X = 4 consists of nodes 5, 2, and 6. We pick color c = gold

(free for X = 4), and d = cyan (free for v = 6). Since cyan is not free for node 2, the subfan

we pick consists of only node 6. Therefore, there is nothing to rotate, and we set the color

of (4,6) to d = cyan. This results in the edge coloring in Figure 7.2o that consumes four

colors, one more than the optimal solution in Figure 7.2b.
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Figure 7.3: Scheduling in Enola. a) Scheduling a commutation group of two-qubit gates

with edge coloring. b) Generic circuits can be considered as dependency subcircuits and

commutation groups. Gates in the former is scheduled ASAP.

7.3 Scheduling: Edge Coloring

The two-qubit gates available on DPQA are controlled rotation in the Z basis, which are

known to commute [LKS19]. This means a set of these two-qubit gates can be executed in

any order. We can solve the scheduling of a commutation group, i.e., a set of commutable

two-qubit gates, with the Misra-Gries algorithm, as stated in the following theorem.

Theorem 3. For a group of commutable two-qubit gates on n qubits, suppose the optimal

number of Rydberg stages to schedule these gates on DPQA is Sopt, there is an algorithm

with time complexity O(n3) that assigns these gates to at most Sopt + 1 Rydberg stages.

Proof. A commutation group of two-qubit gates can be represented by a qubit interaction

graph G = (V,E) where the vertices are qubits, and the edges are the two-qubit gates

(Figure 7.3a). The schedule is a function ψ : E → N such that a qubit can only be involved
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in one gate at a Rydberg stage, i.e., for e, e′ ∈ E and e 6= e′, if ψ(e) = ψ(e′), then e∩ e′ = ∅.
This is contrapositive to the definition of an edge coloring, so ψ is an edge coloring. Thus, the

optimal number of Rydberg stages is Sopt = χ′(G), which means the function Φ derived by

the Misra-Gries algorithm maps the two-qubit gates to at most Sopt+1 Rydberg stages. Since

|E| is O(n2) where n is the number of qubits, and the Misra&Gries algorithm is O(|V | · |E|),
the time complexity of our scheduling is O(n3).

A more generic quantum circuit is specified by a sequence of gates. If two gates act on

the same qubit, their relative order dictates a dependency. In Figure 7.3b, we exhibit an

example of how one derives the dependency DAG for the two-qubit gates in a generic circuit.

In this case, the scheduling problem is straightforward: the optimal number of stages is the

critical path in the DAG and ASAP scheduling can achieve optimality. Although there is a

way to augment the DAG to represent partially commutable circuits [IMM22], supporting

this in general requires mixing logic synthesis and layout synthesis. Therefore, we make an

assumption similar to [SLG19] that the whole quantum circuit is sliced into subcircuits that

either respect all derived dependencies, as ‘dependency subcircuits’ shown in Figure 7.3b,

or are commutation groups. The scheduling for the slices can be performed simultaneously

and the results can be stitched together afterwards. This sliced structure is prevalent in

quantum computing. An example is the graph state preparation with various applications

[HDE06], which has a layer of Hadamard gates in the beginning and then commuting CZ

gates. Another example is MaxCut QAOA that has alternating driver unitaries UB with

dependency and problem unitaries UC that are commutation groups of ZZ gates.

7.4 Placement: Simulated Annealing

In placement, we map qubits to interaction sites. The two-qubit gates at each Rydberg

stage thus correspond to 2-pin nets between the sites. If the nets have a long wire-length,

it takes more time to move the qubits, resulting in more decoherence, the second largest
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Figure 7.4: Placement in Enola. a) Trivial placement from left to right, from top to bottom.

b) Placement with gate distance optimized by simulated annealing. c) Dynamic placement:

after a Rydberg stage (red) is executed (left), run simulated annealing on moved qubits for

a new placement (right).

error source. As an example, qubits can be placed trivially from left to right and from top

to bottom as in Figure 7.4a. Then, the total distance of gates in the commutation group in

Figure 7.3a accumulates to 25.67× 2.5rb. In comparison, an optimized placement displayed

in Figure 7.4b achieves a total wire-length of 19.48× 2.5rb. To minimize the qubit traveling

distances, our cost function is defined as

∑
g(q,q′)∈G

wg · dist(m(q),m(q′)), (7.2)

where wg is the weight for gate g, m is the placement function from qubits to interaction

sites, and ‘dist’ is the Euclidean distance.

We apply a simulated annealing algorithm, Fast-SA [CC06], to optimize this cost due to

its effectiveness in solving discrete optimization problems. To enhance exploration efficiency,

we confine qubits to a specific region, thus reducing the search space. Assuming the number

of qubits to place is n, and the interaction sites have column indices {0, 1, ..., xmax} and
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row indices {0, 1, ..., ymax}, we define the chip region for exploration as x ∈ [0,max(b√nc +

4, xmax)] and y ∈ [0,max(b√nc + 4, ymax)]. In Figure 7.4, xmax = 3 and ymax = 2. Fast-

SA has a three-stage annealing schedule to facilitate state space exploration. At the first

stage, the temperature is high. In other words, we have a higher probability to accept

an inferior solution. This stage mimics a random search to explore a large solution space.

Then, the second stage performs the pseudo-greedy local search with low temperature. The

last stage is the hill-climbing search stage where the temperature increases again to escape

from local minima. The state in the annealing process is a placement which we initialize

randomly. Then, state transitions can be made by either reassigning a qubit to an empty

site or exchanging the locations of two qubits. The annealing process will terminate if the

temperature is lower than a threshold or the number of iterations exceed a predefined limit,

so the placement algorithm has a constant runtime.

The configuration after the first Rydberg stage (red) is on the left of Figure 7.4c. The

arrows indicate AOD movements from Figure 7.4b to this configuration. At this point, we

can always reverse the movements to return to Figure 7.4b, and then find out the movements

for the next stage (black). In this case, the placement is static for all the Rydberg stages,

so we set all the gate weights to 1 in the cost function.

However, one can also consider dynamically changing the placement for the next stage.

On the right of Figure 7.4c, we display a new placement where the gate between q5 and q7 is

shorter compared to Figure 7.4b. If the placement is dynamic, gates earlier in the schedule

should contribute more to the cost function. Thus, we set wg = max(0.1, 1 − 0.1sg), where

sg is the number of stages preceding the stage that the gate g belongs to, e.g., the gates in

stages 0 to 3 will have the weights of 1, 0.9, 0.8, and 0.7, respectively. During the simulated

annealing for intermediate placement, only the set of qubits necessitating relocation to vacant

sites can be moved, while the remaining qubits must stay where they are. In our example,

the new placement is restricted, from qubits q2, q5, q7, and q9 to the 6 empty sites. Placement

of the other qubits are inherited from the previous placement. In our evaluations detailed
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later, dynamic placement slightly outperforms static placement. In a commutation group,

there are at most O(n) stages, so our placement runtime is O(n), given that each placement

spends a constant time.

7.5 Routing: Independent Set

Not all AOD movements from one Rydberg stage to another can be performed simulta-

neously. The reason lies in the fundamental constraints of AOD: the order of its columns

cannot change, nor can the order of rows. We consider the movements of the second stage

consisting of gates (q0, q1), (q3, q8), (q2, q6), and (q4, q9), in Figure 7.5a. We define a move to

be a 4-tuple: x and y of the source, and x and y of the destination. Since each gate has a

choice of which of its two qubits to move, there are two tuples corresponding to each gate.

For example, m0 = (0, 1, 1, 2) and m1 = (1, 2, 0, 1) are both for gate (q3, q8). We call them to

be each other’s dual. The AOD constraints are enforced by forbidding conflicts illustrated in

Figure 7.5b. If the sources of two moves m and m′ have the same y, i.e., srcy(m) = srcy(m
′),

the two qubits are picked up by the same AOD row. Then, dsty(m) = dsty(m
′) because

that AOD row can only terminate at one vertical location post-movement. Similarly, if

dsty(m) = dsty(m
′), then srcy(m) = srcy(m

′). If the qubits are picked up by different rows,

their relative order must be maintained, e.g., if srcy(m) > srcy(m
′), then dsty(m) > dsty(m

′).

In the X direction, there are similar three types of conflicts.

These conflicts are pairwise, which means they can be encoded as edges in a graph

where the vertices are the moves. We present this conflict graph in Figure 7.5c. A set of

compatible moves constitutes an independent set (IS) of vertices. One can utilize a maximum

independent set (MIS) solver for compatible moves, but MIS is NP-hard.1 In practice, we

find maximal independent sets are sufficient, which can be derived by 1) putting all vertices

1One can also imagine formulating the routing problem as a vertex coloring to find all compatible sets
together, but this involves increasing the size of the graph and solving NP-hard coloring problems. Thus,
we do not explore this possibility in this chapter.
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Figure 7.5: Routing in Enola. a) Definition of a move as a 4-tuple. b) Conflicts between two

moves. c) Compatible moves are independent sets (IS) in the conflict graph (filled vertices).

After finding an IS, delete the moves and their duals from the graph. The process continues

until no moves are left.

in a list, 2) adding the first vertex in the list to the IS, 3) removing all its neighbors from

the list, and continuing 2-3). In the first box in Figure 7.5c, assuming the list of vertices is

sorted by indices, m0 is added to the IS first, so its neighbors m1, m2, m3, m5, and m7 are

removed from the list. Next, m4 is added to the IS and invalidates all the rest of the vertices.

So, the maximal IS is {m0,m4} corresponding to gates (q3, q8) and (q2, q6). Next, m0 and

m4, along with their duals m1 and m5 are deleted from the conflict graph, resulting in the

second box in Figure 7.5c. In the updated graph, we find the second maximal IS, {m2,m6}.
By now, all moves are deleted, and the routing terminates.

The runtime of maximal IS is O(|V |+|E|) where |V | is the number of moves, which is less
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or equal than the number of qubits, n. To construct the graph, we need to check conflicts

for all pairs of vertices, which requires O(n2) time. The longest move in each compatible set

determines the AOD movement time for this set. Thus, in our compiler, the list of moves

is sorted by their distance. This sorting takes O(n log n) time. Then, the maximal IS takes

O(n2) time. In summary, finding a compatible set takes O(n2) time. In the worst case, each

compatible set includes only one gate. Then, we run O(n) times the procedure above until

all gates in one Rydberg stage are handled, resulting in O(n3) time. In total, there can be

O(n) Rydberg stages for a commutable group, so the total routing time is O(n4). We refer

to this routing approach as sortIS.

To improve the runtime scaling of sortIS, we can introduce a fixed length window when

scanning the list of vertices. Instead of constructing the whole conflict graph, we only

construct a graph on the first K vertices in the list where K is the constant window size.

These vertices are the K longest moves. Thus, both checking the conflicts between vertices

and solving the maximal IS only take O(K2) time. Thus, the windowed routing takes

O(n2 log n+ n2K2) time. We refer to this routing approach as windowIS.

For each compatible set of moves, the qubits need to be picked up by the AOD and

dropped off to their destination interaction sites. Turning on the AOD rows and columns

and ramping up the intensity for atom transfers also takes time. To minimize this time,

we need to consider the product structure of AOD, which is a research topic on its own

as presented in Chapter 8. In fact, we prove that optimal routing is NP-hard from the

complexity of optimizing the AOD pick-up time in Section 8.5. In practice, we do not

observe this optimality to be critical to the overall fidelity. In Enola, we apply a simple

approach implemented by a subroutine in OLSQ-DPQA named CodeGen where the qubits

are picked up row by row. The columns may shift horizontally before picking up the next

row. The CodeGen just involves scanning over all the qubits to pick up, so the runtime is

less than finding the compatible sets.
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7.6 Evaluation

We implemented Enola in Python and made it open source.2 We employed KaMIS (v2.1)

[HSS19] for solving the maximum independent set problems. All experiments were conducted

on an AMD EPYC 7V13 64-Core Processor at 2450 MHz and 128 GB of RAM. Each fidelity

data point in the figures on QAOA is an average of results corresponding to 10 randomly

generated graphs of the same size.

7.6.1 Impact of Different Settings in Enola

Figure 7.6 provides the comparison of different settings in Enola on the MaxCut QAOA

benchmarks. Since the scheduling is the same for all settings, the two-qubit gate fidelity term

is the same. Additionally, in every setting, we use 4 atom transfers for each gate: picking up

a qubit and dropping it off to the qubit it interacts with at this Rydberg stage, and the pick-

up and drop-off on the way back. This means the atom transfer fidelity term is also the same

for all settings. Thus, the comparison is on the decoherence term. A major improvement

comes from optimizing placement, as evident by the gap between trivial placement (green

triangles) and the other series. Dynamic placement (dynSA+MIS, pink cross) is slightly

better than static placement (SA+MIS, blue dot). In routing, sortIS is slightly worse than

MIS, as in the comparison of dynSA+sortIS (yellow star) and dynSA+MIS (pink cross).

Thus, sortIS proves to be a viable replacement for MIS which is NP-hard. The windowIS

method is theoretically worse than sortIS because of the limited window size. We set this

size to be 1,000, larger than the scale of benchmarks in Figure 7.6. In the evaluations with

larger benchmarks up to 10,000 qubits, we observe a similar number of compatible move sets

and an average movement distance compared to sortIS, which means windowIS is a good

heuristic to speed up the compilation.

2https://github.com/UCLA-VAST/Enola
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Figure 7.6: Decoherence fidelity term of different settings in Enola on 3-regular MaxCut

QAOA circuits. ‘no SA’ means trivial placement. ‘SA’ means static placement. ‘dynSA’

means dynamic placement. ‘MIS’ means maximum independent using a solver. For these

benchmarks, windowIS is the same with sortIS since the window size (1,000) is larger than

the number of vertices in graph where we search for an IS.

7.6.2 Quality Comparison with Previous Works

In Figure 7.7, we compare Enola with OLSQ-DPQA. For dependency circuits, OLSQ-DPQA

tries to execute as many gates as possible in the current front layer of the DAG, which

often results in the same number of Rydberg stages as our ASAP scheduling. In some

cases, like the three ‘ising’ benchmarks, OLSQ-DPQA suffers from elongating the critical

path because its formulation cannot explore more than one rearrangement steps between

Rydberg stages, which results in a notably worse fidelity compared to Enola. In some other

cases like ‘multiply n13’ and ‘seca n11’, it appears one rearrangement step is sufficient, so

the two methods produce the same number of stages. Under this scenario, OLSQ-DPQA

can potentially outperform Enola because the routing in Enola is heuristic after all and may

not find the optimal compatible sets of moves.
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a)

b) c)

d) e)

Figure 7.7: Comparison of result fidelity between Enola and OLSQ-DPQA. a) Comparison

on dependency circuits. b) Comparison of total fidelity on 3-regular MaxCut QAOA circuits.

c-e) Comparisons of different fidelity terms on the QAOA circuits.
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Figure 7.8: Comparison of two-qubit gate fidelity term (scattered points) on 3-regular Max-

Cut QAOA circuits between Enola, OLSQ-DPQA, Atomique, and Q-Pilot. The total fidelity

of Enola is also drawn for reference (dashes).

On the QAOA benchmarks, Enola clearly outperforms OLSQ-DPQA because it is able

to leverage the near-optimal scheduling. We depict the comparison of overall fidelity in

Figure 7.7b and the three terms in Figure 7.7c-e. In the two-qubit gate term, there is a

significant gap between the two approaches. At 90 qubits, OLSQ-DPQA uses 14.6 stages

on average whereas Enola only employs 4, a 3.7x reduction. In the atom transfer term,

two approaches are similar, but Enola starts gaining advantage on larger benchmarks. It

should be noted that in OLSQ-DPQA, atom transfers are not penalized in the SMT formu-

lation. Examining its results with human eyes, there appears to be unnecessary transfers

and movements. In Enola, we have explicit control over the transfers and movements. In the

decoherence term, Enola is worse than OLSQ-DPQA. This is inevitable because we choose

to prioritize the number of Rydberg stages, necessitating more AOD movements. Overall,

Enola improves the fidelity by 5.9x compared to OLSQ-DPQA at 90 qubits.

The fidelity gain of Enola is even larger when compared to heuristic methods. Specifi-

cally, we participated in the development of two heuristics, Q-Pilot [WTL24] and Atomique
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Figure 7.9: Enola runtime scaling on 3-regular MaxCut QAOA circuits. Two nearby bars

correspond to the same number of qubits. The hatched bars are windowIS data (with a

window size of 1,000) and the other bars are sortIS data.

[WLT24]. The former is a DPQA router that utilizes AOD only for ancilla qubits to mediate

two-qubit gates between SLM qubits. It does not include a nontrivial placement solution.

Atomique focuses on the placement and routes the qubits with SWAP gates. In Figure 7.8,

we compare the two-qubit gate fidelity terms of all the approaches. Q-Pilot and Atomique

result in more Rydberg stages than OLSQ-DPQA and Enola because the generation and re-

cycling of the ancillas and the SWAPs require additional stages. At 90 qubits, Enola reduces

the number of stages by 8.7x compared to Atomique and 10.5x compared to Q-Pilot. As a

result, the two-qubit fidelity term of Enola (red star) is 779x higher than Atomique (green

triangle) and 5806x higher than Q-Pilot (yellow cross). The total fidelity of Enola (dashes),

including atom transfers and decoherence, is still higher than the two-qubit fidelity term of

the two heuristics.
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7.6.3 Runtime Scaling of Enola

Since the steps in Enola all have polynomial runtime, it is much more scalable than OLSQ-

DPQA. For 3-regular MaxCut QAOA, OLSQ-DPQA can compile 90-qubit benchmarks in

one day, whereas Enola compiles 100 qubit circuits with higher fidelity in a minute.

Figure 7.9 exhibits the runtime of Enola with sortIS and windowIS on larger benchmarks,

up to 10,000 qubits. Note that this is a log-log plot. Different colors inside each bar provide

the portion of time spent on different tasks. The scheduling is extremely fast, invisible

in the plot. For benchmarks smaller than 1,000 qubits, the runtime is dominated by the

placement. Although the placement scales in O(n), the constant factor is large because

we would like the simulated annealing to return high-quality results. Later on, the routing

portion becomes dominant due to a higher asymptotic: sortIS takesO(n4) time and windowIS

takes O(n2 log n) time with a constant window size. At 10,000 qubits, the sortIS approach

took 1.22E4 seconds, i.e., about 3.4 hours; the windowIS approach took 1.50E3 seconds,

i.e., about 25 minutes. From the data, the runtime scaling of windowIS roughly follows

O(n2 log n): increasing the number qubits by 10x from 1,000 to 10,000, the runtime increases

by 55x from 18.8 seconds to 1.04E3 seconds.
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CHAPTER 8

Qubit Addressing in Dynamically Field-Programmable

Qubit Arrays

In OLSQ-DPQA and Enola, we focus on parallelizing qubit movements while assuming we

can always pick up a subset of qubits with AODs. Specifically, we have implemented a näıve

approach in OLSQ-DPQA where the qubits to be picked up are collected from the SLM to

an AOD row-by-row. A closely related problem is applying single-qubit gates with AODs

to an arbitrary subset of qubits. A simple approach is, again, row-by-row [BLS24]. In this

chapter, we focus on this AOD addressing problem.

As depicted in Figure 8.1a, the AOD illuminates a product of rows and columns. Quan-

tum gates, induced by specific pulses modulated by the AOD, can address qubits at the row

and column intersections. For a 2D array X × Y , a (combinatorial) rectangle is a set of the

form X ′×Y ′, where X ′ ⊆ X and Y ′ ⊆ Y . Specifying a rectangle requires |X|+ |Y | bits (one

bit for each row and each column), a significant reduction compared to |X| · |Y | bits for all

elements. This quadratic reduction is maintained while preserving individual addressability,

as a single element can still be considered a rectangle.

The coarser granularity of rectangular addressing may reduce control complexity at the

cost of increasing depth. A generic example problem is given by the matrix in Figure 8.1b,

where the qubits to address are represented by the 1’s. This matrix can be partitioned

into five rectangles, each designated by distinct markers. Consecutively, each rectangle can

receive the pulse to implement single-qubit gates. Minimizing the number of rectangles to

partition arbitrary binary matrices becomes crucial.
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Figure 8.1: Rectangular addressing in neutral atom arrays. a) The experimental setup in

Bluvstein et al. [BLS24]: a 2D acousto-optic deflector (AOD, blue dashes) modulates another

laser to realize Rz gates on qubits at the AOD intersections (colored dots). Different qubits

(uncolored dots) are addressed by changing the AOD signal. Qubits not in the pattern

(dash circles) should not be addressed. b) Rectangular partition of a). Different markers

distinguish 5 rectangles to partition the matrix. The 5 filled markers indicate a fooling set.

The rest of this chapter is organized as follows. We first review related mathematical

concepts in Section 8.1. Then, we introduce our algorithms for the addressing problem in

Section 8.2. The construction of benchmarks and the evaluation results are presented in

Section 8.3. We discuss the problem in the context of fault-tolerant quantum computing

in Section 8.4. (It may be better for the readers without prior knowledge to return to this

section after reading Chapter 9.) Finally, we present an interesting proof that the routing

task in Section 7.5 is NP-hard by a reduction from the qubit addressing problem.

8.1 Background

The term we have adopted, rectangle, is standard in communication complexity theory

[Yao79], where the matrix in Figure 8.1b represents a binary function g of two variables.

Alice has some i, Bob has some j, and our interest is determining the number of bits the

two need to communicate to compute g(i, j). If g = 1 uniformly on a rectangle, it is a
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1-monochromatic rectangle. The number of 1-monochromatic and 0-monochromatic rectan-

gles to partition the whole matrix serves as a crucial lower bound for the communication

complexity. For an introduction to this topic, readers are referred to Kushilevitz & Nisan

[KN97]. Two results they cover are worth mentioning for later discussions. First, there is

an alternative definition of a rectangle:

(i, j) ∈ R and (i′, j′) ∈ R⇒ (i, j′) ∈ R. (8.1)

In this chapter, we only focus on 1-monochromatic rectangles, and we will refer to these as

‘rectangles’ from now on. The second important fact is that the partition number is lower

bounded by the size of fooling sets. In our case, a fooling set S consists of (i, j) such that

g(i, j) = 1, and for any distinct pair (i, j) and (i′, j′) in S, g(i′, j) = 0 or g(i, j′) = 0. Indeed,

the shaded markers in Figure 8.1b identify such a fooling set of size 5, implying that our

partition into 5 rectangles is optimal. Fooling sets do not guarantee a tight bound, e.g.,

3 rectangles are needed to partition

but the size of any fooling set is ≤ 2




1 1 0

0 1 1

1 1 1


 (8.2)

The problem has a graph-theoretic interpretation when considering the matrix as the ad-

jacency matrix of a bipartite graph, as illustrated in Figure 8.2a. The left vertices correspond

to the rows, while the right vertices correspond to the columns. An edge exists between ver-

tex i on the left and vertex j on the right if and only if element (i, j) is 1 in the matrix.

Viewed in this way, a rectangle, seen as a set of edges, forms a biclique, i.e., a complete

bipartite graph. For instance, the addressed sites in Figure 8.1a correspond to a complete

(3,2)-bipartite subgraph in Figure 8.2a, as denoted by the solid edges. Therefore, the rectan-

gular partition is equivalent to a biclique partition of a bipartite graph. Reinterpreting the

left vertices as sets and right vertices as objects, the biclique partition is finding a normal set

basis to decompose each set. In our example, the basis is {{0, 2}, {1}, {3}, {4}, {5}}, with

the first set on the left decomposed into {0, 2} t {3}. The decision problem is proven NP-

complete [JR93]. Even approximating the problem is NP-hard [BMB08, CHH14, CIK16].
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Figure 8.2: Problems equivalent to depth-optimal rectangular addressing. a) Interpreting

the matrix as the adjacency matrix of a bipartite graph, the rectangular partition problem

becomes biclique partition where the edges are partitioned to form complete bipartite sub-

graphs (different line types). b) Binary matrix factorization finds low-rank approximations

HW of the original matrix where H and W are also required to be binary.

Amilhastre et al. [AVJ98] have characterized certain graph families where the problem can

be efficiently solved.

The third perspective regarding a rectangular partition is through matrix factorization,

as each rectangle precisely corresponds to a rank-1 submatrix. In Figure 8.2b, within a binary

matrix factorization (BMF), given a binary matrix M ∈ Bm×n and an integer r, the objective

is to minimize ‖M−HW‖ where H ∈ Bm×r and W ∈ Br×n. Note that HW =
∑r

i=1 Pi where

Pi is the product of column i in H and row i in W . Each Pi ∈ Bm×n is 1 on a combinatorial

rectangle and 0 elsewhere, so it has rank 1. The minimum r for which M −HW = 0 is the

binary rank, rB of M . In this case,
∑r

i=1 Pi is an exact binary matrix factorization (EBMF)

of M . In contrast to SVD, which provides the rank in R, EBMF additionally requires H and

W to be binary. However, it is crucial to note that the additions in the matrix multiplication

in EBMF is in R, not in B, e.g.,




0 1 1

1 0 1

1 1 0




EBMF

6=




1

0

1



[
1 1 0

]
+




1

1

0



[
1 0 1

]
. (8.3)
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If the addition were in B, the equality holds. But in R, the top-left element appears in both

rectangles on the r.h.s., violating the disjointedness requirement of rectangular partitioning.

For binary matrices, we have a straightforward lower bound [Wat16]:

rankR(M) ≤ rB(M) ∀M ∈ Bm×n. (8.4)

Zhang et al. [ZLD07] develop a BMF optimizer which is integrated into a well-known package

NIMFA [ZZ12]. However, since it is not designed for EBMF but to provide approximations

given a fixed r, it does not perform well for our specific purposes.

8.2 Algorithm

Given a matrix M ∈ Bm×n, we are interested in its exact binary matrix factorization (EBMF)

M =
∑rB−1

i=0 Pi where each Pi ∈ Bm×n is 1 on a rectangle and 0 elsewhere.

Our SMT formulation encodes the problem: given M and a number b, determine if

rB(M) ≤ b. When rB is unknown, we query an SMT solver with decreasing values of b to

compute it. When b reaches rB, the solver should return a valid EBMF; then, when we

further decrease b, the solver should output that the SMT model is unsatisfiable. Given the

problem’s complexity, the worst-case runtime is exponential to the size of M . Hence, the

key lies in establishing relatively tight bounds for b to minimize SMT invocations.

Our approach, SAP (SMT and packing), is presented in Algorithm 3. First, our heuristic,

row packing, provides a valid EBMF, P . Since |P | is an upper bound of rB(M), the SMT

solving initiates with b = |P | − 1 and terminates when the SMT formula is unsatisfiable or

when b falls below rankR(M), a lower bound as per Equation 8.4. P is updated each time

the SMT formula is satisfiable so that it retains the best solution found thus far even if the

process is prematurely interrupted.
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Algorithm 3 SAP (SMT and packing) EBMF

Input: M ∈ Bm×n

Output: P , an EBMF of M consisting of rectangles

1: P ← row packing EBMF(M) . Algorithm 4

2: b← |P | − 1

3: formula ← construct SMT formula(M , b)

4: while b ≥ real rank of M do

5: if formula is satisfiable then

6: P ← readout solution( formula)

7: b← b− 1

8: formula ← narrow down depth( formula, b)

9: else

10: break

11: end if

12: end while

8.2.1 SMT Formulation

Fundamentally, we want to compute a function f : E → P , where E comprises the 1’s

in the matrix, and P contains the rectangles. This definition offers the convenience of

inherently ensuring the disjointedness of the rectangles. Furthermore, the constraints needed

to enforce the validity of f in specifying rectangles can be expressed using first-order logic

and equality between function values. This closely aligns with the uninterpreted function,

a major addition in SMT compared to SAT [dB08, LKT23]. Concretely, the only set of

constraints follows from Equation 8.1: for every pair of distinct 1’s at (i, j) and (i′, j′),

{
fi,j 6= fi′,j′ if Mi,j′ = 0,

fi,j == fi′,j′ ⇒ fi,j == fi,j′ if Mi,j′ = 1.
(8.5)
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Another SMT feature we leverage is bit-vector. In fact, both the domain and range of f are

bit-vectors: fi,j above means f(e(i, j)) where e is an index function of the 1’s in M , and

the value of f is the index of a rectangle. To narrow down the solution space as in line 8 of

Algorithm 3, we just add new constraints fi,j 6= b for every Mi,j = 1 to the SMT formula.

8.2.2 Heuristics

A trivial upper bound of rB(M) is the width or height ofM , whichever smaller, after removing

empty and duplicated rows and columns. This corresponds to partitioning the matrix into

single rows or columns and consolidating duplicated ones.

The normal set basis viewpoint inspires our second heuristic. We process matrix M row

by row, with the goal of forming a basis – each basis vector corresponds to one rectangle, as

outlined in Algorithm 4. For each row ri, as in lines 4-9, if an existing basis vector vj is found

within this row, we append i to the rectangle Pj associated with vj. Subsequently, we remove

the 1’s in vj from ri and continue this process. The outcome is the decomposition of ri into

a disjoint union of existing basis vectors, potentially leaving a residue of 1’s. An example

is displayed in Figure 8.3a where the first four rows cannot be decomposed, so the residues

are just the rows themselves, and they are added to the basis, i.e., vi = ri, i ∈ {0, 1, 2, 3}.
When it comes to r4, we note it contains v0 (circles) and v1 (triangles), so the residue is

(0, 0, 0, 0, 1) denoted by the pentagon. Based on this decomposition, the rectangles P0 and

P1, corresponding to v0 and v1, vertically grow to include row 4.

Since we adhere to the order of basis vectors, the decomposition can be suboptimal. For

instance, we overlook the possibility of r4 = v2 + v3, and the residue could have been 0.

To mitigate this, we run the heuristic multiple times, shuffling the rows in each trial, e.g.,

another trial with a different row ordering is exhibited in Figure 8.3b. This is a compromise

to the complexity of the problem. Formally, we are trying to find a packing or exact cover

of ri by the basis vectors, and it is an NP-complete problem [Kar72] to decide whether one

exists.
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Algorithm 4 Row-Packing EBMF

Input: M ∈ Bm×n

Output: P , an EBMF of M consisting of rectangles

1: M ′ ← shuffle rows(M)

2: basis ← [ ]; P ← [ ]

3: for ri ∈M ′ i = 0, 1, ...,m− 1 do

4: for vj ∈ basis do

5: if {1’s in vj} ⊆ {1’s in ri} then

6: Pj ← vertical grow(Pj, i)

7: ri ← ri − vj
8: end if

9: end for

10: if ri 6= ~0 then

11: c← one hot column vec(i)

12: for vk ∈ basis do

13: if {1’s in ri} ⊆ {1’s in vk} then

14: Pk ← horizontal shrink(Pk, ri)

15: vk ← vk − ri
16: ck ← 1

17: end if

18: end for

19: basis.append(ri)

20: P .append(c× ri)
21: end if

22: end for

23: P ← undo shuffle(P , M , M ′)
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1 1 0 0 0
0 0 1 1 0

(2)(1) (3)

(5)(4)

Figure 8.3: Two trials of running the row packing heuristic. Rectangles found are represented

by different markers. a) needs 5 rectangles but b) needs 4.

In the presence of a residue, we perform an update to the basis in lines 11-20. The

intuition behind this is that smaller basis vectors enhance the likelihood of a successful row

packing. If an existing basis vector vk contains the residue, we remove the residue from the

corresponding rectangle Pk and update vk. In step 2 of Figure 8.3b, r1 itself (triangles) is

the residue. We find existing basis vector v0 = r0 (circles) containing r1, so v0 is updated

to r0 − r1, and then r1 is added to the basis as v1. Because of the updates, some existing

rectangles shrink to remove the columns of 1’s in the new basis vector, which we record with

a column vector c. In step 3 of the example, c notes that v0 gets updated and v1 gets added,

so the new rectangle P1 = c · v1 spans rows 0 and 1, and columns 0 and 1. And the existing

rectangle P0 shrinks by removing columns 0 and 1, which leads to the successful packing of

r2 in step 4.

Finally, in line 23, we reverse the initial shuffling to derive the correct EBMF. It is worth

noting that the algorithm introduces at most one rectangle for each non-repeating row,

ensuring that the result is no worse than the trivial heuristic. The overall time complexity is

O(n3k), where k represents the number of trials, and n denotes the larger of matrix width and
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height. This complexity is due to nested loops in lines (3,4) and (3,12), with the innermost

loop involving vector operations. Additionally, note that we run the heuristic on both the

original matrix and its transpose, retaining the better result.

In scenarios with limited time budgets, two further compromises can be considered. The

first one is removing the basis update in lines 12-18. The second one is arranging rows with a

smaller number of 1’s at the beginning instead of random shuffling and invoking fewer runs.

Based on our experience, both of these tend to result in more suboptimal ‘local minima’

compared to the current setting, so we have not adopted them.

8.3 Evaluation

We implement the above approach which is open-source under the MIT License1. The soft-

ware relies on numpy 1.26.3 and z3-solver 4.12.1.0 [dB08]. The evaluation is conducted

on a server with an AMD EPYC 7V13 CPU and 512 GB RAM.

8.3.1 Benchmark Construction

We provide benchmarks in two sizes: 1) limiting the number of rows by 10 so that we can

reliably prove the optimality of the solutions using SMT, and 2) 100×100, which is considered

to be the current limit of atom array technology [BLS24].

The first benchmark set consists of random matrices. We generate 10 matrices with

varying occupancies of 1’s (10%, 20%, ..., 90%) for sizes 10×10, 10×20, and 10×30. For

the 100×100 size, we choose occupancies of 1%, 2%, 5%, 10%, and 20%, because higher

occupancies almost always result in full rank, which is trivial for our evaluation.

The second benchmark set is comprised of matrices with known optimal solutions. Ac-

cording to Equation 8.4, if a matrix has a k-rectangle partition and the real rank is also k,

1https://github.com/UCLA-VAST/EBMF
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the partition is optimal. We create pairs of disjoint rows ri and linearly independent columns

ci, leading to matrices M =
∑k

i=1 ci · ri. We enforce disjointedness among the rows to ensure

that the outcome matrices only contain 0’s and 1’s, and the rectangles cannot merge. For

each rank k = 1, 2, ..., 10, we generate 10 benchmarks of size 10×10 with known optimal

solutions.

The third benchmark set is designed to create a gap between the real rank and the binary

rank. We begin by sampling a random row r and then randomly decompose it into disjoint

row pairs r = r′ + r′′. The parameter for this family of benchmarks is the number of row

pairs, k, which is limited to bm/2c where m is the total number of rows. The real rank of

these 2k rows should be k + 1 because any pair can recover the original row, r = r0 + r1.

Each pair then should provide an independent basis vector, e.g., r2i for i = 0, ..., k− 1. Note

that decompositions like r3 = r0 + r1 − r2 require the use of negative numbers, which are

not allowed in an EBMF. Consequently, the binary rank of the matrix should be larger than

k+1. The remaining m−2k rows are completed with random rows having a 50% occupancy,

resulting in a total real rank equal to or slightly lower than m − k + 1. We generate 100

benchmarks of size 10×10 with 2, 3, 4, and 5 row pairs.

8.3.2 Results

The SMT solver allows us to compute optimal solutions. The percentage of cases achieving

optimal solutions with the heuristics is presented in Table 8.1. The ‘rank’ column indicates

the percentage of cases where the binary rank equals the real rank. Although the 100×100

benchmarks are too large for SMT to find solutions, the heuristics find solutions with the

number of rectangles equal to the real rank. Consequently, these solutions are known to be

optimal, and the real and binary ranks are the same. Several observations can be made.

Observation 1: the real and binary ranks are equal with high probability for random matri-

ces. This can be attributed in part to the near-full real rank of random matrices. We observe

that almost all 10×20 matrices with an occupancy of 20% and higher, all 10×30 matrices,
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Table 8.1: Percentage of cases finding an optimal exact binary matrix factorization by row

packing and a trivial heuristic. Row ‘rank’ means percentage of cases where real and binary

ranks are the same. For 100×100 random benchmarks, since the heuristics managed to find

optimal solutions, the real and binary ranks are the same. The SMT for these cases are too

large to solve. We use SMT to compute the binary rank for all other benchmarks.

row packing, number of trials

benchmark rank trivial 1 10 100 1000

10×10, rand 98% 80% 91% 99% 100% 100%

10×20, rand 100% 100% 100% 100% 100% 100%

10×30, rand 100% 100% 100% 100% 100% 100%

100×100, rand 100% 62% 92% 96% 98% 100%

10×10, opt 100% 100% 100% 100% 100% 100%

10×10, gap, 2 74% 29% 88% 100% 100% 100%

10×10, gap, 3 63% 16% 91% 100% 100% 100%

10×10, gap, 4 47% 40% 94% 98% 99% 99%

10×10, gap, 5 42% 84% 90% 94% 96% 96%

and 100×100 matrices with an occupancy of 5% and higher are full rank, necessitating full

binary rank, resulting in equality between the two.

Observation 2: the constructed benchmarks with known optimal are easy. Due to the

mechanism of row packing, it can always find the optimal solutions for these benchmarks.

Surprisingly, the trivial heuristic also manages to find the optimal solutions on all cases,
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Figure 8.4: The most time-consuming cases of exact binary matrix factorization in our

experiments. ‘r’ means it is a random benchmark, ‘g2’ means it comes from benchmarks

with gap using 2 row pairs, etc.

because even though the row space cannot be reduced by construction, e.g.,
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the columns may be reduced by recognizing duplication.

Observation 3: row packing is an effective heuristic. On benchmarks with gaps and the

large random benchmarks, there is a big gap between the trivial heuristic and even one trial

of row packing, indicating row packing is highly non-trivial. As expected, the performance

of row packing improves with more trials. On most of the benchmarks, it saturates at 100

trials and finds optimal solutions on a remarkable percentage of cases.

Observation 4: edge cases for row packing needs more general search. We look into the

cases where row packing fails to find the optimal solution. Going through Algorithm 4, we

find these cases necessitate introducing more than one basis at some rows, whereas the row

packing heuristic at most introduces one new basis per row in order for efficiency.

Observation 5: the most time consuming cases are proving UNSAT. We collect the most

time-consuming cases in Figure 8.4. In the majority of these cases, the SMT solver can only

169



find solutions with the same number of rectangles as row packing. Then, the solver goes

on decreasing the bound by 1 and proves the formula to be UNSAT. This is the most time

consuming task. Note that in Algorithm 3, when we terminate at any time, we can return

P , the best solution found so far.

8.4 EBMF in the Context of Fault-Tolerant Quantum Computing

Fault-tolerant quantum computing performs on top of quantum error correction codes that

encode each logical qubit using quantum states distributed across multiple physical qubits.

A promising approach is exemplified by the surface code [FMM12], where a logical qubit

manifests as a patch of physical qubits, as depicted in Figure 8.5a. For simplicity, only the

data qubits are illustrated, and check qubits are not shown. A single-logical-qubit operation,

designated as U , corresponds to a 2D pattern (M) of physical gates, as highlighted in the

callout. On the logical level, the quantum circuit may necessitate another 2D pattern (M̂)

of logical operations. Consequently, the overall physical operation is expressed as the tensor

product M̂ ⊗M . This two-level structure allows for the independent computation of the

rectangular partition of M̂ and M . Subsequently, taking the tensor product of the partitions

produces the solution.

However, is this solution optimal? The real rank is multiplicative under a tensor product,

as elementary row operations can be employed to make both M and M̂ upper triangular,

resulting in an upper-triangular tensor product. In contrast, whether the binary rank is

multiplicative under a tensor product remains an open problem. Our aforementioned solution

(tensor product of partitions) provides an upper bound: rB(M̂ ⊗M) ≤ rB(M̂) · rB(M). For

lower bounds, Watson [Wat16] notes that

max
(
rB(M̂) · φ(M), rB(M) · φ(M̂)

)
≤ rB(M̂ ⊗M) (8.6)

where φ denotes the maximum fooling set size. However, as per Equation 8.2, φ is not always

equal to rB. In practice, the majority of M is simple, such as applying X, Z, or H to all the
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U U’

U U’ I ...

Figure 8.5: Rectangular addressing in fault-tolerant quantum computing. a) An operation

U on 2D patterns of logical qubits can be realized by the tensor product of partitions on the

logical and physical levels. b) For logical blocks in 1D layout and with different operations,

addressing by row is usually enough.

physical qubits in one patch. In this case, all the elements of M are 1, and indeed we have

φ(M) = rB(M) = 1, so the rectangular partition of M̂ leads to an optimal solution.

Another family of quantum error correction codes gaining popularity is quantum low-

density parity-check codes, which can take advantage of the mobility of atom arrays [XBP24]

In this code, logical qubits are more globalized, with multiple logical qubits stored in one

logical block instead of one qubit per block. These blocks are usually arranged in a 1D

fashion, as shown in Figure 8.5b, because they only serve as memory, and logical qubits need

to be read out to a computing zone. Considering logical operations that can be realized with

single-qubit gates in this setting, the pattern on each block can be quite different, depending

on the offset of logical qubits inside the blocks. We conjecture that addressing qubits row

by row is usually sufficient in this case, as in our evaluation, we find that given the same

occupancy, the 10×20 and 10×30 random matrices are much easier to be full rank than the

10×10 matrices.
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8.5 NP-Hardness Result of the DPQA Routing Problem

In the DPQA routing problem (Section 7.5), we are given a set of pairwise disjoint two-qubit

gates and the qubit placement, i.e., a map from qubits to interaction sites. The goal is to

generate compatible sets of moves to realize all the two-qubit gates. By our assumption, each

move concerns one and only one gate, so the number of atom transfers is fixed regardless of

the routing strategy. Thus, different routing strategies have the same two-qubit gate fidelity

and atom transfer fidelity but may have different decoherence fidelity due to different time

spent. An optimal routing solution should minimize both the time of AOD movements and

that of atom transfers. In the main text, we focus on the former. To minimize the atom

transfer time, we need to consider which qubits can be picked up in parallel.

Because of the product structure of the AOD, it can transfer qubits locating at a rectangle

of SLM traps, e.g., in Figure 2.4a, it aligns with 2-by-2 traps and picks up 3 qubits. If more

qubits need to be collected, we can slightly shift the existing AOD rows and columns, and

ramp up some other rows and columns which, again, will pick up qubits in a rectangle of

SLM traps. For example, in Figure 8.6a, 1’s like M00 means the qubit is to be collected,

whereas 0’s like M13 means the qubit should not be collected. The 5 rectangles to partition

the matrix incur 5 parallel pick-ups. Since each parallel pick-up takes a constant time Ttrans,

we would like to minimize the number of rectangles. Below, we prove that the depth-optimal

rectangular addressing problem is reducible to the DPQA routing problem. The idea is that

in the constructed routing problem, there is only one compatible set of moves, so an optimal

routing solution collects qubits with a minimum number of parallel pick-ups, i.e., rectangles.

Theorem 4. The DPQA routing problem is NP-hard.

Proof. Given a matrix M ∈ Bm×n, e.g., Figure 8.6a, for which we want to compute the

optimal rectangular partition, we construct a DPQA routing problem. There are 2mn qubits

in the routing problem. The qubit placement is from left to right and from top to bottom.

Each row contains 2n qubits as illustrated in Figure 8.6b. The black dots are the qubits with
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1 1 1 1 1
0 1 1 0 0
1 0 0 1 1
1 1 0 0 0
0 0 1 1 0

M =

M00 M13 b)

1 1 1 1 1
0 1 1 0 0
1 0 0 1 1
1 1 0 0 0
0 0 1 1 0

q1 Mij=1 ↔ gate on q2(ni+j) and q2(ni+j)+1

Figure 8.6: NP-hardness of DPQA routing. a) A rectangular partitioning problem. b)

Reducing a) to a DPQA routing problem.

even indices whereas the gray dots are the qubits with odd indices. The set of two-qubit

gates to route is {(q2(ni+j), q2(ni+j)+1) | 1 ≤ i ≤ m, 1 ≤ j ≤ n, Mij = 1}.

Given the qubit placement, the movements for all the gates can be performed simultane-

ously by shifting all the black dots at the beginning of all the arrows to the right by a single

qubit separation. Since this move is as parallel as possible and as small as possible, any op-

timal routing solution must move the qubits this way. Then, the fidelity only differs in how

the qubits are picked up. An optimal routing solution must provide the minimum number of

parallel pick-ups to collect qubits corresponding to the 1’s in M . Since each parallel pick-up

corresponds to a rectangle in M , the optimal routing solution computes exactly the optimal

rectangular partitioning of M . Thus, we have reduced an NP-hard problem, optimal rectan-

gular partitioning, to a DPQA routing problem, which means the DPQA routing problem is

NP-hard.
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CHAPTER 9

Introduction to Quantum Error Correction and

Fault-Tolerant Quantum Computing

In this section, we build up the background knowledge necessary to comprehend our con-

tributions for fault-tolerant quantum architectures. We begin by covering some essential

mathematical concepts and then explain key aspects of quantum error correction and fault-

tolerant quantum computing, using a surface-code architecture as the running example.

9.1 Mathematical Background

To lay the groundwork for understanding quantum error correction, we introduce several

important mathematical concepts. The Pauli operators are fundamental in quantum com-

puting, serving as the model for quantum errors and playing a crucial role in quantum

information. The stabilizer formalism allows for the description of quantum states using a

set of Pauli operators instead of state vectors, which can have exponentially many non-zero

amplitudes, simplifying the representation and manipulation of some important quantum

states. Clifford matrices are operators that transform within the Pauli group, essential for

the construction and manipulation of quantum states and particularly important in quantum

error correction. Lastly, the ZX calculus is a graphical mathematical language that offers

a convenient alternative to the traditional circuit picture for performing algebra related to

quantum error correction, providing clearer insights and simplifications through its visual

approach.
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9.1.1 Pauli Group

The n-qubit Pauli group Pn is defined as Pn = {ij0σj1 ⊗ . . .⊗ σjn | j0, j1, . . . , jn = 0, 1, 2, 3},
where the σs are Pauli matrices:

σ0 = I =


1 0

0 1


 , σ1 = X =


0 1

1 0


 , σ2 = Y =


0 −i
i 0


 , σ3 = Z =


1 0

0 −1


 .

(9.1)

Pn consists of 4n+1 elements since each of the j indices has four choices and the constant

factor can be ±1 or ±i. The group properties of Pn are verified by:

1. Matrix multiplication is associative.

2. I ⊗ I ⊗ . . .⊗ I serves as the identity element.

3. The inverse of each element ij0σj1 ⊗ . . .⊗ σjn is given by i4−j0σj1 ⊗ . . .⊗ σjn , which is

also in Pn.

Elements of Pn are sometimes referred to as paulistrings, as they can be represented as a

string of length n+1 where the first entry is the constant factor and the following n characters

are either I, X, Y , or Z. The weight of a paulistring is the number of characters that are

not I.

The commutator is defined as [A,B] := AB − BA. If [A,B] = 0, the two operators

commute. Conversely, the anticommutator is defined as {A,B} := AB+BA. If {A,B} = 0,

the two operators anticommute. The commutator and anticommutator of single-qubit Pauli

operators are detailed in Table 9.1, showing that two Pauli operators either commute or

anticommute.

Considering multiple qubits, the product of two n-qubit Pauli operators (ij0σj1⊗. . .⊗σjn)

and (ij
′
0σj′1 ⊗ . . . ⊗ σj′n) is ij0+j′0(σj1 · σj′1) ⊗ . . . ⊗ (σjn · σj′n). Thus, it is straightforward to

verify that two multi-qubit Pauli operators either commute or anticommute depending on

the parity of the number of anticommutes among their corresponding single-qubit Pauli
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Table 9.1: Commutators and anticommutators of Pauli matrices. For each entry at row P

and column P ′, the first number is [P, P ′] and the second number is {P, P ′}.

[·, ·], {·, ·} I X Y Z

I 0, 2I 0, 2X 0, 2Y 0, 2Z

X 0, 2X 0, 2I 2iZ, 0 −2iY, 0

Y 0, 2Y −2iZ, 0 0, 2I 2iX, 0

Z 0, 2Z 2iY, 0 −2iX, 0 0, 2I

operators. Specifically, by comparing characters in the two paulistrings and counting the

occurrences where they are different and neither is I, we find that if there is an even number of

such occurrences, the two paulistrings commute; otherwise, they anticommute. For example,

I1X2I3X4 and Z1Z2Z3Z4 commute since X meets Z twice at qubits 2 and 4; IXY Z and

ZXY Y anticommute since Z meets Y once.

Pauli operators with constant ±1 are involutory, i.e., P 2 = I, which means it can only

have eigenvalues ±1. The projector to the eigenspaces of ±1 are (I ± P )/2. If a pauli has

non-zero weight, i.e., it does not solely consist of I, then it is traceless. This property arises

because at least one component Pi = X, Y , or Z, which is traceless, as demonstrated in

Equation 9.1. Consequently, the trace of the operator can be calculated as follows:

Tr(P1 ⊗ . . .⊗ Pn) = Tr Pi ·
∏

j 6=i

Tr Pj = 0. (9.2)

This results from the multiplicative property of traces across tensor products. Since trace is

equal to the sum of eigenvalues counted with multiplicities, if a Pauli operator is traceless, it

has the same number of eigenvalues +1 and −1. Thus, ±1 eigenspaces of a positive-weight

and involutory Pauli operator have the same dimension, which is half of the dimension of

the whole state space.
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9.1.2 Stabilizer Group

For a quantum state |ψ〉, a stabilizer is any operator P such that P |ψ〉 = |ψ〉. For instance,

X is a stabilizer of |+〉, and −X is a stabilizer of |−〉. Notably, we focus on states that

are stabilized by Pauli operators, so henceforth, the stabilizers we refer to are paulis. If |ψ〉
is a multi-qubit state, it possesses more than one stabilizer. For example, the Bell state

|Φ+〉 := (|00〉+ |11〉)/
√

2 has stabilizers XX and ZZ.

Stabilizers of a state must commute; otherwise, by the properties of the Pauli group, P

and P ′ anticommute, leading to PP ′|ψ〉 = −P ′P |ψ〉. However, since both P and P ′ are

stabilizers, we have PP ′|ψ〉 = P |ψ〉 = |ψ〉 and −P ′P |ψ〉 = −P ′|ψ〉 = −|ψ〉, which implies

|ψ〉 = 0 — a contradiction as |ψ〉 is not a quantum state. (Note that this zero is not |0〉 but

zero in the vector space of states.)

A stabilizer group, S, is defined as an abelian subgroup of the Pauli group where −I /∈ S
to avoid trivial cases: if −I|ψ〉 = |ψ〉, then |ψ〉 = 0. Moreover, the constants of the

paulistrings in a stabilizer group must be ±1, excluding ±i since the square of such a

paulistring would yield −I. This means the paulis in a stabilizer group are involutory. The

stabilizer group corresponding to |Φ+〉 includes {II,XX,ZZ,XX · ZZ = (−iY ) · (−iY ) =

−Y Y }. Each stabilizer group has a set of generators ; for |Φ+〉, these are {XX,ZZ}. No gen-

erator can be expressed as a product of other generators, thus although the all-identity pauli

is in any stabilizer group, it is not a generator. Therefore, the stabilizer group generators

can only be positive-weight and involutory paulis.

Typically, a stabilizer group is represented by its generators, e.g., 〈XX,ZZ〉, and some-

times the term “stabilizers” actually refers to a set of generators in literature. If there are s

generators, the stabilizer group contains 2s elements.

A stabilizer group S does not necessarily correspond to a single state but a subspace of the

state space. Each generator effectively ‘cuts’ the state space in half. To illustrate, consider

adding generators one by one to the generating set. Initially, an empty set corresponds to the
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entire state space of dimension 2n. Adding the first generator, g1, projects the state space

to its +1 eigenspace, (I + g1)/2, halving its dimension to 2n−1. Then, Tr[g2(I + g1)/2] =

[Tr(g2) + Tr(g2g1)]/2 = 0, so the ±1 eigenspaces of g2 have the same dimension inside the

+1 eigenspace of g1. Note that Tr(g2g1) = 0 is due to the fact that g2g1 is in the stabilizer

group and cannot be I which would imply g2 = g1. Subsequent generators similarly divide

the remaining space. Thus, if there are m generators, the subspace has dimension 2n−m.

The benefit of the stabilizer formalism is its efficiency: it avoids the need to specify the

amplitudes of all basis states, which can be exponentially many. To represent a state, we

require only n(2n + 1) bits: there are n generators, each one needs one bit for the sign and

2 bits for the choice of I, X, Y , or Z for each of the n qubits. Note that this efficiency is

only for specific states that we are interested in, which can be stabilized by paulis.

9.1.3 Clifford Group

The n-qubit Clifford group consists of unitary operators that normalize the Pauli group.

For any Clifford operator C, it holds that CPC† ∈ Pn for any P ∈ Pn. This implies that

the map defined by conjugation with a Clifford maps paulis to paulis. Therefore, instead of

explicitly writing out the matrix of a Clifford C, we can represent it with stabilizer flows

P → CPC† [MBG23]. If the state is stabilized by P before the gate C, it is stabilized by

CPC† after the gate.

To fully characterize a Clifford gate C, we can derive 2n flows where the inputs are ZI...I,

XI...I, IZ...I, IX...I, ..., I...IZ, I...IX. Alternative sets of paulistrings could be chosen,

but this “canonical” set is the simplest and sufficient because any input paulistring can

decompose as a product of these canonical inputs up to a constant. The stabilizer flows for

some common gates are displayed in Figure 9.1, where the red letters represent inputs, and

the blue letters represent outputs. For instance, the flows for the CNOT gate are ZI → ZI,

XI → XX, IZ → ZZ, IX → IX, verifiable via the linear algebra calculations. Intuitively,

an X flips a qubit, so if it is on the control qubit before a CNOT, it should propagate to
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Figure 9.1: Stabilizer flows of representative Clifford gates.

the target; if it is on the target before the CNOT, it should not propagate to the control.

As mentioned in Section 1.1.2, the roles of control and target are reversed when we view the

CNOT in the Hadamard basis, so a Z propagates from the target to the control through a

CNOT, but a Z does not propagate from the control to the target.

The stabilizer flows of a gate form a group. The multiplication between two elements is

performed by multiplying the inputs and outputs separately:

[P → CPC†] · [P ′ → CP ′C†] := [PP ′ → CPC† · CP ′C†] = [PP ′ → CPP ′C†]. (9.3)

This operation is associative. The identity element is I → I. The inverse of P → CPC† is

P † → CP †C†. To construct the output for any input, we can decompose the arbitrary input

into our canonical inputs, e.g., iY X = ZI · XI · IX, and then multiply the corresponding

outputs, e.g., for the CNOT, the output for iY X is ZI ·XX · IX = iY I.

The Clifford group can be generated by three gates: H, S, and CNOT [NC10]. Therefore,

an n-qubit Clifford circuit composed of these gates can be characterized by tracking the

change of 2n paulistrings through each gate according to Figure 9.1. This forms the basis for

why Clifford circuits can be efficiently simulated by classical computers [AG04]. Conversely,

non-Clifford gates, like the T gate, cannot be characterized simply by paulistrings:

TXT † =


1 0

0 eiπ/4


 ·


0 1

1 0


 ·


1 0

0 e−iπ/4


 =


 0 e−iπ/4

eiπ/4 0


 , (9.4)

which is not a member of the Pauli group. Indeed, the inclusion of any non-Clifford gate

alongside Clifford gates is sufficient for universal quantum computing [NC10].
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= CNOT

A

Figure 9.2: ZX calculus. a) Examples of spiders. b) Proof of the CNOT diagram. c)

Examples of rewrite rules: merge phases and exchange whole-π spiders.

9.1.4 ZX Calculus

ZX calculus is a graphical language that facilitates intuitive algebraic manipulations related

to quantum computing. Below, we introduce only a small subset of the ZX calculus. Inter-

ested readers are encouraged to consult [Wet20] for a more comprehensive treatment.

As exhibited in Figure 9.2a, the basic components in ZX diagrams are two types of spiders,

Z-spider (solid dots) and X-spider (circle). These spiders are connected by wires. (Our color

scheme may deviate from existing literatures: Z-spiders and X-spiders are green/light and

red/dark, respectively, in [BH20] and [Wet20].) Each spider has a parameter named phase,

which is an angle in [0, 2π). If the phase is not annotated, it is assumed 0, like the lower two

spiders in Figure 9.2a.

Fundamentally, each spider is a tensor, and a wire between two spiders is a tensor con-

traction. Thus, what matters are the labeling of open wires, the type and phase of spiders,

and their connectivity. In contrast, the geometric locations of spiders are irrelevant, and

the wires can bend and stretch. In Figure 9.2b, two equivalent ZX diagrams of CNOT are

displayed, up to these meaning-preserving deformations. We can apply the definition of
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Figure 9.3: ZX derivation including measurements and feed-forward gates. a) ZX diagram

of XX parity measurement. Yellow numbers are measurement results, 0 or 1. b) Proof of

the CNOT circuit using parity measurements. Magenta means applying the spider merging

rule; cyan means applying the whole-π spider exchange rule.

spiders in the diagram on the right to prove it is indeed a CNOT. The first step is due to

the contraction at point A: 〈±|0〉 = 1 and 〈±|1〉 = ±1. (We ignore the constant 1/
√

2

here.) The second step is by the definition of Pauli operators: I = |+〉〈+| + |−〉〈−| and

X = |+〉〈+| − |−〉〈−|. The final step is the definition of a CNOT: in case of |0〉 on the

control, do nothing; in case of |1〉 on the control, apply X to the target.

Based on the algebra of spiders, some rewrite rules are derived to help one manipulate

ZX diagrams, e.g., merging same-type spiders, and exchanging whole-π phase spiders (a, b =

0, 1), as in Figure 9.2c. We refrain from more details about rewrite rules since they are

irrelevant at the moment.

As an application, we prove the circuit identity depicted in Figure 1.2e. The ZX diagram

for the XX parity measurement is derived in Figure 9.3a, where a represents the result of

the measurement. The derivation holds whether a = 0 or 1.

• In step (i), we expand the parity measurement circuit as shown in Figure 1.2d, with

time progressing from bottom to top.
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• In step (ii), we translate the circuit into a ZX diagram using Figure 9.2.

• In step (iii), we apply the spider merging rule to simplify the diagram.

For a ZZ parity measurement, as opposed to XX, we simply reverse the colors of the

spiders. This can be proved in a similar manner.

Leveraging these results, we translate the parity measurement version of a CNOT in step

(1) of Figure 9.3b, where C denotes the control qubit, T the target qubit, and A the ancilla.

Each feed-forward single-qubit gate is associated with the same integer variable (a, b, or c)

as the corresponding measurement.

• In steps (2) and (3), we apply the spider merging rule on wires highlighted in magenta.

• In step (4), we use the whole-π exchange rule as highlighted in cyan.

• In step (5), we apply the merging rule again to arrive at the ZX diagram for a CNOT.

While we could certainly prove this identity using the circuit language as seen in Equa-

tion 1.14, the calculation is considerably more complex than using ZX calculus.

9.2 Quantum Error Correction with Surface Codes

In classical error correction, redundancy is introduced to protect data. Similarly, quantum

error correction uses multiple physical qubits to encode a logical qubit. In this section, we

use surface codes as an example to explain the construction of quantum codes and how they

can detect quantum errors.

9.2.1 Code Construction

The majority of quantum error correcting codes are stabilizer codes [Got97]. For a code with

n physical qubits and a stabilizer group S = 〈g1, g2, . . . , gm〉, the logical subspace is stabilized
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Figure 9.4: Construction of a,b) Kitaev’s torus code, c) the surface code, and d) the rotated

surface code. Red and blue means X and Z stabilizers. Dots are data qubits.

by S. The number of logical qubits in this code, k, is given by k = n−m. Among stabilizer

codes, many are CSS codes [CS96, Ste96], where the generators of S can be chosen to consist

only of purely-X paulistrings and purely-Z paulistrings. For visual clarity, we draw X-type

and Z-type stabilizers in different colors, red and blue, respectively.

Three closely related codes are provided in Figure 9.4. The torus code (Figure 9.4b)

is constructed by assigning a square grid on a torus and tessellating four-body X and Z

stabilizers on the torus. To comprehend this, consider the example in Figure 9.4a, where

identifying certain boundaries constructs complex surfaces like a torus from a plane surface.

Identifying two opposite sides (a) of a square results in a pipe; further identifying two opposite

sides (b) yields a torus. The two dashed arrows in Figure 9.4b indicate the identification of

opposite sides of the grid. Approximately half of the intersection points of the grid are data

qubits (represented by dots).

The torus code is scalable since the granularity of the underlying grid can be adjusted

to change the number of qubits. In the specific example shown, there are 32 data qubits.

Each stabilizer generator in the torus code acts on four qubits. Stabilizers on the boundaries

roll over to the opposite side due to the identified boundaries. In Figure 9.4b, we illustrate

16 ZZZZ stabilizers and 16 XXXX stabilizers. However, one ZZZZ stabilizer is redun-

dant because multiplying all 16 stabilizers together counts each data qubit exactly twice,
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meaning the product is always the identity. Thus, only 15 out of the 16 Z-type stabilizers

are independent. Similarly, one XXXX stabilizer is redundant. Therefore, there are 30

independent stabilizer generators compared to 32 qubits, resulting in 2 logical qubits.

The surface code, displayed in Figure 9.4c, is very similar to the torus code, except

that the boundaries are not identified and instead, three-body stabilizers are introduced at

the boundaries. In this specific example, there are 41 data qubits, 20 independent X-type

stabilizers, and 20 independent Z-type stabilizers, resulting in one logical qubit. A more

qubit-efficient version is the rotated surface code, shown in Figure 9.4d. Henceforth, when

referring to the surface code, we typically mean the rotated version. It appears as a diamond

cut from the center of Figure 9.4c and then rotated by 45 degrees. In this example, each

grid intersection is a data qubit. With 25 data qubits, 12 independent X-type stabilizers,

and 12 independent Z-type stabilizers, there is one logical qubit.

9.2.2 Decoding Errors

The nature of quantum errors is a very involved topic. They are certainly not just bit flips.

For an in-depth discussion, readers are referred to Chapter 10 of [NC10] or other relevant

literature. In this dissertation, we adopt the standard quantum error model where errors to

detect are modeled as paulistrings, with lower-weight paulistrings being more probable.

Suppose a quantum state |ψ〉 is stabilized by g1, g2, . . . , gm. To protect |ψ〉, we periodically

measure the stabilizer generators, a process known as syndrome extraction. The results

of these measurements, termed the syndrome, help identify the presence of errors. An

error E, being a paulistring, either commutes or anticommutes with each stabilizer. If E

anticommutes with a stabilizer gi, then giE|ψ〉 = −Egi|ψ〉 = −E|ψ〉, placing E|ψ〉 in the

−1 eigenspace of gi, which in turn flips the outcome when gi is measured.

The goal of quantum code design is to ensure that all potentially damaging errors with

a weight less than a certain threshold, named the code distance d, are detectable. An error
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E that commutes with every stabilizer goes undetected. However, a lot of errors in this

type are non-damaging because they are stabilizers, which do not alter the logical quantum

state. For example, the surface code may include stabilizers with weights as low as two. In

this case, E|ψ〉 = |ψ〉 since the error E is a stabilizer. However, there are damaging errors

that commute with all stabilizers, such as the logical X operator, which is an X on five

data qubits shown in Figure 9.5a. Such errors are undetectable yet alter the logical state

by applying a logical X gate. If the code distance is d, then there are only such errors with

weight ≥ d.

With CSS codes, we can detect X errors using Z-type stabilizer measurements and Z

errors using X-type stabilizer measurements. This is because an error can push the state

outside the +1 eigenspace of some stabilizers, which can be detected with the syndromes.

A Y error, affecting both X and Z components, is detected by both types of checks. In

Figure 9.5b, we present Z checks as dots.

Detecting X errors is formulated as a minimum-weight perfect matching on a rotated grid

graph connecting the Z checks, represented by dashes, as shown in [DKL02]. Additional

boundary nodes, represented as diamonds and not part of the stabilizers, are included to

ensure that every edge in the decoding graph corresponds to a data qubit.

Figure 9.5c-f provides examples of decoding scenarios. A single X error, as shown in

Figure 9.5c, flips two Z checks it touches, because they both anticommute with the error.

The minimum-weight perfect matching connects these detection events, correctly identifying

the qubit with the error. Figure 9.5d demonstrates a weight-2 error, setting off two detection

events. The error correction algorithm matches these events to the corresponding errors. A

valid question is: what about the other minimum-weight matching, which connects the two

detection events on the right instead of on the left? If the algorithm finds this matching,

the detected errors would be on the right side of the white square instead of on the left side

(where the red stars are now). However, these two cases are logically the same because they

are equal up to multiplying with the X-type stabilizer in place of the white square. If we
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Figure 9.5: Decoding for surface codes. a) Surface code layout. A logical X is annotated by

red stars. b) Decoding graph for Z checks. c-e) Examples of successfully decoding errors.

Red stars are X errors. Highlighted dots are detection events, i.e., the Z check is flipped.

f) An example of logical error. The decoding algorithm concludes the X errors represented

by the orange stars happened instead of the red stars. g) Repeating syndrome extraction

to account for measurement errors. For visual clarity, not all vertical edges are drawn. h)

Decoding graph for X checks.

correct for one case while the other case actually happens, an X-type stabilizer is applied to

the qubits in combination, which has no logical effect since it is a stabilizer.

The error correcting capability of surface code is not entirely captured by the distance.

If the errors are somewhat ‘local’, we can correct more errors. For example, in Figure 9.5e,

there are three X errors. One of them is desolate from the other two. In this case, the

decoding algorithm can correctly identify the error. In comparison, Figure 9.5f also shows

three X errors but connected. In this case, only one detection event is there, and the

decoding algorithm matches it to the lower boundary. This results in a logical error because

the decoded error are the orange stars, in combination with the original error (red stars), we

apply a logical X gate (Figure 9.5a) that alters the quantum data.
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In general, any error with weight < d can be detected, and any error with weight bd−1
2
c

can be corrected. If we decode an error paulistring P , we can just apply P to the qubits to

cancel the error. A surface code with d-by-d data qubits has distance d. In our example, we

can detect up to weight-4 errors and correct up to weight-2 errors. The errors in Figure 9.5c

and d have weight ≤ 2, which can be detected and corrected. The error in Figure 9.5e has

weight 3, but it can still be corrected. The error in Figure 9.5f has weight 3 as well, and it

can be detected but not corrected. If we scale up the surface code patch, we can detect and

correct higher-weight errors. In each code patch, there are d2 data qubits, and d2− 1 ancilla

qubits for the syndrome extraction.

One fact we have seen in Section 1.2 is that measurements also have non-perfect fidelity.

What if the measurement that produces the Z-type syndromes are wrong? We can account

for this type of error by repeating the syndrome extraction circuit many times, and perform

graph matching on a 3D graph, as illustrated in Figure 9.5g. The weights of the graph can

be adjusted based on the specific error rates of measurements versus the possibility of other

types of errors. A measurement error (black star) will set off two detection event connected

by a vertical edge that corresponds to this very measurement. Apart from Z checks, we can

decode the X checks separately on another graph as shown in Figure 9.5h and combine the

results of both to derive the total error.

9.3 Fault-Tolerant Quantum Computing with Surface Codes

Quantum error correction is foundational to fault-tolerant quantum computing, but it is just

the beginning. Primarily, QEC preserves quantum data without actively computing; another

crucial point is the imperfect syndrome extraction. We construct parity measurements with

gates as shown in Figure 1.2c-d, indicating that syndrome extraction itself can introduce ad-

ditional errors due to the error in these gates. In fact, with low-fidelity gates and suboptimal

QEC protocol designs, it is possible that error correction might do more harm than good.
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Figure 9.6: Threshold theorem. pth is the threshold. pphy is our physical error rate that is

below the threshold. Different code distances (curves with different colors) support different

logical error rates given a fixed pphy.

In fault-tolerant quantum computing, errors on every operation are modeled, including

gates, initializations, and measurements. A fundamental theoretical result in this field is the

threshold theorem [AB08, KLZ98, Kit03], which states roughly that if the physical error rate

of all quantum operations is below a certain threshold, pth, then QEC can suppress errors to

arbitrarily low levels by leveraging more physical qubits. The relationship between logical

and physical error rates for the surface code is sketched in Figure 9.6. The specific value of

pth depends on the quantum error model, quantum operation error rates, and the decoding

algorithm used. Interested readers are referred to [FSG09] for details, which estimates the

threshold for surface codes at about 1%.

Despite the error rates mentioned in Section 1.2 being under 1%, a large-scale fault-

tolerant quantum computer has yet to be realized. There are several reasons for this. First,

for the threshold theorem to be applicable, all quantum operation errors need to be below

pth, whereas the rates we cited are typical values; some parts of the computer might perform

worse than these numbers suggest. Secondly, to perform large-scale quantum computations

with m logical gates, the logical error rate must be much less than 1/m [FMM12]. With

a fixed physical error rate pphy < pth, increasing the code distance reduces the logical error
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rate. However, if pphy is very close to pth and a very low logical error rate is required, an

astronomically high code distance is needed, resulting in an impractically large number of

physical qubits. Ideally, pphy should be significantly below pth, allowing for a code distance

that is small enough so that the QEC overhead is manageable while large enough to support

the intended computations.

According to estimations from [BMT22], if pphy = 0.1%, a surface code of distance 27 is

necessary, corresponding to 1457 physical qubits for one logical qubit. Data from Section 1.2

indicate that current hardware technology is approaching this level of quality and scale but

has not yet arrived. If pphy = 0.01%, a distance of 13 is required, equating to 337 physical

qubits per logical qubit, a 4x overhead reduction compared to distance 27. In this section,

we assume that hardware technology is capable of effectively supporting quantum error

correction, and we discuss how to implement fault-tolerant quantum computing atop this

error correction framework.

9.3.1 Fault-Tolerant Operations

We present a few fault-tolerant operations of the surface code in Figure 9.7 where we use a

distance-3 surface code tile. A tile has four boundaries of either X or Z type, indicated by

red and blue solid lines, respectively. Two opposite boundaries are of the same type after

the tile has been initialized and before it is measured. The logical X operator is the tensor

product of physical X on a string of data qubits connecting two X boundaries as indicated

by the red dashes. Similarly, the blue dashes indicate logical Z. Figure 9.7b-c cover the

initialization of logical |0〉 and |+〉, which are simply initializing all data qubits to |0〉 and

|+〉, respectively. Figure 9.7d-e cover the measurement of logical X and Z, which are simply

measuring all data qubits along the X and Z basis, respectively. The logical measurement

results are the products of measurements on the red or blue dashes, after error correction.

A key result of the above definition is that single-qubit Pauli gates can be applied off-chip

(in the classical control system) by interpreting measured data differently, e.g., if there is a
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logical Z gate right before a logical X measurement, we can just measure X and flip our

result, instead of actually applying the Z gate on-chip with a string of physical Z gates.

Figure 9.7f introduces an operation named domain wall realized by applying a layer

of physical Hadamard gates (gold H) on all data qubits and then two layers of SWAPs

(magenta arrows) to shift data qubits. After the Hadamards, the type of stabilizers of the

surface code tile changes, as reflected by the changes in face colors and the changes in colors

of the X and Z logical operators after step (1). Note that a domain wall does not implement

a logical Hadamard gate, which would require us to rotate the tile by 90 degrees after step

(1). This rotation is highly nontrivial since we are assuming fixed physical qubits with

nearest-neighbor connectivity. A rotation protocol taking 3d QEC rounds in time (where d

is the code distance) and an extra ancilla tile in space is presented in [Lit19a].

Here, instead of rotating the tile, we shift it with steps (2) and (3) with SWAPs between

data qubits and ancillas such that the types of stabilizers align with the initial configuration.

For example, the bottom left four data qubits support a four-body Z check before step (1);

now there is still a Z check, albeit two-body. After the domain wall, the boundaries of the tile

are rotated by 90 degrees, yet the directions of the logical operators stay the same. Logical

Z used to be the Z product of qubits on the blue horizontal dashes, it is still horizontal after

step (4), but it becomes the X product of the qubits on the red dashes. The domain wall

does not correspond to any single-qubit gate on the logical level, but it is useful when we

need to switch the tile boundaries to a desirable orientation to interact with other patches.

Figure 9.7g stands for initializations or measurements along the Y basis following [Gid24].

The specific protocol to realize this operation consists of d/2 layers of physical gates. Here we

treat such protocol as an atomic operation and do not dive into the details. Since measuring

in the Y basis is the same as applying an S† and measuring in the X basis, and initializing

in the Y basis is same as S|±〉, these Y basis operations enable logical S gates.

Lattice surgery operations consist of merge and split on X or Z boundaries [BH20,

HFD12]. When tiles merge, they can become non-square patches. In this dissertation, we
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physical qubit labels: 

q1,1  q1,4  q1,7  qg,1  q2,1  q2,4  q2,7

q1,2  q1,5  q1,8  qg,2  q2,2  q2,5  q2,8

q1,3  q1,6  q1,9  qg,3  q2,3  q2,6  q2,9

MX MX MX

MX MX MX

MX MX MX

MZ MZ MZ

MZ MZ MZ

MZ MZ MZ

b) initialize |0⟩
|0⟩ |0⟩ |0⟩
|0⟩ |0⟩ |0⟩
|0⟩ |0⟩ |0⟩
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f) domain wall
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h) merge-split
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c) initialize |+⟩
|+⟩ |+⟩ |+⟩
|+⟩ |+⟩ |+⟩
|+⟩ |+⟩ |+⟩

e) measure X

g) Y-basis init./meas. 

H H H
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H H H
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a = X1X2= ±1
(i)
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(ii) d rounds QEC

(iii)
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bZ1’Z2’ = Z1Z2
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Z

X

(1) (2) (3)

Figure 9.7: Surface code operations. a) Surface code tile (simplest patch). b-e) Single-

patch initialization and measurement in the X and Z basis. f) Domain wall. In step (1),

Hadamards (gold H) are applied to all data qubits switching the type of stabilizers in the

surface code, i.e., color of faces. To realign these colors with other tiles, steps (2) and (3)

apply two layers of SWAPs between data and syndrome qubits(magenta arrows) to shift

the tile by one unit. g) Sketch of Y -basis initialization and measurement [Gid24]. These

take half of the code distance many QEC rounds. h) Multiple-patch operation with lattice

surgery. We refer to the physical qubits with the labels on the bottom left corner. The

merge-split implements an XX measurement on two logical tiles.
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employ a composite operation merge-split : merge patches, perform d rounds of QEC, and

then split patches [FG19]. This merge-split definition is slightly restricted in the sense that

a split does not have to be immediate after the d rounds of QEC. However, we believe that

keeping the merged patch does not offer additional benefits. So, we follow this merge-split

definition from [FG19].

Figure 9.7h presents the simplest merge-split on Z boundaries of two patches where the

labels for involved physical qubits are provided in the left bottom corner. In the merge,

we initialize the data qubits in the “gap” between two patches to |0〉 (qg,1, qg,2, and qg,3)

and then adjust the syndrome measurements around this gap as if it is internal of a tile.

Concretely, we adjust two Z checks and add four X checks. Before the merge, we have a

two-body Z check on q1,8 and q1,9. During the merge, we perform a four-body Z check on

q1,8, q1,9, qg,2, and qg,3 instead. Similarly, there was a two-body Z check on q2,1 and q2,2;

during the merge, we perform four-body Z check on q2,1, q2,2, qg,1, and qg,2 instead. The

new X checks are: four-body on q1,7, q1,8, qg,1, and qg,2; four-body on q2,2, q2,3, qg,2, and qg,3;

two-body on q1,9 and qg,3; and two-body on q2,1 and qg,1.

Logically, the merge implements an X1X2 measurement. The measurement result, a, is

the product of the syndrome qubit measurements indicated by the solid dots after step (i)

in Figure 9.7h, including a two-body X syndrome on q1,4 and q1,7, a four-body X syndrome

on q1,7, q1,8, qg,1, and qg,2, and so on. Multiplying all these together, the result is exactly

the product of X1 and X2: visually, this corresponds to the fact that the red faces with the

black dots connect the two red dashed lines. After the merge, the new Z operator (long blue

dashes) is the product of Z1 and Z2.

To reliably readout the value of a, d QEC rounds are appended after the merge. After-

wards, we perform the split where the data qubits in the gap are measured in the Z basis.

Suppose the measurement in the box (on qg,2) after step (ii) in Figure 9.7h yields result b, we

have bZ ′1Z
′
2 = Z1Z2. This measurement does not touch X operators, so X ′1X

′
2 = X1X2 = a.

In summary, a merge-split of two tiles on Z boundaries implements a logical XX measure-
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ment; similarly, a merge-split on X boundaries implements a ZZ measurement. We need

to record the measured values a and b to determine possible off-chip Pauli corrections as we

will discuss in Section 9.3.2.3.

9.3.2 Fault-Tolerant Logical Block

In the previous subsection, we have introduced protocols that can perform S, H, and Pauli

gates. The CNOT gate, as decomposed in Figure 1.2e, can be implemented through two

lattice surgery merge-splits along with some simpler operations, as depicted in Figure 9.8a.

Therefore, we are equipped to perform any Clifford circuit fault-tolerantly since H, S, and

CNOT are universal for Clifford circuits [NC10, Got97]. However, to execute any general

quantum circuit, we still require a non-Clifford gate, which will be discussed subsequently.

In this subsection, we explore extending the definition of Clifford circuits to include non-

unitary operations. This extension is natural as some fundamental operations like lattice

surgery merge-splits are inherently non-unitary. It is common in quantum computing for

a logical block [BDM23] of computing to have a differing number of inputs versus outputs.

For instance, certain protocols generating specific states have only outputs but no inputs.

In [TNG24], which is detailed further in Chapter 10, such extended Clifford operations,

composed from the atomic operations listed in Figure 9.7, are referred to as lattice-surgery

subroutines (LaS).

9.3.2.1 Pipe Diagram Representation for Lattice-Surgery Subroutine

To reason about a logical block, we do not need all the information in Figure 9.7. For

instance, the code distance, d, is decided based on fidelity of physical gates and the total

error budget and is independent from the computation carried out in a LaS. To represent the

on-chip process in a distance-independent manner, we can use time slices such as Figure 9.8a.

These operations implement a CNOT between the control tile (C) and the target tile (T )
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Figure 9.8: Logical CNOT in different representations. a) 2D time slices for lattice surgery.

The floor plan is in the upper-left corner (C: control, T : target, A: ancilla). 1-3) show the

first merge-split. 5-7) show the second merge-split. 0), 4), and 8) are the states between

these operations. b) 3D pipe diagram for lattice surgery. We mark the time slices in a) on

the time axis. c) CNOT quantum circuit using parity measurements. We also mark the

time slice in a) on the time axis. Slice 1) includes the initialization. Slice 7) includes the X

measurement. The feed-forward gates (gray) are Pauli which do not need to be performed

on the quantum chip. d) ZX calculus. Junctions of pipes correspond to ZX spiders. The

whole pipe diagram maps to the ZX diagram of a CNOT.
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via an ancillary tile (A). Each tile corresponds to d × d data qubits physically, but we

only need to keep its boundaries in the representation to reason about the logical effects of

operations. Slices 1-4) correspond exactly to a merge-split on Z boundaries as exhibited in

Figure 9.7h, while slices 4-7) correspond to a merge-split on X boundaries. The color-filled

tiles correspond to logical initializations or measurements as Figure 9.7b-e.

Why does this sequence of operations implement a CNOT? We can compare the quantum

circuits of a CNOT using parity measurements [FG19], Figure 9.8c, with the time slices. Slice

1) simultaneously initializes A to |0〉 and starts a merge-split on Z boundaries of A and T ,

i.e., the XX measurement of A and T . Slice 2) is during the d rounds of QEC in the merge-

split, and slice 3) is finishing the merge-split. Note that the gray components in the circuit

are Pauli gates depending on the measurement results. They do not appear in the slices

because they are applied in the classical control software of the quantum chip. Slices 4-7)

correspond to the second merge-split between A and C and also the X measurement of A.

The time slices are “snapshots” of what happens on the quantum chip at important

moments. Many moments during QEC are neglected because they would be the same with

previous moments. To also capture the time dimension in the representation, we introduce

the 3D pipe diagram. A tile of distance d needs d rounds of QEC after an operation, so

its boundaries “stay put” for d rounds. When we trace these boundaries on a time axis, a

tile accumulates to a cube. The two small 3D drawings in Figure 9.8a exhibit such in-scale

pipe diagrams for the CNOT. However, the merge-splits in the in-scale drawings are in the

narrow gaps between cubes, not very visible. Therefore, we elongate the distance between

the cubes so that the merge-splits become “pipes” as shown in Figure 9.8b. The 3D pipe

diagram is simpler and more intuitive than the slices, e.g., a merge-split is just a horizontal

pipe instead of multiple slices. The continuations and terminations of vertical pipes indicate

initializations and measurements. For example, the middle pipe terminates at 7) when the

ancilla is measured out in the X basis.

If a pipe is open-ended, it is called a port. In Figure 9.8b, there are four ports: the inputs
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of C and T that feed in the two tiles from below, and the outputs of C and T that exit the

subroutine on the top.

9.3.2.2 Lattice-Surgery Subroutine and ZX Calculus

It turns out lattice surgery has a very natural correspondence to ZX diagrams [BH20,

BPW17, BLN24]. As a result, we can derive the ZX diagram of a pipe diagram in a

straightforward way (Figure 9.8d) [GF19b]: every cube is a spider, and every pipe is a

wire connecting two spiders. If a cube is simply a 90-degree turn, it is a wire. For a T-

junction or a cross-junction, the color of the junction is the color that draws the T or the

cross. In Figure 9.8d, there is a red T-junction on the lower left and a blue T-junction on

the upper right. Then, the spiders have corresponding types, e.g., the red T-junction is

an X-spider whereas the blue T-junction is a Z-spider. All the phases of the spiders are

0 except for Y -basis initialization and measurements which have phase π/2. Wiring these

spiders together in Figure 9.8d, we find that the pipe diagram indeed implements the ZX

diagram of a CNOT (Figure 9.2c).

A more complex example, majority gate, is presented in Figure 9.11. From the pipe

diagram in Figure 9.11d, we extract a ZX diagram located on the top left of Figure 9.11e. The

vertical pipes with golden rings are domain walls (Figure 9.7) which maps to a ‘Hadamard

edge’ in ZX calculus [GF19b]. In Figure 9.11e, we use ZX rewrite rules to prove that the

extracted diagram is equivalent to the ZX diagram of a majority gate, Figure 9.11b (provided

by [GF19b]). In the first step, we apply the Hadamard inversion rule (orange) in the callout

and the spider-merge rule (magenta) in Figure 9.2c. In the second step, we morph the

diagram without altering connectivity (numbers annotate corresponding spiders). Next, we

apply the (generalized) Hopf rule (green), illustrated in Figure 9.11c: when Z- and X-spiders

are connected in a complete bipartite manner, two new spiders can replace them. Applying

this rule twice reconstructs the ZX diagram in Figure 9.11b, completing our proof.

It is certainly valuable to use ZX calculus to confirm the correctness of the pipe diagram.
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However, since ZX calculus does not have the notion of tile orientation, it is challenging to

directly synthesis the LaS with ZX calculus.

9.3.2.3 Lattice-Surgery Subroutine Functionality and Correlation Surfaces

We have just proved that Figure 9.8b implements a CNOT by establishing equivalence with

the circuit in Figure 9.8c. However, it is hard to construct LaS entirely from circuits because

1) lattice surgery is non-unitary, different from the unitary gates we are used to; and 2) some

critical information are missing, like the layout and orientation of tiles which determine

whether a merge-split is valid. We can ensure the correctness of LaS with objects called

correlation surfaces [RHG07, Pal15] that travel inside the pipes.

In Figure 9.9a, we exhibit a correlation surface ensuring the LaS satisfies a stabilizer flow

ZT → Z ′CZ
′
T , one of the flows that define a CNOT. The correlation surfaces for the other

three flows should also be identified to ensure the correctness of this LaS. These seemingly

complicated surfaces are composed from simple local pieces at each junction of pipes, e.g.,

Figure 9.9a is composed by Figure 9.9c and g (by stitching over ZA).

A correlation surface relates a set of quantum logical operators and a set of measurement

results. The operators are at all the ports this surface propagates to, and the measurements

are the projections of this surface on the ceiling of all pipes it propagates in. In Figure 9.9c,

the operators are ZT , Z ′T , and ZA (highlighted in cyan), and the measurements are on the

highlighted yellow line. ‘Correlation’ just means the product of these logical operators are

equal to the product of the measurements. So, why is this local piece valid? Recall that

the horizontal pipe in Figure 9.9c is a merge-split on Z boundaries as in Figure 9.7h. Since

the ancilla is initialized to |0〉, its Z value before the merge-split is fixed, 〈0|Z|0〉 = 1.

Thus, according to Figure 9.7h, bZ ′TZA = ZT · 1, i.e., Z ′TZAZT = b. This is consistent

with our definition since the left hand side is the product of all logical operators the surface

touches, and the right hand side is the measurement on the projection of the surface to the

ceiling of the horizontal pipe. Note that we have elongated the horizontal pipes in the 3D
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Figure 9.9: Examples of correlation surfaces. a) A surface that ensures the stabilizer flow

ZT → Z ′TZ
′
C in a CNOT pipe diagram (front face removed). It is a product of two local pieces

in c) and g). b-c) Two cases where the surface is orthogonal to the normal direction. d-g)

Four cases where the surface is parallel to the normal direction. The sign of the correlated

operators is the product of measurements on either a line of qubits, highlighted in c), or a

rectangular region of qubits, indicated by the wiggled lines in e) and g).

198



diagram. The highlighted line corresponds to only one measurement physically, which is the

one producing b in Figure 9.7h. In real experiments, we will need the correlation surfaces

to tell us which set of measurements decides the sign of these product of operators. If we

require ZTZ
′
TZA = 1 while b measures −1, some logical single-qubit Pauli gates should be

applied off-chip to fix it.

No surface at all, e.g., Figure 9.9b, is also valid. In general, the rules of correlation

surfaces at junctions can be reasoned from the logical effects of merge-splits. There are

two categories: whether the surface is orthogonal to the normal direction of the junction,

or parallel to it. The normal direction is orthogonal to all the pipes in the junction, as

indicated by the green arrows in Figure 9.9b and d. If the surface is orthogonal to it, the

surface correlates all (Figure 9.9c) or none (Figure 9.9b) of the logical operators at ports.

If the surface is parallel to it, the surface correlates an even number of logical operators at

ports: in our example, there can only be 0 (Figure 9.9d) or 2 operators (Figure 9.9e-g). The

wiggly lines in Figure 9.9e and g indicate the projections of correlation surfaces to the ceilings

of pipes, which correspond to the parity measurement result a in Figure 9.7h. (Although this

particular horizontal pipe is a ZZ measurement instead of an XX measurement.) We will

formally present all the rules for correlation surfaces in Section 10.1.4. If at every junction,

these rules are respected, the whole correlation surface is valid.

9.3.2.4 Examples of Lattice-Surgery Subroutine

In Figure 9.10b, we present a subroutine which generates a graph state. The stabilizers of a

graph state with underlying graph G = (V,E) are generated by {Xi ·
∏

j Zj | ∀i ∈ V, (i, j) ∈
E}, i.e., X on a node and Z on all its neighbors in G, e.g., Figure 9.10a. These states

have many applications in FTQC [HDE06, VPG24]. It should be noted that graph state

generation is a non-unitary subroutine since there are no inputs and only outputs.

We provide another example, the majority gate, in Figure 9.11d. The functionality of

a LaS is specified by stabilizer flows, implying it can always be implemented using Clifford
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Figure 9.10: Graph state. a) Stabilizer generators of graph states. b) 8×2×2 LaS generating

the graph state in a). c) 8×4×2 solution found by [LBM23]. They require 2-tile patches

instead of 1-tile patches in our case. Letters indicate the initial bases of patches. Orange

intervals indicate two layers of parity measurements.

gates and Pauli measurements. However, the majority gate is non-Clifford, so lattice surgery

alone cannot fully implement it. Typically, non-Clifford resources are generated in dedicated

regions on the quantum chip and routed to specific places. By considering non-Clifford

resources as input to certain ports, the remaining portion constitutes a LaS specified by

stabilizers. Thus, our LaS definition is enough for general FTQC subroutines. Additionally,

this definition is not limited to specific types of non-Cliffordness; for example, this majority

gate [GF19b] consumes a |CCZ〉 instead of |T 〉.

9.3.3 Distillation Factory

We have seen a majority gate must consume non-Cliffordness, but where do those come

from? A prevalent solution are magic state distillation factories (usually for |T 〉 or |CCZ〉)

200



a

a’
t

t’cout cin

CCZ
a) b) c)|CCZ>

cin
a
t

a’
t’
cout

d)
e)

K

J
I

merge

Hadamard

=

Generalized Hopf:

… …… …

=

morph
Hopf Hopf

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Figure 9.11: Majority gate optimization. a) Port requirements. [GF19b] provides a 3×5×5

design. b) ZX diagram of the gate. c) Hopf rule in ZX calculus. d) A 3×3×5 design. e)

ZX calculus proof of the LaS.

that consume noisy magic states and produce higher-quality magic states. Our LaS model

can support such factories: a first-level factory involves physical magic state injections at

certain ports, while a higher-level factory takes already distilled magic states to the ports;

the remaining part can still be specified by stabilizers. Distilling injected |T 〉s to a usable

error rate entails thousands of operations, making non-Clifford gates a significant FTQC

cost. Reducing distillation factory sizes directly reduces this dominant cost.

The 15-to-1 T -factory is one of the most realistic choices for early FTQC, visualized

in Figure 9.12b in the circuit model. The 15 T †’s and the final output |T 〉 correspond to

16 non-Clifford ports in our LaS. The remaining portion is specified by stabilizers at the

locations marked with orange labels, derived in Figure 9.12c. A baseline design, manually

optimized by experts in [FG19, GF19a], initializes logical qubits in |0〉 with unit depth, an
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Figure 9.12: Fault-tolerant T . a) Implementing a T gate by consuming a magic state. b)

Quantum circuit for the 15-to-1 T -factory [FG19]. c) Stabilizers of the underlying [[15,1,3]]

error correcting code.

eigenstate of the Z stabilizers in Figure 9.12c. It then measures the 5 8-body X stabilizers

in Figure 9.12c, each taking unit depth. A layer of possible fixups consisting of half-distance

Y -basis measurement as in Figure 9.7g is appended (see Section 10.3.3 for details), resulting

in a total LaS depth of 6.5. When used repeatedly, one unit of latency is hidden through

interleaving, and this baseline factory averages a depth of 5.5. With a footprint of 8×4=32,

this baseline factory has an average volume of 32×5.5=176.

Distillation factories are assigned to dedicated regions in fault-tolerant architectures.

An example architecture based on surface codes is depicted in Figure 9.13, as discussed in
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Distillation

Figure 9.13: An example fault-tolerant architecture layout.

[FG19]. This configuration contrasts with the layout shown in Figure 1.11c by having a

fixed orientation for qubits (tiles with boundaries). Each qubit has access to nearby ancillas

(those without boundaries) to facilitate the implementation of H or S gates. Thanks to the

abundance of ancillas, lattice surgery can be performed between any two qubits, enhancing

the architecture’s versatility. The distillation factory produces the magic state located at its

top left corner, which can perform lattice surgery with any logical qubit via ancilla paths.

This enables us to apply fault-tolerant T gates to arbitrary qubits with the protocol in

Figure 9.12a. Therefore, the hypothetical architecture in Figure 9.13 supports universal

fault-tolerant quantum computing.
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CHAPTER 10

LaSsynth: Representation and Synthesis of

Subroutines for Fault-Tolerant Quantum Architectures

Based on Surface Codes

The toy example depicted in Figure 9.13 is not optimal, as it incorporates some artificial

constraints, such as fixed orientations and placements of the surface code tiles. In this

chapter, we develop a method to synthesize lattice-surgery subroutines (LaS) without these

constraints, leading to the creation of LaSsynth [TNG24]. This tool is designed to explore

the possibilities within a given spacetime volume, pushing the boundaries of what can be

achieved with the surface code operations. However, it is important to note that not all

computation can be encapsulated within a single LaS. Therefore, a higher-level compiler

is still necessary to segment the computation into multiple LaS, strategically place these

subroutines within the quantum architecture, and route qubits between them. We would

like to remind the reader that this chapter builds upon the notations and concepts introduced

in Chapter 9. It is recommended to read that chapter first.

In contrast to previous compilation frameworks from quantum algorithms to lattice

surgery [BMT22, CC22, FG19, Lit19a, LN22, PF20, WNS23], the focus of this chapter is on

hyper-optimizing small and frequently-used LaS. Our tool is well suited for optimizing basic

components with 5-20 qubits and 10-100 operations like the MAJ and UMA gates in adder

circuits [CDK04], or magic state distillation factories. The intent is that, when assembling

larger computations, the hyper-optimized subroutines created by our tool can be used as
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max_i: Int >0 
max_j: Int >0 
max_k: Int >0 
ports: List[Port]
  Port:=
    location: [Int,Int,Int]
    direction: (+|-)(I|J|K)
    z_basis_direction: I|J|K
stabilizers: Set[Paulistring]
  Paulistring:=
    (.|X|Y|Z){len(ports)}I J
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Figure 10.1: Lattice-surgery subroutine (LaS). a) Externals of a LaS implementing a CNOT

with four ports and 2 × 2 × 2 volume. b) LaS specification including volume, port layout,

and functionality (stabilizer) information.

building blocks. Another major difference with previous approaches is the removal of hu-

man heuristics, aiming for provable optimality. Unlike human constructions guided by some

overarching ideas, our tool can explore results that are better but also highly non-intuitive.

The output usually comprises intricate arrangements of pipes and junctions, challenging to

construct or even comprehend with human intuition.

Figure 10.1 provides the specification of LaS. The underlying surface code substrate

is divided into tiles, our unit of space. The tiles are indexed by spatial (I and J axes)

coordinates, and they can only interact with nearest neighbors. Similar to a classical circuit

component, a LaS takes up a certain area on the quantum chip, i.e., footprint. In the example

of Figure 10.1a, we allow 2×2 tiles: (0,0), (0,1), (1,0), and (1,1) in the I-J plane. A LaS is a

procedure instead of a static entity, so it also has a duration (along K axis). In Figure 10.1a,

we allow two units of time: k = 1 and 2, each corresponds to a layer of operations and d

rounds of QEC afterwards. Aligning with existing literature, we use spacetime volume, i.e.,

the footprint times the duration, as our metric for LaS optimization. The volume is indicated

by the half-transparent box in our example. Inside this box are the operations implementing
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the function of the LaS. Note that the LaS specification does not contain what happens

inside this box. Rather, it is the job of a synthesizer or compiler to figure out a solution

satisfying the given specification.

How can we specify the function of a LaS? For a classical digital circuit, this can be done

by a lookup table between input and output ports. A LaS also has some ports connecting the

given volume to the outside, e.g., the 4 short pipes in Figure 10.1a. We first need to locate

these ports, as in the list of Port in Figure 10.1b. The location of a port is the outside

3D grid point it connects to, e.g., (i, j, k) = (1, 0, 3) for the called-out port in Figure 10.1a.

Then, the direction of the port is the direction from this outside point to the inside. In

our example, from (1, 0, 3), we need to go down to enter the box, so the direction is −K.

Finally, because of the two types of boundaries (red/blue), orientation of a port is also

important. In our example, the blue (Z) boundary is perpendicular to the J axis, so the

value of z-basis-dir is J . The four ports in Figure 10.1a are inputs (bottom) and outputs

(top) for control (left) and target (right) qubits in a CNOT gate. To express the function

of this LaS, the stabilizers in Figure 10.1b are stabilizer flows on its ports: ZI → ZI,

IZ → ZZ, XI → XX, and IX → IX, as introduced in Section 9.1.3. Note that these

stabilizer flows are on the logical level, not to be confused with stabilizers measured on the

physical level (inside tiles) in QEC rounds.

Our main task is to generate valid LaS given a specification above covering allowed

volume, port configurations, and stabilizers to satisfy. The main contributions are identified

in Figure 10.2.

1 Representation. Previous FTQC compilation works have introduced instruction sets

atop lattice surgery, such as multi-qubit π/8-rotations and measurements [Lit19a], or a more

general ‘planar quantum ISA’ [BMT22]. A main effort is decomposing arbitrary quantum

algorithms into these instruction sets, which then straightforwardly unroll to known lattice

surgery implementations. While this abstraction layer of instruction set is necessary for

efficiently compiling large-scale algorithms, it falls short when optimizing limited-scale LaS,
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Figure 10.2: Overview of LaSsynth contributions (blue numbers). Solid arrows represent the

main workflow. Dashes show the verification workflow for existing designs.

as it cannot explore all potential combinations of lattice surgery and other surface code

operations. We present the first LaS representation, LaSre, at the native lattice surgery

level, such that merging and splitting can potentially happen between any adjacent patches

in the plane at any time, thus breaking the previous abstraction layer.

2 Formulation. Some validity constraints are required to ensure that LaS expressed in

our representation are valid. For instance, two adjacent patches can only merge by the same

type of boundary. In the merge illustrated by Figure 1.11b, this constraint means the two

pipes need to have the same color of boundaries (blue) facing each other. Beyond validity,

we also need to impose some functionality constraints such that the resulting LaS realizes

the stabilizer flows in the specification. This is done by keeping track of correlation surfaces

as introduced in Section 9.3.2.3. In summary, our formulation establishes a comprehensive

set of constraints for the LaS synthesis problem based on our representation.

3 Synthesizer. Based on our formulation, we built LaSsynth, a software that trans-

forms LaS synthesis into satisfiability (SAT) and queries SAT solvers for solutions. Given a

LaS specification like Figure 10.1b, the synthesizer either concludes that it is impossible to

implement (UNSAT) or produces a satisfying variable assignment. Existing designs provide

us with concrete upper bounds in space and time to implement certain LaS. In order for

further optimization, we can start from these bounds, and iteratively generate and solve LaS

specifications with even lower bounds, indicated by solid arrows in Figure 10.2. Given the
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internal use of SAT by the synthesizer, its primary use case is optimizing frequently used

subroutines, which can be pre-derived and integrated with end-to-end FTQC compilers. The

evaluations demonstrate that LaSsynth can solve subroutines of practical significance within

a reasonable time frame.

4 Verification. We provide a verification workflow utilizing ZX calculus, as illustrated

by the dashes in Figure 10.2. Our formulation ensures correctness automatically, so the

results generated by LaSsynth do not need to go through this. However, when we were

developing this software, the verification was very helpful in debugging. Additionally, we

can use it to check LaS designed by others, e.g., we found that the majority gate in [GF19b]

does not realize some required stabilizer flows, underscoring the importance of automatic

verification.

5 Visualization. Until now, researchers have to manually construct the pipes in pro-

fessional 3D modeling software [GF19b, FG19]; or reply on 2D time slices like Figure 9.8a

[Lit19a, PF20]. These compromises hinder lattice surgery research. In response, we have

developed a translation script from our representation to a 3D modeling format, facilitating

visualization of LaS as pipe diagrams.

6 Specific designs. We discovered a majority gate design—a frequently used sub-

routine in Shor’s algorithm—with a 40% reduction in volume compared to previous work

[GF19b]. We also applied LaSsynth to optimize 15-to-1 T-factories. Leveraging our foun-

dational formulation and exhaustive search, it improves two state-of-the-art designs by 8%

than [FG19, GF19a] and by 18% than [Lit19a], under their respective settings.

The rest of this chapter is organized as follows. Section 10.1 presents the formulation of

the LaS synthesis problem. In Section 10.2, we provide the details on the implementation

of LaSsynth. In Section 10.3, we apply LaSsynth to graph state generation, majority gate,

and T-factory. In Section 10.4, we survey previous works.
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10.1 Formulation

Given a LaS specification as in Figure 10.1b, we formulate the LaS synthesis problem into

binary variables and constraints that must be satisfied. These variables constitute LaSre,

our LaS representation. The constraints are of two types: validity and functionality. The

former ensures that the LaSre is a valid FTQC procedure, whereas the latter ensures that

it satisfies the stabilizers specified, which is the function of the LaS.

From this point on, we will use I and J as two spatial axes, and K as the time axis. This

notational choice is because letters X, Y , Z, and T have other meanings in the context.

10.1.1 Structural Variables

In a pipe diagram, each cube can potentially connect to its nearest neighbors in the 3D

spacetime. Thus, to specify the structure of the pipes, all we need is one bit for every adja-

cent pair of cubes meaning whether there is a pipe or not. These are the ExistI, ExistJ,

and ExistK variables below. Additionally, each horizontal pipe has a color orientation (Fig-

ure 10.3e), denoted by ColorI and ColorJ variables below, that corresponds to whether the

pipe is a merge-split on Z or X boundaries. Once the configurations of all pipes are known,

the faces of cubes can be inferred from all its incident pipes, except for one case–Y cubes,

which are represented by green boxes in this chapter. These correspond to initializing and

measuring patches along the Y basis (Figure 9.7g) which is necessary to implement logical

Clifford operation in general.

There are five arrays of structural variables. Each has shape (max i, max j, max k), i.e.,

one binary variable per spacetime volume. All indices start from 0. Figure 10.3 shows the

values of these variables in the CNOT example.

YCubei,j,k specifies whether the cube at (i, j, k) is a Y cube. In this example, there is

none, so all YCubei,j,k = 0.
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Figure 10.3: Structural variables in LaSsynth. a) YCube on each cube specifies whether that

cube is a Y cube. b-d) ExistI/J/K on each edge specifies whether there is an edge in the

corresponding direction. e) color convention for ColorI/J variables.
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ExistIi,j,k specifies whether there is a pipe from cube (i, j, k) to (i + 1, j, k). There

is only one pipe in I direction, which is from (0, 1, 2) to (1, 1, 2) (see Figure 10.3b). So,

only ExistI0,1,2 = 1, while all other ExistI variables evaluate to 0, e.g., directly below the

existing I-pipe, ExistI0,1,1 = 0. Note that our convention allows pipes from (max i− 1, j, k)

to (max i, j, k), which extend out of the confined volume. These can only be ports. However,

we do not allow -1 as an index, so there is no pipe from (−1, j, k) to (0, j, k).

ExistJi,j,k specifies whether there is a pipe from cube (i, j, k) to (i, j + 1, k). In the

example, there is only one J-pipe from (1, 0, 1) to (1, 1, 1), so ExistJ1,0,1 = 1 (Figure 10.3c),

and all other ExistJ variables are 0, e.g., ExistJ1,0,2 = 0.

ExistKi,j,k specifies whether there is a pipe from cube (i, j, k) to (i, j, k + 1). There are

manyK-pipes in the example, indicated by the 1’s in Figure 10.3d. Although the merge-splits

only concerns horizontal pipes, we still need these variables for vertical pipes because they

indicate initializations and measurements. For example, ExistK1,1,0 = 0, ExistK1,1,1 = 1,

and ExistK1,1,2 = 0 means the tile at (i, j) = (1, 1) is initialized at k = 1 and measured at

k = 2.

ColorIi,j,k specifies the color orientation of I-pipes. Our convention is displayed in Fig-

ure 10.3e: if red faces are on the K direction, then ColorI = 0; otherwise, ColorI = 1.

The ColorI variables are always used together with ExistI variables in the constraints, so

if there is no pipe, the corresponding color variable value will not affect the solution.

ColorJi,j,k specifies the color orientation of J-pipes.

At this point, it seems there should also be ColorK variables. Indeed, in the 3D drawings,

K-pipes are also colored. However, we do not need ColorK variables because the domain wall

operation is available to us. This operation is denoted as a yellow ring on a K-pipe, as found

in Figure 9.10b (at the green ‘5’). It can switch the orientation in the middle of a K-pipe to

adapt it to any configuration at the two ends. Thus, ColorK variables are neglected in the

formulation, and inferred in the post-processing based on its neighbors.
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a) no fanout b) no unexpected port

e) no degree-1 non-Y cube
f) match color – passthrough

g) match color – turn

d) 3D corner

∉given port

c) time-like Y

Figure 10.4: Validity constraints in LaSsynth. a) Starting point of a port cannot have other

pipes. b) No pipes other than the ports connect to the outside. c) Y cubes can only have

K-pipes. d) A cube cannot have pipes in all three directions. e) All degree-1 non-Y cubes

can always “squeeze in”, so we forbid such cubes. f) Two pipes in a “passthrough” should

have the same color orientation. g) Two pipes in a “turn” should have matching colors on

faces that are touching.

10.1.2 Validity Constraints

Figure 10.4 illustrates the validity constraints. Rules a) and b) follow from our definition of a

port; c) is required for the Y -basis operation [Gid24]; d), f), and g) follow from the fact that

merge-split can only happen when the adjacent boundaries of two patches have the same

type. Rule e) is technically an optimization in order for lower spacetime volume instead of

a hard requirement. We provide some examples of these constraints in Figure 10.3 below.

No Fanouts (Figure 10.4a). A port in the LaS specification starts at a cube and connects

to only one of its six neighbors. For instance, port 0 in Figure 10.5 starts from (0, 1, 0) and

connects (0, 1, 1), so there is no connection in the other 5 directions:

ExistI0,1,0 , ExistJ0,0,0 , ExistJ0,1,0 , (10.1)
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where an overline means the variable should be 0. Note that the pipes in −I and −K
directions for this cube are out of range, so they are automatically neglected.

No Unexpected Ports (Figure 10.4b). Other than the specified ports, there cannot be

“dangling” pipes. In Figure 10.5, on the top floor, there are only port 2 starting at (0, 1, 2)

and port 3 at (1, 0, 2), so the other two patches cannot connect upwards:

ExistK0,0,2 , ExistK1,1,2 . (10.2)

Time-Like Y Cubes (Figure 10.4c). Only time-like (K) pipes are allowed to connect to

a Y cube, so

∀(i, j, k) YCubei,j,k ⇒ ExistIi−1,j,k . (10.3)

We also apply similar constraints with ExistIi,j,k , ExistJi,j−1,k , and ExistJi,j,k on the

right hand side.

No Degree-1 Non-Y Cubes (Figure 10.4e). Degree-1 cubes (those having only one pipe)

that are neither Y -cubes nor ports can always be “squeezed in”. In Figure 10.4e, the degree-

1 cube measures logical Z of the patch, but that measurement can be on the horizontal

“passthrough” without “popping out”. This constraint is expressed as follows: for an end-

point of a pipe, if it is not a Y cube, then at least one of the other five pipes of this cube is

present, e.g., for K-pipe (1, 0, 1) to (1, 0, 2),

YCube1,0,1 ∧ ExistK1,0,1 ⇒
[
ExistK1,0,0 ∨ ExistI1,0,1 ∨ ExistI0,0,1 ∨ ExistJ1,0,1

]
. (10.4)

The right hand side has 4 terms instead of 5 terms because the pipe in −J direction for cube

(1, 0, 1) is out of range.

Matching Colors at Passthroughs (Figure 10.4f). Two pipes in the same direction con-

necting to a cube should have the same color orientation, e.g., the two possible I pipes of

(1, 1, 2):
[
ExistI0,1,2 ∧ ExistI1,1,2

]
⇒
[
ColorI0,1,2 = ColorI1,1,2

]
, (10.5)

which is satisfied (trivially) because ExistI1,1,2 = 0.
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Matching Colors at Turns (Figure 10.4g). When two pipes in orthogonal directions are

touching, their faces that are touching should have the same color. Consider two possible

pipes connecting to (1, 1, 2) in −I and −J directions:

[
ExistI0,1,2 ∧ ExistJ1,0,2

]
⇒
[
ColorI0,1,2 6= ColorJ1,0,2

]
, (10.6)

which is satisfied because ExistJ1,0,2 = 0. However, suppose there is a pipe, we can check

Figure 10.3e that if the ColorI is 0, to match the colors, the ColorJ must be 1. Alternatively,

the former is 1 and the latter is 0. These two cases are exactly captured by the right hand

side with the Boolean 6= operator.

No 3D Corners (Figure 10.4d). If a cube connects to at least one pipe in all I, J , and

K directions, it is a “3D corner”, which is forbidden. In Figure 10.4d, the K-pipe and the

J-pipe have a color matching conflict. Switching the orientation of the K-pipe, then it has

a conflict with the I-pipe. This set of constraint is formulated as each cube having a normal

direction, i.e., it does not have pipes completely in at least one of the I, J , or K direction.

Consider cube (1, 1, 2) again:

[
ExistI0,1,2∧ExistI1,1,2

]
∨
[
ExistJ1,0,2 ∧ExistJ1,1,2

]
∨
[
ExistK1,1,1∧ExistK1,1,2

]
, (10.7)

which is satisfied since ExistJ1,0,2 = ExistJ1,1,2 = 0.

10.1.3 Correlation Surface Variables

For each stabilizer of a LaS, we need to provide the corresponding correlation surface which

can be specified by its pieces inside each pipe. Two pieces are possible inside a pipe: one that

connects the two blue faces and one that connects the two red faces. Thus, we need two bits

per pipe for each of the correlation surfaces. These are the CorrIJ, CorrIK, CorrJK, CorrJI,

CorrKI, and CorrKJ variables below. There are six arrays of correlation surface variables,

each has shape (nstab, max i, max j, max k), one binary variable per stabilizer per volume.

Figure 10.5 provides the correlation surface variable values in each pipe for the surface seen

in Figure 9.9a.
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Figure 10.5: Correlation surface variables in LaSsynth. The surface for IZZZ is shown.

CorrIJs,i,j,k specifies the existence of correlation surface pieces in the I-J plane and inside

I-pipes where s is the index of the stabilizer and (i, j, k) is the location of the I pipe. Note

that IZZZ has index s = 1 among the 4 stabilizers, and there is only one I-pipe from

(0, 1, 2) to (1, 1, 2). Thus, CorrIJ1,0,1,2 = 1.

CorrIKs,i,j,k is for correlation surface pieces in the I-K plane and inside I-pipes. Since

there is only one I-pipe, the only nontrivial example here is CorrIK1,0,1,2 = 0.

Similarly, we have variable arrays CorrJKs,i,j,k and CorrJIs,i,j,k for correlation surface

pieces in J-pipes, and CorrKIs,i,j,k and CorrKJs,i,j,k for those in K-pipes. Since each stabilizer

needs a different correlation surface, the number of correlation surface variables scales in

the product of the volume and the number of stabilizers, much larger than the number of

structural variables scaling only in the volume.

10.1.4 Functionality Constraints

Figure 10.6 illustrates the constraints for correlation surfaces: two at boundaries (a and d),

and two at junctions (b and c).
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Stabilizer as Boundary Conditions (Figure 10.6a). A stabilizer is specified as a paulistring

at the ports, e.g., IZZZ for the four ports of the CNOT. The Z operator touches the two Z

boundaries (blue) of the K-pipes of the ports. Given that the z-basis-dir in the input is

J for all the ports, we find that there should be correlation surface pieces in the J-K plane

inside the K-pipes of ports 1, 2, and 3. Also, the correlation surface pieces corresponding to

X operators, in the K-I plane, should not be present at these ports. Therefore,

CorrKJ1,1,0,0, CorrKJ1,0,1,2, CorrKJ1,1,0,2, CorrKI1,1,0,0, CorrKI1,0,1,2, CorrKI1,1,0,2. (10.8)

Port 0 should not have correlation surface pieces in either direction since in the stabilizer,

its term is I. If the term for a port is Y , then it should have both correlation surface pieces.

Both or None at Y Cubes (Figure 10.6d). Since the Y operator is the product of Z

and X, it correlates the two operators. Thus, two correlation surfaces can end at a Y cube

together, or neither of them are present in this region. Per Figure 10.4c, only K-pipes can

connect to Y cubes, so this set of constraints is

YCubes,i,j,k ⇒
[
CorrKIs,i,j,k = CorrKJs,i,j,k

]
, (10.9)

for all tuples of (s, i, j, k).

A non-Y and non-port cube can only have degree 2, 3, or 4: degree-1 cube is forbidden

by Figure 10.4e; and degree-5 or -6 cubes will always contain a 3D corner which is forbidden

by Figure 10.4d. Degree-2 cubes are “identity” where correlation surfaces trivially travel

through. We can neglect them for now and check later that this case is consistent with the

two sets of constraints to introduce below. In conclusion, we are only left with degree-3 or

degree-4 cubes which can only be T-junctions or cross-junctions, and they each has a normal

direction orthogonal to the plane that draws the T or the cross. In Figure 10.6b-c, the T-

junctions are in I-J plane, so their normal direction is K. The two constraints below depend

on whether the correlation surfaces are orthogonal or parallel to the normal direction.

Even Parity of Parallel Surfaces at Non-Y Cubes (Figure 10.6b, generalizes Figure 9.9d-

g). There should be an even number of correlation surface pieces parallel to the normal
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Figure 10.6: Functionality constraints in LaSsynth. a) At a port, the correlation surface

should be consistent with the stabilizer: only connecting red faces if X; only connecting blue

faces if Z; both if Y ; neither if I. b) An even number of the correlation surfaces parallel to

the normal direction should be present. c) All or none of the correlation surfaces orthogonal

to the normal direction should be present. d) Both or no correlation surfaces should be

present at a Y cube.
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direction of the cube. In Figure 10.5, the normal direction for (0, 1, 2) is J , so

[
YCube0,1,2 ∧ ExistJ0,0,2 ∧ ExistJ0,1,2

]
⇒
{[
ExistI0,1,2 ∧ CorrIJ1,0,1,2

]
⊕

[
ExistK0,1,1 ∧ CorrKJ1,0,1,1

]
⊕
[
ExistK0,1,2 ∧ CorrKJ1,0,1,2

]
= 0
}
,

(10.10)

where the first and third term on the right hand side are 1 because the said correlation

surface pieces exist, and the second term is 0 because there is no correlation surface in pipe

from (0, 1, 1) to (0, 1, 2). Although it is in general costly to express parity operator with

first-order logic, we are only dealing with three or four terms, so the translation is simple.

All or No Orthogonal Surfaces at Non-Y Cubes (Figure 10.6c, generalizes Figure 9.9b-c).

The correlation surface pieces orthogonal to the normal direction at a cube should all be

present or all missing. Let us consider (1, 0, 1) with normal direction I:

[
YCube1,0,1 ∧ ExistI0,0,1 ∧ ExistI1,0,1

]
⇒

{[
ExistJ1,0,1 ∨ CorrJK1,1,0,1

]
∧

[
ExistK1,0,0 ∨ CorrKJ1,1,0,0

]
∧
[
ExistK1,0,1 ∨ CorrKJ1,1,0,1

]}∨{[
ExistJ1,0,1 ∨

CorrJK1,1,0,1

]
∧
[
ExistK1,0,0 ∨ CorrKJ1,1,0,0

]
∧
[
ExistK1,0,1 ∨ CorrKJ1,1,0,1

]}
,

(10.11)

where we have two options on the right hand side corresponding to either correlation surface

pieces are all present or all missing. In each option, there are three terms corresponding to

the three possible pipes connecting (1, 0, 1). In each term, if the Exist variable is 0, the

term trivially evaluates to 1. This corresponds to the fact that if a pipe does not exist, we

do not need to consider correlation surface variables inside it.

10.2 Software Implementation

The structure of our LaS synthesizer, LaSsynth, is exhibited in Figure 10.7a. Given an

input file following the specification in Figure 10.1b, we add variables and constraints in

the formulation to an SMT (satisfiability modulo theories) model in Z3 SMT solver [dB08].

The model can be solved directly in Z3, but in our experience, the internal solver does not

offer the best performance. Thus, while keeping the option of solving the model directly, we
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support using Z3 just to simplify the model and transform it to a SAT instance stored in the

standard SAT format–DIMACS. Then, we use another SAT solver, Kissat [BF22], to solve

it. Since DIMACS is the standard format, it is straightforward to port to any SAT solver on

the market with minimal code changes. We chose to still keep Z3 in the loop because some

of its simplification ‘tactics’, e.g., simplify and propagate-values make a big difference

to later SAT solving in our experience. After Kissat solves the SAT instance, we return to

Z3, set the variable values according to the SAT result, and let Z3 solve the model again.

This second solving is negligible compared to the first one since Z3 is just re-deriving the

variables it simplified away previously. In our experiment, it never goes on more than 1 s.

At this point, we have derived the values for all the variables in the formulation. However,

given how we have formulated the problem, the SAT solver has no preference for empty

space, so the solution found may contain structures that are valid but unnecessary. As

post-processing, if a cube is not connected to any ports, it can be pruned away because it

has no effect on the functionality of the LaS. Usually, what the pruning removes are pipe

“donuts” isolated from all other pipes. Another post-processing step is coloring the K-pipes,

i.e., deriving two arrays of additional values, ColorKP and ColorKM, for the color of K-pipe

at the upper and lower ends. If a K-pipe end is “dangling”, it must be a port, then its color

is given in the input. If it touches any I- or J-pipes, its color can be inferred following the

color matching constraints. Finally, if it is in a K passthrough, we can always add domain

walls to legalize any K-pipe with different colors at two ends.

LaSsynth has three kinds of output. All the variable assignments constitute our textual

LaS representation, LaSre. The second output are 3D modeling files in gltf format. In fact,

many of the pipe diagrams in the previous and current chapters are rendered using gltf

files generated by LaSsynth. We can also generate the 3D model with a specific correlation

surface like Figure 10.5. Finally, LaSsynth can induce a ZX diagram of the LaS. It uses Stim

ZX [Gid21] to derive the stabilizers of this ZX diagram, and compare these stabilizers with

the ones given in the input for verification.
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Figure 10.7: Software implementation of LaSsynth. a) Workflow of LaSsynth. b) Performing

LaS optimizations with LaSsynth.

In summary, LaSsynth consumes a specification file and either asserts it is unsatisfiable

or produces a LaS satisfying the input. To perform optimization, we need to query LaSsynth

multiple times as illustrated by Figure 10.7b. If there is a known LaS design, we can treat it

as the baseline and revise the specification to reduce the solution space in search for better

designs. The simplest example is shrinking the allowed volume by decreasing max i/j/k.

We also provide the interface to forbid certain cubes by setting all the Exist variables of

its pipes to 0, which can be useful if the user is enforcing more complex shapes. The user

can also define more general techniques because we provide the interface to set the value of

an arbitrary variable in the SMT model to a user-provided value. After the solution space

reduces, we query LaSsynth again, until there is no solution, by which we know that the

optimal solution is the last satisfying solution. This approach is descending in the sense

that we start from a higher-volume solution and gradually find lower-volume solutions. A
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drawback of this approach is that sometimes the baseline design is too bad, and the SAT

solving takes a very long time given the unnecessarily large dimensions. Thus, sometimes

it also helps to take an ascending approach where we start at unsatisfiable settings, e.g., a

very small max i/j/k, and grow the solution space until LaSsynth returns a solution.

To exploit certain flexibility in the problem, we may also query LaSsynth many times to

search for designs, but not necessarily changing the size of the solution space. For example,

in the T-factory later discussed, many ports are functionally symmetric, but when we lay

them out in the 3D space, some symmetries are broken. This means, even with the same

allowed volume, some permutations of the ports may be satisfiable while others are not. In

this case, we can generate a specification file for each promising permutation and run many

LaSsynth jobs in parallel. Other than the order of the ports, the location of the ports can

also be flexible sometimes. Again, we can run many LaSsynth jobs in parallel, one for each

possibility. We have not implemented any general interface to perform explorations under

these flexibilities because it greatly depends on the properties of the problem the user has.

10.3 Evaluation

LaSsynth is open source as an optional component in Stim.1 It is implemented in Python3

with a dependency on Z3 4.12.1.0 [dB08]. Installing Kissat 3.1.0 [BF22] is required for the

recommended SAT solving path. Installing Stim ZX [Gid21] is optional for verifying the

stabilizers of LaS. The following evaluations are done on a Linux server with two AMD

EPYC 7V13 Processor and 512GB DRAM. We provide a summary of results before diving

into experimental details.

1https://github.com/quantumlib/Stim/tree/main/glue/lattice surgery
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Generic graph state generation provides a representative scenario for the intended use of

LaSsynth. A compiler in [LBM23] is tailored for a (logical) 2-lane architecture with careful

qubit initialization and optimal gate scheduling. LaSsynth outperforms this baseline by

56% on average across a comprehensive 8-qubit graph state benchmark set, as shown in

Figure 10.8. Our advantage lies in the smaller footprint per logical qubit, coupled with the

ability to establish more intricate connectivity for accessing them.

We can utilize LaSsynth to construct non-Clifford LaS by inputting non-Clifford resources

from ports. For instance, in the majority gate, an important LaS in Shor’s algorithm,

three ports consume a |CCZ〉. LaSsynth reduces volume by 40% compared to the design in

[GF19b]. The corresponding ZX diagram is challenging for human understanding because

of the creative use of generalized Hopf rule (see Figure 9.11c). Our ZX calculus verification

reaffirms the correctness of our result and actually reveals the error of the design in [GF19b].

We leverage LaSsynth to optimize T-factories, the dominating cost in FTQC. There are

some nuanced considerations at the non-Clifford input ports because of nondeterministic

state injections. Although we choose to get around these intricacies with very basic tech-

niques, LaSsynth still discovers a 15-to-1 T-factory, showcased in Figure 10.9, 8% smaller

than state-of-the-art design [FG19, GF19a]. If neglecting state injection delays, LaSsynth

discovers a design, as depicted in Figure 10.10b, 18% smaller than the state-of-the-art in this

setting [Lit19a], using a smaller footprint while maintaining the same depth.

The primary use case for LaSsynth is optimizing critical subroutines. Despite potential

exponential scaling of the internal SAT solving, it consistently outperforms human expert

designs at the scale of realistically significant subroutines, as evidenced by the presented

results. In essence, our advantage lies in more flexibility of allocating, moving, and recycling

code patches. As pipe diagrams, the human designs usually let the qubits stay put, i.e.,

forming “pillars” that vertically goes through the LaS, and lattice surgery is performed by

unit-time horizontal crossbars connecting to the pillars. In contrast, the vertical pipes in our

generated LaS can terminate and begin at will, so the solver explores a much larger design
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space, e.g., ancillas may not be immediately recycled, but squeezed and moved around to

interact with other qubits.

10.3.1 Methodology of Graph State Generation Evaluation

Hardware assumption. Aligning with the baseline [LBM23], there are 2 lanes of surface code

tiles available as workspace, each tile is d×d physical qubits. In our specification, this means

limiting max j = 2. Figure 9.10b provides an illustration, where the back lane is for (logical)

qubit output, and the front lane is ancillary.

Baseline approach. Liu et al. developed a compiler [LBM23] based on [Lit19a]: initial-

izing logical qubits in selective basis and then performing multi-qubit parity measurements

using lattice surgery. They observed that selecting the initialization basis is a Maximum

Independent Set problem (MIS). Given the initialization in Figure 9.10c, only the last two

stabilizers in Figure 9.10a require measurement. MIS is NP-hard, so, to be fair, we gave this

compiler the same amount of time as LaSsynth spends. In their setting, to enable measure-

ments in both the X and Z bases, the qubits must expose both types of boundaries to the

ancilla lane, necessitating 2-tile patches (on the right side of Figure 9.10c), pushing footprint

of their subroutine to 16×2=32.

Comprehensive benchmark set. There are 2n(n−1)/2 graphs for n nodes, but many of them

are equivalent up to single-qubit Cliffords. Our benchmarks are 101 graphs from a database

[CDL11] representing all the equivalence classes of 8-qubit graphs.

Our approach. Because of the 2-lane assumption, we specify 8×2 footprint along with the

graph state stabilizers to LaSsynth. We initiate the search at a depth of 3 and iteratively

adjust it based on the response—increasing depth if UNSAT or decreasing it if SAT—to

determine the optimal depth. The resulting LaS volume is then 8×2× the optimal depth.

Source of advantage. The baseline approach relies on 2-tile patches, doubling the required

footprint and placing it at a disadvantage. This necessity stems from the limitation of 1-tile
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patches, where only one basis is exposed to the ancilla at a time, posing a challenge for

human intuition to access all required bases effectively. LaSsynth overcomes this limitation

by employing domain walls (depicted as yellow rings) and intricate connectivity, as seen in

Figure 9.10b. In contrast, the baseline solutions would consist only of horizontal bars, i.e.,

parity measurements, connecting to some of the 8 qubits.

10.3.2 Methodology of Majority Gate Evaluation

Port requirements of the majority gate. To align with the use case in [GF19b] (see Fig-

ure 9.11a), some port location requirements must be met. Specifically, t and t′ must be

at the same height, so do a and a′, and cin and cout. The routed |CCZ〉 necessitates three

additional vertically aligned ports above them. These constraints imply max j ≥ 3 and

max k ≥ 5, leaving the only dimension that can shrink as I.

Importance of verification. To verify a design, LaSsynth extracts a ZX diagram, and

leverages Stim ZX to derive its stabilizers. When we read off the 5×3×5 design in [GF19b]

to a LaSre and give it to LaSsynth, verification fails, underscoring the susceptibility of human

designed LaS to errors and the practical challenges of manual verification, even for experts.

10.3.3 Methodology of T-Factory Evaluation

Fixups. When injecting |T 〉 in the surface code, half the time yields |T 〉, and the other half

yields |T †〉 [FG19]. Consequently, we may need to apply an S gate via Y cubes based on the

injection result. These dynamic cubes are not included in the formulation since they depend

on runtime information. We need to reserve space in the LaS for these cubes. How much

space and where is necessary to accommodate any of the 215 injection outcomes is an involved

topic. For simplicity, we adopt a straightforward technique illustrated in Figure 10.9: each

injection connects to a K-pipe and then bends inward to the rest of the pipe diagram. Fixups

for each injection can be attached where the pipe bends. We do not include the fixups to

225



b)

ZigXag

outputS fixup

T injection

Figure 10.9: Pipe diagram of a 15-to-1 T-factory with 9×4×4.5 spacetime volume generated

with LaSsynth. White boxes are magic state injections. An S fixup consists of conditional

K-pipes (gray) and Y cubes (green).

the specification and append the fixup layer after synthesis.

T-factory optimization results. The baseline design actually employs half-distance ro-

tation of tiles, which is not available in our formulation. Despite this disadvantage, by

iteratively calling LaSsynth with shrinking volume, we obtained solutions with volumes of

7×5×5=175 and 6×6×4.5=9×4×4.5=162. In Figure 10.9, we showcase one of the best de-

signs, 8% smaller than the baseline. We verified its ZX diagram using Stim ZX. Notably,

by avoiding half-distance rotations present in the baseline, this design opens opportunities

for using half-distance elsewhere. Thus, it is of interest to quantum error correction experts

to explore how to reduce the distance in regions of this design, potentially achieving further

improvements.

T-factory assuming no classical delay. Much of the preceding discussion delves into fixup

details. Ignoring classical injection delay, [Lit19a] presents a 121-volume factory design uti-

lizing 11 patches (Figure 10.10c top) and a depth of 11, with four injections from the bottom

and the remainder from the side (Figure 10.10a). Under the same assumption, LaSsynth
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a) b) c)
11-patch floorplan 
(Litinski’s)

9-patch floorplan 
(ours)

T injections

Figure 10.10: T-factory assuming no classical delay for injections. a) A generated design

with volume 121, same as [Lit19a]. b) Optimized design with 3×3×11 volume. c) Floorplan

comparison of the two designs.

derives a design (Figure 10.10b) with volume 3×3×11=99, achieving an 18% reduction by

using a smaller footprint (Figure 10.10c bottom) than the 121-volume design.

10.3.4 Observations on Runtime

Scalability metrics. The runtime of LaSsynth may scale unfavorably due to its dependence

on SAT solving. However, its target use case is frequently used subroutines rather than entire

algorithms, and the presented results demonstrate its effectiveness in solving significant and

realistic subroutines. Some runtimes are recorded in Table 10.1, where the formulation

yields a scaling factor, V nstab, i.e., the volume times the number of stabilizers. It is worth

noting that this column may appear slightly larger than expected because of padding layers

on boundaries to support ports or non-rectangular floorplans. While the 121-factory has a

larger V nstab than the 162-factory, it is a simpler problem to solve. A better indicator is the

number of variables and clauses of the generated SAT CNF.

Random seed: diversity matters. We employed 10 random seeds on the same CNF, and
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Table 10.1: Size and runtime of LaSsynth for presented non-Clifford designs

Problem V nstab Variables Clauses Min Time (s) Standard Deviation

Majority 720 8173 56851 9.02 0.33

99-factory 1728 33650 248974 20.6 0.61

121-factory 2880 35657 267544 40.9 8.3

162-factory 2304 43070 326305 469 4E3

the standard deviations of the runtimes are presented in the last column of Table 10.1.

Notably, for the 162-factory, the runtime difference can be as much as 26 times, indicating

that multiple SAT solvers with different seeds may significantly expedite finding a solution,

justifying the use of portfolio-based SAT solving, e.g., [SS21].

To UNSAT or not, it is a question. Unsatisfiable specifications took longer than sat-

isfiable ones. In Figure 10.8, it is noticeable that long runtimes consistently accompany a

‘spike’ in volume. These instances represent cases where LaSsynth initiates with a depth of

3, requires a relatively lengthy period to determine unsatisfiability, and subsequently discov-

ers a solution with depth 4. Generally, this is the price to pay for the optimality guarantee.

For scenarios where optimal solutions are not strictly necessary, prioritizing satisfiability

initially—such as with incomplete approaches like MaxSAT, or iterative shrinking a design

while retaining learned information—can be more beneficial in obtaining good designs effi-

ciently.

10.4 Related Works

[HND17] first provided a compiler that takes in ICM (initialization, CNOT, and measure-

ment) representation and translates the gates to lattice surgery operations. Later on, re-

searchers opt for a more efficient operation with lattice surgery, multi-qubit Pauli measure-
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ments. Thus, a few works focused on implementing FTQC on a 2D grid of qubits with the

multi-qubit-Pauli-based gate set [BMT22, CC22, FG19, Lit19a]. [LN22] still used this gate

set but discussed the advantage of having non-local connectivity. In terms of software, [PF20]

provided an instruction set for this gate set and [WNS23] provided a compiler. However, as

we demonstrated above, it is beneficial to consider optimizations beyond this gate set.

Some previous works focused on improving specific components, not generic quantum

circuits. Since the magic state factories take up a lot of volume, they have become a natural

target for such optimizations. [Lit19b] further developed the aforementioned technique of

selectively reducing code distances, which can be applied in combination with the optimiza-

tions we present in this chapter. [GF19a] considered the interplay of T-factories with |CCZ〉-
factories and presented improved factory designs. [GF19b] provided further improvements

on |CCZ〉-factories. However, all these works are manual efforts instead of an automated

synthesizer.

There is a similar line of works for defect based FTQC on surface codes [FMM12]. The

compilation problem is formulated as routing FTQC components [PDF16]. After a manual

approach of bridge compression was proposed [FD13], researchers encoded the problem to

integer linear programming [HLT21, LYL18], which is another kind of mathematical pro-

gramming than SAT. Heuristic compilation approaches have been presented for optimizing

communication [HCJ21, JGH17, TMN17], or for T-factory [DHJ18]. However, defect-based

computation is phasing out because of higher overheads than lattice surgery [Lit19a, FG19].

[SC22] utilizes an SMT solver to synthesize fault-tolerant Clifford circuit in a bottom-up

fashion like this chapter. However, the gate set consists of CNOT, X, Y , Z, S, and H, quite

different from generic lattice surgery operations in this chapter.
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CHAPTER 11

Conclusion and Outlook

This dissertation focuses on layout synthesis for quantum computing, a critical compilation

task that transforms quantum programs to adhere to the connectivity constraints of various

quantum computing architectures. It covers layout synthesis for three types of architectures:

those with static coupling graphs, dynamically field-programmable qubit arrays based on

neutral atoms, and a fault-tolerant architecture using 2D surface codes. Each of these

formulations has spurred distinct lines of research and development.

Development of SMT-based Tools. Converting layout synthesis problems into sat-

isfiability modulo theories models has led to the creation of specialized tools such as OLSQ,

OLSQ-DPQA, and LaSsynth. These tools are designed to find optimal solutions on limited

scale layout synthesis problems. They prove particularly useful in cases where optimality is

critical, albeit within the constraints of smaller, more manageable problem sizes.

Insights Leading to Scalable Compilers. The formulations we invent provide valu-

able insights into the architectural constraints, facilitating the development of efficient and

high-quality compilers like Enola. These compilers can handle large-scale layout synthesis

problems, addressing the need for broader application scopes.

Benchmark Construction for Tool Evaluation. The formulation process has also en-

abled the construction of benchmarks with specific properties, such as QUEKO benchmarks,

which possess known optimal solutions. These benchmarks are instrumental in measuring

and enhancing the effectiveness and optimality of various layout synthesis tools, providing a

standard against which tool performance can be rigorously evaluated.
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Future directions point to the necessity of further development in layout synthesis, es-

pecially for architectures based on neutral atoms which are characterized by their highly

dynamic nature. As more levels of abstraction are integrated into fault-tolerant quantum

computing, the complexity and scope of layout synthesis are also expected to expand.
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