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An open‑source fine‑tuned large language 
model for radiological impression generation: 
a multi‑reader performance study
Adrian Serapio1, Gunvant Chaudhari3, Cody Savage2, Yoo Jin Lee1, Maya Vella1, Shravan Sridhar1, Jamie 
Lee Schroeder4, Jonathan Liu1, Adam Yala5 and Jae Ho Sohn1* 

Abstract 

Background  The impression section integrates key findings of a radiology report but can be subjective and vari-
able. We sought to fine-tune and evaluate an open-source Large Language Model (LLM) in automatically generating 
impressions from the remainder of a radiology report across different imaging modalities and hospitals.

Methods  In this institutional review board-approved retrospective study, we collated a dataset of CT, US, and MRI 
radiology reports from the University of California San Francisco Medical Center (UCSFMC) (n = 372,716) and the Zuck-
erberg San Francisco General (ZSFG) Hospital and Trauma Center (n = 60,049), both under a single institution. The 
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) score, an automatic natural language evaluation metric 
that measures word overlap, was used for automatic natural language evaluation. A reader study with five cardio-
thoracic radiologists was performed to more strictly evaluate the model’s performance on a specific modality (CT 
chest exams) with a radiologist subspecialist baseline. We stratified the results of the reader performance study based 
on the diagnosis category and the original impression length to gauge case complexity.

Results  The LLM achieved ROUGE-L scores of 46.51, 44.2, and 50.96 on UCSFMC and upon external validation, 
ROUGE-L scores of 40.74, 37.89, and 24.61 on ZSFG across the CT, US, and MRI modalities respectively, implying a sub-
stantial degree of overlap between the model-generated impressions and impressions written by the subspecialist 
attending radiologists, but with a degree of degradation upon external validation. In our reader study, the model-gen-
erated impressions achieved overall mean scores of 3.56/4, 3.92/4, 3.37/4, 18.29 s,12.32 words, and 84 while the origi-
nal impression written by a subspecialist radiologist achieved overall mean scores of 3.75/4, 3.87/4, 3.54/4, 12.2 s, 
5.74 words, and 89 for clinical accuracy, grammatical accuracy, stylistic quality, edit time, edit distance, and ROUGE-L 
score respectively. The LLM achieved the highest clinical accuracy ratings for acute/emergent findings and on shorter 
impressions.

Conclusions  An open-source fine-tuned LLM can generate impressions to a satisfactory level of clinical accuracy, 
grammatical accuracy, and stylistic quality. Our reader performance study demonstrates the potential of large lan-
guage models in drafting radiology report impressions that can aid in streamlining radiologists’ workflows.
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Introduction
Radiology reports synthesize a radiologist’s interpreta-
tions which are essential in communicating the current 
condition of a patient [1]. Radiology reports typically 
consist of an exam type, clinical history, comparison, 
technique, radiation dose, findings, and impression sec-
tion [2]. The impression section is of utmost importance, 
as it summarizes the key findings of the radiology report 
and carries the most weight in influencing the clinical 
decision-making of the consulting physician [3, 4]. As 
it stands, the process of generating the impression sec-
tion is not always standardized and can be subjective [5]. 
Automatically generating impressions can help to ensure 
that essential findings are not omitted while also keeping 
the impressions succinct.

Since the Large Language Models (LLMs) ChatGPT 
and GPT-4 were released in November 2022 and March 
2023 respectively, multiple studies have shown how these 
LLMs could be applied to a variety of radiological tasks 
such as structured reporting, question answering on a 
radiology board-style examination, and response to com-
mon lung cancer questions [6–8]. Closely related to our 
work, GPT-4 was shown to generate impressions for 
radiology reports [9].

Given that ChatGPT and GPT-4 are close-sourced 
models only available via web APIs, we believe that it 
is the crucial next step to clinically validate the perfor-
mance of fine-tuned open-source large language mod-
els, enhancing access and replicability that will greatly 
aid future development in this area. Especially for pri-
vate clinical datasets, open-source models provide the 
advantage of eliminating the need to upload sensitive 
patient data to a cloud service and instead be trained and 
deployed locally [10].

In this study, our objective was to evaluate the perfor-
mance of a fine-tuned open-source LLM in generating 
impressions to summarize radiology reports over mul-
tiple imaging modalities and hospitals which would test 
the model’s capacity to generalize across different set-
tings. We aimed to evaluate the fine-tuned model’s per-
formance through a clinical reader performance study on 
a specific modality with subspecialty radiologists.

Methods
Datasets and Corpora
The radiology reports in this study were retrospectively 
collected with the University of California San Francis-
co’s Institutional Review Board approval and informed 
consent waiver, following the Helsinki Declaration of 
1975, as revised in 2013. All methods were performed in 
accordance with the relevant guidelines and regulations. 
We gathered CT, US, and MRI reports from two hospitals 

under one institutional affiliation. The University of Cali-
fornia San Francisco Medical Center (UCSFMC) is an 
academic tertiary referral center, while the Zuckerberg 
San Francisco General Hospital (ZSFG) and Trauma 
Center is a level-1 trauma center and county safety net 
hospital. A total of 372,716 radiology reports between 
January 1, 2021 and October 22, 2022 were consecutively 
and comprehensively sourced from UCSFMC, while a 
total of 60,049 radiology reports between January 1, 2022 
and December 29, 2022 were consecutively and compre-
hensively sourced from ZSFG. In terms of reporting style, 
both UCSFMC and ZSFG follow structured reporting. 
Moreover, both hospitals utilize a system where reports 
are initially prepared by residents and then reviewed and 
finalized by attending radiologists, who provide revisions 
before signing off. As such, all reports reflect the work 
and approval of the attending radiologist. Table  1 sum-
marizes the demographics of the datasets sourced from 
UCSFMC and ZSFG.

We excluded all outside hospital imported cases as they 
did not have associated radiology reports in the system, 
reports with findings stored in clinical notes, reports that 
did not separate the findings and impression section, and 
reports that shared the same accession numbers. From 
UCSFMC, a total of 19,436 reports were excluded, leav-
ing 353,280 reports that were used in our study. 102172, 
12772, and 12772 patients were assigned for training, val-
idation, and testing respectively. This resulted in training, 
validation, and test datasets composed of 282525, 35631, 
and 35124 reports respectively. From ZSFG, a total of 126 
reports were excluded which resulted in an independent 
test set of 59923 reports from 27530 patients (Fig. 1).

Model development
We fine-tuned the open-source Text-to-Text Trans-
former (T5) large language model to generate impres-
sions [11]. The T5 is an instruction-tuned model that has 
been initially pre-trained on the colossal, cleaned ver-
sion of Common Crawl’s web crawl corpus (C4) dataset, 
composed of websites scraped from the internet [12]. The 
remainder of each radiology report excluding the impres-
sion serves as the input text and the impression section 
of each radiology report serves as the output text, where 
both sequences are tokenized and then subsequently fed 
into the model (Fig.  2). PyTorch (version 2.1.0) and the 
HuggingFace transformers library (version 4.35.0) were 
used to implement these methods [13, 14]. We used the 
AdamW optimizer with a learning rate of 0.0003, a batch 
size of 4, and accumulated grad batches of 32 for an effec-
tive batch size of 128 [15]. All code is available at https://​
github.​com/​bdrad/​radio​logic​al-​report-​impre​ssion-​gener​
ation.

https://github.com/bdrad/radiological-report-impression-generation
https://github.com/bdrad/radiological-report-impression-generation
https://github.com/bdrad/radiological-report-impression-generation
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Automated lexical evaluation metrics
The Recall-Oriented Understudy for Gisting Evaluation 
(ROUGE) score, the standard performance metric for 
automated text summarization, was calculated to evalu-
ate the models’ performance in impression generation 
[16]. ROUGE-1 and ROUGE-2 measure the overlap of 
a unigram and bigrams, respectively, between the origi-
nal impression and generated impression. On the other 
hand, the ROUGE-L is based on the longest common 
subsequence, measuring sentence-level semantic simi-
larity. A higher ROUGE score indicates a higher-quality 
summary with a maximum ROUGE score of 100. We 

calculated the ROUGE-1, ROUGE-2, and ROUGE-L 
scores over the UCSFMC test dataset and the ZSFG inde-
pendent test dataset.

Clinical reader performance study
We conducted a reader performance study with five 
board-certified cardiothoracic radiologists who have 
eight, seven, six, eight, and six years of experience (inclu-
sive of residency and fellowship training). The study 
involved 60 CT chest reports from 60 unique patients 
that were sampled from the UCSFMC test dataset. The 
sample size was determined by the time and resources 

Table 1  Characteristics of the UCSFMC training, validation, and test sets and the ZSFG independent test dataset

Characteristic UCSFMC 
Training set
(n = 282,525)

UCSFMC 
Validation set
(n = 35,631)

UCSFMC 
Test set
(n = 35,124)

ZSFG 
independent 
test set
(n = 59,923)

Age (y) 51.19 ± 22.84 50.66 ± 22.75 51.22 ± 22.89 52.62 ± 19.31

Sex (%)

  Male 128,235 (45.39) 16,444 (46.15) 16,009 (45.58) 32,137 (53.63)

  Female 153,952 (54.49) 19,150 (53.75) 19,077 (54.31) 27,760 (46.33)

  Other 338 (0.12) 37 (0.10) 38 (0.11) 26 (0.04)

Imaging modality (%)

  CT 119,600 (42.33) 15,060 (42.27) 14,810 (42.16) 36,640 (61.14)

  MRI 84,939 (30.06) 10,735 (30.13) 10,691 (30.44) 7578 (12.65)

  US 77,986 (27.60) 9836 (27.60) 9623 (27.40) 15,705 (26.21)

Patient status (%)

  Outpatient 182,829 (64.71) 22,801 (64) 22,807 (64.93) 24,157 (40.31)

  Inpatient 59,129 (20.93) 7614 (21.37) 7401 (21.07) 14,872 (34.69)

  Emergency 33,913 (12) 4353 (12.21) 4154 (11.83) 20,790 (24.82)

  Other 6654 (2.36) 863 (2.42) 762 (2.17) 104 (0.18)

Stat (%)

  Non-stat 282,404 (99.96) 35,614 (99.95) 35,105 (99.95) 35,968 (60.03)

  Stat 121 (0.04) 17 (0.05) 19 (0.05) 23,955 (39.97)

Body part imaged (%)

  Abdomen/Pelvis 72,284 (25.59) 9143 (25.66) 9069 (25.82) 16,090 (26.85)

  Brain 51,019 (18.06) 6476 (18.18) 6258 (17.82) 12,233 (20.42)

  Chest 38,497 (13.63) 4840 (13.58) 4788 (13.64) 9182 (15.32)

  Spine 23,861 (8.45) 3067 (8.61) 3067 (8.73) 2222 (3.71)

  Neck 13,340 (4.72) 1691 (4.75) 1636 (4.66) 3117 (5.20)

  Renal/Kidney 11,936 (4.22) 1484 (4.16) 1446 (4.12) 1370 (2.29)

  Extremity 11,496 (4.07) 1435 (4.03) 1462 (4.16) 1230 (2.05)

  Prostate 3763 (1.33) 495 (1.39) 464 (1.32) 0 (0)

  Breast 3277 (1.16) 390 (1.09) 430 (1.22) 7 (0.01)

  Knee 3260 (1.15) 391 (1.1) 399 (1.14) 407 (0.68)

  Liver 2537 (0.9) 320 (0.9) 331 (0.94) 1077 (1.8)

  Hip 2251 (0.8) 299 (0.84) 271 (0.77) 124 (0.21)

  Heart 1442 (0.51) 193 (0.54) 156 (0.44) 0 (0)

  Head 407 (0.14) 76 (0.21) 68 (0.19) 1098 (1.83)

  Other 43,155 (15.27) 5331 (14.96) 5279 (15.03) 11,766 (19.63)
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required to have attending radiologists manually evalu-
ate and edit impressions. Furthermore, we confirmed a 
similar size in Sun et al. who have previously conducted 
a reader study for automatic impression generation based 
on 50 reports and limited the evaluation to the modality 

of Chest X-rays [9]. We focused our reader study on eval-
uating Chest CTs to impose a more stringent and granu-
lar analysis of the errors of generated impressions when 
compared to a subspecialist cardiothoracic radiologist 
baseline.

Fig. 1  Inclusion and exclusion of data. The UCSFMC dataset was used for training, validation, and testing, and was randomized by patient. The ZSFG 
dataset was used as an independent test set for external validation

Fig. 2  Model architecture. The Text-to-Text Transformer (T5) is an encoder-decoder architecture that takes in input text sequences and outputs 
text sequences. The exam type, clinical history, comparison, and findings sections are fed into a tokenizer and passed into the encoder 
while the impression section is fed into a tokenizer and subsequently passed into the decoder block for model training
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Forty of the reports were randomly selected to show 
the generated impression, while 20 show the original 
impression written by the attending thoracic radiolo-
gist. This reader performance study structure involving 
both model-generated and radiologist’s final impressions 
was chosen for better evaluation of the LLM, including 
any of its potential errors or unexpected behaviors. We 
note that the CT scan images were not provided to the 
radiologists.

Each radiologist was asked to rate the impression in 
terms of clinical accuracy, grammatical accuracy, and 
stylistic quality. They may optionally edit the impres-
sion. Edit time and edit distance (number of words 
changed) were recorded to quantitatively measure work-
flow efficiency. We also calculate the ROUGE scores of 
the original or generated impression with respect to the 
radiologist edits. We note, however, that this score can-
not be directly compared to the previously calculated 
ROUGE scores, as the previous one was subject against a 
separately written original impression, while in this case, 
measuring against an edited impression by a reader.

We also stratified the complexity of the reports in the 
reader study according to diagnostic categories and the 
length of the original impression. To determine each 
study’s diagnosis category, a thoracic radiologist with 
eight years of experience who did not participate in the 
reader performance study examined the clinical history 
and original impression of each report. The radiologist 
defined it into the following categories: Cancer stag-
ing, Acute/emergent findings, Interstitial lung disease, 
Nodules, Lung Transplant, and Aneurysm. For model 
evaluation, the Interstitial lung disease, Nodules, Lung 
Transplant, and Aneurysm were consolidated into a 
single “Other” category. In terms of impression length, 
each of the original impressions was classified into three 
categories: Short, Medium, and Long. The reports were 
sorted by original impression length with short, medium, 
and long corresponding to the bottom 20, middle 20, 
and top 20 reports in terms of original impression word 
length.

Statistical analysis
A Mann–Whitney U test was used to calculate the P 
values comparing the ratings for the model-generated 
impressions and the original impressions written by an 
attending radiologist in terms of clinical accuracy, gram-
matical accuracy, stylistic quality, edit time, and edit 
distance [17]. 95% CIs were generated for the ROUGE 
scores and reader performance study metrics using boot-
strapping with resampling. A multi-rater intraclass cor-
relation was computed to measure inter-rater variability 
for the ordinal clinical metrics of clinical accuracy, gram-
matical accuracy, and stylistic quality as applicable [18]. 

All statistical analysis was conducted in Python 3.10.9 
using the Numpy (version 1.26.4) Scipy (version 1.11.1), 
and Pingouin (version 0.5.4) packages [19–21].

Results
Dataset characteristics
For UCSFMC, we excluded 15803 reports that were 
non-reportable due to being outside-hospital studies, 
715 reports with findings stored in clinical notes, 2912 
reports that did not separate the findings and impres-
sion section, and 6 reports that share the same accession 
numbers. For ZSFG, we excluded 124 reports that did 
not separate the findings and impression section and 2 
reports that share the same accession numbers (Fig. 1).

After dataset exclusion, we tabulate the age, sex, 
imaging modality, status (Emergency/Inpatient/Out-
patient), stat (Is Stat/Non-stat), and body part imaged 
for the UCSFMC training, validation, test datasets and 
ZSFG independent test dataset (Table  1). In addition 
to the demographics of the 60 CT chest reports used in 
the reader performance study, Table  2 documents the 

Table 2  Characteristics of CT chest cases used in the reader 
study evaluation dataset assigned for model-generated and 
radiologist-written impression evaluation

Characteristic Model-
generated 
Cases
(n = 40)

Radiologist-
written 
Cases
(n = 20)

Age (y) 58.48 ± 21.93 53.55 ± 23

Sex

  Male 18 (45) 10 (50)

  Female 22 (55) 10 (50)

Study type

  CT chest without contrast 19 (42.5) 9 (45)

  CT chest with contrast 9 (22.5) 4 (20)

  CT chest pulmonary embolism 6 (15) 2 (10)

  CT chest high resolution 3 (7.5) 4 (20)

  CT chest with contrast (PETCT) 3 (7.5) 1 (5)

  CT chest without contrast (PETCT) 2 (5) 0 (0)

Diagnosis category

  Cancer staging 16 (40) 6 (35)

  Acute/emergent 15 (37.5) 7 (30)

  Interstitial lung disease 5 (12.5) 2 (10)

  Nodules 4 (10) 2 (10)

  Lung transplant 0 (0) 2 (10)

  Aneurysm 0 (0) 1 (5)

Original impression length

  Short (L <  = 27 words) 14 (35) 7 (35)

  Medium (28 < L <  = 45 words) 13 (32.5) 7 (35)

  Long (L >  = 46 words) 13 (32.5) 6 (30)
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stratifications by diagnosis category and original impres-
sion length to gauge case complexity.

Automated lexical evaluation metrics
Table  3 depicts the automated lexical metrics achieved 
by the large language model on both the UCSFMC and 
ZSFG test datasets. The ROUGE-1, ROUGE-2, and 
ROUGE-L scores quantify the overall adherence of large 
language models in generating impressions to the level 
of the finalized impressions written by attending radi-
ologists. The large language model achieved a ROUGE-1 
score of 53.22 (95% CI: 52.88, 53.62), ROUGE-2 score 
of 51.26 (95% CI: 50.87, 51.65), and ROUGE-L score of 
46.51 (95% CI: 46.13, 46.89) on the CT modality for the 
UCSFMC test dataset. The model achieved a slightly 
lower ROUGE-1 score of 46.57 (95% CI: 46.37, 46.79), 
ROUGE-2 score of 31.87 (95% CI: 31.65, 32.09), and 
ROUGE-L score of 40.74 (95% CI: 40.52, 40.93) on the 
CT modality for the ZSFG independent test dataset. We 
observe a degree of degradation in model quality when 
externally validated for the CT modality.

The large language model achieved a ROUGE-1 score 
of 51.26 (95% CI: 50.87, 51.65), ROUGE-2 score of 35.36 
(95% CI: 34.91, 35.79), and ROUGE-L score of 44.2 (95% 
CI: 43.78, 44.65) on the MRI modality for the UCS-
FMC test dataset. The model achieved a slightly lower 
ROUGE-1 score of 45.04 (95% CI: 44.59, 45.5), ROUGE-2 
score of 29.47 (95% CI: 29, 29.95), and ROUGE-L score 
of 37.89 (95% CI: 37.43, 38.31) on the MRI modality for 
the ZSFG independent test dataset. Similarly, we observe 
a degree of degradation in model quality when externally 
validated for the MRI modality.

The large language model achieved a ROUGE-1 score 
of 56.41 (95% CI: 55.89, 56.9), ROUGE-2 score of 41.15 
(95% CI: 40.54, 41.76), and ROUGE-L score of 50.96 (95% 
CI: 50.46, 51.48) on the US modality for the UCSFMC 
test dataset. The model achieved a lower ROUGE-1 of 

32 (95% CI: 31.75, 32.24), ROUGE-2 score of 13.87 (95% 
CI: 13.65, 14.08), and ROUGE-L score of 24.61 (95% CI: 
24.38, 24.85) on the US modality for the ZSFG independ-
ent test dataset. Similarly, we observe a greater degree of 
degradation in model quality when externally validated 
for the US modality.

Clinical reader performance study
The model achieved an overall mean clinical accuracy of 
3.56 (3.46, 3.67) out of 4, grammatical accuracy of 3.92 
(3.89, 3.96) out of 4, and stylistic quality of 3.37 (3.26, 
3.47) out of 4, edit time of 18.29 (14.85, 21.98) seconds, 
and edit distance of 12.32 (9.88, 14.97) words. The radi-
ologist baseline, which was the original cardiothoracic 
radiologist’s impression, achieved an overall mean clini-
cal accuracy of 3.75 (3.61, 3.88) out of 4, grammatical 
accuracy of 3.87 (3.79, 3.94) out of 4, and stylistic quality 
of 3.54 (3.42, 3.65) out of 4, edit time of 12.2 (8.48, 16.48) 
seconds, and edit distance of 5.74 (4.06, 7.72) words 
(Table  4). Moreover, with respect to the edited impres-
sions, the model-written impressions achieved a mean 
ROUGE-1, ROUGE-2, and ROUGE-L scores of 85 (82.89, 
88.22), 81 (77.04, 84.41), and 84 (80.72, 87.13) respec-
tively. On the other hand, the original impressions writ-
ten by an attending radiologist achieved mean scores of 
89 (85.96, 92.69), 85 (76.90, 89.30), and 89 (84.76, 92.31) 
respectively (Table 5).

Table  4 also depicts mean scores of the model-gener-
ated and radiologist-written impressions stratified by 
diagnosis category and original impression length. For 
reports that contained acute/emergent findings, the LLM 
achieved the highest clinical accuracy rating of 3.64 (3.45, 
3.8) out of 4, whereas the radiologist baseline achieved a 
clinical accuracy of 3.71 (3.46, 3.91) out of 4. The model 
slightly underperforms in the category “Other” (Intersti-
tial Lung Disease, Nodules, and Lung Transplant) achiev-
ing a clinical accuracy rating of 3.4 (3.16, 3.62) out of 4, 

Table 3  Summary statistics for the automated lexical ROUGE scores results of the large language model on the UCSFMC test dataset 
and ZSFG independent test set over multiple imaging modalities

Modality ROUGE-1 ROUGE-2 ROUGE-L

CT

   UCSFMC test dataset 53.22 (52.88, 53.62) 51.26 (50.87, 51.65) 46.51 (46.13, 46.89)

   ZSFG independent test  dataset 46.57 (46.37, 46.79) 31.87 (31.65, 32.09) 40.74 (40.52, 40.93)

MRI

   UCSFMC test  dataset 51.26 (50.87, 51.65) 35.36 (34.91, 35.79) 44.2 (43.78, 44.65)

   ZSFG independent test dataset 45.04 (44.59, 45.5) 29.47 (29, 29.95) 37.89 (37.43, 38.31)

US

   UCSFMC test dataset 56.41 (55.89, 56.9) 41.15 (40.54, 41.76) 50.96 (50.46, 51.48)

   ZSFG independent test dataset 32 (31.75, 32.24) 13.87 (13.65, 14.08) 24.61 (24.38, 24.85)
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while the radiologist baseline achieves a clinical accu-
racy of 3.86 (3.66, 4) out of 4. In terms of impression 
length, the LLM performs the best in clinical accuracy on 
shorter impressions achieving a clinical accuracy rating 
of 3.66 (3.47, 3.81) out of 4 in this category, and slightly 
underperforms in longer impressions achieving a clinical 

accuracy rating of 3.45 (3.23, 3.63) out of 4 and 3.58 (3.38, 
3.75) in the Medium and Long categories.

Multi-rater interclass correlation scores were calcu-
lated to measure the inter-rater reliability of the group of 
radiologists who participated in the reader performance 
study. Given the limited variance of the grammatical 
accuracy metric (σ2 = 0.098) as opposed to the clinical 
accuracy (σ2 = 0.58) and stylistic quality (σ2 = 0.47), we 
chose to report intra-class correlations for clinical accu-
racy and stylistic quality given the limited ability of the 
intraclass correlation score to quantify agreement over 
limited variance [18]. The level of agreement among the 
readers was moderate for both metrics with ICC scores 
of 0.67 and 0.57 for clinical accuracy and stylistic quality 
respectively.

Error analysis
Figure 3 illustrates the model-generated impression that 
received the lowest average clinical accuracy along with 
the remainder of the report and edits from the panel 

Table 4  Statistics of the results of the reader performance study along with stratifications based on the diagnosis category and 
original impression length

↑ indicates that higher is better and ↓ indicates that lower is better
a We combined cases that depicted interstitial lung disease, nodules, lung transplant, and aneurysm into a single other category

Parameter Clinical 
Accuracy
(out of 4) ↑

Grammatical Accuracy
(out of 4) ↑

Stylistic 
Quality
(out of 4) ↑

Edit 
Time
(in seconds) ↓

Edit 
Distance
(in words) ↓

Overall

  LLM 3.56 (3.46, 3.67) 3.92 (3.89, 3.96) 3.37 (3.26, 3.47) 18.29 (14.85, 21.98) 12.32 (9.88, 14.97)

  Radiologist 3.75 (3.61, 3.88) 3.87 (3.79, 3.94) 3.54 (3.42, 3.65) 12.2 (8.48, 16.48) 5.74 (4.06, 7.72)

  P-value .009 .15 .08 .13 .003

Diagnosis category

  Cancer staging

    LLM 3.59 (3.41, 3.74) 3.92 (3.86, 3.98) 3.35 (3.19, 3.49) 22.22 (15.88, 29.15) 12.75 (9.26, 16.59)

     Radiologist 3.67 (3.36, 3.9) 3.83 (3.7, 3.97) 3.53 (3.37, 3.7) 16.34 (8.55, 25.42) 8.43 (4.73, 13.43)

  Acute/Emergent

    LLM 3.64 (3.45, 3.8) 3.96 (3.91, 4) 3.49 (3.33, 3.64) 10.94 (7.39, 14.79) 8.39 (5.57, 11.57)

    Radiologist 3.71 (3.46, 3.91) 3.86 (3.71, 3.97) 3.37 (3.17, 3.57) 11.62 (6.43, 17.93) 6.63 (3.89, 9.8)

  Othera

    LLM 3.4 (3.16, 3.62) 3.87 (3.73, 3.98) 3.18 (2.93, 3.4) 23.55 (15.73, 32) 18.11 (11.2, 25.73)

    Radiologist 3.86 (3.66, 4) 3.91 (3.83, 4) 3.71 (3.54, 3.86) 9.24 (3.83, 17.11) 2.54 (1.26, 4.06)

Original impression length

  Short (L < 27  words)

     LLM 3.66 (3.47, 3.81) 3.89 (3.79, 3.96) 3.37 (3.2, 3.54) 21.66 (14.95, 29.2) 15.07 (10.29, 20.33)

    Radiologist 3.77 (3.49, 3.97) 3.89 (3.74, 4) 3.63 (3.46, 3.8) 10.25 (4.88, 16.5) 5.66 (3, 8.83)

  Medium (28 < L  <  = 45 words)

     LLM 3.45 (3.23, 3.63) 3.94 (3.88, 3.98) 3.25 (3.05, 3.43) 16.32 (11.3, 21.93) 13.97 (9.28, 19.18)

     Radiologist 3.66 (3.37, 3.89) 3.89 (3.77, 3.97) 3.37 (3.14, 3.57) 14.87 (8.74, 22.26) 7.31 (4.06, 11.63)

  Long (L >  = 46  words)

    LLM 3.58 (3.38, 3.75) 3.95 (3.89, 4) 3.48 (3.32, 3.62) 16.63 (11.12, 22.57) 7.71 (5.52, 10.06)

    Radiologist 3.83 (3.6, 4) 3.83 (3.7, 3.97) 3.63 (3.47, 3.8) 11.36 (4.82, 20.58) 4 (2.13, 6.1)

Table 5  ROUGE score summary statistics from the reader 
performance study measuring the overlap between the 
impression being evaluated and the revised impression written 
by the attending radiologist reader

Parameter ROUGE-1 ROUGE-2 ROUGE-L

Overall

  LLM 85 (82.89, 88.22) 81 (77.04, 84.41) 84 (80.72, 87.13)

  Radiologist 89 (85.96, 92.69) 85 (79.60, 89.30) 89 (84.76, 92.31)

  P-value 0.17 0.23 0.16
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Fig. 3  Lowest-scoring model-generated impression in terms of clinical accuracy. The lower-scoring model generated impression in terms of clinical 
accuracy and associated edits from the five readers in the reader performance study
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of thoracic radiologist readers. We note the subjectiv-
ity in assigning a specific interstitial pneumonia pattern 
and the interplay between the stylistic preference of the 
attending radiologist including the addition and omission 
of certain findings.

Figure  4 illustrates the model-generated impression 
that received the lowest average stylistic quality. We 
note how the model tends to be verbose and include 
specific aspects of the findings section such as the size 
of the lymph node or note the particular series and 
slice that a finding is located, of which radiologists tend 
not to include the impression section. We also note the 
interplay between stylistic quality and clinical accuracy 
wherein the model failed to note if the findings are non-
specific, or concerning for metastasis.

Figure  5 enumerates the modifications for every 
impression that received a rating of 1 out of 4 in terms of 
clinical accuracy from both model-generated impressions 
and radiologist-written impressions. This comprehen-
sive breakdown illustrates a variety of clinical errors both 
from model-generated and radiologist-written impres-
sions across different diagnosis categories.

Figure  6 illustrates sample cases that compare the 
ROUGE score across different pairs of impressions. We 
note that ROUGE scores by definition measure adher-
ence to the reference impression. We observe how 
ROUGE scores occasionally reflect stylistic quality better 
than clinical accuracy and note how it is integral to not 
rely on them and conduct reader performance studies to 
more reliably measure model performance.

Discussion
We have evaluated a fine-tuned open-source large lan-
guage model’s ability to generate impressions from the 
remainder of a radiology report over multiple imaging 
modalities and hospitals. On the UCSFMC test dataset, 
the LLM achieved ROUGE-1, ROUGE-2, and ROUGE-
L scores of 53.22, 51.26, and 46.51 on CT reports, 51.26, 
35.36, and 44.2 on MRI reports, and 56.41, 41.15, and 
50.96, on US reports. We also tested the LLM’s perfor-
mance on the ZSFG independent test set and it achieved 
scores of 46.57, 31.87, and 40.74 on CT reports, 45.04, 
29.47, and 37.89 on MRI reports, and 32, 13.87, and 
24.61, on US reports. For the reader performance study, 
the model-generated impressions achieved overall mean 
scores of 3.56/4, 3.92/4, and 3.37/4, 18.29  s, and 12.32 
words for clinical accuracy, grammatical accuracy, stylis-
tic quality, edit time, and edit distance respectively, while 
the original subspecialist radiologist impression base-
line achieved overall mean scores of 3.75/4, 3.87/4, and 
3.54/4, 12.2 s, 5.74 words respectively. Additionally, with 
respect to the readers’ edited impressions, the model-
generated impressions achieved ROUGE-1, ROUGE-2, 

and ROUGE-L scores of 85 (82.89, 88.22), 81 (77.04, 
84.41), and 84 (80.72, 87.13) respectively. On the other 
hand, the original impressions written by an attending 
radiologist achieved mean scores of 89 (85.96, 92.69), 
85 (76.90, 89.30), and 89 (84.76, 92.31) respectively. The 
LLM achieved the highest clinical accuracy ratings for 
acute/emergent findings and on shorter impressions.

The ROUGE score results on the two hospital test 
datasets demonstrate a substantial overlap between the 
model-generated impressions and the original impres-
sion written by an attending radiologist. These scores 
may be impacted by the variability in writing impres-
sions between radiologists, but act as a general gauge 
to assess potential model degradation in external vali-
dation. We sought to address this limitation in inter-
preting the ROUGE score by additionally conducting a 
reader performance study to more clinically assess if the 
model-written impression, though potentially different 
from the original radiologist’s impression, is of satisfac-
tory quality. With respect to model edits in the reader 
study, the model had a substantially higher set of ROUGE 
scores, also evidenced by a relatively low edit distance to 
the revised indication written by the readers. This set of 
ROUGE scores demonstrates the potential to have LLMs 
preliminarily draft impressions that can be subsequently 
revised and finalized by radiologists. Overall, we note 
that the ROUGE scores can only be interpreted in rela-
tive terms, as the ROUGE scores for the automated lexi-
cal metrics measure the overlap of independently written 
impressions, while the reader study ROUGE scores are 
focused on the deviation from radiologists’ revisions on 
an already-written impression.

Our findings demonstrate the need to develop evalu-
ation frameworks where automated lexical metrics are 
complemented by a reader performance study for a more 
comprehensive analysis of the generated impressions. 
Our reader performance study leads to a more granular 
and comprehensive analysis of the strengths and flaws 
of the large language model in generating impressions 
with a thoracic radiologist baseline. Aside from quantita-
tive metrics such as clinical accuracy, grammatical accu-
racy, and stylistic quality, the reader study also examines 
impression quality with the radiologist’s word-for-word 
edits and edit time to simulate a workflow integrat-
ing large language models in radiology reporting. For 
instance, our stratified analysis by diagnosis reveals that 
the LLM performs best in terms of cancer staging and 
acute/emergent diagnosis categories, but slightly under-
performs in terms of the Other category, including cases 
that included interstitial lung disease diagnosis catego-
ries. Particularly, for the impression that received the 
lowest average rating in terms of clinical accuracy, the 
radiologist readers noted how an impression generated 
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Fig. 4  Lowest-scoring model-generated impression in terms of stylistic quality. Lowest-scoring model-generated impression in terms of stylistic 
quality and associated edits from the five readers in the reader performance study
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by the model that mentions a UIP pattern instead of 
an NSIP pattern may adversely affect clinical care [23]. 
This finding on the clinical risks of LLMs has also been 

explored in other investigations that examined the use 
of LLMs for biomedical applications [24–26]. These 
error cases, despite few, demonstrate the necessity of 

Fig. 5  Radiologist edits for lowest clinical accuracy ratings in the reader performance study. Breakdown of edits for each impression, 
including both the model-generated and radiologist-written impressions, that received a rating of 1 out of 4 in terms of clinical accuracy. Reports 
shown multiple times reflect the edits of another reader
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radiologist supervision at this stage if it were to be inte-
grated for clinical use.

Several studies have previously sought to automati-
cally generate impressions using large language mod-
els. For instance, Sun et. al and Ma et. al have examined 
how to adapt GPT-4 to generate impressions for radiol-
ogy reports [9, 22]. We build upon this body of work on 
automatic impression generation for radiology report 
summarization and focus on evaluating fine-tuned 
open-source large language models which would greatly 
enhance study replicability as opposed to closed-source 
models such as ChatGPT and GPT-4. Furthermore, the 
open-source nature of our study and full release of the 

associated code allows for further development in this 
area in contrast with the closed-source algorithms cur-
rently available in industry.

Our results present a framework for fine-tuning and 
evaluating an open-source large language model for 
automatic impression generation. Subsequent work in 
this area can focus on a prospective clinical validation 
of LLMs in enhancing the clarity and consistency of 
radiologist-written impressions, significantly improv-
ing the communication between physicians and radiolo-
gists. One such implementation could involve a hybrid 
approach of leveraging LLMs to draft radiology report 
impressions with subsequent revisions from radiologists 

Fig. 6  Sample cases from reader performance study with ROUGE scores. Sample cases that compare the ROUGE score across different pairs 
of generated impressions and their corresponding edits to better contextualize the ROUGE score in the clinical setting. A higher ROUGE score 
implies higher faithfulness to the reference impression
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with the resulting time-savings and reduction of costs 
from the streamlined workflow can be measured and 
evaluated.

Our study had several limitations. First of all, our auto-
mated lexical methodology of calculating the adherence 
of large language model output using the ROUGE score 
is not directly interpretable and can only be used in rela-
tive terms to gauge model performance (e.g. relative to 
other imaging modalities or hospital dataset). Second, 
our reader performance study only included sixty cases, 
due to the prohibitive cost and intractability of a large-
scale reader study involving the manual editing and eval-
uation by subspecialist cardiothoracic radiologists. Our 
reader study was primarily intended to identify key areas 
where large language models can provide value in terms 
of generating impressions, but a more comprehensive 
analysis with a larger sample size and disease category 
stratification is deferred to future work. Third, only two 
hospitals that use the English language were included in 
the study which would imply that additional evaluation 
must be needed to establish the utility of the model to 
a broader clinical audience. Fourth, another methodical 
limitation is that given the scope of the study, we were 
unable to measure time savings in terms of absolute gain. 
To measure an unbiased estimate of the time taken for 
an attending radiologist to write an impression with and 
without this model, the large language model needs to be 
directly integrated into the clinical workflow via the dic-
tation software requiring additional regulatory approval 
which we delegate to future work.

Conclusions
In conclusion, we have evaluated a fine-tuned open-
source large language model’s capacity to generate 
impressions for radiology reports across multiple imag-
ing modalities and hospitals. Our reader performance 
study demonstrates that LLMs have the potential to 
greatly improve the workflow efficiency of radiologists by 
drafting preliminary versions of impressions and contrib-
ute to the quality of radiology reports.
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