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ORIGINAL PAPER

Resting and Task-Modulated High-Frequency Brain Rhythms
Measured by Scalp Encephalography in Infants with Tuberous
Sclerosis Complex

Catherine Stamoulis • Vanessa Vogel-Farley •

Geneva Degregorio • Shafali S. Jeste •

Charles A. Nelson

� Springer Science+Business Media New York 2013

Abstract The electrophysiological correlates of cognitive

deficits in tuberous sclerosis complex (TSC) are not well

understood, and modulations of neural dynamics by

neuroanatomical abnormalities that characterize the disor-

der remain elusive. Neural oscillations (rhythms) are a

fundamental aspect of brain function, and have dominant

frequencies in a wide frequency range. The spatio-temporal

dynamics of these frequencies in TSC are currently

unknown. Using a novel signal decomposition approach

this study investigated dominant cortical frequencies in 10

infants with TSC, in the age range 18–30 months, and 12

age-matched healthy controls. Distinct spectral character-

istics were estimated in the two groups. High-frequency [in

the high-gamma ([50 Hz) and ripple ([80 Hz) ranges],

non-random EEG components were identified in both TSC

and healthy infants at 18 months. Additional components

in the lower gamma (30–50 Hz) ranges were also

identified, with higher characteristic frequencies in TSC

than in controls. Lower frequencies were statistically

identical in both sub-groups. A significant shift in the high-

frequency spectral content of the EEG was observed as a

function of age, independently of task performance, pos-

sibly reflecting an overall maturation of developing neural

circuits. This shift occurred earlier in healthy infants than

in TSC, i.e., by age 20 months the highest dominant fre-

quencies were in the high gamma range, whereas in TSC

dominant frequencies above 100 Hz were still measurable.

At age 28–30 months a statistically significant decrease in

dominant high frequencies was observed in both TSC and

healthy infants, possibly reflecting increased myelination

and neuronal connection strengthening with age. Although

based on small samples, and thus preliminary, the findings

in this study suggest that dominant cortical rhythms, a

fundamental aspect of neurodynamics, may be affected in

TSC, possibly leading to impaired information processing

in the brain.

Keywords Tuberous sclerosis complex � Brain dynamics �
EEG � Dominant brain rhythms

Introduction

Tuberous sclerosis complex (TSC) is a rare autosomal

dominant disorder that affects 1 in 6,000 births (Webb

et al. 1991). The syndrome is characterized by benign

tumors (hamartomas) in the heart (rhabdomyomas), kid-

neys (angiomyolipomas), skin and brain (cortical tubers

and subependymal nodules and astrocytomas). TSC is

caused by mutations in either the TSC1 or TSC2 genes

(Kandt et al. 1992; Van et al. 1997), with potentially more

severe effects in patients with TSC2 mutations (Au et al.
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2007; Dabora et al. 2001; Jansen et al. 2008). Neurode-

velopmental manifestations are common and include

severe epilepsy, cognitive impairment, attention deficit

hyperactivity disorder, and autism spectrum disorder

(ASD) (Harrison and Bolton 1997; Bolton et al. 2002; Jeste

et al. 2008). The cognitive outcome of TSC varies signif-

icantly between patients, even among individuals with the

same type of neuroanatomical abnormalities. Some patients

have normal cognitive function, but as many as 40 % have

learning disabilities, and more than 60–80 % suffer from

epilepsy at some point in their life (Shepherd and Ste-

phenson 1992; Holmes and Stafstrom 2007; Crino et al.

2006). A number of studies have also shown that up to

50 % of individuals with TSC may also develop ASD

(Harrison and Bolton 1997; Guttierez et al. 1998; Muz-

ykewicz et al. 2007), but the risk factors for ASD in these

patients are not clearly understood (Numis et al. 2011).

While many studies have described the clinical charac-

teristics of children with TSC and ASD, few studies have

investigated the functional mechanisms that underline the

association between the two disorders. There is increasing

evidence that ASD is associated with aberrant connectivity

between brain regions (Kleinhans et al. 2008; Nebel et al.

2012) and abnormal information processing and integra-

tion, e.g., McGrath et al. (2012). Based on limited imaging

studies, there is also some evidence of loss of white matter

structural integrity in children and young adults with TSC

(Peters et al. 2012), and abnormal connectivity in parietal

regions (D’Argenzio et al. 2009). However, the electro-

physiological correlates of structural abnormalities in TSC

remain elusive. There is one report of high gamma

([50 Hz) activity in the brain area surrounding cortical

tubers (Irahara et al. 2012), and the presence of tubers has

been correlated with increased epileptiform activity

(Gallagher et al. 2009; Major et al. 2009; Jacobs et al.

2008). However, potential effects of structural abnormali-

ties on fundamental aspects of neurodynamics, such as

dominant brain rhythms and their spatio-temporal distri-

butions, have not been investigated. It is of significant

interest to identify potential neurodynamic abnormalities,

including aberrant information processing and coordination

between brain regions in TSC. Such abnormalities may

help explain differences in the cognitive outcome of the

disorder, its correlation with ASD, and facilitate early

diagnosis and identification of patients with TSC who may

be at high risk of developing ASD.

This study investigated dominant brain rhythms in infants

with TSC, in the age range 18–30 months, using novel signal

processing approaches for analysis of high-density scalp

electroencephalograms (EEG). Specifically, using a data-

driven approach [a modified empirical decomposition

(Huang et al. 1998; Stamoulis and Betensky 2011)], char-

acteristic EEG frequencies were estimated in the range

1–250 Hz. Until recently, EEG studies have assumed that

scalp EEG does not contain useful information of neural

origin at frequencies above 50 Hz, because of the assump-

tion that the skull and scalp act as filters that attenuate higher

frequencies. The ratio of the conductivity of the brain to that

of the skull has been assumed to be typically *1:0.0125, at

least in adults (Geddes and Baker 1967). However, more

recent studies have proposed a more realistic ratio of

*1:0.065, resulting in significantly less attenuation of sig-

nals propagating through the skull (Oostendorp et al. 2000).

Infants and children have thinner skulls, which may also

make it easier to measure higher frequencies. Finally, in

theory the skull and scalp would not filter out activity up to at

least *250 Hz. Instead, a more plausible explanation may

be that high frequency activity reflects network correlations

over shorter distances in the brain and/or activity from

localized sources, i.e., with limited propagation, which may

be more heavily filtered by the passive properties of the head.

Using a novel denoising approach to suppress artifacts and

eliminate noise-related components in the EEG, we esti-

mated characteristic frequencies significantly higher than

50 Hz in non-task/resting and in visual task-related EEGs.

Three groups of age-matched TSC and healthy infants were

analyzed: 18, 20–24 and 28–30 months. We found EEG

rhythms with significantly higher characteristic frequencies

in TSC than in healthy infants, at ages C20 months. These

frequencies were modulated by visual tasks, i.e., decreased

during the presentation of object and face (mom versus

stranger) images. Both resting/non-task and task-related

characteristic EEG frequencies in the ripple and gamma

range decreased significantly with increasing age in healthy

infants, suggesting that neural maturation may be associated

with a shift in the peaks of the EEG spectrum (corresponding

to dominant frequencies), to a lower range. Their rate of

change in infants with TSC was significantly slower. This

study presents novel insights into electrophysiological

mechanisms, such as abnormally high and spatially distrib-

uted high-frequency neural activity, that could destructively

interfere with information processing in the brain, and con-

sequently impair cognitive function in TSC.

Methods

Experimental Data

All EEG data were collected in the Laboratories of Cognitive

Neuroscience, Boston Children’s Hospital. Two datasets

were analyzed in this study. The first included 10 infants with

TSC, age 18–30 months (l = 23.3, r = 4.94 months), 3

healthy infants age 18 months and 3 healthy infants at

24 months. The second dataset included 6 healthy infants,

age 20–30 months (l = 22.8, r = 3.7 months). Therefore,
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data from a total of 10 infants with TSC and 12 controls were

analyzed. Data from each subject were analyzed separately.

TSC is often diagnosed perinatally, and thus all infants with

TSC had a confirmed diagnosis of the disorder, and no other

diagnoses that were not consistent with TSC. All control

subjects were neurologically healthy, with no immediate

family history (parents/siblings) of neurodevelopmental

disorders. Additional inclusion criteria were enrollment in

the study prior to one year of age, and normal or corrected to

normal vision. Infants with a history of prematurity (\37

weeks gestational age) or birth trauma were excluded.

The first dataset was recorded using a 128-channel

Hydrocel Geodesic Sensor Net (EGI, Inc., Eugene, OR,

USA), and a sampling rate of 500 samples/s. Based on

the Nyquist sampling criterion, this theoretically allowed

the discrimination of frequency components up to 250 Hz.

The second dataset was recorded during an earlier experi-

ment, using a 64-channel Geodesic Sensor Net (also from

EGI), and a sampling rate of 250 samples/s. Both electrode

net densities cover the entire head surface and contain

sponge-based carbon fiber electrodes (Ag/AgCl-coated,

carbon-filled plastic electrodes with a sponge). Prior to fit-

ting the sensor net over the scalp, the sponges were soaked in

a solution of 6 ml KCl/L of distilled water and 5 ml of baby

shampoo, to facilitate electrical contact between the scalp

and the electrode. In the analysis, only data from electrodes

that correspond to the 10-10 international equivalent system

were used (EGI Technical Note 2005). Thus, a common set

of 56 channels were included in the analysis of both datasets.

The experimental paradigm is summarized in the dia-

gram in Fig. 1. EEG was collected as infants sat on their

mother’s lap. Resting data were first collected for

*2.5–6 min, to ensure that sufficiently long baseline sig-

nals were available for analysis. Typically, the researcher

running the experiment would blow bubbles during this

time interval, to ensure the infant’s compliance with the

quiet and darkened room while wearing the sensor net. This

was followed by a block of *50 visually-evoked potential

(VEP) trials (*500 ms in duration), during which alter-

nating images of a checkerboard and its contrast were

presented on the screen. Following the VEP paradigm,

subjects were shown images of familiar and unfamiliar

faces, i.e., mom and strangers, and unfamiliar objects

(toys). Each picture remained on the screen for *500 ms,

followed by an inter-stimulus interval that was based on the

infant’s attention to the screen, and was on average *1–4 s.

The inter-stimulus interval varied widely as the experi-

menter only presented the next stimulus when the infant

was attending to the monitor, as their behavior was mon-

itored via a video camera mounted above the presentation

screen. In some cases this interval was as long as 10 s.

EEGs were continuously recorded during the paradigms.

The dataset from the 64-channel system included EEGs

recorded during the presentation of familiar-unfamiliar

faces, and non-task EEGs during the inter-stimulus inter-

vals, i.e., there was no resting EEG available. Also, no

other experiments were performed during the collection of

these data. EEG recorded prior to any task is hereafter

referred to as resting, while signals recorded during inter-

stimulus intervals are referred to as non-task.

Signal Processing Methods

EEG Preprocessing

Continuous EEG signals were analyzed using Matlab

(Mathworks, Inc, Natick, MA, USA). Signals were first

highpass filtered with a cutoff at 0.3 Hz, using NetStation

waveform tools. EGI systems set a low-pass anti-aliasing

filter with a cutoff either at the Nyquist frequency or

higher. All data were first filtered with a stopband filter-

bank of third-order elliptical filters centered at the 60 Hz

harmonics of powerline noise, i.e., at 60, 120, 180, 240 Hz

for data sampled at 500 samples/s and at 60, 120 Hz for

data sampled at 250 samples/s. The filter parameters were

1 Hz bandwidth, 20 dB attenuation in the stopband and 0.5

dB ripple in the passband. EEG signals were filtered in both

forward and reverse directions to eliminate potential phase

distortions due to the non-linear phase of the filter. Eye

blink artifacts, which often contaminate scalp EEGs, were

suppressed using a stopband matched-filterbank (Stamoulis

and Chang 2009). For each subject, the eye-blink wave-

form was estimated from its multiple occurrences in the

recordings, to construct the template of the matched-filter,

which in this case was used as a stopband filter. Signals

were matched-filtered in both forward and backward

directions to eliminate potential phase shifts. EEGs from

infants with TSC are likely to include interical spikes. We

carefully examined these signals for spike occurrence.

There were only few EEG segments (trials), predominantly

task-related, that included spikes in a subset of the elec-

trodes. These trials (all channels) were removed from the

analysis.

Estimation of Characteristic EEG Frequencies

Estimation of dominant frequencies from the peaks of the

EEG spectrogram is often a difficult process. It requires

segmentation of the data to compute their Short-Time

Fourier Transform (STFT) in order to account for the

spectral non-stationarity of the EEG. It is often difficult to

identify dominant peaks in EEG spectra, particularly at high

frequencies. An example of 3 EEG spectra, estimated from

the same channel (C1) in consecutive 5-s segments is shown

in Fig. 2. For each segment, the spectrum was estimated

both using a conventional Fast Fourier Transform (FFT)
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(top plots) and Thompson’s multi-taper spectrum (Thomson

1982) (bottom plots), to account for the spectral leakage and

thus bias in the FFT spectral estimate. In both sets of plots, in

addition to differences in the frequency of dominant peaks,

it is difficult to robustly and consistently identify these

peaks. Therefore, the majority of EEG studies examine

signal energy in biologically relevant bands (typically d
to c). Although the energy of the EEG in healthy brains may

fall well within these bands, modulations of cortical rhythms

by anatomical abnormalities are poorly understood. Fur-

thermore, different regions of the brain may have somewhat

distinct dominant frequencies within these bands, which

may be difficult to estimate from spectra. Alternative

methods are, therefore, necessary.

Signal Decomposition Using a Modified Empirical Mode

Decomposition (EMD) There are very few methods for time-

frequency analysis and decomposition of non-stationary

signals that make no a priori assumptions on the shape of the

unknown signal components (hereafter referred to as

modes). Widely used wavelet-based methods make an initial

assumption on the mother wavelet, and are thus not entirely

data-driven. The most-widely used alternative method is the

Empirical Mode Decomposition (EMD) (Huang et al. 1998),

which recursively decomposes a non-stationary signal into

components with significant amplitude contributions, each

with a characteristic frequency. Therefore, each mode is a

signal with a significantly smaller bandwidth than that of an

entire biological band. A few previous studies have used this

approach to analyze electrophysiological signals, e.g.,Bur-

gess (2012), Tsai et al. (2012), Sweeney-Reed and Nasuto

(2009).

The EMD approach involves fitting upper and lower

envelopes through local extrema of the signal, computing

the mean of the two envelopes and subtracting this mean

from the original signal. This sifting process is typically

repeated several times, at each iteration subtracting a new

mean from the signal obtained in the previous iteration,

until the standard deviation (SD) computed from signals at

two consecutive iterations reaches a stopping threshold

(typically 0.1–0.3; here we used a SD threshold of 0.1).

The resulting signal from this process is an intrinsic mode

function (or mode). Once a mode is estimated, it is sub-

tracted from the original signal and the sifting process is

repeated with the residual signal, to obtain the next mode.

The entire estimation stops once the mean square error

(MSE) between the original signal and the mode-based

re-synthesized signal, i.e., the linear superposition of

n estimated modes, is small. No upper bound is set on the

number of modes, but n is typically small (B20), at least in

electrophysiological signals in the frequency range of

interest. Decomposed modes satisfy two conditions: (1)

they have zero mean and (2) they contain a single extre-

mum between zero-crossings. However, the original EMD

method may not discriminate biologically relevant signal

contributions from high-amplitude noise contributions.

Modifications have been proposed, to eliminate modes

BASELINE

EEG
Checkerboard

Begin

ResponseStimulus on

~500 ms

SESSION

RECORDING

TRIAL

Mom/stranger

Begin

500 ms

Stimulus on Stimulus off

End

Non−task EEG

Unfamiliar objects

Fig. 1 Diagram of

experimental paradigm and

recording session (top), and

intervals of checkerboard and

mom/stranger and unfamiliar

objects (bottom)
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potentially associated with noise, while maintaining the

overall structure of the signal. In fact, EMD may be used

for denoising purposes to remove noise contributions and

artifacts (Stamoulis and Betensky 2011; Sweeney et al.

2012). Here, each EEG signal was mode-decomposed

using EMD, and the risk function proposed in Stamoulis

and Betensky (2011) was then used to sequentially elimi-

nate noise-related components. The auto-correlation of

remaining components was then calculated, both to esti-

mate the characteristic frequency of each component, but

also to determine whether this component may still repre-

sent a noise contribution to the signal that was not previ-

ously eliminated. An example of a baseline signal segment

from one EEG channel and a subset of its modes (8 of 14

estimated modes) are shown in Fig. 3. A simulation

showing signal synthesis using a time-varying weighted

superposition of sine waves with distinct frequencies,

contamination by additive Gaussian noise and decompo-

sition using the EMD procedure is shown in Fig. 4. The

difference between modal frequencies estimated from

components obtained through EMD and original modal

frequencies varied between 0.5 and 3 Hz, from low to high

frequencies. This simulation demonstrates that the EMD

method correctly estimates the underlying structure of a

non-random signal, and may be used to eliminate noise-

related components. Note that EMD has also been used to

study the characteristics of random signals, showing that a

random signal may be decomposed into components with

structure, when the original signal is white noise (Wu and

Huang 2004).
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Fig. 2 Example of channel C1 EEG spectra, estimated at 3 consec-

utive 5-s segments from resting signals, using the Fast Fourier

Transform (top plots) and Thompson’s multi-taper spectrum, using a

time-bandwidth product = 3.5 (bottom plots). Each color corresponds

to a different time interval. The data are from baseline signals from

one healthy infant at 18 months (Color figure online)
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Auto-Correlation and Zero-Crossing Methods for Fre-

quency Estimation Both autocorrelation analysis and sim-

ple counting of the number of points at which a modal

signal crosses the x-axis (zero-crossings) have been widely

used to estimate the characteristic frequency of signal

modes (Markel 1972; Phadke et al. 1983). The zero-

crossing method is more sensitive to the noise level of a

signal than the auto-correlation method. Here, all signals

were denoised and individual modes with high signal-to-

noise ratios (SNR) were extracted. Both methods were used

to obtain estimates of modal frequencies. The differences

between estimates were consistently non-significant

(B2 Hz for frequencies 20–150 and B0.6 Hz for lower

frequencies). Furthermore, the auto-correlation function

was used to assess whether a modal signal was random.

Although this process may not ensure that the original

signal from which the mode was estimated is not just noise,

it does assess whether the estimated mode is non-random

based on its autocorrelation. An example of autocorrelation

functions for the 3 highest-frequency modes, estimated

from one healthy infant and one infant with TSC, both at

18 months (a 2-s signal from channel P9) is shown in

Fig. 5. Each panel corresponds to one mode. The charac-

teristic frequencies for the first and second modes were

substantially higher in TSC (142.8 and 77 Hz, respec-

tively). The autocorrelation function for a white noise

signal is superimposed to the autocorrelation functions of

the modes.
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Fig. 3 Raw EEG segment from one channel (left plot), and a subset of decomposed modes (right panels), including very low-frequency modes

(\5 Hz, bottom plots) and higher frequency modes (C40 Hz, top plots)
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The original (raw) EEG signals from which modes are

estimated are non-random, but are a superposition of neural

oscillations and noise. By definition, the EMD process

estimates high-frequency modes first, since it fits envelopes

through local minima and maxima, i.e., first through the

many local minima and maxima associated with higher

frequency contributions. The number of these extrema

decreases as more modes are estimated and subtracted from
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Fig. 4 Simulation of 6 modes (sine waves), with characteristic

frequencies up to 45 Hz (left column). A time varying (at two time

intervals 0–2 and 2–4 s) superposition of these modes was used to

synthesize a non-stationary signal, which was then contaminated with

additive Gaussian noise. Using the proposed EMD approach, the

resulting signal (middle column) was decomposed into 10 modes, 6

modes with approximately the same frequencies as the original modes

(errors in estimated frequencies were in the range 0.5–3 Hz) 2 modes

that were noise-related, based on their autocorrelation functions, and

two very low-frequency (\0.5 Hz) that are not typically included in

the analysis, i.e., we did not examine modes with characteristic

frequencies less than *1 Hz. The autocorrelation of one of the quasi-

random components is shown in the right column, bottom panel. Note

that estimated modes had different amplitudes, based on their

respective contributions to the signal. However, they were normalized

to ±1 for plotting purposes, to compare their shapes to the original

modes
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the original signal, and ultimately the lowest-frequency

mode is estimated. Thus, the raw EEG signal based on

which the EMD estimation starts with is non-random.

Although it is possible to estimate oscillatory components

from white noise signals using EMD, and in fact this

approach has been used to investigate the characteristics of

white noise (Wu and Huang 2004), in such a case the

original signal is pure noise but the modes may be arti-

factually oscillatory. Here, the highest frequency and sub-

sequent components were estimated from a non-random

raw EEG signal, and through examination of their auto-

correlation functions only non-noise contributions to the

original signal were further analyzed. It is possible that if

the noise level in the raw signal is high, the extrema

through which the first set of upper and lower envelopes

are fitted may correspond to noise peaks, but this will be

reflected in the first mode and its autocorrelation, i.e, the

mode will represent a noise contribution to the original

signal.

Statistical Analysis The small sample size in each

subgroup (3–4 subjects) precluded the development of

regression models for comparing trial, space- and/or time-

averaged modal frequencies between age subgroups, i.e.,

there was no sufficient statistical power for such analysis.

With 3–4 data points per sample, the results even from

simple non-parametric statistical comparisons may not be

truly meaningful. However, when spatial modal frequency

patterns were averaged over subjects in an subgroup,

resulting in samples with 56 data points each (corre-

sponding to the number of EEG electrodes), the non-

parametric Wilcoxon rank-sum test was used to compare

these patterns between subgroups. Admittedly, these tests

are non-optimal, since dominant frequencies may be clus-

tered-correlated in space (in different regions of the brain),

but the small sample limited the extent of the statistical

analysis. For each recording condition, individual domi-

nant modes in the 18-month subgroup was compared to the

20–24-month subgroup, and the latter to the 28–30 month
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superimposed (black curves). In each panel, respective modes from the

EEG of a TSC subject (cyan curves) are superimposed to modes from the

EEG of an age-matched healthy control (red, blue, green curves). The

estimated characteristic frequencies are also noted (Color figure online)

J Autism Dev Disord

123



subgroup to detect age-related effects. The goal of these

comparisons was to assess potential TSC-related effects on

individual modal frequencies, at individual ages, separately

for different recording conditions (resting, task-related,

non-task).

Results

We compared the spatio-temporal distribution of dominant

EEG frequencies in TSC and healthy infants at 18, 20–24

and 28–30 months, grouped according to the age clustering

of the TSC cohort, i.e., there was no age continuity in the

sample, only 3 clusters at the above ages. In addition to

resting and non-task EEG, recordings from VEP, familiar/

unfamiliar faces and unfamiliar object trials were also

separately analyzed. Only a subset of subjects (3 controls at

18 months, 1 control at 24 months and all 10 infants with

TSC) had recordings during all tasks. All subjects had non-

task data (from inter-stimulus intervals), and data from

trials of familiar/unfamiliar faces. Mode decomposition

was applied separately to each signal. Although there was

no a priori selected upper bound on the number of esti-

mated of modes, typically a small number of modes was

estimated (*9–10 modes).

Baseline and Non-task Fundamental Frequencies

We first examined the spatio-temporal distribution of

resting and non-task dominant EEG frequencies in healthy

and TSC infants. ’True’ baseline signals, i.e., prior to any

task, were available only for 3 controls, all age 18 months

and all infants with TSC.

Temporal Variability of Characteristic Frequencies

Resting EEGs were typically much longer than a few

seconds. Thus, they were first segmented into 2-s windows,

and modes and their characteristic frequencies were esti-

mated in each window. This allowed us to assess the var-

iation of these frequencies over time. To compare between

subgroups, dominant frequencies in the same range were

averaged over all electrodes, to create one temporal profile

per frequency for each subject. As EEG recordings varied

in length between subjects, these profiles were aligned at

t = 0, and then averaged over subjects in the same sub-

group. The duration of the resulting temporal profile was

the common duration between subject-specific profiles.

Figure 6 shows the temporal (averaged over all electrodes)

variation of 5 baseline modal frequencies in the range

10–200 Hz. Resting EEGs from healthy subjects were

slightly shorter. Modal frequencies[60 Hz were higher in

TSC than in controls consistently across time. Dynamic

fluctuations of modal amplitudes were substantially higher

in TSC, but lower-frequency modes (lower gamma, beta

and alpha) had higher amplitudes than ripples and high-

gamma modes.

Spatial Variability of Characteristic Frequencies Fig-

ures 7 and 8 show the spatial (time-averaged) variability of

baseline characteristic frequencies. Individual frequencies,

estimated using in 2-s sliding window from each EEG,

were averaged in time (at each electrode), and across

subjects within a particular subgroup. Thus, for each age

subgroup (TSC or control) a spatial map of the distribution

of frequencies in the brain was estimated. The highest

modal frequency was observed in centro-parietal and

parietal regions, and was significantly higher and more

uniformly distributed in space in TSC than in healthy

infants (p\0.0001, CI [3.32, 6.21] Hz). This was also the

case for the high-gamma mode, estimated in the frequency

range 65–82 Hz. This mode was, however, more spatially

localized in centro-parietal/parietal channels (p = 0.003,

CI [0.72, 3.45] Hz). There were no statistically significant

differences in lower gamma (p = 0.28) and beta

(p = 0.33) frequencies between TSC and healthy infants.

There were no overall statistically significant differences in

alpha and theta modal frequencies between TSC and con-

trols, but both frequencies were more uniformly distributed

in space in healthy infants, and more localized in temporal

and fronto-temporal regions in TSC. Therefore, character-

istic frequencies of fronto-central and central areas in the

alpha and theta range were higher (*10 %) in healthy

infants, whereas corresponding frequencies in temporal and

fronto-temporal regions were higher (*10–15 %) in TSC.

Finally, there were no statistically significant differences in

delta frequencies between groups.

Given the data availability, in order to examine the var-

iation of modal frequencies and their amplitude across all

age groups, we estimated these parameters from non-task

EEGs, in the intervals following completion of image trials

(see Fig. 1). The highest modal frequency estimated from

non-task EEG signals in TSC subjects was *162 Hz.

Similarly to baseline (resting) signals, high-frequency

modes had low amplitudes and were spatially distributed in

large areas of the brain. They were primarily detectable in

18–24 month old infants with TSC. Corresponding modes in

healthy subjects had significantly lower frequencies. The

highest modal frequency estimated in healthy infants was

147 Hz at 18 months and 138 at 24 months, the latter only

in very few electrodes. On average, the highest frequencies

were B90 Hz at 24 months, and thus at least 40 Hz lower

than the average ripple frequencies at 18 months. In EEGs

from controls recorded in the same age range

(20–24 months) but with a sample rate of 250 samples/s, the

highest estimated frequencies were B80 Hz. The differ-

ences between 20–24 month subgroups sampled at different

sampling rates was of the order of inter-subject variability of

these frequencies within each subgroup. This suggests that
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estimated differences between age ranges may be unrelated

to differences in sampling rate. Similarly, the highest esti-

mated frequency in healthy infants at 28–30 months was

also B80 Hz. Thus, EEGs from healthy subjects 20–30

months did not have the highest (ripple) mode, only gamma

modes with frequencies\90 Hz. The spatial distributions of

the two highest modal frequencies (in the ripple and high-

gamma range) in non-task EEGs are shown in Figs. 9, and

10 for the subset of healthy subjects with data at 18 and

24 months, sampled at 500 samples/s. Only the two highest

frequencies were statistically distinct in TSC (p \ 0.01).

Signals were averaged over trials and subjects within each

age subgroup (3 in each subgroup, except the 28–30 TSC

sub-group which included 4 subjects). These results indicate

that the dominant spectral peaks of the EEG at [50 Hz

occur at higher frequencies in infants with TSC than in

healthy controls at ages C20 months.

In summary, measurable signal power was detected at

frequencies[100 Hz in non-task EEGs at 18 months, both

in infants with TSC and in controls. Dominant modal fre-

quencies in TSC were, however, at least 10 % higher.

These frequencies decreased with age, at distinct rates in

the two cohorts. Specifically, estimated high frequencies in

TSC at 20–24 months and 28–30 months were at least

20–30 Hz lower than at 18 months, i.e., the spectral con-

tent of the EEG shifted towards lower frequencies with age.

In healthy infants, a more substantial decrease in high

modal frequencies occurred earlier, i.e., by 20–24 months,

the ripple frequency was no longer detectable in the EEG.

Overall, the highest modal frequency in controls at 20–24

and 28–30 months were B90 Hz.

Familiar/Unfamiliar Face Trials

We compared modal frequencies in EEGs recorded during

the presentation of mom and stranger images, respectively.

The highest estimated frequency during these trials was

substantially lower than the corresponding frequency in

non-task EEGs, in all groups, and across channels. The

results are summarized in Fig. 11 for the ripple and gamma

(high and low) modes, respectively, as a function of age.

Data were averaged over trials, channels and subjects

within each subgroup. At 20–24 months, both data sampled

at 250 samples/s (blue) and data sampled at 500 samples/s

(black) are shown. The inter-subject variability (±1 SD)

are superimposed to the mean modal frequency. Frequen-

cies estimated from trials during presentation of images of

mom were overall identical to those estimated during

presentation of stranger pictures, i.e., there were no con-

dition effects. Statistically significant differences were

estimated between the highest frequency modes in TSC

and healthy infants at ages 20–30 months ([30 Hz differ-

ence in both mom and stranger trials). Given that modal

frequencies vary significantly between brain regions, it was

more meaningful to statistically compare frequency vectors

across channels (not shown here), averaged over subject,

Fig. 6 Temporal variation of baseline modal frequency (left) and

amplitude (right) in TSC (red curves) and healthy (black curves) subjects.

Only the first 5 modes are shown (in the frequency range 10–200 Hz).

Data were averaged over channels, and subjects in the 18-month

subgroup, for which baseline was available. The inter-subject and inter-

channel variability at superimposed (±1 SD) (Color figure online)
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instead of grand averages over trial, subject and channel.

Thus, whereas differences in ripple frequency between

TSC and healthy infants were non-significant at 18 months

(p = 0.4834), they were statistically significant at older

ages: p\0.0001, CI [20.6, 22.7] at 20–24 months, and p\
0.0001, CI [17.05, 21.8] at 28–30 months, in both mom and

stranger trials. In older healthy infants, no modes in the

ripple range were estimated. There were no statistical dif-

ference in modal amplitude between groups at each age.

We finally examined group differences in lower-fre-

quency modes, shown in Fig. 12. There were no significant

differences between TSC and control subgroups and/or

mom/stranger trials at 18 and 24 months, in any modal

frequency in the range 4–35 Hz, for all data sampled at 500

samples/s. There were statistically significant differences

between TSC and controls at 20–22 and 28–30 Hz, but the

control data were sampled at 250 samples/s. In theory, the

sampling rate limitation should not affect estimated fre-

quencies at ranges B30 Hz. Thus, the differences between

healthy controls at 24 months and 20–22 months may be

due to the small sample size, i.e., two randomly selected

small groups.

In summary, we examined task-related modulations of the

spectral content of the EEG across groups and ages. There

was an overall shift towards lower frequencies from resting

to familiar/unfamiliar face trial conditions across ages and

groups. There was a statistically significant decrease in

modal frequencies in the ripple and gamma ranges, between

TSC and healthy infants at ages C20 months. No condition

effects were found between mom and stranger trials. No

consistent statistically significant differences were found at

lower frequencies (B30 Hz) between TSC and controls.

Fig. 7 Spatial distribution of

estimated modal frequencies in

the range[80, as well as lower-

and higher-gamma beta bands,

averaged over time and subject,

in TSC (left panels) and health

(right panels) 18-month infants.

Colorbars represent frequency

in Hz (Color figure online)
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VEP and Unfamiliar Object Trials

Finally, we examined the distribution of modal frequencies

during the presentation of alternating checkerboards across

TSC groups and in controls at 18 months, and during the

presentation of unfamiliar object images. These paradigms

were not used in the earlier experiment. For each subject,

estimated frequencies were averaged over approximately 50

checkerboard trials, and separately over a variable number of

object trials (typically about 20). For object trials, modal

frequencies, their spatial, temporal and amplitude distribu-

tion varied in statistically identical patterns to those during

the mom/stranger trials. During checkerboard trials, modal

frequencies and their spatio-temporal distributions were

identical to those during baseline and non-task trials. The

spatial distribution of the ripple and two gamma-modes in

the 3 TSC groups and the 18-month control group is shown in

Fig. 13.

Discussion

We have estimated the dominant frequencies of scalp EEG

in infants with TSC and age-matched controls, in the age

range 18–30 months, using a data-driven signal decompo-

sition approach based on EMD. We hypothesized that

dominant EEG frequencies reflect cortical rhythms enco-

ded in these signals, with measurable energy at frequencies

above 80 Hz. High-frequency, non-noise related EEG

contributions may represent a fundamental property of the

developing brain, and may be affected by TSC. We have

estimated these frequencies in baseline, non-task related

Fig. 8 Spatial distribution of

estimated modal frequencies in

the alpha, theta and delta bands

(2 modes), averaged over time

and subject, in TSC (left panels)

and healthy (right panels)

18-month infants. Colorbars

represent frequency in Hz

(Color figure online)
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Fig. 9 Two highest frequency modes in non-task EEGs, estimated

from multiple trials following presentation of mom/stranger images.

Data were averaged over [40 trials and 3 subjects in the 18- and

20–24 month subgroups, and 4 subjects in the 28–30 TSC subgroup.

Left panels correspond to the 18-month subgroup, middle panels to

the 20–24 month subgroup and right panels to the 28–30 month

subgroup. Data from all TSC subjects and 18-month controls were

sampled at 500 Hz, and all data from 20 to 30 month controls were

sampled at 250 Hz. Colorbars correspond to frequency in Hz;

separate colorbars are shown for the older controls with significantly

lower frequencies. a Spatial distribution of highest EEG modal

frequency in TSC (top panels) and healthy infants (bottom panels)

age 18–30 months. b Spatial distribution high-gamma modal

frequency in TSC (top panels) and healthy infants (bottom panels)

age 18–30 months (Color figure online)
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and visual task-related EEGs (during presentation of

checkerboards, mom/stranger images, and unfamiliar

object images). Each EEG signal was separately analyzed,

parameter estimates were averaged either in space or time

and across trials and subjects within the same age sub-

group. Consistently higher modal frequencies were esti-

mated in TSC subgroups than in controls.

First, a non-noise (based on its autocorrelation), low-

amplitude but high-frequency ([80 Hz) mode was estimated

in resting/non-task EEGs of 18–24 month-old infants with

TSC and in controls at 18 months. This mode was broadly

distributed in space, and thus present in a large number of

EEG channels. Its highest frequency was observed in centro-

parietal and parietal regions in both TSC and healthy infants.

However, in healthy subjects it was substantially lower (on

average 15–20 Hz lower). The amplitude of this mode was

low (3–5 times less than other modes) and varied insignifi-

cantly between groups. Similarly, modes in the high-gamma

(50–80 Hz) and lower-gamma (30–50 Hz) range, were also

consistently estimated in all subjects. Again, corresponding

modes in healthy controls had lower characteristic frequen-

cies, particularly at 28–30 months, where the difference in

frequency between TSC and controls was greater than

20 Hz. Given the low-amplitude and broad spatial spread of

this activity in younger infants, high-frequency modes may

correspond to noisy interference signals, possibly associated

with redundant and/or developing neural circuits. High-fre-

quency activity consistently decreased with age, possibly

due to strengthening of functional connections and increased

efficiency of neural transmission. In infants with TSC, the

largest spectral shift, from ripple frequencies towards lower

(gamma) frequencies occurred between 24–28 months. In

contrast, in healthy infants this shift occurred earlier,

between 18–20 months. Thus, by 20 months, low-amplitude

high-frequency activity had significantly decreased in heal-

thy subjects. Admittedly these observations are based on

Fig. 10 Spatial distribution of

estimated modal frequencies in

the ripple (top plots) and gamma

(high in middle plots and low in

bottom plots), in healthy

controls at 18 months (left) and

24 months (right), for non-task

EEGs sampled at 500 samples/s.

Colorbars correspond to

frequency in Hz (Color figure

online)
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very small samples sizes, but they still suggest that

strengthening of neural circuits during development may be

encoded in the EEG in part as progressive decrease in spa-

tially distributed low-amplitude, high-frequency activity.

High-frequency activity, above ([80 Hz) and/or at the high-

gamma range (60–80 Hz) may represent some type of

’neuronal noise’, which may decrease with increasing axonal

myelination during development and maturation of func-

tional circuits. Recent neuroimaging studies have measured

the dynamics of myelination, which occurs at different rates

in the brain, but is visible across the brain by age 9 months

(Deoni et al. 2011). This process may be delayed in TSC, and

increased high-frequency activity at least until 24 months,

may reflect a slower overall rate of myelination and matu-

ration of neuronal networks.

Estimated modal frequencies had consistent spatial

patterns. High-frequency modes were spatially diffused,

with relatively lower spatial specificity to particular brain

regions. Localization of individual modes increased with

decreasing frequency, i.e., lower frequency modes were

typically more highly localized in parietal, temporal and

fronto-temporal regions, in both baseline and task-related

signals. Significant differences in these patterns were

estimated between TSC and healthy infants in the 28–30

month, and to some extent the 20–24 month age range.

Visual tasks also modulated modal frequencies. Lower

ripple and high-gamma frequencies were estimated in both

TSC and controls during stimulus presentation. However,

differences between tasks were not statistically significant.

In addition, more spatially localized low-gamma frequen-

cies were estimated during presentation of images and

checkerboards, but differences in frequencies in this range,

were insignificant between task and non-task signals. Dis-

tinct spatial patterns of modal frequencies in the alpha and

theta ranges were estimated between TSC and healthy

infants at 18 months. Higher and more highly localized

temporal and fronto-temporal alpha and theta frequencies

were estimated in TSC. In contrast, more spatially dis-

tributed frequencies were estimated in controls, particularly

in frontal and fronto-central regions. This is the opposite

than the spatial patterns observed at high frequencies. In

older infants, there were no consistent statistically signifi-

cant differences between TSC and controls for modal fre-

quencies below 30 Hz. In the 20–22 month control

subgroup, statistically lower frequencies in the beta to theta

ranges were estimated during presentation of mom and

stranger images. In the 24 month control subgroup, no

significant differences were found. Although the two sub-

groups were sampled at different rates (250 vs. 500 sam-

ples/s), this variability may be due to the small size of the
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Fig. 11 Ripple and high-gamma frequencies as a function of age

during mom trials. Mean frequency, averaged over trials, channels,

and subjects and corresponding variability (±1 SD) are superimposed

in controls sampled at 250 samples/s at ages C20 months (blue),

controls sampled 500 samples/s at 18 and 24 months (black), and

TSC subjects (red) (Color figure online)
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two subgroups (3 subjects), and thus not due to the sam-

pling rate limitation.

Despite promising findings, this study has several limi-

tations. First, the samples were small, which limits the

extent of statistical analysis and the robust statistical

characterization of differences in estimated parameters.

Clearly, the results need to be validated in larger TSC and

healthy infant cohorts. In addition, several pairwise com-

parisons are made, i.e., for individual modes, under dif-

ferent recording conditions, etc. A larger sample may allow

the development of statistical models that include multiple

parameters for combinatorial prediction of differences in

rhythm dynamics between TSC and controls. However,

despite the small sample sizes, a significant amount of EEG

data were analyzed, from relatively long baseline intervals,

different tasks, and multiple trials and segments per task.

Results were remarkably consistent under the different

experimental conditions, at frequencies above 30 Hz,

which in turn suggests that estimated dominant frequencies

in this range may represent a stable parameter of brain

neurodynamics, which is robust to inter-subject and inter-

trial variability. Estimated frequencies at lower ranges

(B30 Hz) were less consistent, at least in the 20–24 month

range, with increasing inter-subject variability as frequency

decreased. This highlights the need to validate these results

in a larger study. Another limitation is that no longitudinal

data were included in the analysis, i.e., different subjects

were included in each age subgroup. Therefore, it is pos-

sible that estimated age effects may be due to intra-group

variability. Finally, it is possible that lower modal fre-

quencies at 28–30 months in healthy infants compared to

TSC are due to differences in sampling rate than true age-

related differences. However, we were able to compare

non-task and face trials in two subgroups of healthy con-

trols at 20–24 months, one sampled at 250 samples/s (with

a 64-electrode system) and the other at 500 samples/s (with

a 128-electrode system). There were no statistically sig-

nificant differences due to sampling (spatial or temporal) at

frequencies in the gamma and ripple ranges, at which the

sampling rate limitation could affect the results. Overall,

the highest estimated frequency in infants[18 months was

on average B90 Hz. Modal frequencies and amplitudes

were averaged over large number of trials. Although

beyond the scope of this study, a detailed analysis of inter-

trial differences between estimated frequencies may be

informative. Finally, there remains a possibility that high-

frequency modes represent non-neural noise contributions

to the EEG. However, based on extensive filtering followed

by decomposition-based denoising of each EEG signal, and

careful examination of the auto-correlation functions cor-

responding to the ripple and high-gamma modes it is

unlikely that these modes are associated with non-neural

Fig. 12 Mean differences in modal frequencies, in the low-gamma/high-beta, beta, alpha and theta ranges (from left to right), estimated during

presentation of mom images, in healthy and TSC infants at 18 and 24 months
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noise. Furthermore, these modes were consistently modu-

lated by stimulus presentation and age.

In summary, this study presents novel findings on the

spectral characteristics of neural activity in infants (age

18–30 months) with TSC and age-matched controls, mea-

sured by high-density scalp EEG. We have shown that high-

frequency, non-noise signal components are measurable in

both resting and task-related EEG and are significantly

modulated by age, possibly reflecting maturation of devel-

oping neural circuits and increased processing efficiency

with age. This activity decreases with age, but at a slower rate

in TSC than in controls. Although the role of this activity is

not yet understood, it may represent a low-amplitude signal

induced by noisy neuronal networks. Increased myelination

and connection strengthening with age may result in the

attenuation of this activity. In turn, this suggests that func-

tional connectivity, which is directly correlated with network

integrity, may be impaired in younger infants with TSC even

at 20–24 months, resulting in poorer cognitive performance.

Therefore, this analysis provides novel insights into specific

aspects of neurodynamic development in infants with TSC,

which may ultimately improve our understanding of the

underlying mechanisms of cognitive deficits in these

patients. Finally, consistent detection of differences in the

spatio-temporal distribution of modal frequencies at differ-

ent ages may have important implications for diagnosis, as

well as prediction of the cognitive outcome and potentially

the risk of comorbid connectivity/information processing

disorders such as ASD.
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Fig. 13 Spatial distribution of first 3 modal frequencies during

checker trials. From left to right panels TSC, 18 months, Controls

18 months, TSC 20–24 months, and TSC 28–30 months. Ripple
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are shown. Colorbars correspond to frequency in Hz (Color figure

online)
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