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PRODUCT VACUA AND BOUNDARY STATE MODELS IN d-DIMENSIONS

SVEN BACHMANN, EMAN HAMZA, BRUNO NACHTERGAELE, AND AMANDA YOUNG

Abstract. We introduce and analyze a class of quantum spin models defined on d-dimensional
lattices Λ ⊆ Zd, which we call Product Vacua with Boundary States (PVBS). We characterize their
ground state spaces on arbitrary finite volumes and study the thermodynamic limit. Using the
martingale method, we prove that the models have a gapped excitation spectrum on Zd except for
critical values of the parameters. For special values of the parameters we show that the excitation
spectrum is gapless. We demonstrate the sensitivity of the spectrum to the existence and orientation
of boundaries. This sensitivity can be explained by the presence or absence of edge excitations.
In particular, we study a PVBS models on a slanted half-plane and show that it has gapless edge
states but a gapped excitation spectrum in the bulk.

1. Introduction

Gapped ground state phases of quantum lattice systems are receiving much renewed attention
lately because they may support topological order, a feature of interest as a potential path to
realizing robust quantum memory [18]. Particular effort has been devoted to classifying gapped
ground state phases [1, 3, 7, 8, 11,13,14,17,24].

In this work we generalize the class of models introduced in [2], called Product Vacua with
Boundary States (PVBS), to higher dimensions and provide a proof for a subclass of these models
that they have a non-vanishing gap above the ground state. These models are quantum spin systems
with nearest neighbor interactions defined on Zd. The bulk ground state is a simple product state
(the vacuum) but there is also an interesting structure of edge states. These models are defined in
Section 2.

PVBS models have in common with many other examples of multidimensional models with known
or expected gapped ground states that they are frustration-free and that they can be considered
as particularly simple representatives of a ‘gapped ground state phase’. The PVBS models have a
product ground state, which we shall refer to as the vacuum. The excited states can be thought
as interacting particle states. Depending on the parameters and the shape of the domain or the
boundary condition, there may be an additional ground state carrying one particle. This particle
is bound to the edge of the domain. As was shown in [2] in one dimension, the number of such
boundary states is an invariant of gapped phases in the sense of [8]. Toy models of this type
are sometimes referred to in the literature as Renormalization Group Fixed Points (RGFP). Well-
known examples are the Toric Code model [18] and the models with Product of Entangled Pairs
(PEPS) ground states studied in [9,23,25,27]. In contrast to most of the previously studied models
for which a non-vanishing spectral gap is proved, the interaction terms of the PVBS models are not
mutually commuting and the excitations have a physical, in particular non-flat, dispersion relation.

The focus of the present paper is to prove the non-vanishing spectral gap and study the nature
of the edge states. Section 3 carries out a detailed discussion of the finite volume ground state
spaces and of their limits to various infinite volumes. In particular, we show that the ground
state degeneracy depends on the geometry of the infinite volume and on the presence of edges or
corners. Obtaining rigorous lower bounds for the spectral gap of multidimensional models with
non-commuting interaction terms has proved to be notoriously difficult. In this work we prove such
lower bounds for PVBS models with one species of particles in d-dimensions on infinite volumes that
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2 S. BACHMANN, E. HAMZA, B. NACHTERGAELE, AND A. YOUNG

are obtain as limits of rectangular boxes. We use the martingale method from [21] to accomplish
this in Section 4. In Section 5 we show that PVBS models defined on specific infinite volumes, such
as the half-infinite plane with a 45 degree boundary, that have the exact the same interactions as
the PVBS models that we prove are gapped in Section 4, can have a gapless excitation spectrum,
meaning the GNS Hamiltonian has gapless spectrum. It is then also clear that, in both finite and
infinite volumes, the size of the gap above the ground state(s) depends on the shape of the domain
and, specifically, on the orientations of its edges.

It is important that the ground state and spectral gap for the PVBS models are stable under
small perturbations of the interactions. The essential ingredient in proving stability for frustration-
free models in [20] is the so-called ‘Local Topological Quantum Order’ condition, which we prove
holds for the ground states of the PVBS models in Section 6. We conclude the paper by clarifying
the fundamental difference between two possible ways of closing the gap in PVBS models. The
first, the vanishing of the gap at a critical value of the coupling (here λ = 1) is a bulk phenomenon.
The second involves the geometry of the boundary of the system and the gap closes due to edge
excitations. As we explain, in the second case the ‘bulk gap’ stays open.

2. General Setup and Results

2.1. The d-Dimensional PVBS Model. The class of quantum spin chains introduced in [2],
called Product Vacua with Boundary States (PVBS), has an (n + 1)- dimensional state space at
each site for which n ≥ 1 denotes the number of particle species in the model, labeled i = 1, . . . , n.
At most one particle may occupy a given site at any time. If a particle of species i occupies site x,
the state at site x is denoted by |i〉, and if no particle occupies the site, then the state is denoted
by |0〉. The Hamiltonian for a chain of L spins is given by

H[1,L] =
L−1∑
x=1

hx,x+1,

where hx,x+1 acts non-trivially on the states of the nearest neighbor pair at sites x and x + 1 by
a copy of the interaction term h. The interaction h contains both hopping terms for the particles
and a repulsive interaction between two particles of the same species occupying neighboring sites.
Specifically, h is of the form

(2.1) h =
n∑
i=1

|φ̂i〉〈φ̂i|+
∑

1≤i≤j≤n
|φ̂ij〉〈φ̂ij |,

where the vectors φij ∈ Cn+1 ⊗ Cn+1 are given by

φi = |0, i〉 − λi|i, 0〉, φij = λi|i, j〉 − λj |j, i〉, φii = |i, i〉

for i = 1, . . . , n and i 6= j = 1, . . . , n. The parameters satisfy λi ≥ 0, for 0 ≤ i ≤ n, and we put
λ0 = 1 for later convenience. The notation φ̂ denotes the normalized vector ‖φ‖−1φ. Although the
two groups of terms in (2.1) are of the same form, we separated them to emphasize their individual
roles. The first sum describes the hopping of each particle species, while the second contains the
pair interactions.

We are interested in defining higher-dimensional PVBS models. To do this we consider finite
connected subsets Λ ⊆ Zd as oriented graphs with edges of the form (x,x+ek), where ek, 1 ≤ k ≤ d,
are the canonical basis vectors of Zd. For each oriented edge (x,x + ek) of a graph Λ, we then
consider an interaction term of the same form as that of the one-dimensional model defined in (2.1):

(2.2) HΛ =
∑
x∈Λ

∑
k=1,...d
x+ek∈Λ

h
(k)
x,x+ek
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Here, for each direction k = 1, . . . d, we may choose different values for the parameter, say λ(i,k),
appearing in the PVBS interaction (2.1).

As in the one-dimensional case, the ground states space of HΛ is equal to its kernel and can
be explicitly constructed. If Λ is connected, has at least n vertices, and λ(i,k) ∈ (0,∞) for all
i = 1, . . . , n and k = 1, . . . , d, then the dimension of the ground state space is 2n. Under these
assumptions, the ground state space has a basis {ψΛ

M} labeled by the subsets M ⊂ {1, . . . , n}. For
M = ∅, we have

ψΛ
∅ =

⊗
x∈Λ

|0〉.

For M = {i1, . . . , im}, the corresponding ground state vector is given by

ψΛ
M =

∑
y1,...,ym∈Λ
yj 6=yi if i 6=j

m∏
j=1

d∏
k=1

λ
yjk
(ij ,k)ξ(M,y1, . . . ,ym)(2.3)

yj = (yj1 , . . . , yjd),

where y1, . . . ,ym ∈ Λ, all yj distinct, ξ(M,y1, . . . ,ym) denotes the unit vector with a particle of

type ij in position yj . It is straightforward to check that h
(k)
x,x+ek

ψΛ
M = 0, for all pairs {x,x+ek} ⊂ Λ.

Therefore, the vectors (2.3) are 2n mutually orthogonal zero-energy ground states of (2.2). More
details on the ground state space for the one-species case are given in Section 3.

The scope of this paper will be to describe various properties of the d-dimensional PVBS model
with a single species of particle. For the single species model, the local Hilbert space at each site x
is then C2 and we can simplify the notation and the definition of the Hamiltonian as follows. We
abbreviate λ(1,k) by λk, and write the Hamiltonian on any finite Λ ⊆ Zd as

(2.4) HΛ =

d∑
k=1

∑
x,x+ek∈Λ

h
(k)
x,x+ek

where h
(k)
x,x+ek

acts non-trivially on the states associated with the sites x, x + ek and is defined by

h
(k)
x,x+ek

= |1, 1〉〈1, 1|+ |φ̂k〉〈φ̂k|,(2.5)

φ̂k =
1√

1 + λ2
k

(|0, 1〉 − λk|1, 0〉) .(2.6)

The Hamiltonian HΛ preserves particle number, a fact that will be useful throughout the paper.
We define the following orthonormal basis for the Hilbert space of the one-species model, HΛ.

Let X ⊆ Λ where Λ is finite. We define ξΛ
X ∈ HΛ to be the product state vector with exactly |X|

particles occupying the sites x ∈ X, namely

(2.7) ξΛ
X =

⊗
x∈Λ

|ξΛ
X(x)〉 with ξΛ

X(x) =

{
1 x ∈ X
0 x ∈ Λ \X

We refer to the basis {ξΛ
X : X ⊆ Λ} as the canonical orthonormal basis BΛ of HΛ. Note that

contrary to the one-dimensional PVBS models discussed above, there is only one particle species
here and the label X refers to their positions.

In the case of a single-species PVBS model defined on a finite connected graph Λ ⊆ Zd with
λk ∈ (0,∞) for k = 1, . . . , d, the ground state space is two-dimensional. The normalized ground
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state space vectors are given by

(2.8) ψΛ
0 = ξΛ

∅ =
⊗
x∈Λ

|0〉, ψΛ
1 =

1√
CΛ

∑
x∈Λ

λxξΛ
{x}

where

(2.9) C(Λ) =
∑
x∈Λ

λ2x,

with, for any x = (x1, x2, . . . , xd) ∈ Zd, λx =
∏d
k=1 λ

xk
k . Note that the subscript 0, 1 refers here to

whether or not the ground state has a particle.
We briefly comment on the assumption λk > 0. First, if some but not all of the λk = 0, then

there exist finite connected Λ ⊆ Zd on which the model has other ground states in addition to
the ones given by (2.7). These additional ground states correspond to ‘stuck particles’ and do not
appear to be of particular interest to us. Second, the model with complex parameters λk ∈ C is
unitarily equivalent to the model with each parameter replaced by its absolute value. Therefore,
we can restrict our attention to the case of λk > 0, for all k = 1, . . . , d.

2.2. Other Representations. The model with one species of particles we study here is equivalent
to an XY model with a particular choice of magnetic field. In fact, our analysis applies to the
following family of models of XXZ type as long as the additional parameter ∆ > −1. With the
same notations as in (2.5), the generalization is defined by

HΛ(∆) =
d∑

k=1

∑
x,x+ek

h
(k)
x,x+ek

(∆)(2.10)

h
(k)
x,x+ek

(∆) =(1 + ∆)|1, 1〉〈1, 1|+ |φ̂k〉〈φ̂k|,(2.11)

=− λk
1 + λ2

k

(S+ ⊗ S− + S− ⊗ S+) + ∆S3 ⊗ S3

+

(
λ2
k

1 + λ2
k

+
∆

2

)
S3 ⊗ 1l +

(
1

1 + λ2
k

+
∆

2

)
1l⊗ S3

+
1

2

(
1 +

∆

2

)
1l⊗ 1l.

The PVBS models are recovered by setting ∆ = 0, yielding a representation of the PVBS interaction
in terms of the spin operators with the convention that S3|1〉 = (1/2)|1〉 and S3|0〉 = −(1/2)|0〉.

Alternatively, the model can be written in terms of creation and annihilation operators for hard-
core bosons on the lattice, which is why the particle language is natural. We let

a∗x = S+
x , ax = S−x , nx = a∗xax = S3

x + 1/2,

for any x ∈ Λ. With these operators,

h
(k)
x,x+ek

=
1

2
+

1

1 + λ2
k

[
λ2
knx − λk(a∗xay + a∗yax) + ny

]
(2.12)

=
1

2
+

1

1 + λ2
k

(λkax − ay)∗ (λkax − ay) .(2.13)

Despite the appealing appearance of this expression, the interaction is not quadratic in bosonic
creation and annihilation operators due to the hard-core constraint, namely a∗|1〉 = 0. Hence, it
cannot be diagonalised by a Bogoliubov transformation.
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2.3. Results. We extend some of the results for the one-dimensional PVBS models, in particular
the lower and upper bounds for the spectral gap above the ground states, to the d-dimensional
models. We also describe some new phenomena related to gapless edges states that only occur for
d > 1.

We first prove that the ground state space is, in fact, two-dimensional and spanned by the
orthonormal states given in equation (2.8). We then discuss the thermodynamic limit taken over
different sequences of finite volumes. The nature of the ground states on infinite systems and the
spectrum of low-lying excitations depends on the choice of the infinite volume, in particular on the
presence and the nature of boundaries. Our main results are the following.

Proposition 2.1 (Ground States on Finite Volumes). For the one-species PVBS model defined on
a finite, connected subset Λ ⊆ Zd as given in (2.4), and (2.5) with λk ∈ (0,∞) for all k = 1, . . . , d,
the ground state space GΛ is given by the kernel of HΛ, is two dimensional, and spanned by

(2.14) ψΛ
0 =

⊗
x∈Λ

|0〉, ψΛ
1 =

1√
C(Λ)

∑
x∈Λ

λxξΛ
{x}

where C(Λ) is the normalization constant defined in (2.9).

We are interested in the ground states defined for the system on infinite subsets Γ ⊆ Zd, that
can be obtained as weak limits of the finite volume ground states associated with the vectors
ψΛ

0 and ψΛ
1 of (2.14). Such limits are taken over increasing sequences of finite subsets Λn → Γ.

Regardless of the infinite volume Γ to which the sequence Λn increases, the sequence of functionals
ωΛn

0 (·) = 〈ψΛn
0 , ·ψΛn

0 〉 will converge to the product state ωΓ
0 (·) such that with respect to its the

GNS representation (πΓ
0 , HΓ

0 , ΩΓ
0 ), it is given by the vector state

(2.15) ωΓ
0 (·) =

〈
ΩΓ

0 , πωΓ
0
(·) ΩΓ

0

〉
.

Depending on Γ and the value of the parameters λk, one of two possible scenarios is realized
for the thermodynamic limit of the one-particle ground state ωΛn

1 (·) = 〈ψΛn
1 , ·ψΛn

1 〉. Either, it also
converges to the product vacuum, in which case ωΓ

0 is the unique limiting zero-energy ground state,
or it converges to a one-particle ground state which is realized by a unit vector ΩΓ

1 also in the GNS
space of the product vacuum ωΓ

0 . The state ΩΓ
1 is orthogonal to ΩΓ

0 and represents the particle in a
bound state. We will refer to the first possibility as Scenario I and the second as Scenario II. An
example of Scenario I is given by Γ = Zd in which case the product vacuum is the unique ground
state in the thermodynamic limit. An explicit expression of ΩΓ

1 ∈ HΓ
0 in Scenario II is given by

(2.16) ΩΓ
1 =

1√
C(Γ)

∑
x∈Γ

λxπωΓ
0
(σ1

x)ΩΓ
0

where C(Γ) =
∑

x∈Γ λ
2x and σ1

x is the first Pauli matrix.

From the expression for ψΛ
1 , it is clear that the probability amplitude for the particle in the

one-particle ground state is concentrated on the sites x in Λ where λx is maximized. If Λ is a
rectangular box and all λk 6= 1, then the particle will concentrate in a corner. It is then easy to see
that an example of Scenario II is realized if all λk ∈ (0, 1), and the thermodynamic limit is taken
over an increasing sequence of hypercubes of the form Λn = [0, n]d. The thermodynamic limit of
the one-particle ground states then shows a particle in a bound state concentrated at the origin
of Γ = [0,∞)d ⊂ Zd. Which scenario, I or II, that occurs for a given infinite volume Γ and set of
model parameters is summarized by the following proposition.

Proposition 2.2. Let Γ be an arbitrary infinite lattice and let (Λn)n∈N be a sequence of increasing
and absorbing finite sets converging to Γ. Then, in the weak-* topology,

i. (Scenario I): If limn→∞C(Λn) = +∞, then ωΛn
1 → ωΓ

0 ,
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ii. (Scenario II): If limn→∞C(Λn) < +∞, then ΩΓ
1 ∈ HΓ

0 ,
〈
ΩΓ

1 ,Ω
Γ
0

〉
= 0 and ωΛn

1 → ωΓ
1 where

ωΓ
1 (·) =

〈
ΩΓ

1 , π
Γ
0 (·) ΩΓ

1

〉
.

The excitation spectrum of the model defined on an infinite volume Γ ⊂ Zd with respect to a
ground state ω is defined as the spectrum of the GNS Hamiltonian, Hω, i.e., the densely defined
self-adjoint operator on the GNS Hilbert space Hω, that generates the dynamics of the infinite
system and is such that HωΩω = 0. We say that there is a spectral gap above the ground state ω
if there exists a δ > 0 such that

spec(Hω) ∩ (0, δ) = ∅.
In this situation the spectral gap, γ, is defined by

(2.17) γω = sup{δ > 0 : spec(Hω) ∩ (0, δ) = ∅}.

If such δ > 0 does not exists we put γ = 0 and say that the ground state has gapless excitations.
We will show that any infinite volume obtained as a limit of increasing rectangular boxes will

have a nonzero gap in the associated excitation spectrum given that λk 6= 1 for all k = 1, . . . , d.
Specifically, this indicates that both Γ = [0,∞)d and Γ = Zd will have gapped excitation spectrum
given that no λk = 1. Hence, a gapped excitation spectrum can arise for models belonging to
both scenarios I and II. We believe the excitation spectrum is gapped for any model categorized by
Scenario II. However, we present other cases of Scenario I that have a gapless excitation spectrum
above the ground state even if λk 6= 1, for all k = 1, . . . , d. For example, the thermodynamic limit
of diamond shaped Λn ⊂ Z2 with λ1 = λ2 ∈ (0, 1] discussed in Section 5, has gapless excitations
above the unique ground state.

In the following proposition, which we prove in sections 4 and 5, the key tools to studying the
spectral gap are the upper and lower bounds for the system on rectangular boxes of the form
ΓN = [0, N1]× · · · × [0, Nd] ⊂ Zd, N1, . . . , Nd ≥ 1. Let γ(Γ) denote the spectral gap of the system
defined on Γ, namely the spectral gap of the Hamiltonian (2.4) for finite systems and that of the
GNS Hamiltonian HΓ

0 of the corresponding vacuum state ωΓ
0 in the case of an infinite system. Let

Bd be the d-dimensional unit hypercube in Zd.

Theorem 2.3 (Bounds for the Spectral Gap).
For the PVBS model with local Hamiltonians defined in (2.4), and λk ∈ (0,∞), k = 1, . . . , d, we
have the following bounds on the spectral gap:
(i) For any finite rectangular solid Γ = ΓN, or any infinite Γ ⊂ Zd that can be obtained as the limit
of a sequence of increasing rectangular solids (i.e., translations of finite volumes ΓN), we have the
following lower bound:

(2.18) γ(Γ) ≥ γ(Bd)

2d

d∏
k=1

(1− ε(λk)
√

2)2

where

(2.19) ε(λk) =


λk√
1+λ2

k

λk < 1

1√
1+λ2

k

λk > 1

(ii) For the model on Zd, the gap of the GNS Hamiltonian satisfies the upper bound

(2.20) γ(Zd) ≤
∑

k:λk 6=1

(1− λk)2

1 + λ2
k

.

In particular, it gapless if λk = 1 for all k.
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Note that there is a discrepancy between the upper and lower bounds of the theorem, namely
the lower bound is equal to zero as soon as one of the model parameters is equal to 1, while the
upper bound vanishes only if all of them equal 1. This is due to the fact that the lower bound is
a finite volume calculation while the upper bound is a true infinite volume statement. While in
finite volume, there is a zero-energy state in the one-particle subspace, this is no longer true in the
GNS Hilbert space of the model on Zd. Observe that the restriction of the Hamiltonian for finite or
infinite rectangular solids to the one-particle sector is separable in the sense that it is a sum of terms
each of which acts on one of the particle’s coordinates only. Hence, it is possible in finite volume
to construct a vector in the one-particle space which is a ground state of the terms corresponding
to all but one coordinate directions, but such a vector does not exist in the GNS space for the
model on Zd, and any variational state in the one-particle sector there will have an energy which
is at least the sum of all one-dimensional gaps. This suggests that the GNS Hamiltonian on Zd is
gapless only if all model parameters are equal to one.

The upper bounds in this proposition are proved in the usual way by constructing suitable
variational states. For the lower bounds we use the martingale method of [21]. The constant γ(Bd)
is positive by definition. For example, when d = 2,

γ(B2) = 2−

√
1 +

4λ1λ2

(1 + λ2
1)(1 + λ2

2)
.

We comment on the extension of our results to the XXZ formulation given in (2.10)-(2.11). The
ground state space for this extension is the same as the ground state space for the one species,
d-dimensional PVBS model as long as ∆ > −1. As the martingale method is a calculation on the
ground state space of a model, it follows that the spectral gap claim from Theorem 2.3(i) also holds
for this more general case with the slight modification that the constant γ(Bd) is the spectral gap
of the generalized Hamilonian HBd

(∆).
We also show that the presence of edge states can cause the spectrum in the thermodynamic

limit to be gapless. In Section 5 we consider the PVBS models on D∞ = {(x, y) : y ≥ −x} ⊆ Z2

with λ1 = λ2 ∈ (0, 1) for which Scenario I is realized, and we prove that the excitation spectrum of
the GNS Hamiltonian is gapless. Under the latter condition, a particle can ‘bind’ to one of the 45
degree boundaries while remaining delocalized on the boundary. This gives rise to a gapless band
of edge states.

Specifically, we consider a sequence φL ∈ HD∞0 of one-particle states in the GNS Hilbert space
for which the particle is confined to a finite diamond DL ⊂ Γ, see Figure 1 in Section 5. We show
that that the energy EL = ‖φL‖−1〈φL, HD∞

0 φL〉 is of the order L−2, showing that the excitation
spectrum of the GNS Hamiltonian is gapless in this case.

Proposition 2.4. Let d = 2, and λ1 = λ = λ2 where λ ∈ (0, 1). Then the GNS Hamiltonian of
the one-species PVBS model is gapless on D∞ = {(x, y) : y ≥ −x}.

Due to the symmetry of the model, the spectrum remains unchanged if λk → λ−1
k and xk → −xk.

Therefore, similar statements about the ground states and the excitation spectrum can also be made
for the model defined on suitable lattices with coupling constants in (1,∞).

3. Ground State Space

Since we consider the one species class of models, the Hilbert space at any site x ∈ Zd is a copy
of C2. Let Λ be any finite connected subset of Zd. For 0 ≤ N ≤ |Λ|, let

HNΛ := span
{
ψΛ
X : |X| = N

}
,

which we refer to as the N -particle subspace. Clearly, HΛ = ⊕0≤N≤|Λ|HNΛ . The interactions defined

in (2.5) are such that HΛHNΛ ⊂ HNΛ . Thus, the Hamiltonian preserves particle number.
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By the definition of the Hamiltonian, HΛξ
Λ
∅ = 0. Since the Hamiltonian HΛ is a sum is a positive

semi-definite operators, HΛ ≥ 0, the ground state space GΛ is given by its non-empty kernel

ker(HΛ) =
⋂

k=1,...,d
x,x+ek∈Λ

ker(h
(k)
x,x+ek

).

In other words,

(3.1) ψ ∈ GΛ iff h
(k)
x,x+ek

ψ = 0 for all x, k such that {x,x + ek} ⊂ Λ.

Proof of Proposition 2.1. Since the Hamiltonian preserves particle number we can just look for
solutions of (3.1) in each N-particle subspaces HNΛ separately.

(i) N = 0. H0
Λ = {CξΛ

∅ } is one-dimensional and we have already seen that ψΛ
0 = ξΛ

∅ is a ground
state.

(ii) N = 1. Any ψ ∈ H1
Λ has an orthogonal expansion of the form

ψ =
∑
x∈Λ

axξ
Λ
{x}

and for this case, the equations given in (3.1) are equivalent to the following equations for the
coefficients ax:

(3.2) ax+ek = λkax, for all x, k such that {x,x + ek} ⊂ Λ.

The equations

(3.3) ax = λx where λx =

d∏
k=1

λxkk ,

are a non-zero solution to (3.2). We argue that this is the only linearly independent solution in
H1

Λ. Since Λ is connected, for any two distinct x,y ∈ Λ, there is a path x = x0 → x1 → . . . →
xn = y contained in Λ such that for all i = 0, . . . , n − 1, xi+1 = xi + pieki where pi ∈ {±1} and
ki ∈ {1, . . . , d}. This implies that y − x = (n1, n2, . . . , nd) where nk =

∑
i, ki=k

pi and applying

(3.2) shows

ay = λy−xax.

Hence, the solution of (3.2) is unique up to a multiplicative constant.
(iii) N ≥ 2. Any ψ ∈ HNΛ has an expansion of the form

ψ =
∑

X⊂Λ,|X|=N

aXξ
Λ
X .

Due to the first term in the general interaction defined in (2.5), the equations (3.1) imply that
aX = 0 whenever X contains a nearest neighbor pair. In particular, for a connected Λ with at least
two sites, it follows that there are no non-zero solutions with N = |Λ|. Consider any X a subset of
Λ such that it contains no nearest neighbor pairs and |X| = N < |Λ|. Fix x ∈ X and let x′ ∈ Λ\X
be a nearest neighbor of x, i.e., x′ = x + pek, for some p ∈ {−1,+1} and k ∈ {1, . . . , d}. Let X̃
denote the set obtained from X by replacing x with x′. The equations (3.1) then imply

(3.4) aX̃ = λpkaX .

Since |X| ≥ 2 and Λ is connected, for any pair of distinct sites x,y ∈ X there is a path x = x0 →
x1 → . . . → xn = y contained in Λ such that for all i = 0, . . . , n − 1, xi+1 = xi + pieki with
pi ∈ {±1} and ki ∈ {1, . . . , d}. For any x ∈ X, pick a y ∈ X such that there is connecting path in
Λ of shortest length among all paths in Λ connecting x to a site of X \{x}. For such y, the shortest
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connecting path contained in Λ satisfies {x1, . . . ,xn−1} ⊂ Λ \X. By moving y along this path to
the position x1, which is nearest neighbor to x and applying (3.4) at each step, we conclude

aX = λy−xλ−p1

k1
aX′

with X ′ a set containing the nearest neighbor pair {x,x1}. As argued above, aX′ = 0 and since
λk 6= 0 for all k we conclude that aX = 0. Hence, there are no ground states with N ≥ 2. �

In Proposition 2.1 we have assumed that λk > 0 for all k = 1, . . . , d, and we will continue to
make that assumption throughout the rest of the paper. Note that if some of the λk vanish, there
may be additional solutions of the equations (3.2). This happens, e.g., when there are sites for
which the only outgoing edges are in the coordinate directions k and the associated λk = 0.

We now turn to the proof of Proposition 2.2:

Proof. Let A ∈ Aloc, and X = supp(A). Then,

(3.5) ωΛn
1 (A) =

1

C(Λn)

[ ∑
x,y∈X

λx+y
〈
ξΛn

{x}, Aξ
Λn

{x}

〉
+

∑
x∈Λn\X

λ2x
〈
ξΛn

∅ , AξΛn

∅

〉 ]
.

Since X is a finite set, both scalar products above do not depend on n. The first sum is a finite
constant, independent on n, while the second is equal to C(Λn \ X)ωΓ

0 (A). As n → ∞, the first
term tends to zero if and only if C(Λn)→∞. Furthermore, and again since X is finite, C(Λn \X)
and C(Λn) are either both convergent or both divergent. In the latter case

lim
n→∞

C(Λn \X)

C(Λn)
= 1.

Hence, if C(Λn)→∞, then ωΛn
1 (A)→ ωΓ

0 (A).

On the other hand, if C(Γ) := limn→∞C(Λn) < +∞, then ωΛn
1 (A) converges, but limn→∞ ω

Λn
1 (A) 6=

ωΓ
0 (A). Let ΩΓ

1 be the formal expression (2.16). Since∥∥∥∥∑
x∈Γ

λxπωΓ
0
(σ1

x)ΩΓ
0

∥∥∥∥ ≤∑
x∈Γ

λ2x <∞,

as (σ1
x)∗σ1

x = 1, we see that ΩΓ
1 is a well-defined vector and ΩΓ

1 ∈ HωΓ
0
. Moreover,〈

ΩΓ
0 ,Ω

Γ
1

〉
H

ωΓ
0

=
∑
x∈Γ

λxωΓ
0 (σ1

x) =
∑
x∈Γ

λx
〈
0, σ1

x0
〉
Hx

= 0.

It remains to prove that ωΛn
1 converges to the vector state given by ΩΓ

1 . Since ξΛn

{x} = σ1
xξ

Λn

∅ , we

have that

ωΛn
1 (A) =

1

C(Λn)

∑
x,y∈X

λx+y〈ξΛn

∅ , σ1
xAσ

1
yξ

Λn

∅ 〉+
C(Λn \X)

C(Λn)

〈
ξΛn

∅ , AξΛn

∅

〉
.

So if C(Λn) converges, then

lim
n→∞

ωΛn
1 (A) =

1

C(Γ)

∑
x,y∈X

λx+yωΓ
0 (σ1

xAσ
1
y) +

C(Γ \X)

C(Γ)
ωΓ

0 (A)

=
1

C(Γ)

∑
x,y∈Γ

λx+y
〈
πωΓ

0

(
σ1
x

)
ΩΓ

0 , πωΓ
0

(A)πωΓ
0

(
σ1
y

)
ΩΓ

0

〉
= ωΓ

1 (A),

which concludes the proof for Scenario II. �
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We note that the first term in (3.5) corresponds to the projection
∑

x∈X |ξ
Λn

{x}〉〈ξ
Λn

{x}|, and produces

the probability of finding the particle within X. Hence the theorem could be restated as follows:
ωΛn

1 converges to the vacuum state if and only if the probability to find the particle within any
fixed finite volume tends to 0 as Λn → Γ.

To conclude this section we show that in Scenario II, any infinite volume ground state obtained
as a weak-* limit of finite volume ground states is realized as a vector in the GNS Hilbert space
that is a linear combination of the two vectors ΩΓ

0 and ΩΓ
1 . Let ω be the weak-* limit of a sequence

of finite volume ground state functionals ωΛn
an,bn

(·) = 〈ψn, ·ψn〉 which are generated by normalized

vectors ψn = an ψ
Λn
0 + bn ψ

Λn
1 ∈ GΛn . We call such ω zero-energy ground states. Since {an} and

{bn} are bounded sequences in C, there exists some subsequence ni such that ani → a, and bni → b
for some a, b ∈ C. Now,

ω(A) = lim
i→∞

ω
Λni
ani ,bni

(A) = |a|2ωΓ
0 (A) + |b|2ωΓ

1 (A) + lim
i→∞

[
anibni

〈
ψ

Λni
0 , Aψ

Λni
1

〉
+ c.c.

]
.

But by the argument above,

lim
i→∞

〈
ψΛn

0 , AψΛn
1

〉
=
∑
x∈Γ

λxωΓ
0 (Aσ1

x) =
〈

ΩΓ
0 , πωΓ

0
(A)ΩΓ

1

〉
,

so that, altogether,

ω(A) =
〈

ΩΓ
ω, πωΓ

0
(A)ΩΓ

ω

〉
,

where ΩΓ
ω := aΩΓ

0 + bΩΓ
1 .

This result proves, in particular, that if ΩΓ
1 converges as a vector in the GNS space of ωΓ

0 ,
the associated vector state is a second pure ground state, which we denote by ωΓ

1 . The GNS
representation of ωΓ

0 can also serve as the GNS representation of ωΓ
1 . The GNS Hamiltonian, which

we denote by HΓ
0 , has a kernel given by span{ΩΓ

0 ,Ω
Γ
1}. To see this one relies on the frustration free

property of the Hamiltonian. It follows that HΓ
0 is the sum of positive local terms, each of which

only act non-trivially on a nearest neighbor pair. It then follows from similar calculations done in
the finite volume case that the ground state space of HΓ

0 can be at most two-dimensional, and is
two-dimensional if and only if ΩΓ

1 converges.

4. Lower Bounds for the Spectral Gap

4.1. The Martingale Method. To prove the existence of a spectral gap in the thermodynamic
limit, we appeal to the following theorem.

Theorem 4.1. Let Hω be the GNS Hamiltonian of a zero-energy ground state ω for the model
defined on an subset Γ ⊆ Zd, and let γ(Γ) be the spectral gap of Hω as defined in (2.17). Then

γ(Γ) ≥ lim inf
N≥1

λ1(N)

where λ1(N) is the smallest nonzero eigenvalue of the frustration-free Hamiltonians HΛN
, and ΛN

is an increasing and absorbing sequence of finite volumes ΛN → Γ.

The martingale method provides a means for estimating the lower bound for the spectral gap
of the Hamiltonian HΛN

, for suitable finite volumes ΛN . To apply Theorem 4.1 to obtain a lower
bound for the infinite volume spectral gap γ(Γ), we need to find a sequence of absorbing finite
volumes ΛN for which the martingale method yields a uniform lower bound for the finite volume
spectral gaps. For a fixed finite volume ΛN , the martingale method requires a finite sequence of
volumes Λn that increase to ΛN , for which one can verify the following three conditions.

Conditions for the Martingale Method.
The following conditions must hold for a suitable value of l > 0.



d-DIMENSIONAL PVBS MODELS 11

(1) There exists a constant dl for which the local Hamiltonians satisfy

0 ≤
N∑
n=l

HΛn\Λn−l
≤ dlHΛN

.

(2) The local Hamiltonians HΛn have a non-trivial kernel GΛn ⊆ HΛn and a nonvanishing
spectral gap γl > 0 such that:

HΛn\Λn−l
≥ γl(I−GΛn\Λn−l

)

for all n ≥ nl. We denote by GΛn the orthogonal projection onto GΛn . For Λn ⊆ ΛN , GΛn

projects onto GΛn ⊗HΛN\Λn
.

(3) There exists a constant εl <
1√
l

and some nl such that for all nl ≤ n ≤ N − 1,

‖GΛn+1\Λn+1−l
En‖ ≤ εl

where En = GΛn −GΛn+1 .

Theorem 4.2 (The Martingale Method). Assume that conditions (1)-(3) are satisfied for the same
integer l. Then for any ψ ∈ HΛN

such that GΛN
ψ = 0, one has

(4.1) 〈ψ, HΛN
ψ〉 ≥ γl

dl
(1− εl

√
l)2‖ψ‖2.

A proof of Theorem 4.2 can be found in [21].

4.2. The Spectral Gap for PVBS Models on Rectangular Boxes. By virtue of Theorem
4.1, the proof of the lower bound in Theorem 2.3(i) will follow from appropriate lower bounds for
the spectral gap for the model on rectangular boxes, which is the focus of this section. Recall that
in the statement of the theorem we assume λk ∈ (0,∞). We additionally assume that λk 6= 1 for
all k as the lower bound in Theorem 2.3 is trivial if any value λk = 1.

Let N = (N1, . . . , Nd) with Nk ≥ 1 for all k. By the translation invariance of the PVBS models,
proving the lower bound (2.18) on any rectangular volume of the form

ΓN =
d∏

k=1

[0, Nk] ⊂ Zd

is sufficient to prove the lower bound for any d-dimensional rectangular solid. The remainder of
this section will be dedicated to proving the lower bound on the spectral gap for a PBVS model
defined on a general lattice of the form ΓN.

Proof of Theorem 2.3 (i). Define

Γ
(k)
N =

d−k∏
i=1

[0, Ni] ×
d∏

i=d−k+1

[0, 1].

and note that ΓN = Γ
(0)
N . Using the martingale method we prove for ε(λk) defined as in (2.19) that

(4.2) γ(ΓN) ≥
γ(Γ

(1)
N )

2
(1− ε(λd)

√
2)2.

By relabeling the axes and permuting the model parameters accordingly, the result (4.2) actually
proves

(4.3) γ(Γ
(k)
N ) ≥

γ(Γ
(k+1)
N )

2
(1− ε(λd−k)

√
2)2
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for 0 ≤ k ≤ d − 1. Additionally, since Γ
(d)
N = Bd, the unit hypercube, we will obtain the desired

uniform lower bound by recursively applying (4.3):

(4.4) γ(ΓN) ≥ γ(Bd)

2d

d∏
k=1

(1− ε(λk)
√

2)2.

Let Nd > 1, since if Nd = 1 the bound given in (4.2) is trivial since ΓN = Γ
(1)
N and 1

2(1 −
ε(λd)

√
2)2 < 1. As the sequence of finite volumes increasing to ΓN we choose

Λn =
d−1∏
i=1

[0, Ni]× [0, n]

for 1 ≤ n ≤ Nd. Note that ΛNd
= ΓN. We will use l = 2 to satisfy the conditions of the martingale

method. For this value of l, conditions (1) and (2) are easily verified since the PVBS Hamiltonians
have range-one interactions, are translation invariant and are furstration-free. Specifically, we find

dl = 2, and γl = γ(Γ
(1)
N ).

It remains to prove condition (3). For our choice of l this is equivalent to showing there exists an
ε < 1√

2
such that

(4.5) sup
ψ ∈GΛn∩G⊥Λn+1

‖GΛn+1\Λn−1
ψ‖2

‖ψ‖2
< ε2.

Let λ = (λ1, . . . , λd) be the collection of PVBS model parameters, and x = (x1, x2, . . . , xd) ∈ Zd.
In the discussion that follows, the definition of the following set and constants will be useful:

TN =
d−1∏
k=1

[0, Nk] ⊆ Zd−1(4.6)

C(TN) =
d−1∏
k=1

c(λk, Nk), where c(λk,m) =
m∑
i=0

λ2i
k .

Furthermore, for x ∈ TN, we define (x, xd) ∈ Zd to the be d-tuple obtained from appending xd to
x.

Recall the expressions for the ground states ψΛ
0 and ψΛ

1 given in (2.14). Since the ground state
space on any connected lattice consists of states with at most one particle, it is sufficient to only
consider vectors ψ ∈ GΛn ∩ G⊥Λn+1

in equation (4.5) that have at most one particle on Λn+1\Λn, as

vectors with more than one particle will be annihilated by GΛn+1\Λn−1
. The following is the general

form for the vector ψ of interest.

(4.7) ψ = b0ψ
Λn
1 ⊗ ψΛn+1\Λn

0 +
∑
x∈TN

[
axψ

Λn
0 ⊗ ξΛn+1\Λn

{(x,n+1)} + bxψ
Λn
1 ⊗ ξΛn+1\Λn

{(x,n+1)}

]
where

(4.8) b0 = − 1√
C(TN)c(λd, n)

∑
x∈TN

λ(x,n+1)ax.

Recall that GΛn+1\Λn−1
is of the form

GΛn+1\Λn−1
= |ψΛn+1\Λn−1

0 〉〈ψΛn+1\Λn−1

0 |+ |ψΛn+1\Λn−1

1 〉〈ψΛn+1\Λn−1

1 |
with

ψ
Λn+1\Λn−1

1 =
1√

(1 + λ2
d)C(TN)

∑
x∈TN

[
λ(x,0)ξ

Λn+1\Λn−1

{(x,n)} + λ(x,1)ξ
Λn+1\Λn−1

{(x,n+1)}

]
.
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Applying GΛn+1\Λn−1
to ψ yields

GΛn+1\Λn−1
ψ =

 b0λ
n
d√

c(λd, n)(1 + λ2
d)

+
∑
x∈TN

ax λ
(x,1)√

(1 + λ2
d)C(TN)

ψ
Λn−1

0 ⊗ ψΛn+1\Λn−1

1

+

∑
x∈TN

bx λ
(x,1)

√
c(λd, n− 1)√

c(λd, n)(1 + λ2
d)C(TN)

ψ
Λn−1

1 ⊗ ψΛn+1\Λn−1

1

+
b0
√
c(λd, n− 1)√
c(λd, n)

ψ
Λn−1

1 ⊗ ψΛn+1\Λn−1

0 .

Replacing b0 by the expression given in (4.8) and applying the Cauchy-Schwarz inequality, we
find that ‖GΛn+1\Λn−1

ψ‖2 is bounded above by

‖GΛn+1\Λn−1
ψ‖2 ≤

λ2
dc(λd, n− 1)

(1 + λ2
d)c(λd, n)

∑
x∈TN

(
|ax|2 + |bx|2

)
+

1

c(λd, n)C(TN)

∣∣∣ ∑
x∈TN

λ(x,n+1)ax

∣∣∣2


=
λ2
dc(λd, n− 1)

(1 + λ2
d)c(λd, n)

‖ψ‖2.

Hence,

sup
ψ∈GΛn∩G⊥Λn+1

‖GΛn+1\Λn−1
ψ‖2

‖ψ‖2
≤

λ2
dc(λd, n− 1)

(1 + λ2
d)c(λd, n)

.

We must consider the cases λd < 1 and λd > 1 separately. When λd < 1 we see that as n→∞
c(λd, n− 1)

c(λd, n)
−→ 1.

So for all n,
λ2
dc(λd, n− 1)

(1 + λ2
d)c(λd, n)

≤
λ2
d

1 + λ2
d

.

In this case, since 0 < λd < 1,
λ2
d

1+λ2
d
< 1

2 . In the case that λd > 1, taking the limit n→∞ produces

c(λd, n− 1)

c(λd, n)
−→ 1

λ2
d

.

Therefore, when λd > 1 we have that for all n

λ2
dc(λd, n− 1)

(1 + λ2
d)c(λd, n)

≤ 1

1 + λ2
d

.

Since λd > 1 it follows that 1
1+λ2

d
< 1

2 . Therefore, for all values of λd,

sup
ψ∈GΛn∩G⊥Λn+1

‖GΛn+1\Λn−1
ψ‖2

‖ψ‖2
≤ ε(λd)2 <

1

2

where ε(λd) is as defined in (2.19). Thus, the third condition of the martingale method is satisfied,
and by Theorem 4.2

γ(ΓN) ≥
γ(Γ

(1)
N )

2
(1− ε(λd)

√
2)2,

as desired. Then, appealing to equations (4.3) and (4.4), and Theorem 4.1 we obtain all of the
desired lower bounds of Theorem 2.3(i). �
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5. Upper Bounds and Closures of the Spectral Gap

In this section we prove the upper bound for γ(Zd) given in Theorem 2.3 as well as discuss two
ways in which the spectral gap can close. Specifically, we show that the PVBS models are gappless
if all λk = 1, and we prove Proposition 2.4 which shows through an example that the existence of
spectral gap in the thermodynamic limit is dependent on the boundary of the infinite lattice. We
use the variational principle in the GNS Hilbert space to prove both claims.

5.1. The Bulk Phase Transition. We first prove part (ii) of the theorem. By Proposition 2.2,
the ground state of the PVBS model is unique for all value of the parameters λ1, . . . λd. Let

(πZ
d

0 ,HZd

0 ,ΩZd

0 ) be its GNS representation. For any finite volume Λ, and any z = (zi, . . . zd), with

zi ∈ C, let ϕ̃Λ(z) ∈ HZd

0 be the vector given by

ϕ̃Λ(z) = πZ
d

0 (AΛ(z))ΩZd

0

where the local observable AΛ(z) ∈ AΛ is given by

AΛ(z) =
∑
x∈Λ

zxσ1
x.

We first note that〈
ϕ̃Λ(z),ΩZd

0

〉
=
∑
x∈Λ

zx
〈

ΩZd

0 , πZ
d

0

(
σ1
x

)
ΩZd

0

〉
=
∑
x∈Λ

zx
〈
0, σ1

x0
〉

= 0

so that ϕ̃Λ(z) is a good variational vector for any z ∈ Cd. Furthermore,

‖ϕ̃Λ(z)‖2 =
∥∥AΛ(z)ψΛ

0

∥∥2
=
∑
x∈Λ

|z|2x

and we shall denote ϕΛ(z) := AΛ(z)ψΛ
0 =

∑
x∈Λ zxξΛ

{x}. Finally,〈
ϕ̃Λ(z), HZd

0 ϕ̃Λ(z)
〉

= ωZd

0 (AΛ(z)∗δ(AΛ(z))) = ωZd

0 (AΛ(z)∗[HΛ(1) , AΛ(z)]) = 〈ϕΛ(z), HΛ(1)ϕΛ(z)〉

where we denoted Λ(1) := {x ∈ Zd : d(x,Λ) ≤ 1} and used that HΛ(1)ψΛ(1)

0 = 0.
For any x ∈ Λ and 1 ≤ k ≤ d such that x,x + ek ∈ Λ (i.e. the bulk terms) we compute

h
(k)
x,x+ek

ϕΛ(z) =
zx(zk − λk)

1 + λ2
k

(
ξΛ
{x+ek} − λkξ

Λ
{x}

)
so that

〈ϕΛ(z), HΛϕΛ(z)〉 =
∑
x∈Λ

|z|2x
d∑

k=1

(zk − λk)(z̄k − λk)
1 + λ2

k

.

For the boundary terms, we have for any 1 ≤ k ≤ d,〈
ϕΛ(z), h

(k)
x,x+ek

ϕΛ(z)
〉

=


λ2
k

1+λ2
k
|z|2x if x ∈ Λ,x + ek /∈ Λ

|zk|2
1+λ2

k
|z|2x if x /∈ Λ,x + ek ∈ Λ

We now choose for convenience the finite set to be

Λ = Γ̄N =

d∏
k=1

[−Nk, Nk] ⊂ Zd.

with
∣∣Γ̄N

∣∣ =
∏d
k=1(2Nk + 1). The sum of all boundary terms reads

d∑
k=1

1

1 + λ2
k

(
λ2
k|zk|2Nk + |zk|−2(Nk−1)

)∏
i 6=k

Ni∑
α=−Ni

|zi|2α.
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Let us consider the special case zk = 1 for all k. Then ‖ϕ̃Λ(z)‖2 =
∣∣Γ̄N

∣∣ and the boundary
contributions read ∣∣Γ̄N

∣∣ d∑
k=1

1

2Nk + 1
.

Both of these expressions are independent of λ. Furthermore, the bulk terms are bounded by∣∣Γ̄N

∣∣ ∑
k:λk 6=1

(1− λk)2

1 + λ2
k

,

so that 〈
ϕ̃Γ̄N

(1), HZd

0 ϕ̃Γ̄N
(1)
〉

∥∥ϕ̃Γ̄N
(1)
∥∥2 ≤

∑
k:λk 6=1

(1− λk)2

1 + λ2
k

+
d∑

k=1

1

2Nk + 1
.

which yields the estimate

γ(Zd) ≤ lim inf
N→∞

〈
ϕ̃Γ̄N

(1), HZd

0 ϕ̃Γ̄N
(1)
〉

∥∥ϕ̃Γ̄N
(1)
∥∥2 ≤

∑
k:λk 6=1

(1− λk)2

1 + λ2
k

In particular, the model is gapless if λk = 1 for all 1 ≤ k ≤ d.

5.2. Low-lying Edge States. In this section we explore how the thermodynamic behavior de-
pends on the boundary of the infinite lattice. We previously showed that the existence of a unique
GNS ground state vector is closely tied with the geometry, and more specifically the boundary, of
the infinite volume one considers. It is then natural to ask whether the geometry will effect other
properties in the thermodynamic limit.

As an example, we discuss the case of the diagonal-edged infinite volume D∞ ⊂ Z2 defined by
(x, y) ∈ D∞ if and only if y ≥ −x and prove that, unlike an infinite lattice obtained as the limit of
finite rectangles, the PVBS model with one species of particle is in fact gapless when λ1 = λ = λ2

with λ < 1. The closure of the gap in this case is due to the existence of boundary states in which
a single particle is delocalized across the boundary.

Proof of Proposition 2.4. We construct a sequence of variational vectors in the GNS Hilbert space
for which the energy decays polynomially. The vectors we choose belong to the one particle sector
with the particles bound to the finite volume DL defined by:

DL = {(x, y) : 0 ≤ x+ y ≤ L, |x− y| ≤ L/2}.(5.1)

For convenience, we choose L = 2k where k is an odd integer. An example of the sector DL to
which to particles are bound is given in Figure 1. We partition DL into the following subsets:

Dint
L = {(x, y) : 0 < x+ y < L, |x− y| < L/2}

Dedge
L = {(x, y) : x+ y = 0}
Dopp
L = {(x, y) : x+ y = L}

Duside
L = {(x, y) : x− y = −L/2}

Dlside
L = {(x, y) : x− y = L/2}

We consider the GNS Hamiltonian HD∞
0 associated with the infinite volume ground state given

in (2.15),where ΩD∞
0 =

⊗
(x,y)∈D∞ |0〉. The variational vectors ϕ̃L ∈ HD∞0 are defined by

(5.2) ϕ̃L = πD∞0 (AL)ΩD∞
0
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DL =

• •

• • • •

• • • • • •

• • • • • •

• • • •

• •

y + x = 0

x− y = −L/2 y + x = L

x− y = L/2

//

//

//

//

// // //

// // // //

// // // //

// // //

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

OO

��

//oo

Figure 1. The sector DL for L = 6.

where AL ∈ ADL
is the local observable

AL =
∑

x=(x,y)∈DL

λx+y sin(k(x− y))σ1
x

with k = 2π
L . Again, ‖ϕ̃L‖ = ‖ALψ

D∂
L

0 ‖ and〈
ϕ̃L, H

D∞
0 ϕ̃L

〉
=
〈
ALψ

D∂
L

0 , HD∂
L
ALψ

D∂
L

0

〉
where

D∂
L = {(x, y) : 0 ≤ x+ y ≤ L+ 1, |x− y| ≤ L/2 + 1}.

and we used that HD∂
L
ψ
D∂

L
0 = 0. Notice that (x, y) ∈ Dedge

L if and only if (x + L
2 , y + L

2 ) ∈ Dopp
L ,

and so

(5.3)
∑

(x,y)∈Dopp
L

sin2 k(x− y) =
∑

(x,y)∈Dedge
L

sin2 k(x− y).

Using (5.3) and our choice of k,

〈ALψ
D∂

L
0 , HD∂

L
ALψ

D∂
L

0 〉 = 2(1− cos(k))

[ ∑
(x,y)∈Dint

L

λ2(x+y) sin2 k(x− y) +
λ2 + λ2L

1 + λ2

∑
(x,y)∈Dopp

L

sin2 k(x− y)

](5.4)

+
2λ2L+2

1 + λ2

∑
(x,y)∈Dopp

L

sin2 k(x− y)

and ∥∥∥ALψD∂
L

0

∥∥∥2

=
∑

(x,y)∈Dint
L

λ2(x+y) sin2 k(x− y) + (1 + λ2L)
∑

(x,y)∈Dopp
L

sin2 k(x− y).
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All in all, it follows that the spectral gap is bounded above by

γ(D∞) ≤

〈
ϕ̃L, H

D∞
0 ϕ̃L

〉
‖ϕ̃L‖2

≤ 2 (1− cos (2π/L)) +
2λ2L+2

1 + λ2
,

where we used that
∑

(x,y)∈Dopp
L

sin2 k(x − y) ≤ ‖ϕ̃L‖2. Since λ < 1, the second term decays

exponential in L as L→∞, while the first one is of order L−2. �

Analogously, we expect that this type of gap closure to occur for any d-dimensional infinite volume
with slant boundary when the outward pointing normal is given by the vector ~n = (log λ1, . . . , log λd).

6. Discussion

6.1. Stability. Stability refers to the continuous behavior of certain spectral properties of quan-
tum spin Hamiltonians under small local perturbations. Although the case of perturbations around
classical Hamiltonians was considered in great detail long ago [4,10,12,15,16,19], results for pertur-
bations of frustration-free quantum models with interesting ground states have only been achieved
rather recently [5, 6, 9, 20, 26, 28]. The most basic stability results establish two properties; for
models with a unique ground state in the infinite volume limit and for sufficiently small perturba-
tions, one proves first of all that the spectral gap above the ground state energy does not close,
and secondly, that the unique ground state depends continuously on the perturbation. In [20],
such stability results are obtained for models with a unique frustration-free ground state under two
additional conditions. First, the perturbation is of the form

∑
X⊂Λ Ψ(X) where, roughly speaking,

‖Ψ(X)‖ decays faster than any polynomial as a function of the diameter of X. Second, the possibly
many finite volume ground states satisfy what is referred to as the local topological order condition
in [20]. For any hypercube ΛL of length L, consider sets X ⊂ ΛL such that X(l) ⊂ ΛL, where

X(l) = {x ∈ Γ : d(x,X) ≤ l}. In the case of a multi-dimensional finite volume ground state space,
the ground states are called topologically ordered if there exists a positive function f decaying
faster than any polynomial such that for any A ∈ A(X),

(6.1) ‖GX(l)AGX(l) − cl(A)GX(l)‖ ≤ ‖A‖f(l)

where
cl(A) = Tr(GX(l))−1Tr(GX(l)A).

We now prove that the models considered here satisfy (6.1). The spacesGX(l) are two-dimensional

and spanned by ψX
(l)

0 and ψX
(l)

1 . We shall use the bound

‖GX(l)AGX(l) − cl(A)GX(l)‖ ≤ 2 sup
i,j∈{0,1}

∣∣∣〈ψX(l)

i , AψX
(l)

j

〉
− cl(A)δij

∣∣∣ .
Since A is supported in X, we have that〈

ψX
(l)

1 , AψX
(l)

1

〉
=

C(X)

C(X(l))

〈
ψX1 , Aψ

X
1

〉
+
C(X(l) \X)

C(X(l))

〈
ψ
X(l)\X
0 , Aψ

X(l)\X
0

〉
,

and the last scalar product can be replaced by
〈
ψX0 , Aψ

X
0

〉
. With this, both cases i = j = 0 and

i = j = 1 are bounded above by

1

2

∣∣∣〈ψX(l)

1 , AψX
(l)

1

〉
−
〈
ψX

(l)

0 , AψX
(l)

0

〉∣∣∣ ≤ ‖A‖
2

[∣∣∣∣ C(X)

C(X(l))

∣∣∣∣+

∣∣∣∣∣1− C(X(l) \X)

C(X(l))

∣∣∣∣∣
]

= ‖A‖
∣∣∣∣ C(X)

C(X(l))

∣∣∣∣
where we used that C(X(l))−C(X(l) \X) = C(X) by the definition (2.9) of C(·). The off-diagonal
case can be computed similarly,∣∣∣〈ψX(l)

0 , AψX
(l)

1

〉∣∣∣ =

∣∣∣∣∣
(
C(X)

C(X(l))

)1/2 〈
ψX0 , Aψ

X
1

〉∣∣∣∣∣ ≤ ‖A‖
∣∣∣∣ C(X)

C(X(l))

∣∣∣∣1/2 .
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Hence, (6.1) holds with f(l) = 2
√
C(X)/C(X(l)), which decays exponentially in l.

The models considered here have open boundary conditions, while the theorem of [20] assumes
periodic boundary conditions. We believe, however, that stability holds in the present more general
setting, given the frustration-free and topological quantum order conditions. This means that there
is an open neighborhood of local interactions around the models presented in this work which have
a spectral gap above the ground state energy, on Zd.

6.2. Edge versus Bulk Gapless Excitations. To conclude, we would like to underline the
physical difference between the gapless spectrum that arises in the case of λk = 1 for all k, and the
gapless spectrum we found in Section 5 for a class of models on the slanted half-infinite plane D∞.
As explained above, the limit λ→ 1 corresponds to a quantum phase transition in the sense that the
bulk dispersion relation becomes gapless. In the case of the slanted edge the low-lying excited states
are localized along the edge and nothing special happens in the bulk. In particular, excited states
localized away from the edge show a gapped energy spectrum, and the dynamics of observables
whose support is at a distance d from the edge is unaffected by the gapless excitations up to times t
that are of the same order of magnitude as d/v, where the constant v is the Lieb-Robinson velocity
of the model.

To make these statements more precise, consider the PVBS model on D∞ ⊂ Z2, the half-space
with a 45 degree edges as discussed in Section 5, and let ωD∞0 be the unique vacuum state of this

system with (πD∞0 ,HD∞0 ,ΩD∞
0 ) its GNS representation. Let Dedge

∞ ⊂ D∞ denote the sites at the
45 degree boundary of D∞.

Let

Hbulk
0 := span{π(A)ΩD∞

0 : d(supp(A), Dedge
∞ ) ≥ 1} ⊂ HD∞0 ,

and P bulk
0 the orthogonal projection onto Hbulk

0 . Finally, let HD∞
0 be the GNS Hamiltonian associ-

ated with ωD∞o . Although the GNS Hamiltonian HD∞
0 for the model on D∞ does not have a gap

above the ground state, the self-adjoint operator P0H
D∞
0 P0 regarded as an operator on HD∞0 does

have a spectral gap above its ground state at least as large as the gap of the model defined on Z2.

Proposition 6.1. With the notations above, let

Hbulk
0 := P bulk

0 HD∞
0 P bulk

0 : Hbulk
0 → Hbulk

0 .

Then, inf Spec(Hbulk
0 ) = 0 is an eigenvalue and if λ 6= 1, there is a spectral gap γ ≥ γ(Z2).

Proof. First, we observe that P bulk
0 ΩD∞

0 = ΩD∞
0 so that

Hbulk
0 ΩD∞

0 = P bulk
0 HD∞

0 ΩD∞
0 = 0

which shows that ΩD∞
0 belongs to the kernel of the positive operator Hbulk

0 .

We consider A ∈ AX , with d(X,Dedge
∞ ) ≥ 1, and observe that the generator of the dynamics on

D∞, namely δD∞ , satisfies

(6.2) δD∞(A) = lim
Λ↑D∞

[HΛ, A] = lim
Λ↑Z2

[HΛ, A] = δZ2(A).

Hence,

〈πD∞0 (A)ΩD∞
0 , Hbulk

0 πD∞0 (A)ΩD∞
0 〉 = 〈πD∞0 (A)ΩD∞

0 , HD∞
0 πD∞0 (A)ΩD∞

0 〉 = ωD∞0 (A∗δD∞(A))

= ωZ2

0 (A∗δZ2(A)),

where in the last equality we first use (6.2) and then the fact that both ground states are the same

product state on local observables. Now let A be such that πD∞0 (A)ΩD∞
0 ⊥ ΩD∞

0 , or equivalently

0 = ωD∞0 (A) = ωZ2

0 (A). Since the model on Z2 has a gap γ(Z2) > 0, this implies

(6.3) 〈πD∞0 (A)ΩD∞
0 , Hbulk

0 πD∞0 (A)ΩD∞
0 〉 ≥ γ(Z2)ωD∞0 (A∗A) = γ(Z2)‖πD∞0 (A)ΩD∞

0 ‖2.
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The inequality (6.3) shows that Hbulk
0 has a spectral gap above 0 at least equal to γ(Z2), which we

have shown to be strictly positive. �

Finally, we show that the dynamics of observables supported away from the edge is unaffected by
the gapless edge modes. In particular, multi-time correlation functions for such observables behave
as if the system was gapped for times that are not loo large. To this end, recall that a nearest-
neighbor interaction defined on a regular lattice – such as the present PVBS models – satisfies a
Lieb-Robinson bound, with velocity v. In particular, the difference of the dynamics generated by
two finite-volume Hamiltonians HΛ1 and HΛ2 , where Λ2 ⊂ Λ1, can be estimated by∥∥∥τΛ1

t (A)− τΛ2
t (A)

∥∥∥ ≤ C ‖A‖ |X|e−a[d(X,Λ1\Λ2)−v|t|],

where A ∈ AX , X ⊂ Λ2, and with suitable constants a,C > 0 (see [22, equation (2.28)]). Let
Λ1,n → Z2 and Λ2,n → D∞ be increasing sequences such that Λ2,n ⊂ Λ1,n for all n ∈ N. For n large

enough, d(X,Λ1,n \ Λ2,n) = d(X,Dedge
∞ ), and in particular∥∥∥τD∞t (A)− τZ2

t (A)
∥∥∥ ≤ C ‖A‖ |X|e−a[d(X,Dedge

∞ )−v|t|].

Hence, for times t � d(X,Dedge
∞ )/v, the half-plane dynamics of A are well-approximated by the

dynamics in the bulk generated by the gapped Hamiltonian.
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