
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Mitigating Sensor Attacks Against Industrial Control Systems

Permalink
https://escholarship.org/uc/item/9k82349d

Authors
Cómbita, Luis F
Cárdenas, Álvaro A
Quijano, Nicanor

Publication Date
2019

DOI
10.1109/access.2019.2927484
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9k82349d
https://escholarship.org
http://www.cdlib.org/


Received May 16, 2019, accepted June 14, 2019, date of publication July 9, 2019, date of current version July 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927484

Mitigating Sensor Attacks Against
Industrial Control Systems
LUIS F. CÓMBITA 1,3, (Student Member, IEEE), ÁLVARO A. CÁRDENAS2, (Member, IEEE),
AND NICANOR QUIJANO 3, (Senior Member, IEEE)
1Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia
2Department of Electrical and Computer Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
3Departamento de Ingeniería Eléctrica y Electrónica, Universidad de Los Andes, Bogotá 111711, Colombia

Corresponding author: Luis F. Cómbita (lfcombita@udistrital.edu.co; ca.luis10@uniandes.edu.co)

This work was supported in part by the Comisión de Estudios No. 015 de 2014 by the Universidad Distrital Francisco José de Caldas,
in part by the Convocatoria 727 Doctorados Nacionales 2015 by Colciencias, and in part by the United States Air Force Office of Scientific
Research (AFOSR) under Grant FA9550-19-1-0014 and Grant FA9550-17-1-0135.

ABSTRACT This paper describes how to design and implement a mechanism that helps to mitigate sensor
attacks on industrial control systems. The proposed architecture is based on concepts from fault-tolerant
control techniques. This short note explains how a Kalman filter can be used simultaneously with optimal
disturbance decoupling observers to improve the performance of the mitigationmechanism for sensor attacks
in cyber-physical control systems. Our proposal mitigates attacks by generating a signal that compensates the
change provoked by the attacker, while at the same time reducing the number of false alarms.We demonstrate
the effectiveness of our proposal using a three tanks control simulation.

INDEX TERMS Cyber-physical control systems, industrial control systems, secure control, sensor attacks
mitigation.

I. INTRODUCTION
Widespread growth of new computing and network tech-
nologies has permeated industrial control systems (ICS),
facilitating the pervasive use of remote sensors, and their
interconnection with centralized control systems. These
cyber infrastructures (including remote sensing and activa-
tion, digital signal processing, and computing) interact with
physical industrial systems, creating a cyber-physical indus-
trial control systems (CP-ICS). The goal of these CP-ICS
is to improve the efficiency and reliability of these critical
infrastructures; however, the inclusion of these technologies
also opens the opportunity for cyber-attacks. The main pur-
pose of these attacks is to modify the control loops to cause
misbehaviors, with effects ranging from simple degradations
on the performance of the control systems to those that can
produce safety critical problems.

Over the years, several cyber security incidents affecting
critical infrastructures have been reported [1], [2], including
security problems in power plants, water treatment systems,
pipelines, and transportation systems. As the threats to these
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systems continue to increase, the research community has
been developing solutions in a variety of fields [3]–[9].

Cyber attacks are classified in two general groups
[10]–[12]: i) denial-of-service (DoS); and ii) integrity attacks.
The main purpose of DoS attacks is to deny access to sen-
sor or actuator information; mathematical models for these
kind of attacks are summarized in [13]. Integrity attacks are
characterized by the modification of sensor and/or actuator
information, compromising their integrity.

Detection and isolation of cyber-attacks in CP-ICS is a
growing area of research, but on the other hand, the response
and mitigation of these attacks has comparatively received
less attention. Detection refers to revealing that there is an
anomaly in the system caused by a cyber-attack. On the other
hand, isolation focuses on identifying where the anomaly
takes place (isolation is also referred as identification in
some literature). The limitations of the attack monitors, and
some conditions regarding the features of undetectable and
unidentifiable attacks have been previously discussed [11].
In [14], the dynamical model of an irrigation channel system
is used to design a bank of observers to detect and isolate
attacks in the system; however, the authors do not work on
control actions to mitigate the effect of an attack on the
system. Integrity attacks on sensors of SCADA systems are
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explored in [15], where the authors establish a feasibility con-
dition for replay attacks and how to detect them with a noisy
control authentication signal, but they do not discuss how to
respond once an attack is identified. It is important to mention
that fault-tolerant control (FTC) technology is being used
as a tool for dealing with cyber-attacks [16], [17]; however,
even these works that leverage the fault-tolerant literature
focus on detection and isolation, mainly using unknown input
observers (UIOs), they do not state how to mitigate these
attacks.

Motivated by this gap in the literature, our previous work
looked at the few proposals that focused on response to cyber-
attacks and identified two types of responses: (i) preventive
and (ii) reactive [18]. The former one focuses on the identifi-
cation of vulnerabilities in a system before an attack happens,
and its aim is to improve the robustness of ICS to face attacks.
The latter generates a response after an alarm is triggered as a
consequence of a detected attack, and its goal is to minimize
the impact of the attack on the operation of the system.
An increase in the resilience of ICSs through a reactive
response is composed by detection andmitigation stages [19].
These stages mirror the literature in fault diagnosis, where
they are known as detection, isolation, and reconfigura-
tion [20]. Reconfiguration control actions are described as
the mechanisms that trigger the response for maintaining the
system stability or ensuring that the system remains in a safe
zone, perhaps with some performance degradation. However,
attacks and faults have significant differences, which com-
plicates the use of reconfiguration control to face deception
attacks [19]. This fact opens a gap to adapt the reconfigu-
ration control tools in response to the distinctive features of
the attacks. For instance, the adaptation of the controller in
networked control systems to prevent and overcome current
and future time delay switch attacks is presented in [21].
Another strategy for the attackmitigation is based on adaptive
control techniques. In [22], the authors propose an adaptive
controller able to deal with sensor and actuator attacks, which
guarantees stability of the closed-loop dynamical system.

In this paper, we present a novel mechanism to mitigate
integrity cyber-attacks on ICSs. This work shows how to
produce a reactive response for the mitigation of the effect
of sensor attacks on ICSs. This mechanism is validated with
some simulations on a multi-input multi-output (MIMO)
system testbed. We extend previous work in several ways:
i) the addition of measurement noise to the readings of the
sensors; ii) the inclusion of optimal disturbances decoupling
observers (ODDOs), as the isolation mechanism, with the
addition of a false alarms reduction mechanism; and iii) the
design of a mechanism to generate a response that is able
to mitigate the impact of attacks on sensors. Adding noise
is a more realistic example of ICSs, and it is an extension
with respect to previous works (e.g., [23]–[25]), where only
noiseless scenarios have been considered. Output of ODDOs
produces false alarms because usually all outputs of multi-
variable systems are coupled, and this causes that an attack on
a unique sensor is isolated in more than one sensor. For this

problem, our approach uses a novel binary logic that reduces
the number of false alarms. The response mechanism consists
in recovering the true information of the attacked sensor
nullifying or reducing the alteration done by the attacker.
The mitigation of the attack is achieved when the controller
computes a trustworthy control action using the recovered
information about the variables of the physical process. Sev-
eral attacks have been explored, and the evaluation of our
proposal is based on a key performance index such as the
integral of the absolute error (IAE), which shows that lower
values of IAE are obtained using our proposal instead of the
conventional way that is more susceptible to false alarms.

The organization of the paper is as follows. In Section II
we present the background and problem formulation describ-
ing the type of sensor attacks we consider. In Section III,
we introduce a mechanism to mitigate the effect of sensor
attacks, detailing the procedures to perform the detection and
isolation process, the false attacks suppression process, and
the control action compensation process. In Section IV we
evaluate our proposal with a three-tank benchmark plant.
Finally, in Section V we discuss the conclusions and future
work to enhance the proposed mechanism.

II. BACKGROUND AND PROBLEM FORMULATION
An ICS provides the interconnection of equipment used to
monitor and control physical equipment in industrial envi-
ronments. The interconnection is based on a network that
differs from the traditional enterprise networks because data
is strongly linked with industrial physical processes.

Legacy industrial control systems are systems that were
deployed before updated operational or security best-
practices, and are not replaced because of market forces.
Making the decision to keep legacy systems requires bal-
ancing the costs and risks of maintaining old systems versus
the risk and expense of upgrading. However, most of legacy
ICSs could work for the whole life cycle and even extend it
if their security is improved. A way to achieve this purpose
is to improve the security of existing legacy ICSs, with the
inclusion of mechanisms to give a response and to mitigate
the effect of cyber-attacks.

There are several mechanisms to improve the security
of information technology systems (ITS); however, control
systems cannot use the same tools for improving their secu-
rity [26]. One of the different tools available in ICS (and
not in ITS) is the ability to detect cyber-attacks based on
the physical evolution of the state of the controlled sys-
tem [27]. This evolution usually is given by differential equa-
tions for continuous-time systems and difference equations
for discrete-time systems. In this work we extend this line of
work for attack detection and also the attack response actions
to mitigate the effect of the attack [3], [18].

A. SYSTEM SETUP
Control algorithms are commonly chosen based on the per-
formance requirements of the controlled system. A widely
used control in industry is tracking control, which is based on
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FIGURE 1. Block diagram of a typical networked tracking control system
with state feedback.

state feedback together with an integral of the tracking error.
Figure 1 illustrates a block diagram of a typical networked
control system.

Most of the plants on ICSs are nonlinear processes, there-
fore nonlinear control is an important issue in industrial
practice. These plants usually are modeled using state space
representations, which are related with a great number of
control techniques. In this work, we assume a nonlinear
tracking controlled process, where the plant is modeled using
a nonlinear time invariant model given by,

ẋ(t) = f (x(t))+ g(ũ(t))

y(t) = h(x(t)), (1)

where x(t) ∈ Rn represents the state of the system, ũ(t) ∈
Rm represents the control input vector after the transmission
network (i.e., is the equivalent in continuous time of the
signal uk that is transmitted through the network, computed
by the remote controller, and received by the actuators), and
y(t) ∈ Rp represents the measurement output vector (to be
transmitted).

The network used to send the signals between the con-
trolled system and the remote controller has a random com-
munication delay and packet dropout introduced by its limited
communication capacity. Delays and cyber-attacks will affect
both the control signal received by the controlled system and
the sensor signal received by the remote controller, as

ũk =
q∑
i=0

δ(τk , i)uk−i +1a
k ,

ỹk =
q∑
i=0

δ(τk , i)yk−i +1s
k , (2)

where uk is the control action computed by the remote con-
troller prior to transmission, while ũk is the control action
after the process and actuators attacks are included, yk is
the signal vector from measurements of the physical vari-
ables prior to transmission, and ỹk is the sensor signal vector
after including the process and sensors attacks are included.
1a
k ∈ Rm and 1s

k ∈ Rp represent attacks in actuators and
sensors, respectively.

The Kronecker delta function δ(τk , i) is used to represent
the random communication delays and stochastic data miss-
ing. Delay time τ is considered as an integer number of the
sampling time Ts. For the ideal case, there is no commu-
nication delay, i.e., τ = 0, and only δ(0, 0) = 1, hence
ũk = uk . For a communication delay time greater than zero
(1 ≤ i ≤ q), only a term of the summation is equal to 1, hence
ũk = uk−i. In the case that the delay produces a timeout error
q = −1, there is no terms on the summation, and ũk = 0.
Nevertheless, in this work we consider the ideal case where
there is no communication delay, but we consider the case
where there are cyber-attacks on the sensors.

Networked control is based on digital communication
techniques, therefore, a discrete-time model for the plant is
required. Typically, it is assumed that the system is operating
at some nominal operation point, hence an incremental linear
model (an approximation of the nonlinear plant) for the pro-
cess is used in this case. In this work, the linear discrete-time
invariant model of the plant is given by

xk+1 = Axk + Bũk + Bζk
yk = Cxk + ηk , (3)

where k ∈ Z+ represents the discrete time instant, xk ∈ Rn

represents the state of the system, ũk ∈ Rm represents
the control input vector after the transmission network
(i.e., is the equivalent of the signal uk that is transmitted
through the network, computed by the remote controller,
and received by the actuators), yk ∈ Rp represents the
measurement output vector (to be transmitted), and ζk and
ηk are independent zero mean noise vector sequences, with
covariance matrices Q and R, respectively.

The remote controller is designed to produce disturbance
rejection and zero-steady state error for step inputs. For this
purpose, an integrator and a state-feedback is implemented.
The equation for the discrete-time integrator is given by

zk+1 = zk + Ts(sk − ỹk ), (4)

where zk is the output vector of the integrator, sk ∈ Rm

represents the reference input vector or set-point, ỹk ∈ Rq

represents the controlled output vector, and Ts represents
the sampling time of the discrete-time system. The state-
feedback requires the estimation of the state variables, from
the available measurements. For this purpose a Kalman filter
is used.

The Kalman filter provides the optimal state estimate x̂k .
From the initial estimation of the associated error covariance
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matrix, Pk|k−1, the Kalman gain is computed as

Kk = Pk|k−1C>(CPk|k−1C> + R)−1. (5)

After this, an update of the state estimation -using the mea-
surement vector- and of the covariance error matrix is done

x̂k = x̂k|k−1 + Kk (ỹk − Cx̂k|k−1),

Pk = Pk|k−1 − KkCPk|k−1. (6)

Finally, the state estimation and the covariance error matrix
is given by

x̂k+1|k = Ax̂k + Buk ,

Pk+1|k = APkA> + Q. (7)

As it can be noticed from (5), (6), and (7), the state estimate
x̂k obtained using the Kalman filter is computed using the
information from all inputs uk and all outputs ỹk . The nominal
control law of the system uk is given by

uk = −
[
K1 K2

] [x̂k
zk

]
, (8)

whereK1 andK2 are vectors computed to stabilize the closed-
loop control system, and to achieve the required performance.
Taking into account that the Kalman filter estimation x̂k is
designed to converge to the state xk , the augmented state of
the whole system is [x>k z>k ]

>, and hence x̂k in the control
law (8) can be replaced by xk .

B. CYBER-ATTACKS IN CONTROL SYSTEMS
A typical networked controlled tracking system with state
feedback is depicted in Figure 1. In the ideal (non-attack) case
ỹk = yk and ũk = uk .

When the system is under attack, equation (3) can be
extended to include integrity attacks as well as DoS attacks
as follows

xk+1 = Axk + Buk + Bζk +1a
k , (9)

and it is worth noticing that after the transmission, yk becomes

ỹk = Cxk + ηk +1s
k . (10)

Let us remark that attacks on sensors consist on replacing
yk (the real sensor measurement) with ỹk = yk + 1s

k (any
data value output from the sensor), i.e., the attack adds what
we consider as a a new input 1s

k to the system. Attacks
on actuators consist on modifying the input of the plant
(the control signal sent to the process by the controller or the
programmable logic controller) adding a new input, the
attack 1a

k . This modification affects directly the action that
the actuators may execute.

Integrity attacks and faults on control systems share some
similarities in that the sensor or control signals change from
the real values and become less trustworthy. However, while
faults are typically random and non-strategic, cyber-attacks
are strategic, more deceptive, and potentially more dangerous
for the safety of the system. The objective of the attacker can

be economical profit, stealing private information, or caus-
ing malfunction or safety hazards in a control process.
Differences between attacks and faults are significant, and,
as a consequence, the existing tools of FTC cannot be used
directly to detect and mitigate the effect of cyber-attacks on
control systems.

In this work, deception attacks, also known as false data
injection attacks, or integrity attacks, are described and dis-
cussed. For these attacks, we assume the attacker can alter the
true information sent by sensors with the goal of deceiving
the controller and, therefore, computing a control action that
drives the control system to an unsafe or undesired behavior.
These attacks can be achieved when the actual system mea-
surements are replaced by data that are compatible with the
measurement equation of the system [28], [29]. In this work,
we assume the attacker knows the valid range of the mea-
surement of sensors, then, he will produce an attack vector
not trivially detectable. In [29], it is shown that an attacker
can manipulate these measurements without being detected.
In this attack, the attacker does not require knowledge about
the model of the system, but the knowledge about current
values of the measurements is enough. With current values
and the span of the measurements it is easy to compute an
attack vector.

The false data injection considered in this work are of the
form

1s
k = f (k, xk ), (11)

where f (k, xk ) varies depending on the type of attack applied
to the system sensors. We establish two kinds of false data
injection attacks: i) bias attack; and ii) static attack.

For the bias attack, 1s
k is mathematically defined as

1s
k =



0, t < t1,
fi fs1 , t1 ≤ k ≤ t1 + 20,
fi, t1 + 21 ≤ k ≤ t2 − 21,
fi fs2 , t2 − 20 ≤ k ≤ t2,
0, t > t2,

(12)

where fs1 and fs2 are functions used to smooth the initial and
final portions of the attacks, such as

fs1 =
1+ tanh [(0.1(k − t1)− 1)π]

2
(13)

and

fs2 =
1− tanh [(0.1(k − (t2 − 20))− 1)π]

2
, (14)

t1 and t2 are the initial and final times of the attack, fi is
the function that shapes the ith attack itself, which is suitably
defined to affect only one sensor. The purpose of smoothing
functions is to produce a soft transition to the sensor data,
in order to try to avoid that a detector of abrupt changes can
easily detect the attack. We use (13) when the change is the
addition of a positive value and, (14) is used when the change
is the subtraction of a positive value.
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For the static attack, 1s
k is such that ỹk becomes a static

value with some noise for the duration of the attack, and it is
defined as

1s
k =

{
−C xk − ηk + ksi + η

s
ik , t1 ≤ k ≤ t2,

0, otherwise,
(15)

where ηsik is an independent zero mean noise signal, with the
standard deviation equal to the sensor signal characteristics.

The fundamental feature of control systems is to main-
tain a set of variables with a predefined desired behavior,
for instance, tracking a reference input and rejecting some
disturbances. However, most control systems have not been
designed to be resilient to malicious deliberate actions. Those
actions aim to alter the behavior of the controlled plant in
order to reach the system instability, to force some variables
out of range and, in some cases, to cause harmful damage in
the system and its environment.

In order to design attack-resilient systems, we need: i) to
detect that an attack is taking place; ii) to isolate (identify)
the attacked device; and iii) to reconfigure the system and/or
change its operation to mitigate the attack (e.g., replace the
sensed measurements by a virtual sensor [3]).

III. ATTACK MITIGATION APPROACH
In this section, we present a mechanism that generates a
response to mitigate the effect produced by a false-data
injection attack in one sensor of a control system. The mit-
igation response decreases the deviation in the system out-
puts, produced by a sensor cyber-attack. When the controller
receives misleading information, it computes an incorrect
control action, changing the normal operation of the control
system. The attack response is based on the computation, and
the posterior addition, of a correction signal to the incorrect
sensor information. When the above mentioned correction
is done on the tampered sensor, the controller can compute
a trustworthy control action and the effect of the attack is
mitigated.

To obtain trustworthy information, it is necessary to detect
and isolate where the anomaly is placed. Some previous
works show the use of FTC tools to detect and isolate
sensor attacks in control systems [14], [19]. In this paper,
we go a step further by showing a response mechanism to
be used after the anomaly detection and isolation. The attack-
response algorithm computes the required control action with
trustworthy information to mitigate the impact that the sensor
attack produces in the performance of the control system.

A. ANOMALY DETECTION AND ISOLATION
Anomaly detection and isolation algorithms have two goals
i) identifying where the attack is located, i.e., which sensor
information is false; and ii) identifying the time the attack
is active, i.e., starting and ending time of the attack. For
stochastic systems, this can be achieved using optimal filter-
ing and robust anomaly diagnosis including unknown distur-
bances, which in our case are the sensor attacks. In this work,
the attacks are the disturbances that we need to decouple.

For each sensor of the system an observer is designed, and
the optimal output estimation can be produced. To detect and
isolate anomalies, the output estimation error is used as a
residual which is robust against unknown disturbances and
has minimal variance. A hypothesis-testing procedure is then
applied to examine the likelihood of residuals, and to indicate
whether or not an anomaly has occurred in any sensor of the
system.

In order to detect and isolate the anomaly, an ODDO
is designed for each sensor of the control system. In this
work, the attacked sensors are considered as the unknown
disturbance that is acting on the system. These ODDOs are
used to generate the structured residuals, i.e., residuals that
are insensitive to one specific disturbance, and are sensitive to
the other ones. The ODDO that is insensitive to anomalies on
the jth sensor has as input all components of the control action
vector uk and, all but the jth component of the output vector,
ỹjk . An optimal state estimation of the system associated to
the jth sensor is obtained using an initial estimation of the
associated error covariance matrix, just as it is done in the
Kalman filter.

Designing the jth ODDO requires a transformation to
guarantee the existence of the observer and the anomaly
decoupling on the jth sensor, which is done by

H j
= E j(C jE j)+,

T j = In − H jC j,

Āj = T jA, (16)

where E j is the matrix used to decouple the effect of the
unknown attack on the jth sensor, C j is the resulting matrix
when the jth row is eliminated from thematrixC , In is an order
n identity matrix. Then, a standard Kalman gain is calculated,
similarly as in (4),

K1
j
k = ĀjPjk|k−1C

j>(C jPjk|k−1C
j>
+ R)−1. (17)

After that, an update of the estimation of the covariance error
matrix is done

Pjk = Pjk|k−1 − K1
j
kC

jPjk|k−1Ā
j>. (18)

Some other transformation matrices, need to be updated at
each iteration, and they are given by

F jk = Āj − K1
j
kC

j

K2
j
k = F jkH

j

K j
k = K1

j
k + K2

j
k

wjk+1 = F jkw
j
k + T

jBuk + K jỹjk , (19)

where ỹjk is the vector of sensor measurements for time k ,
when the row correspondent to the jth sensor is suppressed.
Finally, the updates for the state estimated and the ahead
prediction of the error covariance matrix are performed by

x̂ jk+1 = wjk+1 + H
jỹjk+1

Pjk+1|k = ĀjPjk Ā
j> + T jBQB>T j

>
+ H jRH j>. (20)
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The complete procedure is presented, explained, and demon-
strated in [30].

Associated with the optimal output estimation from the
jth ODDO, the r jk residual vector is computed by

r jk = ỹk − Cx̂
j
k for j = 1, 2, · · · , p. (21)

The residual r jk , associated to the jth sensor, is computed
using the information from all inputs uk and all but the jth

component of the outputs ỹjk . When there are no anomalies
on actuators, and there is only one attack in the jth sensor,
the residual satisfies

‖r jk‖ > τ
j
I , (22)

where T jiso is known as the isolation threshold for the
jth ODDO.
For an ideal case, the mathematical model of a sys-

tem describes perfectly its behavior, the observers converge
instantaneously, and hence, in absence of any anomaly on a
sensor, all residuals would be always exactly equal to zero.
However, for practical cases, due to modeling imperfections
of the controlled system, and convergence time of observers
different than zero, the residuals are not exactly zero when
there are not attacks on sensors. For this reason, the threshold
is determined based on reducing false isolation of attacks. The
threshold determination is done based on the calculation of
the residuals with no attacks on sensors of the system. From
the residuals without attacks, we can define the threshold as

τ
j
I = sup

k
‖r jk‖. (23)

It is worth noticing that when τ jI is chosen to be smaller than
the value in (23) some additional false anomalies are isolated,
and if it is chosen to be larger than this value, some anomalies
may not be detected.

The binary variable l jk is used to denote whether or not an
attack is active at k instant on the jth sensor, as

l jk =

{
1, ‖r jk‖ > τ

j
I

0, otherwise.
(24)

However, in MIMO systems all outputs are usually coupled,
and for this reason, one sensor attack in the ith sensor can be
wrongly isolated in another sensor, i.e., l jk = 1 for j 6= i.
As a consequence of that, a mechanism to suppress the isola-
tion of false attacks is presented in the next section.

B. PREVENTING ISOLATION BECAUSE OF FALSE ALERTS
The isolation mechanism described above produces imper-
fect results. These imperfections are the result of the cou-
pling between all outputs of a MIMO system, i.e., an
anomaly/attack on the jth sensor is not just revealed on the
residual of the correspond observer, but it is also revealed
in the other residuals, usually delayed, and with a smaller
amplitude than in the residual ‖r jk‖. Hence, in this section we
introduce a mechanism to correct the isolation results based
on previous facts.

The false anomaly suppression is done using the previ-
ously defined assumption that establishes that only one sen-
sor attack/anomaly can occur simultaneously, and there is
no actuator attack/anomaly acting on the system. The first
step of false anomalies/attacks suppression is to disable the
isolation of more than one attack/anomaly simultaneously.
This correction generate L jk variables, using their past values
and the values of l jk :

L jk = (L jk−1 & l jk )||(l
j
k & L

j
k−1 &

& l
1
k & · · ·& l

j−1
k & l

j+1
k & · · ·& l

p
k ), (25)

where & represents the AND logic operator, || represents the
OR logic operator, and ā represents the NOT logic operator
of a. Equation (25) means that L jk can be equal to 1, for two
different situations:

1) If L jk−1 and l jk are both equals to 1, then at the k − 1
instant an attack was detected in the jth sensor, and the
attack remains active at k .

2) If l jk is equal to 1, the previous value of L jk−1 is equal
to 0, and l ik = 0, for i 6= j, then there is no previous
attack in the jth sensor, but now there is one, if and only
if there is no attack in other sensors at the same time.

The second step of false anomalies/attacks suppression is
related with the duration of the attack. This is done using
a residual based on a Kalman filter, already designed and
in use for the feedback control law calculation. This filter
is used to produce an optimal estimation of the outputs
when measurements are noisy. However, in this estimation,
the coupling between all outputs is an advantage because the
residual fromKalman filters gives accurate information about
the attack/anomaly duration. Associated with the optimal
state estimation obtained from the Kalman filter, one residual
vector is computed as

rk = ỹk − Cx̂k . (26)

When there is no anomalies on actuators and there is one
attack in any sensor, the residual obeys the next expression

‖rk‖ > τD, (27)

where τD is known as the detection threshold.
In the same way as in ODDOs, due to modeling imper-

fections of the controlled system and convergence time of
the Kalman filter, the residual is not exactly zero when
there are no attacks on sensors. The threshold determination
is done based on the calculation of the residual with no
attacks on sensors of the system. Hence, the supremum of
‖rk‖, for all k , could be chosen as the detection threshold τD.
If a value smaller than the supremumof ‖rk‖, for all k , is cho-
sen as the detection threshold some additional false anomalies
are detected, and if a value greater than the supremum of
‖rk‖, for all k , is chosen as the isolation threshold, then some
anomalies will not be detected. The binary variable dk is used
to denote whether or not an attack is active at k on any sensor
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of the system. In conclusion,

dk =

{
1, ‖rk‖ > τD

0, otherwise.
(28)

The accurate information about the time duration of the
attack on the jth sensor is synthesized in the binary variable ajk ,
using the results from (22), (25), and (27) as

ajk = L jk & dk , (29)

where ajk indicates that at the k
th sampling, on the jth sensor,

there is an attack if ajk = 1, or there is no attack if ajk = 0.

C. CONTROL ACTION COMPENSATION
Some previous works have developed similar mechanisms as
the ones described above [11], [14], [19], [31]. These works
have been focused on detection and isolation of cyber-attacks
on control systems. In this paper we take an additional step,
which consists in the addition of a mechanism with the aim
of being able to mitigate the effect produced by a sensor
cyber-attack of an ICS. Notice that such mechanism is added
to improve the security of an existing networked controller.
The proposed mechanism is developed in the same hardware
where the remote controller is implemented. The purpose of
this mechanism is for the system outputs to avoid having a big
deviation with respect to the nominal response, when under
attack.

Control action compensation is the last stage in the devel-
oped approach to mitigate the effect of a sensor cyber-attack
in an ICS. It deals with the stage in which the authentic infor-
mation of the sensor is recovered. The authentic information
of the sensor is the signal before the attacker modifies it.
In order to restore the nominal control of the system, it is
necessary to find the authentic signal of the sensor using ana-
lytical redundancy. As it is explained above, the jth ODDO,
is designed to be insensitive to sensor attacks in sensor j,
and all other ODDOs are sensitive to attacks on sensor j. For
this reason, the magnitude of the attack on the jth sensor is
given by

mjk = Cj(x̂
j
k − x̂

i
k ), i 6= j (30)

where Cj is the jth row of the C matrix, x̂ jk is a state estimation
insensitive to disturbances on jth sensor and x̂ ik is a state
estimation sensitive to disturbances on all but the ith sensor.
The information given by mk is now masked using (29) to
obtain an approximation of 1s

k , which is subtracted from ỹk
to obtain

ỹk = Cxk + ηk +1s
k − m

j
ka

j
k ≈ yk (31)

where yk is an approximation of the authentic sensor signal,
nullifying the addition done by the attacker.

IV. SIMULATION RESULTS
In this section, we show some results from applying the miti-
gation mechanism proposed in Section III to an existing feed-
back control system which faces false data injection attacks.

First, we describe the system and its control loop showing its
normal operation behavior. Then, we describe a set of false
data injection attacks. We also show the effect of the attacks
on the system outputs, and we explain how the mitigation
mechanism works, i.e., the obtained results step by step of
the proposed approach to perform the mitigation.

A. THREE-TANKS BENCHMARK
To illustrate how FTC can be adapted and used to mitigate the
effect of attacks on sensors of control systems, an existing ICS
(the three tanks benchmark) is used. The nonlinear dynamics
of this system are obtained using using first-principles. The
approach of first-principles is based on the use of physical
laws to describe the dynamic evolution of a system. In this
specific case, a balance of mass is used to obtain the differen-
tial equations which are the model of the system. The model
of the system is the same as the one in [32] given by

S
d
dt
L1(t) = Q1(t)− q13(t),

S
d
dt
L2(t) = Q2(t)+ q32(t)− q20(t),

S
d
dt
L3(t) = q13(t)− q32(t),

1
µ13Sn

q13(t) = sgn[L1(t)− L3(t)]
√
2g|L1(t)− L3(t)|

1
µ32Sn

q32(t) = sgn[L3(t)− L2(t)]
√
2g|L3(t)− L2(t)|

1
µ20Sn

q20(t) =
√
2gL2(t), (32)

where the parameter values are shown in Table 1.

TABLE 1. Parameter values of the three tank system.

The schematic diagram of the system is shown in Fig. 2.
The goal of this control system is to track the liquid level
of two tanks (L1(t) and L2(t)) in concordance with the two
set-points settled. For this case, we consider the system has
three coupled tanks, with a level sensor for tanks 1 and 2
(i.e., two outputs), and two valves to regulate the intake flow
in tanks 1 and 2 (i.e. two inputs). However, the state variables
are the levels of the three tanks (i.e., there is no measurements
in one of the three tanks).

The operation point of the system is obtained fixing
the nominal intake flow as u1 = 3.5 × 10−5 m3/s and
u2 = 3.75× 10−5 m3/s. Therefore, the operation point for
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FIGURE 2. Schematic diagram of three tanks system.

the state variables of the system would be h1 = 0.4 m,
h2 = 0.2 m, and h3 = 0.3 m.

Level control of tanks on industrial scenarios is done with
tracking controllers that produce disturbance rejection and
zero steady state error for step inputs. The proposed control
for this system given in [33] is a discrete-time controller (8)
with a sampling time Ts = 1 s, and feedback gains given by

K1 =

[
21.6 3 −5
2.9 19 −4

]
× 10−4,

and

K2 =

[
−0.95 −0.32
−0.30 −0.91

]
× 10−4.

In order to implement the control law, since we only have
information of two level measurements, it is necessary to
implement an estimator. For the open loop simulation we
include white noise for the sensors, ηk ∼ N (0, 5 × 10−5),
and the actuators, ζk ∼ N (0, 5× 10−6). Since the measure-
ments include noise measurement, the estimation of the state
variables is done using a Kalman filter. For the design of the
Kalman filter a discrte-time model for the system is required.
This linear model is obtained using input-output data. The
data is used to estimate a discrete-time incremental linear
state-space model which is an approximation of the physical
nonlinear system near the operation point. The discrete-time
space state model (3) is obtained using a sampling time
Ts = 1 s as in [33], together with subspace identification
techniques [34] and a similarity transformation. Therefore,
the parameters of the model are given by

A =

0.9899 0.0005 0.0098
0.0004 0.9804 0.0095
0.0108 0.0107 0.9784

 ,
B =

 60.1584 0.1660
−0.3848 60.1895
0.4138 0.1935

 ,
and

C =
[
1 0 0
0 1 0

]
.

The state estimation x̂k is obtained using (5), (6), and (7).
Therefore, the control action can be computed now, using (8).
The behavior of the closed loop system is shown in Fig. 3.

FIGURE 3. Response of closed loop control system without attacks.

There, it is seen how the control works properly for both
variables L1(t) and L2(t), taking them to reach the desired
value, every time the set-point varies. It can also be noticed
how the system is coupled, because some small changes on
the behavior appear when the references are changed.

The IAE between the response without attacks and the set-
point input of the control system is used to quantify the impact
of the attacks on the sensors of the system. It is important to
highlight that the effect of an attack on the sensor of Level 1
has impact on the response of Level 2, and for this reason,
for each attack scenario the IAE, i.e., for Levels 1 and 2
are computed. In the case there is not attacks on the control
system, the IAE for Level 1 is: 3.6935, and for Level 2
is: 2.7889. These IAE values without attacks are taking into
account as the reference values. Therefore, the bigger the IAE
values are the bigger the impact of the attack is.

B. ATTACKS DEFINITION
In order to prove the effectiveness of the approach proposed,
a set of 8 integrity attacks were applied to the system. As we
mentioned before, we consider bias attacks and static attacks.
Within the set of the applied attacks, there are six bias attacks,
like the ones defined by (12), with their specific parameters
shown in Table 2. The remaining two are static attacks, like
the ones defined by (15), with their specific parameters shown
in Table 3. In all of the cases, only one attack in one sensor is
applied each time.

C. MITIGATION APPROACH IMPLEMENTATION RESULTS
Wenow evaluate our attackmitigation approach as outlined in
Section III. The anomaly detection and isolation mechanisms
are implemented using the existing Kalman filter used to
implement the controller, and two ODDOs. The 1st ODDO
is designed to decouple the effect of the attacks on the sensor
of tank Level 1; the estimation of the state x̂1k is obtained
using (16), (17), (18), and (19); the inputs of this observer
are the whole input vector u, and only the output y2; the
decoupling of attacks on the sensor for Level 1 is achieved
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TABLE 2. Bias attacks applied on the system.

TABLE 3. Static attacks applied on the system.

using the matrix E1
= [10−5 1 10−5]>. The design of the

2nd ODDO, to decouple attacks on Level 2 sensor, is similar
to the 1st ODDO; in this case, the inputs of the observer
are the whole input vector u, and only the output y1; the
decoupling matrix is E2

= [1 10−5 10−5]>.
With the state estimation from each ODDO, we can now

compute the residuals r1k and r2k . For our simulations the
thresholds obtained for ODDOs are: τ 1I = 3.3× 10−3 and
τ 2I = 1.5× 10−3. The threshold for residual obtained with
the Kalman filter is τD = 1.5× 10−6.
The effectiveness of our proposal is validated using a

set composed by 8 attacks. A summary of the results after
applying each of the attacks 1 - 8 are shown in Table 4. The
first column is utilized to specify the attack number. The
Attack Kind column has two possibilities, bias attack or static
attack. The sensor data measurement altered by the attacker
is in the third column, named Sensor Attacked, and has two
options 1 or 2, to show the corresponding level. Columns four
to six show IAE values for the two outputs of the system.
In these columns there are three cases, the column without
reconfiguration labeled w/o.R. that shows the impact of the
attack on both outputs. A column with a conventional FTC
reconfiguration scheme, which exhibits the reduction of the
impact of the attack utilizing FTC techniques directly, and it is
labeled C.R. The last column presents the impact of the attack
when the mitigation newmechanism proposed is applied, and
is labeled N.R.

Results of Table 4, show that both reconfiguration mech-
anism reduce the impact of the attack on the output
corresponding to the attacked sensor. However, in bias injec-
tion attacks the conventional reconfiguration causes a bigger
impact on the opposite output, while the reconfiguration
proposed maintains a better behavior in the opposite output

TABLE 4. Key performance index comparisons of different attacks
applied on system sensors.

while adjusting the attacked output. In static injection attacks,
the result with both mechanisms of reconfiguration produces
similar results.

1) RESULTS DISCUSSION - ATTACK #5
Now, in order to gain a better understanding of the results,
we present a detailed description of two of the eight attacks
utilized to show the effectiveness of our proposal. The first
attack scenario analyzed is related with bias attacks. All of
the attacks 1 - 6 have similar behavior, therefore without loss
of generality, the attack #5 is now analyzed. The effect of the
attack #5 in the outputs of the system is shown in Fig. 4.When
this attack takes place, the IAE for Level 1 increases from
3.6935 to 6.7904, but the IAE for Level 2 has a little deviation
from 2.7889 to 2.8494.

FIGURE 4. Effect of the attack #5 in the response of the control system.

The next stage on the mitigation process is the detection
and isolation of the attack. This process is explained in
Subsection III-A. Fig. 5 shows the result of this process.
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FIGURE 5. Detection and isolation of the attack #5, red line denotes
isolation on Level 1, and blue line denotes isolation on Level 2.

The red continuous line shows a true detection of the attack
on Level 1. Due to the soft variation at the beginning and the
end of the attack, the attack is detected and isolated with some
delay, between 862 s and 1136 s. However, a false isolation
of an attack on Level 2 is also obtained (dashed blue line).
The last is a consequence of the fact that the output named
l1 is obtained without the tampered information of the sensor
of Level 1 (let us remember that the 1st ODDO does not use
the information of y1), but the output l2 is obtained using that
tampered information.

The correction of the previous results of detection and
isolation is done based on two facts. The first fact is that
the Kalman filter, used for state feedback, is also useful to
extract accurate information about the attack duration. This
result is shown in Fig. 6. The second fact is that there is no
simultaneous attacks on the two sensors of the system. The
procedure explained in III-B is used to obtain the definitive
attack isolation, and it is shown in Fig. 7.

FIGURE 6. Attack duration, computed using of the Kalman filter, that is a
part of the original control system, under attack #5.

FIGURE 7. Definitive attack isolation for attack #5, red line denotes the
existence and duration of an attack on the sensor of the Level 1.

A comparison between the utilization of the conventional
FTC tools and the improved response obtained with our pro-
posal is shown in the Fig. 8. It is clear that the main problem
of the conventional FTC method is the degradation of the
output of Level 2, when the attack on the sensor for Level 1 is
mitigated. Using IAE values to compare the system behavior
for the Level 1, without reconfiguration mechanism the value
is 6.7904, with the conventional mechanism the value is
4.3649 and, with the improved mechanism it is 4.2625. In the
same way, IAE the value for Level 2 without reconfiguration
is 2.8494, with reconfiguration using the conventional FTC
tools the value is 3.8014, and with our proposal it is 2.8262.
IAE values, and visual inspection of Level 2 in Fig 8, show
that the approach proposed keep the behavior of Level 1,
where the attack takes place, and improves the behavior

FIGURE 8. Mitigation response to sensor of Level 1 attack #5 without
mitigation response and with two different mechanisms of
reconfiguration.

FIGURE 9. Effect of the attack #8 in the response of the control system.

FIGURE 10. Detection and isolation of the attack #8, red line denotes
isolation on Level 1, and blue line denotes isolation Level 2.

of Level 2, where the conventional reconfiguration process
affects the system in a negative way.

2) RESULTS DISCUSSION - ATTACK #8
Similarly to the first scenario, attacks 7 and 8 have a similar
behavior, and the second attack scenario corresponds to the
detailed analysis of attack #8. The effect of the attack #8 in
the outputs of the system is shown in Fig. 9, and the results of
attack detection and isolation are shown in Fig. 10. The attack
duration and the attack isolation are shown in Figs. 11 and 12.
Finally, the results of the two mechanisms of reconfiguration
are shown in Fig. 13. Attack #8 also has effect on the IAE
index; for Level 1 (sensor without attack) there is a little
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FIGURE 11. Attack duration, computed using of the Kalman filter, that is a
part of the original control system, under attack #8.

FIGURE 12. Definitive attack isolation for attack #8, red line denotes the
existence and duration of an attack on the sensor of the Level 1.

FIGURE 13. Mitigation response to sensor of Level 1 attack #5 without
mitigation response and with two different mechanisms of
reconfiguration.

increment from 3.6935 to 3.7173, and for Level 2 (sensor
under attack) there is an increment from 2.7889 to 4.1333
(see Fig. 9).

It is worthwhile to mention that the effect of attack #8 is
greater than the effect of attack #5, in the sense that the
amplitude deviation accomplished with attack #8 is higher
that the one with attack #5. Also, due to the integrators
in the controller, the maximum magnitude of attacks like
#7 and #8 is proportional to the attack duration. It is important
to emphasize that attack #8 requires less resources for the
attacker than attack #5, i.e., in attack #5 the attacker needs to
know the current value of the sensor to add a value and then
send the resultant value to the controller; but, in the case of
attack #8, the attacker only needs to know the desired value
of the system system, and always sends the same distortion
for all the duration of the attack.

Due to the noise included in the attack, as in (15), the iso-
lation obtained exhibits an intermittency at the beginning of
the attack between 1200 s and 1213 s. However, the end of
the attack on Level 2 is well detected at 1300 s. (See Fig. 10).

Unlike the results obtained for attack #5, with the recon-
figuration in the case of attack #8, the effect of the conven-
tional reconfiguration on the opposite output is insignificant.

The IAE value in Level 1 for this attack, without reconfigura-
tion mechanism is 3.7173, with the conventional mechanism
is 3.7375, and with the improved mechanism it is 3.6946.
These IAE values show that in this case there are no signif-
icant deviations. Now, an examination of the IAE values for
Level 2, without reconfiguration is 4.1333, with reconfigu-
ration using the conventional FTC tools is 2.9410, and with
our proposal is 2.8781. It is clear, that both reconfiguration
mechanisms produce similar results on the outputs of the
systems.

V. CONCLUSIONS AND FUTURE WORK
In this article, we propose a novel mechanism to achieve miti-
gation of integrity attack effects in ICSs. The proposed mech-
anism is based on FTC. One of the interesting characteristics
of the proposed mechanism is that it is easy to implement in
any system that uses a digital control, since every stage of it
(detection and isolation, false attacks isolation suppression,
and control action compensation) can be computed at each
sampling time.

We show the usefulness of the proposed mechanism in a
system (a benchmark system designed to prove FTC tech-
niques) facing integrity attacks (false data injection attacks),
see Figs. 8 and 13. However, results for bias attacks are better
than the ones for static attacks, mainly because the incidence
of the attack in the opposite variables. That is, given aworking
control system, bias attacks always affect the attacked output
as well as the other systems outputs with some delay, while
static attacks only affect the attacked output.

Related to future work, we plan to test our mechanism for
other kinds of attacks. Similarly, the proposal can be extended
to be able to mitigate the effect of attacks on actuators (not
only sensors). We also are interested in utilizing some statis-
tics, which have been proven to work in FTC, in order to
see if the current results would be comparable or could even
improve the proposed architecture.
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