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Abstract

Pure Salvetti complexes and Euclidean Artin groups

by

Gordon Rojas Kirby

Coxeter groups are a general family of groups that contain the isometry groups of the

Platonic solids and the symmetry groups of regular Euclidean tilings. These groups are

ubiquitous and well-understood. They are also closely linked to the lesser-known braided

versions known as Artin groups. In this dissertation, I investigate the word problem for

Artin groups corresponding to Coxeter groups that act naturally on Euclidean space. The

corresponding Artin group is the fundamental group of the quotient of the complexified

Euclidean space after removing the fixed hyperplanes of the reflections in the Coxeter

group.

To understand a Euclidean Artin group, I focus on the structure of the infinite sheeted

cover corresponding to the kernel of the homomorphism from the Artin group to the

Coxeter group. This space deformation retracts onto a complex constructed as an oriented

version of the complex dual to the tessellation preserved by the Coxeter group. This is

a multivertex complex with infinitely many vertices. The fundamental groups of its

subcomplexes have not been previously studied. The subcomplexes where the inclusion

map induces an injection on fundamental groups are of particular interest. This condition

is known as π1-injectivity.

Given a sufficiently rich family of compact π1-injective subcomplexes, the word prob-

lem for the full Artin group can be reduced to the word problem for the fundamental

groups of the subcomplexes in this family. The goal is to produce such families of sub-

complexes, and then to reduce the word problem of their fundamental groups to the word

viii



problem of a finite list of “atomic” subcomplexes.

In this dissertation I present a solution to the word problem, using this approach, for

the Artin groups corresponding to the infinite dihedral group, the 333 triangle group,

and 244 triangle group. And I describe the difficulties that one encounters when trying

to extend these methods to the Artin group corresponding to the 236 triangle group or

to other higher dimensional Euclidean Artin groups.
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Chapter 1

Introduction

Euclidean Artin groups are braided versions of the symmetry groups of certain regular

tilings of Euclidean space. This dissertation focuses on constructive solutions to the

word problem for low-dimensional Euclidean Artin groups with the hope that it might

be generalized to other Artin groups in future work. A solution to the word problem

is equivalent to constructing arbitrarily large portions of the universal cover of their

presentation complex. I reduce this to a problem of solving the word problem for compact

subcomplexes of an intermediate infinite-sheeted cover. The fundamental groups of these

compact subcomplexes have never been studied before. The main difficulty with this

approach is that one has to balance two competing needs. On the one hand, it is necessary

to produce families of subcomplexes whose “atomic” elements have easy-to-understand

word problems. On the other hand, it is necessary to have fundamental groups that can be

coherently reassembled in order to understand the fundamental group of the intermediate

cover. Further refinements of this approach are introduced as the dissertation progresses

through various examples.

This dissertation is organized into five parts. Chapter 2 recalls the definitions of

Coxeter groups, Artin groups, and the cell complexes associated with them. Chapter 3
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Introduction Chapter 1

focuses on relatively simple low dimensional Artin groups, where the associated complexes

and subcomplexes are easy to visualize. This chapter includes a discussion about when

subcomplex inclusion induces an injection on fundamental groups. Chapter 4 presents

a constructive solution to the word problem for the braided 333 triangle group by ex-

pressing the fundamental group of arbitrarily large portions of a particular cover of the

presentation complex as an iterated amalgamated free product of fundamental groups

of subcomplexes whose word problems are completely understood. Although the word

problem for the braided 333 triangle group was already known to be solvable, this is a

new approach. Chapter 5 presents a modified version of the previous argument to con-

struct a new solution to the word problem for the braided 244 triangle group. Finally,

Chapter 6 outlines why it is difficult to adapt this technique to the braided 236 triangle

group and to other higher-dimensional examples. It also includes directions for future

work.
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Chapter 2

Groups and complexes

This chapter reviews the definitions of Coxeter groups, Artin groups and the cell com-

plexes associated with them. There is a special focus on the Euclidean versions of each

and on the examples of type !A2 and !C2 in particular. Euclidean Coxeter groups are in-

finite groups that act naturally on Euclidean space, preserving an arrangement of affine

hyperplanes, and this hyperplane arrangement induces a simplicial cell structure on Eu-

clidean space. The corresponding Euclidean Artin group is the fundamental group of the

quotient of the complement of a complexified version of this hyperplane arrangement.

Coxeter groups are discrete groups generated by reflections. Each reflection fixes a

hyperplane, and conjugates of reflections are reflections that fix additional hyperplanes.

The set of all such hyperplanes is preserved by the action of the Coxeter group. For

Euclidean Coxeter groups this hyperplane arrangement induces an infinite cell structure

on Euclidean space called the Coxeter complex. This hyperplane arrangement can be

succinctly described by a crystallographic root system, and the cells can be labeled by

the left cosets of finite parabolic subgroups. The top dimensional simplices are in 1-1

correspondence with the group elements. The cellular dual of the Coxeter complex is

called the Davis complex. It has vertices in 1-1 correspondence with group elements, and

3



Groups and complexes Chapter 2

the higher dimensional cells are now metric polytopes. These polytopes are also labeled

by left cosets of finite parabolic subgroups, and the finite parabolic subgroup in the label

determines the shape of the metric polytope. There is an “oriented” version of the Davis

complex called the pure Salvetti complex. It is homotopy equivalent to the complement

of the complexified version of the hyperplane arrangement. The Coxeter group naturally

acts on the pure Salvetti complex. The quotient of the pure Salvetti complex by this

action is a 1-vertex complex called the Salvetti complex, and the fundamental group of

the Salvetti complex is the corresponding Artin group. The fundamental group of the

pure Salvetti complex is a subgroup of the Artin group called the pure Artin group.

The relationship between the Artin group and the pure Artin group is the same as

the relationship between the braid group and the pure braid group. It is important to

understand the relationships between these various groups and spaces since the Coxeter

versions are used to index aspects of the Artin versions.

2.1 Coxeter groups

Coxeter groups appear throughout mathematics. Examples of finite or spherical Cox-

eter groups include the symmetry groups of the Platonic solids or, more generally, the

symmetry group of a regular polytope. Familiar examples of Euclidean Coxeter groups

include the Weyl groups of complex simple irreducible Lie algebras. As the name sug-

gests, spherical Coxeter groups act naturally on a sphere, or on Euclidean space fixing

the origin, and Euclidean Coxeter groups act naturally on Euclidean space. In fact, for

each Euclidean Coxeter group there is an associated spherical Coxeter group obtained

by quotienting out the normal subgroup of pure translations. The Weyl groups of the

Lie algebras of Cartan-Killing type An, Bn, Cn, F4, and G2 respectively correspond to

the symmetry groups of the regular simplices, cubes and their dual cross polytopes, the

4



Groups and complexes Chapter 2

4-dimensional 24-cell, and the regular hexagon. Both of these families of groups are well-

studied and completely classified in terms of labeled graphs that encode easy-to-define

group presentations, and both families can be defined from a root system.

Definition 2.1.1 (Roots). Let V be a finite dimensional Euclidean vector space with

standard Euclidean inner product (·, ·) then a finite collection of nonzero vectors Φ is a

root system in V if the following conditions hold

1. The roots span V .

2. The only scalar multiples of a root α in Φ are α and −α.

3. For every α the root system Φ is closed under reflection through the hyperplane

perpendicular to α.

The root system Φ is crystallographic if for all α, β ∈ Φ the projection of β onto the

line through α is an integer or half-integer multiple of α.

Spherical Coxeter groups are defined from root systems where the length of each root

does not play a role. Roots systems and spherical Coxeter groups have been completely

classified. See Remark 2.1.9. Euclidean Coxeter groups are defined from crystallographic

root systems, and the length of a root α ∈ Φ encodes the spacing between the parallel

hyperplanes with α as a normal vector. See Remark 2.2.6 and more generally Section

2.2. Crystallographic root systems and Euclidean Coxeter groups are also completely

classified, see Figure 2.1.7.

This section briefly introduces several of the tools associated with these classifications.

This section starts with spherical Coxeter groups and then considers the Euclidean ones.

Definition 2.1.2 (Spherical Coxeter group). A spherical Coxeter group is a group that

is generated by orthogonal reflections acting on Euclidean space, and it acts geometrically

on a sphere in Euclidean space, fixing its center. Recall that a geometric action is one

5



Groups and complexes Chapter 2

Figure 2.1.1: Symmetries of a regular hexagon.

that acts properly discontinuously, cocompactly by isometries. The group is irreducible

if there does not exist a nontrivial orthogonal decomposition of the underlying Euclidean

space so that the group is a product of subgroups acting on these subspaces.

Remark 2.1.3. Given a root of Φ ⊂ Rn, there is a reflection that fixes its orthogonal

complement and sends the root to its negative. The group W generated by the set of all

reflections in the roots permutes the roots of Φ so that there is a map W ! SymΦ. Since

Φ spans Rn the action of W on Φ determines the action of W on Rn so that the map

W ! SymΦ is injective. Since a root system is finite the group W is finite and defines a

spherical Coxeter group.

Conversely, given a spherical Coxeter group generated by orthogonal Euclidean reflec-

tions consider the full set of reflections. The set of unit vectors orthogonal to a hyperplane

fixed by a reflection forms a root system.

Example 2.1.4 (Symmetries of a regular hexagon). Consider the spherical Coxeter

group W of symmetries of a regular hexagon, generated by the reflections through the

blue and green lines in Figure 2.1.1 and rotations by an integer multiple of π/3. This

group W can be generated by orthogonal reflection in two hyperplanes which meet at an

angle of π/6, such as the two green lines in Figure 2.1.1, so that the composition of these

two reflections results in a rotation by π/3, counterclockwise or clockwise depending on
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Groups and complexes Chapter 2

the order of composition. Observe that, if the set of all reflections generated by the

reflections in two hyperplanes meeting at an angle of π/3 generates the reflections in the

rest of the blue lines in Figure 2.1.1. This group acts geometrically on the circle depicted

in black and also acts geometrically on the the red regular hexagon that is homeomorphic

to the circle. Letting s and t be the reflections through green lines, the group admits a

presentation of the form

W = 〈s, t | s2 = t2 = (st)6 = 1〉.

Example 2.1.5 (Symmetries of a triangular prism). Alternatively, consider the symme-

try group W ′ of a triangular prism, with base an equilateral triangle. The group W ′ can

be expressed as the cross product of the symmetry group of an equilateral triangle and

the symmetry group of an interval. However, to realize W ′ as a group generated by reflec-

tions acting geometrically on a sphere consider reflections a and b in two vertical planes

in R3, which intersect at an angle of π/3, corresponding to any pair of vertical planes

depicted in Figure 2.1.2. Since they meet the xy-plane orthogonally, they commute with

the reflection c in the xy-plane. Thus, W ′ admits the presentation

W ′ = 〈a, b, c | a2 = b2 = c2 = (ab)3 = (ac)2 = (bc)2 = 1〉.

Moreover, there is an isomorphism W ∼= W ′ between the group of symmetries of a

Figure 2.1.2: The symmetry group a triangular prism acting on a sphere.
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Figure 2.1.3: Symmetries of the red triangle as a subgroup of the symmetries of a
regular hexagon.

regular hexagon and a triangular prism by viewing W as the product of the symmetry

group of the red equilateral triangle in Figure 2.1.3, generated by reflections in a pair of

blue lines, and the group of order 2 generated by rotation by π. Note, that rotation by π

commutes with these two reflections that generate the symmetry group of an equilateral

triangle. Algebraically, this can be seen as ϕ : W ′ ! W such that ϕ(a) = s, ϕ(b) = tst,

and ϕ(c) = (st)3.

Remark 2.1.6. Examples 2.1.4 and 2.1.5 illustrate how a spherical Coxeter group is not

merely an abstract group, but implicitly it comes equipped with a particular action on

Euclidean space. In particular, the symmetries of a regular hexagon and the symme-

tries of a triangular prism are distinct Coxeter groups even though as groups they are

abstractly isomorphic.

One way to encode the action is to fix a special set of generators.

Definition 2.1.7 (Spherical Coxeter system). Given a root, there is a reflection that fixes

its orthogonal complement and sends the root to its negative. The set T of all reflections

of a root system, Φ, generate a spherical Coxeter group W , but this is a highly redundant

generating set. A minimal generating set is obtained by fixing a hyperplane through the

origin that does not intersect any of the roots. The two sides of the hyperplane partition

the roots into two sets Φ = Φ+ ⊔ Φ−. The positive linear combinations of the roots in

8



Groups and complexes Chapter 2

Φ+ form a polyhedral cone that has extremal rays. These rays are determined by roots

∆ ⊂ Φ+, and the reflections in the roots in ∆ form a minimal generating set S for the

Coxeter group W . The ordered pair (W,S) is called a spherical Coxeter system. The

cardinality |S| = n is the rank of the Coxeter system.

When pairs of generating reflections in hyperplanes meet at an angle of π/m they

generate a subgroup isomorphic to the dihedral group of order 2m. In fact, to succinctly

store the information of a spherical Coxeter group one need only keep track of the dihedral

angles between the hyperplanes that generate the group.

Definition 2.1.8 (Coxeter Matrix). Suppose that (W,S) is a spherical Coxeter system

with S = {s1, . . . , sn}, where si is an orthogonal reflection in the hyperplane Hi. The

Coxeter matrix is an n×n matrix M with entries mij, such that mii = 1 for all i and for

i ∕= j π/mij is the dihedral angle between Hi and Hj. Thus, sisj has order mij for all i, j.

The integer mij is called the braid relation length since for each i ≤ j the corresponding

Coxeter group admits a presentation with a relation of the form (sisj)
mij = 1, which for

i ∕= j can be rewritten as a braid relation

sisjsi . . . sj" #$ %
mij

= sjsisj . . . si" #$ %
mij

or sisjsi . . . si" #$ %
mij

= sjsisj . . . sj" #$ %
mij

if mij is even or odd respectively since each si is an involution.

Remark 2.1.9. Through a further simplication one can encode this Coxeter matrix in

terms of a labeled graph in the following way. There are n vertices, one vertex i for each

generator si, and each braid relation mij ≥ 3 is recorded as an edge between vertex i and

j. The edge between vertex i and j is labeled with mij if mij ≥ 4. The classification of

spherical Coxeter group in terms of these graphs is a standard fact and can be found in

[1, 2] for example.

9
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In order to construct Coxeter groups in full generality from these Coxeter graphs edge

labels and the corresponding entries of the Coxeter matrix must be allowed to take the

value ∞.

Definition 2.1.10 (Coxeter Graph). A finite simple graph Γ with some subset of the

edges labeled with an integer greater than 3 or ∞ is called a Coxeter graph. For two

vertices i, j of Γ, mij is the braid relation length, where mij is determined as follows:

1. If {i, j} is not an edge of Γ then mij = 2.

2. If {i, j} is an unlabeled edge of Γ then mij = 3.

3. If {i, j} is a labeled edge of Γ with label k ∈ Z≥4 ∪∞ then mij = k.

Example 2.1.11 (Coxeter graph). Recall Example 2.1.5 of the Coxeter group W ′ with

presentation W ′ = 〈a, b, c | a2 = b2 = c2 = (ab)3 = (ac)2 = (bc)2〉. The corresponding

Coxeter matrix is &

''''(

1 3 2

3 1 2

2 2 1

)

****+
,

and it is encoded in the following Coxeter graph.

a b

c

It is straightfoward to see that the symmetry group of a triangular prism W ′ acts on

a sphere reducibly, as it splits as the product of the symmetry group of an equilateral

triangle and an interval. That is,

W ′ = 〈a, b | a2 = b2 = (ab)3 = 1〉 ⊕ 〈c | c2 = 1〉
10
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In Figure 2.1.2 this is easy to recognize because the the fixed planes Ha, Hb of the

reflections a and b are both orthogonal to the fixed plane Hc of the reflection c and thus

the subgroup generated by a and b commutes with the subgroup generated by c. In terms

of the braid relations, mac = mbc = 2, which is reflected in the Coxeter graph having two

disjoint components.

Next, return to the definition of Coxeter groups in full generality.

Definition 2.1.12 (Coxeter system). Given a Coxeter graph Γ one can define the Coxeter

group of type Γ, denoted Cox(Γ), to be the group generated by V (Γ) with one relation

of the form

sisjsi . . . sj" #$ %
mij

= sjsisj . . . si" #$ %
mij

or sisjsi . . . si" #$ %
mij

= sjsisj . . . sj" #$ %
mij

if mij is even or odd respectively for each pair of vertices i, j such that mij ∕= ∞ and one

relation s2i = 1 for each vertex i ∈ V (Γ). Any group, which admits a presentation of this

form is called a Coxeter group.

A pair (W,S), where W is a Coxeter group so that it admits a presentation of the

above form with generating set S ⊂ W is called a Coxeter system. S is referred to as the

simple system, and the elements of S as the simple reflections. The rank of a Coxeter

group is |S|. Moreover, given a Coxeter graph the Coxeter system determined by Γ is

defined to be (W,S), where W is the Coxeter system of type Γ and S = V (Γ). A Coxeter

group is irreducible if Γ is a connected graph.

In Example 2.1.11 the Coxeter group W ′ had a Coxeter graph Γ consisting of two

connected subgraphs Γ1 and Γ2, where W ′ = Cox(Γ) = Cox(Γ1) ⊕ Cox(Γ2) could be

written as the direct sum of the Coxeter groups determined by Γ1 and Γ2. These are

examples of what are called parabolic subgroups.

11
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Definition 2.1.13 (Parabolic subgroups). Naturally one can look at subgraphs and the

Coxeter systems corresponding to them. Focusing on an induced subgraph of some graph

Γ, that is a subgraph Γ[I] formed by a subset I ⊂ V (Γ) with all of the edges in Γ that

connect pairs of vertices in the subset, the corresponding Coxeter group is a subgroup.

Given a Coxeter system (W,S) of type Γ and I ⊂ S = V (Γ), denote WI = Cox(Γ[I])

the subgroup of W generated by I so that (WI ,Γ[I]) is a Coxeter system. All subgroups

of W that are obtainable in this way are called parabolic subgroups of W .

This section has so far detailed how to encode a spherical Coxeter group in a Coxeter

graph and, conversely, how to define a general Coxeter group given a Coxeter graph.

One might hope that given a Coxeter graph of a spherical Coxeter group it is possible

to reconstruct the geometry of the group acting geometrically on a sphere. To do so

there is the following construction of a faithful linear representation due to Jacques

Tits. Accordingly, it is often referred to as the Tits representation or the standard

geometric representation. As an additional benefit this representation can be used to not

only reconstruct the geometry of spherical Coxeter groups but to better understand the

geometry of a Coxeter group coming from an arbitrary Coxeter graph.

Theorem 2.1.14. Let (W,S) be a Coxeter system of type Γ, then there is a faithful

representation ρ : W ! GL(n,R), such that the image of each element of S = {s1, ..., sn}

is a linear involution fixing a hyperplane and for si, sj ∈ S, i ∕= j, ρ(si)ρ(sj) has order

mij.

Suppose that Γ is a Coxeter graph with vertices V (Γ) = {1, . . . , n}. The con-

struction of this representation is outlined starting with a symmetric matrix n × n

matrix B, referred to as the Schläfli matrix, with entries Bij = −2 cos
,

π
mij

-
if mij

finite and Bij = −2 if mij = ∞. Furthermore, B defines a bilinear form on Rn.

Denote (x, y)B = 1
2
xtBy. Let {e1, ..., en} be the standard basis for Rn and consider

12
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Figure 2.1.4: Tits representation with the unit sphere and the spherical hyperplanes

the hyperplanes Hi = {v ∈ Rn | (ei, v)B = 0}. Then the map σi : Rn ! Rn defined

σi(v) = v− (ei, v)Bei is a linear map that preserves the bilinear form B, fixes the hyper-

plane Hi, satisfies σ
2
i = id and sends ei to −ei. Thus, σi is a reflection with respect to B

in the hyperplane Hi. Moreover, it is straightforward to check that σiσj has order mij,

and, in the case when mij < ∞, it is a rotation by 2π
mij

, see [1, 3, 2] for details. Therefore,

the desired faithful representation is defined by ρ(si) = σi.

Example 2.1.15 (Tits representation). Continue the example of the Coxeter group

W ′ = 〈a, b, c | a2 = b2 = c2 = (ab)3 = (ac)2 = (bc)2〉, with Coxeter graph below.

a b

c

Following the outline above the symmetric Schläfli matrix B with columns indexed by

a, b, and c is

B =

&

''''(

2
√
3

√
2

√
3 2

√
2

√
2

√
2 2

)

****+
,
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determining a positive semidefinite bilinear form (·, ·) on R3 defined (x, y) = 1
2
xtBy. This

group is generated by σi, defined σi(v) = v−2(ei, v)ei, where ei is the i-th standard basis

vector of R3 and i = 1, 2, 3. This defines a representation ρ : W ′ ! GL(3,R). Moreover,

this bilinear form B preserves a sphere, e.g. the unit sphere of all vectors v satisfying

(v, v)B = 1. Acting on it are the reflections σi, which each fix a hyperplane Hi and satisfy

σ(ei) = −ei, where ±ei are the roots corresponding to Hi. Figure 2.1.4 depicts the unit

sphere with respect to B and the intersection of the hyperplanes fixed by the full set of

reflections

{wxw−1 | w ∈ W ′, x = a, b, c} = {a, b, c, aba}.

Notice that since since B is not the standard Euclidean inner product on R3 the unit

sphere looks elongated and the hyperplanes acting on it meeting do not meet at dihedral

angles π/mij as depicted in Figure 2.1.2. Instead, in the Tits representation the roots

are chosen to be the standard basis vectors of Rn and the bilinear form is adapted to

construct the desired dihedral angles between our reflecting hyperplanes. However, this

bilinear form is just a conjugate of the standard Euclidean inner product, where the

standard basis vectors are mapped to the corresponding crystallographic simple roots.

For general Coxeter systems, the Schläfli matrix is used to characterize the geometry

of our Coxeter group. A Coxeter group is Euclidean if B is positive semidefinite with

one zero eigenvalue and thus preserves some unit sphere, which is some Sn−1 ×R. Next,

is the simplest example of a Euclidean Coxeter group, which is commonly referred to as

type !A1.

Example 2.1.16 (Geometry when mij = ∞). Suppose W is the Coxeter group with
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Figure 2.1.5: A portion of the roots and hyperplanes in the Tits representation of the
Coxeter group of type !A1.

Figure 2.1.6: The contragredient representation of Coxeter group of type !A1 and a
conjugate of it.

15



Groups and complexes Chapter 2

presentation W = 〈s1, s2 | s2i = 1〉, i.e. m12 = ∞, and the Schläfli matrix is

B =

&

'(
2 −2

−2 2

)

*+ .

Note that B is postive semidefinite, with a nullspace span(1, 1) so that vectors v in

null(B) have (v, v)B = 0. Also the form preserves an S0 × R. Figure 2.1.5 depicts a

portion of the orbit of the standard basis vectors e1 and e2. Each of the wei in the orbit

W{e1, e2} defines a reflection with respect to (·, ·)B, wσiw
−1, which fixes null(B) and

sends wei to −wei. In this setting there is a nice picture of each of the roots, but each

of the reflections wσiw
−1 fixes the same line y = x.

Furthermore, one can look at the quotient R2/null(B), with the induced positive

definite form, which can be identified with R, so that the fixed space of each reflection

is just the origin. In general, for a Euclidean Coxeter group of rank n with bilinear

form 1/2B, 1/2B induces a positive definite form on the quotient Rn/null(B), which can

be identified with (n − 1)-dimensional Euclidean space so that W acts as a Euclidean

reflection group. However, in this representation, hyperplanes fixed by distinct reflections

coincide.

Instead, look at the dual or contragredient representation. In terms of the matrices

this is the representation that sends each matrix to its inverse transpose. Under this

representation, the roots coincide, but there is a distinct hyperplane for each distinct

reflection. Moreover, the contragredient representation preserves the line y = 1− x, i.e.

some affine patch of R on which W acts depicted on the left in Figure 2.1.6. By conju-

gating by a suitable matrix a “nicer” picture can be obtained, where one can identify the

affine patch at y = 1 depicted in black with the real line and the hyperplane arrangement

restricted to the real line as Z ⊂ R of alternating blues and reds. This defines an action of
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W on the real line generated by the reflection s1 in x = 0 and s2 in x = 1. In particular,

s1(x) = −x and s2(x) = 2 − x, which generate the full set of reflections consisting of

reflection in n for each n ∈ Z.

Note this is a Euclidean Artin group so that it can be obtained from a crystallographic

root system as well. The root system of type A1 consists of the vectors {1,−1} ⊂ R. The

corresponding hyperplane arrangement consists all vectors in R that have integer inner

product with a root. This again leads to the hyperplane arrangement of Z ⊂ R as above.

This in fact is the general setting for Euclidean Artin groups. Given a Coxeter graph,

the Tits representation realizes the corresponding rank n + 1 Coxeter group as a group

generated by reflections that preserves some Sn−1 × R, which under the contragredient

representation preserves some Rn × S0. In the quotient space there is an action on Rn

generated by reflections in codimension-1 hyperplanes. More directly from the crystallo-

graphic root system, these hyperplanes may be obtained as the sets of vectors in Rn that

have integer inner product with a fixed root. The irreducible Euclidean Coxeter groups,

i.e. the ones that act on Rn irreducibly, are fully classified.

Theorem 2.1.17 (Euclidean Coxeter graphs). The irreducible Euclidean Coxeter groups

are classified by the table in Figure 2.1.7. Specifically there are 4 infinite families of type

A,B,C,D and finitely many that are not part of an infinite family.

2.2 Coxeter complex

Euclidean Coxeter groups, which are infinite groups, act naturally on Euclidean space.

They preserve some hyperplane arrangement that can be obtained from a crystallographic

root system. Each hyperplane is the affine subspace of vectors that have a fixed integral

inner product with a fixed positive root. The collection of all such hyperplanes induces a

17
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!A1 or I2(∞)
∞

!An(n ≥ 2)

!Bn(n ≥ 3)

4

!C2(n ≥ 2) 4 4

!Dn(n ≥ 4)

!E6

!E7

!E8

!F4
4

!G2
6

Figure 2.1.7: The Coxeter graphs of Euclidean type
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simplicial cellular structure on the space and the Coxeter group acts simply transitively

on the interiors of the simplices of this cell structure. This section focuses on the induced

cell structure which can be described in terms parabolic subgroups.

Each of the examples presented thus far demonstrates how a Coxeter group admits a

representation as a group generated by reflections. And the set of all fixed hyperplanes of

the reflections decomposes the space on which the Coxeter group acts into a nice cellular

structure. Furthermore, the Coxeter group action permutes these cells. For example,

the fixed hyperplanes of all of the reflections of the dihedral group of order 12 acting

on the circle in Figure 2.1.1 divide the space into twelve arcs. These arcs are permuted

by the action of the Coxeter group. The symmetry group of a triangular prism acts on

a sphere in Figure 2.1.2, and the fixed hyperplanes of the four reflections divide it into

twelve spherical triangles with angles π/2, π/2, and π/3. The infinite dihedral group

of Example 2.1.16 acts on the real line in Figure 2.1.6 with reflections in x = n for

each n ∈ Z. These affine hyperplanes x = n, n ∈ Z decompose R into the intervals

between consecutive integers. To formalize this notion, the following definition recalls

the definition of a Coxeter complex following [1].

Definition 2.2.1 (Coxeter Complex). Every Coxeter system, (W,S), admits a repre-

sentation W ! GL(V ) for some V with basis {αs}s∈S. However, for general Coxeter

groups, including Euclidean Coxeter groups, in order to recover the group as one gen-

erated by reflections in distinct hyperplanes consider the contragredient representation

W ! GL(V ∗). Denote elements of V ∗ as f, g, h, etc. and the natural pairing with V ,

〈f, v〉. Then the natural action of W is characterized by:

〈w(f), w(v)〉 = 〈f, v〉 for w ∈ W, f ∈ V ∗ and v ∈ V.

For each s ∈ S there is a hyperplane Hαs = {f ∈ V ∗ | f(αs) = 0}, together with the
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associated halfspaces H+
αs

= {f ∈ V ∗ | f(αs) > 0} and H−
αs

= {f ∈ V ∗ | f(αs) > 0},

with their respective closures denoted H
+

αs
= H+

αs
∪ Hαs and H

−
αs

= H−
αs

∪ Hαs . Define

D =
.

s∈S H
+

αs
. Then this is a fundamental domain for the action of W on V ∗. To

describe the faces of the cone, partition D into subsets corresponding to its parabolic

subgroups, defined

CT =

/
0

s∈T

Hαs

1
∩
/
0

s/∈T

H+
αs

1
.

Note that CT ⊆ C ′
T if and only if T ⊇ T ′. The Tits cone is the interior of the union of

the orbit of D under the action by W . The Coxeter complex is the quotient of the Tits

cone, with the origin removed, by the positive reals. In the case of Euclidean Coxeter

groups this is equivalent to taking a the intersection of its hyperplane arrangement with

an affine plane parallel to the roots.

More specifically, in the case of irreducible Coxeter groups of Euclidean type, one can

follow the description of the hyperplane arrangement and chambers for affine reflection

groups also found in [1]. Suppose that W0 is a rank n irreducible spherical Coxeter

group of type A − G so that it corresponds to the Weyl group of some crystallographic

root system Φ, with simple system ∆ and set of positive roots Π. For each α ∈ Π

define an affine hyperplane Hα,k := {x ∈ Rn | (x,α) = k}. Then, the collection of all

hyperplanes for each k ∈ Z, i.e H = {Hα,k | α ∈ Φ, k ∈ Z} is the set of reflecting

hyperplanes corresponding to the Euclidean Coxeter group W . Moreover, the connected

components of Rn \ H are open Euclidean simplices acted on simply transitively by W .

Let ∆̃ = ∆∩ {−γ} where γ is the unique highest root of Φ with respect to ∆. Then the

chamber bounded by Hα,0 ≡ Hα for α ∈ ∆ and Hγ,1 is called the fundamental chamber

C. The action sα,k of Hα,k on a vector v ∈ Rn, where n = |∆| is defined by

sα,k(v) = v − ((v,α)− k)
2α

(α,α)
,
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abW∅ aW∅ W∅ bW∅ baW∅ babW∅ babaW∅

aWb Wa Wb bWa baWb babWa

Figure 2.2.1: The Coxeter complex of type !A1

and the orbit W (C) is R \ H. The action of the underlying spherical Coxeter group W0

on this hyperplane arrangement is defined by wHα,k = Hwα,k and wsα,kw
−1 = swα,k.

In summary, the Coxeter complex of a rank n+1 Euclidean Coxeter group is a complex

tiled by n-simplices, whose faces can be described in terms of parabolic subgroups of

spherical type. Considering the orbit of these parabolic subgroups leads to the following

definition.

Definition 2.2.2. (Poset of special cosets) Given a Coxeter system (W,S), the set S =

{xWT | x ∈ W,T ⊆ S, |WT | < ∞} of left cosets of the spherical parabolic subgroups

of W is referred to as the special cosets. The set of special cosets comes with a natural

partial order ≤, ordered by inclusion. The poset (S,≤) is precisely the face poset of the

Davis complex, which is defined in the subsequent section. Moreover, the dual poset Sop

is the face poset of the Coxeter complex.

Example 2.2.3 (Coxeter complex of type !A1). The underlying spherical Coxeter group

of type A1 has crystallographic root system Φ = {−1, 1} ⊂ R so that the set of positive

roots is the singleton set Π = {1}. Thus, the set of affine hyperplanes is {k ∈ Z}

can be seen as the red dots in Figure 2.2.1. The chambers are the open blue edges

{(i, i+ 1)|i ∈ Z}.

This coincides, with the above definition where the parabolic subgroups of spherical

type are precisely, W,Wa := W{a},Wb := W{b}. There are 0-cells, which correspond

to left cosets of the maximal parabolic subgroups, Wa or Wb, and the 1-cells/chambers

correspond to the left cosets of the trivial parabolic subgroup W∅, which are in 1-1
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correspondence with the group elements. Notice that the Coxeter complex reflects the

geometry of the contragredient representation of Example 2.1.16.

Remark 2.2.4. In general, a Coxeter group W acts on its Coxeter complex by left

multiplication. The cells of the Coxeter complex are labeled by special cosets of the form

xWT for x ∈ W andWT a special coset of spherical type. For g ∈ W , g ·(xWT ) = (gx)WT .

Observe that W acts simply transitively on the chambers, the cells of maximal dimension,

labeled by xW∅.

Example 2.2.5 (Coxeter complex of type !A2). Consider the Coxeter group with pre-

sentation

W = 〈a, b, c|a2 = b2 = c2 = 1, aba = bab, aca = cac, bcb = cbc〉.

It is the irreducible Euclidean Coxeter group of type !A2 as classified in Theorem 2.1.17.

The underlying spherical Coxeter group of type A2 corresponds to the Weyl group of

the root system of the Lie algebra sl(3,C), Φ = ±(e1 − e2),±(e1 − e3),±(e2 − ee),

where e1, e2, e3 are the standard basis vectors of R3. However, these roots all lie in a

2-dimensional plane. One may instead view these roots as the six vectors of length
√
2,

±α,±β,±γ ∈ R2 depicted in Figure 2.2.2.

Thus, the set of affine hyperplanes is H = {Hx,k|x = α, β, γ, k ∈ Z} so that the

hyperplane arrangement corresponds to the tiling of the plane by equilateral triangles.

Figure 2.2.3 depicts the Coxeter complex of type !A2, with each of the cells labeled by

special cosets.
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γ

β

α

Figure 2.2.2: The hyperplane arrangement of type !A2.

Specifically, the Coxeter group of type !A2 has Coxeter graph

Γ =

a b

c

and each of the 8 subsets of the vertices V (Γ) = {a, b, c} define induced subgraphs and

parabolic subgroups of W . The eight parabolic subgroups are ordered by inclusion in

the lattice of parabolic subgroups depicted in Figure 2.2.4 along with the corresponding

induced subgraphs.

The three parabolic subgroups of rank 2, Wa,b, Wa,c, and Wb,c are all spherical Coxeter

groups isomorphic to the symmetric group on 3 letters which admit a presentation of the

form Sym3 = 〈x, y | x2 = y2 = 1, xyx = yxy〉. The three rank 1 parabolic subgroups Wa,

Wb, Wc are each isomorphic to Z/2Z, admitting presentations of the form 〈x | x2 = 1〉.

Lastly, W∅ is the trivial subgroup.

In terms of cells of the Coxeter complex in Figure 2.2.3, the cosets of the rank 0
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〈a〉

a〈b〉

ab〈a〉

〈b〉

b〈a〉

ba〈b〉

〈c〉

a〈c〉ab〈c〉

aba〈c〉

ba〈c〉 b〈c〉

c〈b〉

c〈a〉

ca〈c〉

ac〈a〉

ac〈b〉

ca〈b〉

aca〈b〉

cb〈c〉

bc〈a〉 bcb〈a〉

cb〈a〉

bc〈b〉

〈a, b〉

〈a, c〉

a〈b, c〉

ab〈a, c〉

ba〈b, c〉

b〈a, c〉

〈b, c〉

ac〈a, b〉

ca〈b, c〉

c〈a, b〉

cb〈a, c〉

bc〈a, b〉

[e]

[a][ab]

[aba]

[b][ba][ba]

[ac] [aca]

[c]

[ca]

[bc] [bcb]

[cb]

Figure 2.2.3: A portion of the Coxeter complex of type !A2
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W

Wa,b Wa,c Wb,c

Wa Wb Wc

W∅ ∅

Figure 2.2.4: The poset of parabolic subgroups of W = Cox(A2)

trivial subgroup W∅ are the special cosets that correspond to the chambers or purple

2-cells below. These chambers are in 1-1 correspondence with group elements, which

are labeled with a purple representative for the equivalence class of words that represent

the corresponding group element. Note that each 2-cell has triangle boundary since it

is contained in three rank 1 special cosets, corresponding to the blue edges below. The

three 1-cells bounding a 2-cell correspond to three rank 1 special cosets which pairwise

are contained in a unique rank 2 special coset. That is, the face poset of Coxeter complex

is precisely to dual poset to the poset of special cosets.

Remark 2.2.6 (Type !C2 and !B2 Coxeter complex). The hyperplane arrangement that

defines the Coxeter complex is defined in terms of affine hyperplanes with integral inner

product with the crystallographic root system. Thus, the choice of roots affects the

spacing of the hyperplanes. Although the Weyl groups of the type B2 and type C2 root

systems are isomorphic as groups to the 244 triangle group, the root systems are slightly

different so that the corresponding hyperplane arrangements are slightly different. For

example, the C2 root system is defined ΦC2 = {(±1, 0), (0,±1), (±1,±1)} as depicted in
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Figure 2.2.5: Type C2 and B2 root systems in blue and red respectively along with
their corresponding hyperplane arrangements for the Coxeter groups of type !C2 and
!B2.

blue in Figure 2.2.5. Then the coroots of short roots become the long roots of length 2

in the root system ΦB2 depicted in red in Figure 2.2.5. Thus, the horizontal and vertical

hyperplanes in the hyperplane arrangement of type !B2 are spaced distance half as far

apart as in the hyperplane arrangement of type !C2.

2.3 Davis complex

This section recalls the definition of the Davis complex, starting with the Cayley

graph, which constitutes its 1-skeleton. To describe the higher dimensional cells, this

section defines W -polytopes as metric zonotopes, i.e. linear images of unit cubes defined

by the root system of W . These are glued into the “holes” in the Cayley graph, one

for each special coset. Moreover, the Davis complex is the cellular dual to the Coxeter

complex with face poset the poset of special cosets. Thus, the action of the Coxeter

group on the Davis Coxeter group is analogous.

Definition 2.3.1 (Unoriented right Cayley graph). The unoriented right Cayley graph

26



Groups and complexes Chapter 2

Figure 2.3.1: A right-colored and left-colored portion of the unoriented right Cayley
graph for Cox( !A2) respectively.

for a Coxeter system (W,S) is a graph with vertices indexed by W and an edge between

vertices vg and vh if there exists s ∈ S such that g · s = h. Notice that since s2 = 1 that

this implies that g = h · s as well.

The edges of the right Cayley graph can be labeled by the elements of S. That is, if

there exist g, h ∈ W , s ∈ S such that g · s = h label the edge between vg and vh with s or

represent each s ∈ S with a color and color the edges accordingly. For example, consider

the type !A2 Coxeter group with presentation

〈a, b, c | a2 = b2 = c2 = (ab)3 = (bc)3 = (ca)3 = 1〉.

Letting blue correspond to a, red correspond to b, and green to c, Figure 2.3.1 depicts

the unoriented right Cayley graph. This labeling or coloring of the edges is referred to

as the right labeling of the right Cayley graph.

Similarly, in the left labeling of the right Cayley graph the edges are labeled by

elements of the set of reflections, T = {wsw−1 | w ∈ W, s ∈ S}. If there exist g, h ∈ W ,

s ∈ S such that g · s = h, then (gsg−1) · g = h, where gsg−1 ∈ T . Accordingly, label the

edge between vg and vh by the unique t ∈ T such that t · g = h. Notice that t2 = 1 so

that g = t · h as well.
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Remark 2.3.2. Note that the edges of right or left labeling are invariant under action

on the opposite side. That is, for a Coxeter group W and an edge labeled s in the right

labeling with endpoints x and xs the vertex wx is adjacent to wxs by an edge labeled s

for every w ∈ W . Conversely, for an edge labeled t in the left-labeling incident to vertices

x and tx the vertex xw is adjacent to txw by an edge labeled t for every w ∈ W . Note

that the collection of all edges labeled by t corresponds to a parallel family of all edges

bisected by the hyperplane fixed by the reflection t. Since this dissertation focuses on

the fundamental group of an oriented version of the Davis complex it will often use a

labeling that is invariant under the right action of concatenation.

Definition 2.3.3 (Zonotope). The Minkowski sum of polytopes P1, . . . , Pn ⊂ Rd is

defined to be

P1 + · · ·+ Pn = {x1 + · · ·+ xn | xi ∈ Pi}.

The structure of the sum is independent of the location of the origin. If a different

location is chosen then the resulting Minkowski sum is just a translate of the original.

When each of the Pi are line segments then the Minkowski sum is a zonotope. Note

that a zonotope can be equivalently defined as a translate of the image of the unit cube

[−1, 1]n under a linear transformation.

Definition 2.3.4 (W -permutohedron). Suppose that (W,S) is a Coxeter system with a

root system Φ, and let Π = {α1, . . . ,αN} is the set of positive roots. Each of the positive

roots αi defines a line segment ℓi from −αi to αi. Then the zonotope ℓ1 + · · · + ℓN is

called a W -permutohedron. For more flexibility one can rescale the line segments before

taking the Minkowski sum. In this disseration the root system of a Coxeter group W is

scaled so that each of the vectors have length 1/2 and the W -permutohedron has unit

length edges.
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Figure 2.3.2: A W -permutohedron as a Minkowski sum of the crystallographic root
system of type C2.

Example 2.3.5 (Type C2 permutohedron). For type C2 the Coxeter groupW = Cox(C2)

is symmetry group of a square, the dihedral group of order 8. The standard crystallo-

graphic root system is ΦC2 = {(±1, 0), (±0, 1), (±1,±1)}. Thus, Figure 2.3.2 is a W -

permutohedron with vertex set {(±3,±1), (±1,±3)}.

Note that this is not regular octagon. However, as mentioned in Definition 2.3.4 the

1-skeleton of the Davis complex is typically taken to have unit edge length. Scaling each

of the roots of ΦC2 to length 1/2 yields the W -permutohedron depicted in Figure 2.3.3

that is a regular octagon with unit length edges.

Remark 2.3.6. Definition 2.3.4 and 2.3.7 are based on the definition found in [4]. In the

literature the Davis complex is often the barycentric subdivision of the Davis complex as

defined in this dissertation so that it is the order complex of the poset of special cosets.

For example the barycentric subdivision of the type C2 permutohedron is depicted in and

is the order complex of the poset of special cosets. See Example 2.3.11 for more details

of the special cosets of type !C2.

Definition 2.3.7 (Davis complex). Let W be a Coxeter group and let Γ be its oriented
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Figure 2.3.3: The permutohedron of type !C2 as a regular octagon and the correspond-
ing root system.

Figure 2.3.4: The barycentric subdivision of the type C2 permutohedron.

right Cayley graph. For each special coset xWT attach a metric WT -permutohedron to

the vertices of Γ labeled by the elements of xWT . When x′WT ′ ⊂ xWT are two such

special cosets identify the WT ′-permutohedron attached to the vertices labeled by the

elements in x′WT ′ as a face of the WT -permutohedron attached to the vertices labeled by

the elements in xWT . Then the Davis complex is the resultant metric zonotopal complex.

Remark 2.3.8. As defined, the Davis complex is the cellular dual to the Coxeter com-

plex, whose face poset is the poset of special cosets. Thus, the cells of the Davis complex

are labeled by special cosets of the form xWT for x ∈ W and WT a special coset of

spherical type. For g ∈ W the action is defined g · (xWT ) = (gx)WT . Observe that W

acts simply transitively on the vertices, labeled by xW∅.

Example 2.3.9 (Davis complex of type !A2). Figure 2.3.5 displays a portion of the Davis

complex of type !A2 with each of its cells labeled by the special cosets, along with the
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cb〈a, c〉

Figure 2.3.5: The Davis complex of type !A2
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Coxeter complex dual. Note that each of the 2-cells are hexagons. This follows from the

fact that each of the spherical subgroups WT of rank 2 are isomporphic to the Coxeter

group of type A2 whose roots as depicted in Figure 2.2.2 determine that each of these

WT -zonotopes are regular hexagons.

Remark 2.3.10. In Figure 2.3.5 the Davis complex and Coxeter complex are drawn

together in the plane. In order to draw these two complexes as depicted it is necessary

to scale the Coxeter complex or Davis complex accordingly. For example, if the edges

of the Davis complex are unit length edges then the Coxeter complex would have edges

of length
√
3. In general, this dissertation assumes that the Davis complex is a metric

zonotopal cell-complex, with each of the edges unit length. This can conveniently be

constructed in Rn. Given a Euclidean Coxeter group W there exists some representation

conjugate to the contragredient representation where W acts on Rn+1. The complement

of the hyperplanes fixed by reflections is a disjoint union of simplicial cones, and there

is a copy of Rn spanned by the roots. The intersection of a translate of this copy of Rn

in a direction orthogonal to the roots with the hyperplane arrangement yields a tiling of

Rn by simplices. Each of these simplices has incenter the same distance from its facets.

Note, however, that adjusting the distance of the affine patch from the origin adjusts

the distance of the incenters from their facets so that there is an affine patch where each

incenter is distance 1/2 from its facets. Fix a fundamental chamber C for this action

and the incenter x in the simplex at the intersection of C with an affine patch so that

x is distance 1/2 from each of its facets. Then the W orbit of x, forms the vertices of

the Cayley graph. If two vertices y, z ∈ W (x) are separated by a single facet, so that

there is some reflection taking y to z, then they are connected by an edge. Moreover, a

WT -permutohedron glued in for a special coset is simply the convex hull of corresponding

vertices in Cayley graph so that they each WT -permutohedron has unit edge length.
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ababc〈b〉

babc〈b〉

[e]

[c] [cb]
[a]

[ca]

[cab]

[ab]

[abc]

[abcb]

[aba]

[abac][abacb]

[b]

[bc] [bcb][ba]

[bac]

[bacb]

[bab]

[babc]

[babcb]

[abab]

[ababc][ababcb]

〈a, b〉 〈b, c〉

〈a, c〉

c〈a, b〉a〈b, c〉

ab〈a, c〉

abc〈a, b〉

aba〈b, c〉

bab〈a, c〉

babc〈a, b〉 ba〈b, c〉

b〈a, c〉

bc〈a, b〉

Figure 2.3.6: A portion of the Davis complex of type !C2

Under this construction, the Davis complex lies in a translate of Rn in a direction

orthogonal to the roots. The intersection of this affine subspace with the hyperplane

arrangement yields the Coxeter complex. Thus, one can think about scaling the Coxeter

complex and Davis complex as choosing some height orthogonal to the root system.

Example 2.3.11 (Davis complex of type !C2). Let W be the Coxeter group of type !C2,

i.e. the symmetry group of the 244 triangular tiling of the plane. A portion of the Davis

complex of type !C2 is depicted in Figure 2.3.6. The Coxeter graph of type !C2 is
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W 4 4

a b c

Wa,b Wa,c Wb,c

Wa Wb Wc

W∅ ∅

Figure 2.3.7: The poset of parabolic subgroups of W = Cox( !C2)

4 4

a b c

and has poset of induced subgraphs that is isomorphic to the poset of parabolic subgroups

of depicted in Figure 2.3.7. The two rank 2 spherical subgroups Wa,b,Wb,c are isomorphic

to the dihedral group of order 8 or Cox(C2). Thus, as in Example 2.3.5 Wa,b and Wb,c-

permutohedra are octagons. The remaining rank 2 spherical subgroup Wa,c is of type

A1 × A1 and isomorphic to (Z/2Z)2 so that the Wa,c-permutohedron is a square, the

product of two intervals. Accordingly, note that the Davis complex corresponds to the

semiregular tesselation of the plane by octagons and squares.

2.4 Salvetti complex

There is a deep connection between Artin groups and Coxeter groups. One can think

of an Artin group as a braided version of the corresponding Coxeter group. This section
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recalls the theorem from Harm van der Lek’s thesis [5] which, in the Euclidean case, states

that a Euclidean Artin group is the fundamental group of the quotient of the complexified

hyperplane complement. Instead of working directly with the complexified hyperplane

complement, this section reviews a homotopy equivalent space constructed as an oriented

version of the Davis complex. The Coxeter group acts freely and properly discontinously

so that the quotient of the oriented version of the Davis complex has fundamental group

the Artin group. Then the section reviews a presentation for the Artin group analogous

to the presentation for its associated Coxeter group. Importantly, this section reframes

the question of understanding the word problem for Euclidean Artin groups in terms of

the topology of this infinite vertex cell-complex.

Theorem 2.4.1. Given a Euclidean Coxeter group W , the corresponding Artin group

A is the fundamental group of the quotient of the complexified hyperplane complement

under the action of the Coxeter group,

A = π1((Cn \ HC)/W ).

In the non-Euclidean case, instead take the complexified hyperplane complement of the

complexified interior of the Tits cone, which in the Euclidean case is identified with Cn

as some complexified affine patch of Rn.

Example 2.4.2 (Type A1 × A1 Artin group). Consider the type A1 × A1 case, with

defining graph Γ consisting of two isolated vertices. The corresponding Coxeter group

has presentation W = Cox(Γ) = 〈a, b | a2 = b2 = 1, ab = ba〉 ∼= Z/2Z× Z/2Z generated

by reflections in the hyperplanes x = 0 and y = 0 in R2. Note these reflections commute

since the fix orthogonal hyperplanes. Thus, a and b are the full set of reflections and the

two hyperplanes x = 0 and y = 0 are the complete hyperplane arrangement H of type

A1 × A1.
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To complexify the hyperplane arrangement treat the equations x = 0 and y = 0 as

equations with complex variables, using z, w to denote this. Then HC consist of the

hyperplane z = 0 and w = 0 in C2, where W acts on C2 by a · (z, w) = (eiπz, w) and

b·(z, w) = (z, eiπw). The complexified hyperplane complement in C2 consists of removing

two orthogonal copies of C1, and it deformation retracts onto the product S1×S1, a torus.

Quotienting by the action of W yields another torus that has a 4-fold cover by the torus

that is a deformation retraction of C2 \ HC. Specifically, the covering map restricted to

each factor S1 is the quotient by the antipodal map. The Artin group A of type A1 ×A1

is isomorphic to Z× Z and admits the presentation A = 〈a, b | ab = ba〉.

Remark 2.4.3. The complexified hyperplane arrangement quickly becomes difficult to

visualize. Instead of working with the complexified hyperplane complement, this dis-

sertation focuses on a homotopy equivalent infinite vertex cell-complex called the pure

Salvetti complex. This section follows the methods introduced by Salvetti in his thesis

[6] and by Delucchi in [7].

Example 2.4.4 (Salvetti complex of type A1×A1). As a continuation of Example 2.4.2,

let A = Z2, W = (Z/2Z)2 be the Artin group and Coxeter group of type A1 × A1, with

hyperplane arrangement H consisting of x = 0 and y = 0 depicted in Figure 2.4.1 in the

dashed red and blue lines respectively along with the Davis complex consisting of the

square with red and blue edges.

To complexify a hyperplane arrangement, view Cn as a the tangent bundle of Rn, i.e.

Figure 2.4.1: The Davis Complex and hyperplane arrangement of type A1 ×A1
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express a point z = x+ iy ∈ Cn as a point in x ∈ Rn and tangent vector y ∈ Rn. If this

point avoids a complexified hyperplane of the form a1z1 + . . . anzn = b, where ai, b ∈ R,

then either x does not lie on the hyperplane a1x1 + . . . anxn = b or y does not lie on

the hyperplane a1y1 + . . . anyn = 0. Equivalently, z is in the complexified hyperplane

complement if either (1) x is in the real complexified hyperplane complement so that

the imaginary part of z is a single contractible component, (2) x lies on a single real

hyperplane, so that y must avoid pointing in the direction of the hyperplane, splitting the

imaginary part of z into two contractible halfspaces into which the hyperplane separates

Cn, or (3) x lies on an intersections of real hyperplanes, so that y must avoid pointing in

the direction of any of these hyperplanes, splitting the imaginary part of z into multiple

contractible cones.

In this example, identify C2 = R2 + iR2 with the tangent bundle of R2 so that every

(z, w) ∈ C2 can be expressed as (z, w) = (x1, x2) + i(y1, y2), and think of (z, w) as a

point (x1, x2) ∈ R2 and a tangent vector (y1, y2). The complex depicted in Figure 2.4.2

is homotopy equivalent to the complexified hyperplane complement. It depicts the 1-

skeleton along with labels detailing the correspondence of each cell to a portion of the

complexified hyperplane complement, and the four squares below are glued accordingly.

Although each of the edges are drawn curved, each of the oriented squares are metric

Euclidean zonotopes. To describe the homotopy equivalence between the complexified

hyperplane complement and this complex split into the cases (1)-(3) as outlined above.

A point (z, w) ∈ C2 can avoid the complexified hyperplanes z = 0 and w = 0 as

summarized in (1) above if x1, x2 ∕= 0. The real part of points (z, w) avoiding the real

hyperplane arrangement consists of four contractible cones x1, x2 > 0, x2 > 0 > x1,

0 > x1, x2, and x1 > 0 > x2 and the imaginary part is all of R2. Thus, the points in the

complexified hyperplane complement (z, w) such that x1, x2 ∕= 0 are replaced with the

four vertices of Figure 2.4.2.
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x1=0<x2
y1<0

x1=0<x2
y1>0

x2<0=x1
y1<0

x2<0=x1
y1>0

x2=0<x1
y2<0

x1<0=x2
y2<0

x2=0<x1
y2>0

x1<0=x2
y2>0

0 < x1, x2x1 < 0 < x2

x1, x2 < 0 x2 < 0 < x1

x1=x2
y1,y2>0

x1=x2
y1<0<y2

x1=x2
y2<0<y1

x1=x2
y1,y2<0

Figure 2.4.2: The pure Salvetti complex of type A1 ×A1.
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Figure 2.4.3: The pure Salvetti complex of type A1 ×A1 is a torus constructed out of
four squares. These squares are shown as two cylinders glued top to top and bottom
to bottom according to orientation.

As in case (2) a point (z, w) can avoid the complexified hyperplanes z = 0 and w = 0

if it lies on the real part of a single hyperplane and has imaginary part that avoids

the direction of the hyperplane. Consider first the points (z, w) in the complexified

hyperplane complement with real part only on the hyperplane x1 = 0. If x1 = 0 and

x2 ∕= 0 then y1 ∕= 0, so that the imaginary part consists of two contractible regions y1 > 0

and y1 < 0. Thus, points (z, w) satisfying x1 = 0, x2 > 0 are replaced with the two top

red edges in Figure 2.4.2 one edge for imaginary direction y1 > 0 and one for imaginary

direction y1 < 0 glued to the two . The points satisfying x1 = 0, x2 < 0 are replaced with

the two bottom red edges. Analogously, the set of points (z, w) with real part (x1, x2) on

x2 = 0, but not on x1 = 0 are replaced by the four blue edges. Cases (1) and (2) form

the 1-skeleton of the complex.

As described in case (3) if a point (z, w) has real part that lies at the intersection of

the hyperplanes, i.e. x1 = x2 = 0, then the imaginary part must avoid pointing in the

direction of these hyperplanes. That is, the imaginary part consists of four contractible

cones y1, y2 > 0, y2 > 0 > y1, 0 > y1, y2, and y1 > 0 > y2. Thus, the points (z, w)

satisfying x1 = x2 = 0 are replaced by the four squares in Figure 2.4.3, glued to the edges

according to their orientation.

The complex constructed and depicted in Figure 2.4.3 is a torus. It depicts two

cylinders, each comprised of a pair of the two squares that share there orientation on

the blue edges. The two cylinders glue top to top and bottom to bottom to form a
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Figure 2.4.4: The Salvetti complex of type A1×A1 is the quotient of the pure Salvetti
complex by W and equal to the presentation complex of A.

torus. The action of W as a complex reflection group on the complexified hyperplane

arrangement is also translated into an action on pure Salvetti complex X and is precisely

the same action as described in Example 2.4.2. Thus, the quotient by this free properly

discontinuous action, is the single vertex complex consisting of a single vertex, bouquet

of two circles, with a single oriented square glued in as depicted in Figure 2.4.4. This

complex is the presentation 2-complex, which is a torus.

Remark 2.4.5. The details of Example 2.4.2 hold for general Artin groups as well.

The interior of the Tits cone viewed as a subset of Rn is complexified as above and the

complexified hyperplanes are removed. The complexified Coxeter group action is a π

rotation about each complexified hyperplane, and it acts freely on this space. Moreover,

the complexified interior of the Tits cone with the complexified hyperplanes removed

is homotopy equivalent to an oriented version of the Davis complex referred to as the

pure Salvetti complex in this dissertation. This section reviews the construction of the

pure Salvetti complex as outlined in [4], where the 1-skeleton is the oriented right Cayley

graph and the higher-dimensional cells are oriented W -permutohedra.

Definition 2.4.6 (The oriented right Cayley graph). The oriented right Cayley graph

for a Coxeter system (W,S) is a graph with vertices indexed by W and an oriented edge

from vg to vh if there exists s ∈ S such that g ·s = h. Notice that since s2 = 1 this implies

that g = h ·s so there is also an oriented edge from vh to vg as well. As in Definition 2.3.1

refer to this as the right labeling. The left labeling of the oriented right Cayley graph has

edges labeled by elements of the set of reflections, T = {wsw−1 | w ∈ W, s ∈ S}. That
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is, the edge from vg to vh is labeled by the unique t ∈ T such that t · g = h.

Definition 2.4.7 (Oriented W -permutohedron). Let P be a W -permutohedron. Given

a vertex v of P there is a unique vertex v′ that is opposite v so that the vector from v to

v′ passes through the center of P . Orient each edge in the 1-skeleton of P so that its dot

product with the vector from v to v′ is positive. Note that P has as many orientations

as it has vertices, which is equal to |W |.

Definition 2.4.8 (Salvetti Complex). Let W be a Coxeter group and Y its Davis com-

plex. The pure Salvetti complex has the same vertex set as Y , and each edge of the

unoriented right Cayley graph 1-skeleton of Y is replaced with two oriented edges. Thus,

the pure Salvetti complex has 1-skeleton the oriented right Cayley graph. More generally,

each WT -permutohedron of Y is replaced with |WT | many oriented permutohedra, one

for each possible orientation. When a permutahedron has a smaller permutahedron as

a face, the oriented version of the larger one is attached to the oriented version of the

smaller one where the orientations are compatible. Note that there is a natural map form

the pure Salvetti complex sending each oriented WT -permutohedron to the corresponding

unoriented WT -permutohedron in the Davis complex.

The Coxeter group W acts freely on the pure Salvetti complex and its quotient is a

1-vertex complex called the Salvetti complex that has one oriented WT -permutahedron

for each spherical parabolic subgroup WT . The 2-skeleton of the Salvetti complex is the

presentation 2-complex.

The fundamental group of any Salvetti complex admits a straightforward presentation

reminiscent of the presentation of a Coxeter group, which is formalized in the following

definition.

Definition 2.4.9 (Artin Group). Given a Coxeter system (W,S) with Coxeter graph Γ

the Artin group of type Γ, denoted Art(Γ), is defined to be the group generated by S

41



Groups and complexes Chapter 2

with one relation of the form

iji . . . j" #$ %
mij

= jij . . . i" #$ %
mij

or iji . . . i" #$ %
mij

= jij . . . j" #$ %
mij

if mij is even or mij is odd respectively for each pair of vertices i, j such that mij ∕= ∞.

Any group, which admits a presentation of this form is referred to as an Artin group. The

pure Artin group of type Γ is the kernel of the map of the map from Art(Γ) onto Cox(Γ)

sending S to S, i.e. sending each generator of the Artin group to the corresponding

involutory generator in the Coxeter group.

The following theorem follows from the work of Salvetti [6] and Delucchi [7]

Theorem 2.4.10. Given a Coxeter group W , the pure Salvetti complex is homotopy

equivalent to the complexified hyperplane complement, and it’s fundamental group is the

pure Artin group. The quotient of the pure Salvetti complex by the action of W is the

Salvetti complex which has fundamental group the Artin group.

Definition 2.4.11. The pure Salvetti complex is homotopy equivalent to the complex-

ified hyperplane complement. Consider first the complement of a single complex codi-

mension 1 hyperplane H in Cn. The space Cn \H deformation retracts onto an infinite

cylinder around H, which has fundamental group generated by a meridional loop around

H. It is well-known that the fundamental group of the complexified hyperplane comple-

ment in the interior of the Tits cone is generated by based versions of meridional loops

around the missing hyperplanes. The non-based version of a meridional loop around a

missing hyperplane corresponds to a parallel family of bigons in the pure Salvetti com-

plex.

Given a Coxeter groupW with hyperplane arrangementH, letH ∈ H be a hyperplane

and let t be the reflection that fixes H. Define a meridional bigon dual to H in the pure
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Salvetti complex X to be any bigon in the left labeled right Cayley graph with both edges

labeled by t. This bigon consisting of two vertices in X, vg and vh, such that t · g = h

and t = gsg−1 for some s in the simple system. In the Euclidean case, there is an infinite

family of parallel meridional bigons. It is well-known that one can choose meridional

bigons, one for each hyperplane H ∈ H, and that these are sufficient to generate the

fundamental group of the pure Salvetti complex, i.e. the pure Artin group.
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Injectivity and subcomplexes

This section focuses on the fundamental groups of subcomplexes of the pure Salvetti

complex in relation to the fundamental group of pure Salvetti complex as a whole. The

subcomplexes where the inclusion map induces an injection on fundamental groups are

of particular interest. This chapter focuses on the types of subcomplexes that meet

this injectivity criterion for various types of Artin groups. As the complexity of the

Artin groups is increased the requirements that subcomplexes must meet to satisfy the

injectivity criterion become increasingly more refined. This chapter progresses through

examples starting with 1-dimensional Artin groups, then one-relator Artin groups, and

lastly spherical type exemplified by the four strand braid group. Each set of examples

yields a more sophisticated strategy for understanding the word problem for Euclidean

Artin groups. The chapter concludes with a rephrasing of the word problem in terms of

a general strategy for giving a constructive solution. It involves finding an exhaustive

family of subcomplexes that is coarse enough to satisfy the injectivity criterion, but fine

enough so that the finite list of irreducible elements all have fundamental groups with

easy to solve word problems.
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3.1 Group elements and subcomplexes

This section introduces the language that will be used throughout the remainder

of this dissertation to study the word problem for Euclidean Artin groups in terms of

fundamental groups of compact subcomplexes of the pure Salvetti complex. This section

formalizes the perspective of this dissertation, viewing an element of the Artin group as a

loop in the 1-skeleton of Salvetti complex. However, since Coxeter groups are well-known

to have solvable word problem it suffices to study elements in the kernel of the map from

an Artin group to its Coxeter group, i.e. loops in the pure Salvetti complex.

Remark 3.1.1. A standard fact of algebraic topology textbooks such as Hatcher [8]

is that for a path-connected CW complex X the inclusion X(1) ↩! X of the 1-skeleton

induces a surjection on π1. Thus, to study the fundamental group of the pure Salvetti

complex, which is a path connected CW complex, it suffices to study loops in the 1-

skeleton. Furthermore, one need only consider loops that locally don’t have backtracks,

which is made precise in the following definition.

Definition 3.1.2 (Combinatorial Loop). A map Y ! X between cell complexes is

combinatorial if its restriction to each open cell of Y is a homeomorphism onto an open

cell of X. A cell complex is combinatorial if the attaching map of each open cell of X

is combinatorial for a suitable subdivision. Note that all of the complexes introduced in

Chapter 2 are combinatorial. Given a combinatorial cell complex X a loop γ : S1 ! X

is combinatorial if γ is combinatorial for some suitable subdivision of S1.

Definition 3.1.3. Oftentimes, it will be convenient to describe subcomplexes of the

pure Salvetti complex in terms of portions of the Coxeter complex or some subcomplex

of the Davis complex. To avoid confusion, a subcomplex of the Coxeter complex is called

a Coxeter subcomplex, a subcomplex of the Davis complex a Davis subcomplex, and a

subcomplex of the pure Salvetti complex a pure subcomplex.
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Note that pure subcomplexes need not contain all of the cells of the full preimage of

a Davis subcomplex.

Definition 3.1.4 (Full subcomplex). A subcomplex of the pure Salvetti complex is full

if it is the preimage of a subcomplex of the Davis complex. That is, if a full pure

subcomplex contains one oriented W -permutohedron then it contains all of the oriented

W -permutohedra that have the same projection to the Davis complex.

Remark 3.1.5. Given a presentation for a group G = 〈S|R〉 there is an associated

presentation 2-complex so that there is a bijection between words in S ∪ S−1 and com-

binatorial loops in the 1-skeleton of based at the single vertex. For an Artin group

A = 〈S|R〉 the 2-skeleton Z(2) of the Salvetti complex Z is the presentation 2-complex so

that the combinatorial loops in the Z(1) are in bijection with words in S ∪S−1. Since the

word problem is well-known for Coxeter groups it suffices to study loops that lift to loops

in the pure Salvetti complex X. However, the pure Salvetti complex is a multivertex

infinite cell-complex with no standard generating set. However, fixing a basepoint vertex

in X a combinatorial loop in X(1) can be described by a word in denoting the edges tra-

versed in the oriented right Cayley graph. Note the right labeling corresponds to words

in S ∪ S−1 and the left labeling corresponding to words in T ∪ T−1, where T is the set

of reflections that is in bijection with the hyperplane arrangement H. One can think

of left labeling by elements of T as naturally arising from the perspective of the pure

Artin group the group generated by the meridional bigons as in Definition 2.4.11. Unless

otherwise specified this dissertation will refer to the word determined by a combinatorial

loop in X(1) to be such a description of the edges traversed in the left labeling of the

oriented right Cayley graph. Also, this dissertation adopts the convention that edges

traversed in the direction opposite their orientation correspond to capital letters.

Definition 3.1.6 (Word subcomplex). Given a word determined by a combinatorial loop
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γ in the 1-skeleton of the pure Salvetti complex X, consider the image of p(γ), where

p : X ! Y is the usual map from the pure Salvetti complex to the Davis complex. The

Davis word subcomplex is the 1-dimensional Davis subcomplex consisting of all of the

edges traversed by γ. The preimage of the Davis word subcomplex in the pure Salvetti

complex is the pure word subcomplex. Note that for any loop γ in the pure Salvetti

complex the Davis and pure word subcomplexes are compact, connected, and full.

3.2 Graphs and subgraphs

This section focuses on the two examples of 1-dimensional Artin groups. That is,

the pure Salvetti complex is a graph. In both examples the subcomplexes are subgraphs

and the inclusion map induces an injection on fundamental groups. This section proves

the fact that if all of the compact full subcomplexes of the pure Salvetti complex have

inclusion maps that induce an injection on their fundamental groups then the word

problem is solvable.

Example 3.2.1 (Type A1 subcomplexes). Consider the Artin group of type A1. Alge-

braically, the Coxeter group is Cox(A1) ∼= Z/2Z, the Artin group is Art(A1) ∼= Z, and

the pure Artin group is PArt ∼= Z with homomorphisms

PArt(A1) Art(A1) Cox(A1)
f g

where f maps the generator of the pure Artin group to its square in the Artin group

and g is the quotient map sending the square of each generator to the identity. It

is straightforward that the word problem is solvable for Z. However, this dissertation

focuses on solving the word problem in terms of the topology of subcomplexes of the pure

Salvetti complex.

47



Injectivity and subcomplexes Chapter 3

Figure 3.2.1: The hyperplane arrangement and Davis complex of type A1.

Figure 3.2.2: The pure Salvetti complex of type A1.

For type A1 the hyperplane arrangement is a subset of R and consists of the single

hyperplane x = 0. One can think of the cell structure induced by the hyperplane ar-

rangement as the two red rays and the blue vertex for the hyperplane x = 0 depicted in

Figure 3.2.1. Recall, that the cellular dual is the Davis complex, depicted on the right

of the figure, with two vertices and an edge connecting them. To construct the pure

Salvetti complex, which is homotopy equivalent to the complexified hyperplane comple-

ment, orient the Davis complex. As depicted in Figure 3.2.2, it consists of two points

connected by two oriented edges and is homeomorphic to a circle, with fundamental group

Z. Note that the complexified hyperplane arrangement consists of one hyperplane z = 0.

Thus, the complexified hyperplane complement is C with the origin removed, where it is

straightforward to see that it is homotopy equivalent to the pure Salvetti complex. Note

that every proper subcomplex of the pure Salvetti complex of type A1 is contractible and

has trivial fundamental group. Thus, the word problem for type A1 can be understood

entirely in terms of the single bigon of the pure Salvetti complex.

Furthermore, the action of the Coxeter group on the complexified hyperplane comple-

ment C\{0} is generated by a rotation by π. As an action on the pure Salvetti complex,

this can be thought of as the reflection about the hyperplane x = 0 ⊂ R, which exchanges

the two vertices and opposite points on the edges. The quotient by this action is the

Salvetti complex consisting of a single vertex and single edge that is a loop depicted in
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Figure 3.2.3: The Salvetti complex of type A1.

Figure 3.2.4: The Davis complex of type !A1

Figure 3.2.3.

Example 3.2.2 (Type !A1 subcomplexes). In the case of type !A1, the Coxeter group

Cox( !A1) = 〈a, b | a2 = b2 = 1〉 ∼= Z/2Z ∗ Z/2Z is the infinite dihedral group, the Artin

group Art( !A1) = 〈a, b〉 ∼= Z ∗ Z = F2 is a rank 2 free group, and the pure Artin group

PArt( !A1) ∼= F∞ is a countably infinite rank free group.

To describe the associated cell complexes recall that the hyperplane arrangement

can be identified with Z ⊂ R so that the Coxeter complex is an infinite path graph as

described in 2.2.3. The dual Davis complex is just the unoriented right Cayley graph of

the infinite dihedral group and is also an infinite path graph depicted in Figure 3.2.5.

The green edges correspond to a, and the blue edges correspond to b in the right labeling

of the unoriented right Cayley graph. The pure Salvetti complex depicted in 3.2.6 is

the oriented right Cayley graph obtained from the Davis complex by replacing each edge

with two oriented edges. It is homeomorphic to a countably infinite wedge of circles so

that the fundamental group is a countably infinite rank free group. The Salvetti complex

is the quotient of the pure Salvetti complex by the action of the Coxeter group. It is

homeomorphic to a wedge of two circles with fundamental group F2.

Algebraically, the action of the Coxeter group induces an injective map from the pure

Artin group to the Artin group, whose image is the kernel of the map from the Artin
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Figure 3.2.5: The pure Salvetti complex of type !A1.

Figure 3.2.6: The Salvetti complex of type !A1

group to the Coxeter group.

F∞ Z ∗ Z Z2 ∗ Z2

Proposition 3.2.3. Suppose that K is a connected subgraph of a connected graph L and

i : K ↩! L is the inclusion map. Then i∗ : π1(K) ! π1(L) is an injection.

Proof. It suffices to show that no nontrivial loop in K becomes trivial in L under i.

Suppose that γ is a nontrivial loop in K. Let T be a spanning tree for L so that

T ′ = T ∩ K is a spanning tree for K. Then, K/T ′ and L/T are both roses with their

edges labeling the generators of their respective fundamental groups. In particular, the

map K/T ′ ! L/T induced by i is an injection on π1 because there exists a retraction

from L/T to K/T ′.

Definition 3.2.4 (π1-injectivity). Given a space L and a subspace K ⊂ L, K is π1-

injective (with respect to L) if the inclusion map i : K ↩! L induces an injection on

fundamental groups, i∗ : π1(K) ! π1(L).

Lemma 3.2.5. All subcomplexes of the pure Salvetti complexes of type A1 and all sub-

complexes the pure Salvetti complexes of type !A1 π1-inject.
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Proof. In both type A1 and type !A1 the pure Salvetti complex is a graph so all of the

subcomplexes are graphs. Thus, Proposition 3.2.3 implies subcomplexes of the pure

Salvetti complexes of type A1 and all subcomplexes the pure Salvetti complexes of type

!A1 π1-inject.

Example 3.2.6 (Structure of the pure Artin group of type !A1). Continuing Example

3.2.2 consider the word problem for the pure Artin group in terms of the topology of the

pure Salvetti complex X and its compact connected full subcomplexes, which are finite

subgraphs. Moreover, the edges of the bigons can be labeled by an integer corresponding

the hyperplane x = k ∈ Z that they traverse. The image of any combinatorial loop is

contained in the set of connected compact full subcomplexes corresponding to a finite

subset of consecutive integers. Note that it suffices to only study these compact connected

subcomplexes of consecutive bigons.

Specifically, suppose γ is a nullhomotopic combinatorial loop in the pure Salvetti

complex X. Next, let K be the word subcomplex determined by γ. Then this a con-

nected full subcomplex consisting of the bigons labeled by the finite subset of consecutive

integers, one for each hyperplane that is traversed by γ. Consider the image of a nuho-

motopy H : S1 × I ! X. This, may include cells outside of K. However, consider the

cover of the pure Salvetti complex consisting of the subcomplex K with both the leftmost

and rightmost vertices connected to a countably infinite valence tree. For example if the

loop γ just traverses the edges of two bigons then a portion of this cover is depicted in

Figure 3.2.7. Note that the nullhomotopy lifts to this cover and since the union of K and

the two trees deformation retracts to K there is a homotopy of the nullhomotopy H so

that its image is entirely contained in K. If the loop was nullhomotopic in the full pure

Salvetti complex then it is nullhomotopic in K. Thus, every subcomplex of this form is

π1-injective, and it suffices to study the fundamental group of a subcomplex K of this
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Figure 3.2.7: A portion of the cover of the pure Salvetti complex obtained by un-
raveling each of the bigons not traversed by a loop whose image is contained in two
bigons

form, which is labeled by a finite consecutive string of integers in [a, b] ⊂ R.

Suppose that K is a compact full subcomplex with edges labeled by integers in [a, b]

for a ≤ b ∈ Z. Then it is clear that K consists of the wedge of r = b − a + 1 circles

and has fundamental group equal to rank r free group Fr with solvable word problem.

However, consider decomposing π1(K) in terms of the family of all connected compact

full subcomplexes consisting of finitely many consecutive bigons or the singleton vertices,

thought of as zero consecutive bigons. Let c be some integer a < c < b and express

K as the union of two such proper connected subcomplexes L and M corresponding to

consecutive bigons with edges labeled by integers in [a, c] and [c, b] respectively. Then

A ∩ B is a single vertex and π1(K) = π1(L) ∗ π1(M). Continuing in this way, each of

the pieces π1(L), π1(M) can be iteratively decomposed in an identical fashion to express

π1(K) as an iterated free product. At some point this process terminates when each of the

pieces of this iterated amalgamated free product is Z, corresponding to the fundamental

group of a single bigon. Since any loop in X is contained in a subcomplex K that can

be written as a free product of the fundamental groups of the bigons understanding the
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−1 0 1 2

−1 0 1 ∗ 2

−1 ∗ 0 1 ∗ 2

−1 ∗ 0 ∗ 1 ∗ 2

Figure 3.2.8: A decomposition of a word subcomplex.

word problem for the pure Artin group, π1(X) reduces to the word problem for a single

bigon.

Remark 3.2.7. In Example 3.2.6 the decomposition of the pure word subcomplex K

determined by a loop γ was done implicitly in terms of a decomposition of the cor-

responding Davis subcomplex. For example suppose that γ was a loop that traversed

the hyperplanes labeled by the integers in [−1, 2] so that the Davis word subcomplex

determined by γ is depicted at the top of Figure 3.2.8. In each line of the figure any

subcomplex that is not a single closed edge is written as a union of two proper subcom-

plexes with intersection a vertex. Since KY is compact this process terminates with KY

written as the union of edges corresponding to closed intervals [i, i + 1], for i ∈ Z. As a

result, this decomposition of KY can be applied to K so that the fundamental group of

K can be written as the free product of finitely many bigons. Specifically, for the KY

depicted in Figure 3.2.8 π1(K) = (Z ∗ (Z ∗ Z)) ∗ Z.

The remainder of the dissertation will follow in an analogy to the above example,

where hyperplanes in the Davis complex will be used to decompose compact subcomplexes

satisfying some injectively criterion into some union of “irreducible” pieces.

Definition 3.2.8 (Reducible subcomplex). Suppose that X is the Davis complex and

K ⊂ X is a nonempty connected Davis subcomplex. Then K is reducible if there exist
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connected subcomplexes L,M with neither contained in the other such that K = L∪M

and L∩M is connected. IfK is not reducible then it is irreducible. A nonempty connected

full pure subcomplex is reducible if it is the preimage of a reducible Davis subcomplex

under the projection of the pure Salvetti complex to the Davis complex and is irreducible

otherwise.

Lemma 3.2.9. A compact connected Davis subcomplex is irreducible if and only if it

consists of a single closed W -permutohedron.

Proof. IfK consists of a single closedW -permutohedron of dimension d then every proper

subcomplex of K is of dimension strictly smaller than d so that K must be irreducible.

Conversely, suppose thatK is a compact irreducible subcomplex of the Davis complex

dimension d. Then there is a subcomplex L consisting of a single closed d-dimensional

W -permutohedron P . If L = K then K consists of a single closed W -permutohedron as

desired. If not let M be the closure of K \ L. If M is not connected then partition the

closure of K \L into two sets. Let K1 be a connected component of the closure of K \L,

and let K2 be the union of the remaining connected components. Then adjust L and M

so that L is P union K2 and M is the closure of K1. Then K = L ∪M , L, and M are

connected subcomplexes, neither containing the other, so that K is reducible, which is a

contradiction. Thus, K must be a closed W -permutohedron of dimension d.

Remark 3.2.10. Note that a Davis subcomplex consisting of a single closedW -permutohedron

corresponds to a full pure subcomplex, which has fundamental group equal to the spher-

ical Artin group corresponding to W . The word problem for all spherical Artin groups

has been known to be solvable since the 1970’s [9, 10].

Theorem 3.2.11. Let X be the pure Salvetti complex of some fixed type Γ. If every full

subcomplex of X π1-injects then the fundamental group of every reducible full compact
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X π1(X)

L M π1(L) π1(M)

N π1(N)

Figure 3.2.9: Inclusion maps of subcomplexes induce maps on fundamental groups.

subcomplex K ⊂ X can be written as an iterated amalgamated free product of funda-

mental group of spherical Artin groups. Furthermore, if every amalgamated subgroup has

decidable membership problem in each factor then the Artin group of type Γ has solvable

word problem.

Proof. If K is reducible suppose that L,M are full subcomplexes of the pure Salvetti

complex, X, such that K = L ∪ M and N = L ∩ M is a connected full subcomplex.

Then there are inclusion maps for each subcomplex into the each of the complexes that

contain it, depicted in the Figure 3.2.9 on the left.

Note for sets Y , Z, and W if f : Y ! W and g : Z ! W are injections then a map

h : Y ! Z such that g◦h = f is injective. By assumption every subcomplex π1-injects so

that the induced maps on the level of fundamental groups are all injections. This implies

that the induced maps π1(N) ! π1(L) and π1(N) ! π1(M) are injections so that

π1(K) = π1(L) ∗π1(N) π1(M).

As in Example 3.2.6 one may continue to decompose the pieces of the amalgamated

free product, until π1(K) is expressed as an iterated amalgamated free product of the

fundamental groups of its irreducible subcomplexes. By Lemma 3.2.9 these irreducible

subcomplexes are of spherical type as desired.

To prove that the Artin group of type Γ has solvable word problem it suffices to
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show that the fundamental group of any compact full subcomplex K has solvable word

problem since every combinatorial loop is contained in the pure word subcomplex which

is a full compact subcomplex of X.

If K is a full irreducible pure subcomplex then it is the preimage of a closed d-

dimensional WT -permutohedron by Lemma 3.2.9. Since WT is a spherical Coxeter group,

K has fundamental group equal to the corresponding spherical Artin group. By Remark

3.2.10 K has solvable word problem.

If K is a full reducible pure subcomplex then it can be expressed as an iterated

amalgamated free product of spherical Artin group, each of which has solvable word

problem by Remark 3.2.10. Furthermore, if each of the amalgamated subgroups has

decidable membership problem then the word problem for K is solvable, see Corollary

3.6.6.

Remark 3.2.12. Note the membership problem for the fundamental group of subgraph

K into the fundamental group of a graph L, where π1(K) is viewed as a subgroup of

π1(L) under the map induced by inclusion, is decidable. To see this, note that since

L is a graph every homotopy class of a path in K has a unique representative without

backtracks. Thus, a path γ in L with both endpoints in K is an element of π1(K) if and

only if the unique representative for γ without backtracks is entirely contained in K.

Corollary 3.2.13. The word problem is solvable for both 1-dimensional Artin groups.

3.3 One-relator Artin groups

This section focuses on the π1-injectivity of subcomplexes of one-relator Artin groups.

It is established that every one-relator Artin group can be understood in terms of an Artin

group that is just the braided version of a dihedral group, i.e. type I2(m). Then this
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section presents the example of type A1 × A1, where it is straightforward to see that

not all subcomplexes π1-inject. The section concludes by classifying which connected full

pure subcomplexes π1-inject.

Remark 3.3.1. If A is a one-relator Artin group, then it contains a unique finite rank 2

parabolic subgroup A′ of type I2(m) corresponding to a unique pair {a, b} of the standard

generators satisfying a nontrivial braid relation. All other rank 2 parabolic subgroups

are infinite and thus all other pairs of vertices do not satisfy a nontrivial braid relation,

i.e mij = ∞ for all other pairs of vertices. Thus, any 1-relator Artin group A can be

expressed as the free product Fr ∗A′ of a finite rank r free group and an Artin group A′

of type I2(m). Since the word problem is well understood for free products in terms of

its pieces, see Proposition 3.6.3, it suffices to study the pure Salvetti complex for groups

of type I2(m)

Example 3.3.2 (Type A1 × A1). Recall the cell complexes of type A1 × A1 described

in Example 2.4.4. Topologically, the pure Salvetti complex is a torus with cell structure

depicted in Figure 2.4.3. Next consider the full connected pure subcomplexes and their

injectivity. Proper connected Davis subcomplexes are vertices or connected 1-dimensional

Davis subcomplexes. The corresponding full pure subcomplexes are vertices which triv-

ially π1-inject, and the preimage of the connected 1-dimensional Davis subcomplexes

correspond to the wedge of r bigons, r = 1, 2, 3, 4, which have fundamental group a free

group of rank r.

Now consider the π1-injectivity of each of these subcomplexes. It is straightforward

that the fundamental group of a single bigon π1 injects. However, if there are two or more

bigons this corresponds to a free group that does not π1-inject. Consider subcomplex K

consisting of two adjacent bigons with fundamental group π1(K) ∼= F2. Note that these

loops commute in the full pure Salvetti complex homeomorphic to a torus. For example,
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Figure 3.3.1: A disk diagram for the word a2b2A2B2 up to some conjugation depending
on choice of basepoint.

the loop γ defined by the word a2b2A2B2 is non trivial in π1(K), which is generated

by the red meridional bigon with edges labeled a and blue meridional bigon with edges

labeled b as depicted in Figure 2.4.3. However, this loop is nullhomotopic in the pure

Salvetti complex X. In particular, there is a map of a disk into X whose boundary is

the loop γ as illustrated in Figure 3.3.1.

Remark 3.3.3. In general, full pure subcomplexes do not π1-inject. Anytime the pure

Salvetti complex contains a 2-dimensional W -permutohedron, i.e. a polygon, any full

1-dimensional pure subcomplex K containing at least half of the 1-skeleton does not

π1-inject. In particular, K is a graph and has a fundamental group a free group, but

loops pure Salvetti complex satisfy nontrivial relations in the 2-cells. Since the pure

Salvetti complexes of the Euclidean Artin groups of type !A2 and !C2 considered in the

subsequent chapters are built out of oriented polygons from one-relator Artin groups it

will be necessary to understand which connected full pure subcomplexes of type I2(m)

π1-inject.

Observe, that the only connected 0-dimensional subcomplexes of the pure Salvetti

complex of type I2(m) consist of a single vertex. Also, the only 2-dimensional full con-

nected pure subcomplex is the entire pure Salvetti complex. These 0 and 2-dimensional

subcomplexes π1-inject trivially. Thus, it suffices to study the injectivity of the 1-

dimensional full connected pure subcomplexes corresponding to a path in the edges of

the Davis complex that traverses less than half of a polygon. The next example considers
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a

a

c

cb

b

b

bc

c

a

a

Figure 3.3.2: The oriented right Cayley graph of type A2 with the left labeling.

Figure 3.3.3: The subcomplex of the pure Salvetti complex of type consisting of all
cells that agree with the choice of orientation on the top and bottom black edges.

the case where the Davis complex is a hexagon, i.e. type A2 = I2(3).

Example 3.3.4. Suppose that A is the three strand braid group, i.e. the Artin group

of type A2. This example highlights how the fundamental group of two adjacent bigons

injects into the fundamental group of pure Salvetti complex. Let X be the pure Salvetti

complex of type A2 so that X consists of six oriented hexagons glued into the oriented

Cayley graph of the symmetric group on three letters depicted in Figure 3.3.2. In par-

ticular, the two pairs of consecutive bigons, highlighted in red in the figure, with edges

labeled a and b are homotopy equivalent. Any loop in the left pair can be homotoped to

a loop in the right pair.

To see this, consider the subcomplex K of X obtained by choosing an orientation for

the edges labeled c and gluing in the three oriented hexagons that include the chosen

orientation of c. This is depicted in Figure 3.3.3 with 1-skeleton on the left and the
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Figure 3.3.4: A depiction of the homotopy equivalence between the the bigons on
either side of the hexagon

blue, red, and yellow oriented hexagons glued according to the orientations on the edges.

Note that the edges are colored according to the oriented hexagon to which they belong.

For example, the green edge is included in both the yellow and blue hexagon. Also, a

midsection is depicted, which is the preimage of the Davis hyperplane that bisects the

hexagon and the parallel edges labeled c. It consists of a blue, red and yellow edge

connecting the midpoints of the two edges labeled c with the chosen orientation. Note

that K is homotopy equivalent to either pair of the adjacent bigons with edges a and

b as well as the midsection theta graph with red, yellow, and blue edges as depicted in

Figure 3.3.4.

Furthermore, to see how a loop in the left pair of adjacent bigons can be rewritten as

a loop in the right pair of adjacent bigons consider the following. Fix a basepoint to be

the bottom left vertex incident to the edges labeled a and c. Then the word abbaaBBa

corresponds to a loop entirely contained in consecutive bigons on the left. Following this

loop along the homotopy equivalence as depicted in Figure 3.3.4, one obtains the loop

cbaabbaaBBAabC, which is just a conjugate of a loop based entirely on the right side.

One can view this process of rewriting in terms of the subdivided disk mapped into K

as depicited in Figure 3.3.5.

Lemma 3.3.5. Let X be the pure Salvetti complex of type I2(m). Then any 1-dimensional

subcomplex consisting of r consecutive bigons for 1 ≤ r ≤ m− 1 π1-injects.

Proof. Suppose that A is the Artin group of type I2(m) and let X denote the pure

Salvetti complex. It consists of 2m oriented 2m-gons glued into the oriented right Cayley
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c c

a b b a a b b a

b a a b b a a b b a a b

Figure 3.3.5: A representation of the homotopy between a loop in the left two bigons
and the right bigons of the pure Salvetti complex of type !A2.

2m

Figure 3.3.6: The 1-skeleton of the pure Salvetti complex of type I2(m) with a
π1-injective subcomplex highlighted in red. The 2m in the middle of the figure indi-
cates the number 2-cells glued in. Specifically, there are 2m oriented 2m-gons that
are glued into the 1-skeleton according to orientation.
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m m m m

Figure 3.3.7: The cover of the pure Salvetti complex corresponding to the kernel of the
map to the winding number around the hyperplane dual to the top and bottom bigons
of Figure 3.3.6. The m′s in the figure indicate that there are m oriented 2m-gons glued
to the surrounding portion of the 1-skeleton.

graph as in Figure 3.3.6. It suffices to show that the subcomplex K highlighted in red

consisting of m− 1 adjacent bigons π1-injects since Proposition 3.2.3 implies each of the

proper subgraphs of adjacent bigons π1-injects into the m− 1 adjacent bigons. To show

this, suppose that γ is a nullhomotopic combinatorial loop in the K and argue that the

there exists a nullhomotopy of γ that is entirely contained in K. Thus, if a loop γ in K

is nullhomotopic in X then it is nullhomotopic in K.

First consider the map from π1(X) ! Z, sending a loop in X to its winding number

around the hyperplane dual to the top and bottom oriented edges. The cover !X corre-

sponding to the kernel of that map is depicted in Figure 3.3.7. It consists of R divided

into Z many intervals across the top and bottom and vertically there are copies of the

wedge of m − 1 consecutive bigons. The 2-cells are glued in groups of m oriented 2m-

gons with orientation matching the top and bottom edges. Note that this entire cover

!X deformation retracts onto any single copy of m − 1 consecutive bigons. Thus, any

nullhomotopy of γ in X lifts to !X, which is homotopy equivalent to a chosen lift if K.

Thus, there exists a nullhomotopy of γ that is entirely contained in K.
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3.4 Convex subcomplexes

This section introduces the notion of convex subcomplexes in terms of the hyper-

plane arrangement for a given Artin group. Convexity determines a coarser notion of a

subcomplex, and for type I2(m) the convex full pure subcomplexes do π1-inject. This

section then goes on to characterize the irreducible convex Davis subcomplexes. They

are all closed W -permutohedra so that they correspond to full pure subcomplexes with

fundamental group a spherical Artin group. As a result, it is possible to conclude that if

all of the compact convex full subcomplexes of the pure Salvetti complex π1-inject then

the word problem is solvable.

Definition 3.4.1 (Convexity). Define a convex Coxeter subspace to be the subcomplex

consisting of the union of all open cells contained in an intersection of open halfspaces

determined by the hyperplane arrangement. Note that each of these cells correspond to

a special coset. However, this does not correspond to a subcomplex since it is open. A

convex Davis subcomplex is defined to be the cellular dual of the convex Coxeter subspace,

so that the special cosets labeling the cells of the convex Davis subcomplex correspond to

a convex Coxeter subspace. A convex pure subcomplex is the preimage of a convex Davis

subcomplex under the usual map from the pure Salvetti complex to the Davis complex.

Example 3.4.2. Consider the !A2 hyperplane arrangement, and consider the six hyper-

planes which bound the dotted regular hexagonal region as depicted in Figure 3.4.1.

These hyperplanes determine six open halfspaces, which intersect to form the convex

subset of R2 shaded in red.

Figure 3.4.2 depicts the convex Coxeter subspace, as well as the corresponding Davis

and pure subcomplexes determined by this convex subset of R2. The convex Coxeter

subspace, show on the left of the figure, consists of six open two cells, six open 1-cells,

and one 0-cell. Its dual is a convex Davis subcomplex depicted in the center of the figure.
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Figure 3.4.1: A convex region defined by the intersection of open halfspaces of the !A2

hyperplane arrangement.

6

Figure 3.4.2: A convex Coxeter subspace, convex Davis subcomple, and convex pure
subcomplex corresponding to the same intersection of halfspaces in the hyperplane
arrangement.
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The preimage of the convex Davis subcomplex under the map from the the pure Salvetti

complex to the Davis complex has 1-skeleton depicted on the right. The edges in the

1-skeleton also have orientation and there are also six oriented hexagons glued into the

1-skeleton according to orientation.

Remark 3.4.3. If K and L are two convex Coxeter subspaces then K ∩ L is just the

intersection of each of the halfspaces that defines either K or L. Thus K ∩ L is convex,

which implies that the dual subcomplex and its preimage in the pure Salvetti complex

are convex. Thus, the intersection of convex subcomplexes is convex.

Note also that every convex subcomplex is connected. To see this, suppose that Y

is the Davis complex of some fixed type Γ and K is a convex Davis subcomplex. If K

consists of a single vertex then it is connected. Suppose that v and w are vertices, then

they correspond to adjacent open chambers in the Coxeter complex. Since it is convex it

must contain all of the boundary points between them since they lie on some line segment

between points in each of the chambers. Thus, there is an edge between v and w in the

Davis complex, and two oriented edges between v and w in the pure Salvetti complex.

Definition 3.4.4 (Convex hull). The convex hull of a Davis subcomplex K, denoted

conv(K) is the intersection of all the halfspaces containing all of K. Given a pure

subcomplex KX , let K = p(KX) be the image of KX under the usual map p : X ! Y

from the pure Salvetti complex to the Davis complex. The convex hull of KX , denoted

conv(KX), is the preimage under p of the convex hull of K.

Lemma 3.4.5. The convex hull of a compact Davis subcomplex K is compact.

Proof. The Davis complex Y has a natural metric defined on the set of vertices coming

from the word metric on the unoriented right Cayley graph. Define the length of a

combinatorial path in Y (1) to be the number of edges that it traverses, and for two vertices
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u, v ∈ Y (0) define the distance d(u, v) to be the minimum length among all combinatorial

paths in Y (1) from u to v. Thus, if K is a compact then the K(1) has bounded diameter,

i.e. the maximum distance between any two points of K is a bounded.

Next suppose that w is a vertex of conv(K) \K. If H is a hyperplane where K lies

entirely on one side then w is contained on the same side of H as K. Since K is compact

there are only finitely many hyperplanes which intersect K. Also, each edge of path from

w to a vertex ofK crosses exactly one of these finitely many hyperplanes that intersectK.

Moreover, the deletion condition as in [11] implies that if the path traverses a edge more

than once, the path may be shortened to one that crosses an edge in the Davis complex

at most one time. Then every vertex w in conv(K) is a bounded distance away from

every vertex of K. Therefore the 1-skeleton of conv(K) has bounded diameter. Since

the Cayley graph Y (1) is a locally finite graph conv(K) contains finitely many vertices.

Note, that there are finitely many closed cells of Y that contain the vertices of conv(K).

Therefore, conv(K) is compact.

Recall, Remark 3.3.3, which stated that pure subcomplexes corresponding to Davis

subcomplexes that contain at least half of the edges of a 2-dimensionalW -permutohedron,

but don’t contain the W -permutohedron itself do not π1-inject. Convexity guarantees

that this situation does not arise. Thus, Lemma 3.3.5 implies the following corollary.

Corollary 3.4.6. All full convex subcomplexes of the pure Salvetti complex of type I2(m)

π1-inject.

Proof. Consider the Davis complex Y of type I2(m) and its subcomplexes. Note that Y

consists of a single closed 2m-gon and has dual hyperplane arrangement H consisting of

the perpendicular bisectors of each pair of parallel edges. Thus, any open halfspace does

not contain any vertices of the Coxeter complex, which implies that the only 2-dimension
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convex Davis subcomplex is all of Y . The corresponding full pure subcomplex is all of

the pure Salvetti complex X and trivially π1-injects.

Next, any hyperplane of H intersects a pair of opposite parallel edges of the Davis

complex so that any proper convex Davis subcomplex can contain at most m− 1 edges

of the Davis complex. Moreover, a convex Davis subcomplex is connected so that any

1-dimensional convex Davis subcomplex must be the union of between 1 and m − 1

consecutive edges. The corresponding pure subcomplex is the union of between 1 and

m− 1 consecutive bigons, which by Lemma 3.3.5 π1-injects.

The only 0 dimensional convex subcomplexes consist of a single vertex so that they

π1-inject. The desired result follows.

The importance of π1-injectivity for subcomplexes of a certain type is that it guar-

antees that the fundamental group of compact subcomplexes of the same type can be

expressed in terms of amalgamated free products of “atomic” subcomplexes.

Definition 3.4.7 (Convex reducible). Suppose that Y is the Davis complex and K ⊂ Y

is a nonempty convex Davis subcomplex. Then K is convex reducible if there exist

convex subcomplexes L,M with neither contained in the other such that K = L ∪ M .

If K is not convex reducible then it is convex irreducible. A nonempty connected full

pure subcomplex is convex reducible if it is the preimage of a convex reducible Davis

subcomplex under the projection to the Davis complex and is irreducible otherwise.

Remark 3.4.8. Note that if a convex Davis subcomplex K has nonempty intersection

with a pair of parallel hyperplanes H1, H2 then it is reducible. This follows from the

fact that the union of the halfspace determined by H1 containing H2 and the halfspace

determined by H2 containing H1 is the entire Davis complex. Therefore K = L ∪ M ,

where L is the union of all of the cells of K entirely contained in the halfspace of H1

containing H2 and M is the union of all of the cells of K entirely contained in the
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halfspace of H2 containing H1 so that L,M are convex and neither contains the other,

and their union is K.

Remark 3.4.9. If a convex Davis subcomplex is 0-dimensional, then it must be a single

vertex since any convex Davis subcomplex is connected. If a convex Davis subcomplex is

1-dimensional and consists of more than one edge then it is reducible just as the subcom-

plexes of type !A1. See Example 3.2.6. Thus, the convex irreducible subcomplexes of the

Davis complex of some fixed type Γ of dimension less than 2 are either a single vertex or

a single edge, which can be thought of as W∅-permutohedron or Ws-permutohedron for

some s ∈ S, where (W,S) is the Coxeter system of type Γ.

Lemma 3.4.10. If Y is the Davis complex of some fixed type Γ then the compact convex

irreducible subcomplexes of Y are precisely the subcomplexes consisting of a single closed

W -permutohedron.

Proof. It suffices to consider the case for convex Davis subcomplexes of dimension at

least 2 by Remark 3.4.9.

If K is a single closed W -permutohedron then every hyperplane that intersects K

bisects K. In particular, every proper convex subcomplex of K must be of strictly

smaller dimension. So there exist no convex subcomplexes L,M neither containing the

other such that L ∪M = K. In other words K convex irreducible.

Conversely suppose thatK is a compact irreducible convex Davis subcomplex. Denote

the set of all hyperplanes that bisect an edge of K as H′. For H ∈ H′ denote the

intersection of H with K as HK . Each hyperplane H ∈ H′ determines an orthogonal

reflection rH that fixes H. Consider the group W ′ generated by all such rH . Suppose

that the every element of W ′ does not preserve K setwise to obtain a contradiction. This

implies that there are two hyperplanes H1, H2 ∈ H′ such that rH1(H2) = H3 /∈ H′. Since

K is irreducible Remark 3.4.8 implies that H1 and H2 intersect. Moreover, since rH1 is
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a reflection, H1 ∩ H2 = H1 ∩ H3. But since H3 /∈ H′ the intersection H1 ∩ H2 is not

in K. Hence, K lies entirely in a halfspace determined by H3. This halfspace of H3 is

contained in the union of the halfspace of H1 that contains HK
2 and the halfspace of H2

that contains HK
1 . Therefore, K is reducible as K = L ∪M , where L is the union of all

cells of K contained in halfspace of H1 containing HK
2 and M is the union of all cells of

K contained in halfspace of H2 containing HK
1 . This contradiction implies W ′ must fix

K setwise.

Suppose that elements ofW ′ fixK setwise. Recall that the Davis complex is a CAT(0)

space, see [11], and note that K is bounded. Because K is a bounded convex subset of

a complete CAT(0) space it has a unique (circum)center, and this center is contained in

K. In particular, each of the isometries in W ′ must fix this center, and it lies in all of the

hyperplanes in H′. The center of K is in some cell of K, i.e. some permutohedron P .

Since every hyperplane in H′ intersects P , every hyperplane that doesn’t intersect

P is not in H′ and therefore doesn’t intersect K. This means that all of K is in one

halfspace determined by such a hyperplane and K is entirely contained in the intersection

of all such halfspaces. Finally, since the intersection of all of the halfspaces containing P

is P itself, K can be no larger than P . This shows that K and P are equal. Therefore,

the convex irreducible subcomplexes of Y are precisely the subcomplexes consisting of a

single closed W -permutohedron.

Lemma 3.4.11. If every full compact convex subcomplexes of the pure Salvetti complex

X of fixed type Γ π1-inject then the fundamental group of a reducible full compact convex

pure subcomplex K can be written as an amalgamated free product of fundamental groups

of proper subcomplexes of the same type as K.

Proof. Let p : X ! Y be the usual map from the pure Salvetti complex to the Davis
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complex of type Γ, and denote the image of K as p(K) = KY . By assumption KY is not

a closed W -permutohedron. Thus, Lemma 3.4.10 implies that KY = LY ∪MY for convex

Davis subcomplexes LY , MY with neither containing the other. Hence, L = p−1(LY ) and

M = p−1(MY ) are proper full compact convex subcomplexes of K such that L∪M = K.

Moreover, N = L ∩ M = p−1(LY ∩ MY ) so that N is a full convex pure subcomplex.

By assumption the L,M, and N π1-inject in X. Since the composition of the maps

induced by inclusion π1(N) ! π1(L) ↩! π1(X) = π1(N) ↩! π1(X) is an injection, the

map π1(N) ! π1(L) is injective. By the same argument N π1-injects into M so that

π1(K) = π1(L) ∗π1(N) π1(M) as desired.

Corollary 3.4.12. If the subcomplexes of the pure Salvetti complex X of fixed type Γ

π1-inject then the fundamental group of every full compact convex subcomplex K of X

can be written as an iterated amalgamated free product of spherical Artin groups. If the

iterated amalgamated free product has amalgamated subgroups with solvable membership

problem, then π1(K) has a solvable word problem.

Proof. If K is convex irreducible, by Lemma 3.4.10 it is the preimage of a closed W -

permutohedron. By remark 3.2.10 this implies π1(K) is spherical and has solvable word

problem.

Otherwise, if K is reducible, then π1(K) can be expressed π1(K) = π1(L)∗π1(N)π1(M)

as the amalgamated free product of fundamental groups of proper full compact convex

subcomplexes L,M , and N of the pure Salvetti complex. Similarly if a subcomplex L,M ,

orN is reducible then it can be expressed similarly as an amalgamated free product. Since

K is compact this process of expressing each of the pieces of an amalgamated product

as another amalgamated free product of proper subcomplexes of the same type even-

tually terminates. In this fashion π1(K) can be expressed as an iterated amalgamated

free product of irreducible full compact convex subcomplexes of X. Each irreducible full
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compact convex subcomplex of X is the preimage of a closed W -permutohedron and has

solvable word problem, see Remark 3.2.10. Thus, π1(K) can be expressed as an iterated

amalgamated free product of groups with solvable word problem. If the iterated amal-

gamated free product has amalgamated subgroups with solvable membership problem,

then K has solvable word problem, see Corollary 3.6.6.

Theorem 3.4.13. Let X be the pure Salvetti complex of some fixed type Γ. If every full

compact convex subcomplex of X π1-injects and every full, compact, convex, subcomplex

can expressed as an iterated amalgamated free product as outlined in Corollary 3.4.12

then the word problem is solvable for Artin group of type Γ.

Proof. Suppose that γ is a combinatorial loop in the 1-skeleton of X, and let p : X ! Y

be the usual map to the Davis complex. Then the image γY = p(γ) is contained in

the Davis word subcomplex, which is compact. Let K be the preimage of the convex

hull of the Davis word complex under p. By Lemma 3.4.5 the convex hull of the Davis

word subcomplex is compact. Thus, K is full compact convex subcomplex. By Corollary

3.4.12, K has solvable word problem. Thus, every combinatorial loop in X is contained in

a full compact convex subcomplex with decidable word problem. Therefore, the desired

result follows.

Corollary 3.4.14. The word problem is solvable for one-relator Artin groups.

3.5 Spherical type

This section focuses on the π1-injectivity of subcomplexes of a spherical Artin group.

Although their word problem has been known to be solvable since the 1970’s they provide

a good testing ground for techniques and conjectures about how to approach the word

problem for Euclidean Artin groups. In particular, the pure Salvetti complex of a Eu-
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clidean type is built out of spherical pieces and one is guaranteed to have a finite family

of irreducible elements in any family of subcomplexes since the pure Salvetti complex is

finite. This section focuses specifically on pure Salvetti complex of type A3 correspond-

ing to the four strand braid group. I show that convex subcomplexes do not necessarily

π1-inject and use it to exemplify some of the difficulties that arise in higher-dimensional

examples.

Definition 3.5.1 (Diagram). A diagram over a combinatorial CW complex X is a

nonempty connected finite 2-complex D with a combinatorial map D ! X and a specific

embedding in R2, i.e.

R2 D X

A contractible diagram is a disk diagram. The boundary of a diagram D is the topological

boundary of D viewed as a subset of R2, denoted ∂D. When D is a disk diagram

homeomorphic to a disk, ∂D is homeomorphic to a circle. A boundary 0-cell or a boundary

1-cell is a 0-cell or a 1-cell which lies in ∂D. A boundary 2-cell is a closed 2-cell which

has a nonempty intersection with ∂D. The diagram is reduced if the neighborhoods of

points on interiors of edges map over to X locally injectively.

Example 3.5.2. For example, consider the Salvetti complex X in Figure 3.5.1 for the

Artin group of type !A2 given by

Art( !A2) = 〈a, b, c | aba = bab, aca = cac, bcb = cbc〉

. Since there are three generators, the 1-skeleton, X(1) has as single vertex and three

loops, one for each generator. There are three 2-cells, one for each relation. Note each

relation has length six so that it can be visualized as a regular hexagon, whose boundary

is glued into the X(1) according the the relation to which it corresponds.
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Figure 3.5.1: The Salvetti complex of type !A2.

Figure 3.5.2: An example of an unreduced disk diagram over the Salvetti complex of type !A2.

Figure 3.5.2 depicts an unreduced disk diagram over X, whose boundary is given by

the word abAaBABaAb, or some cyclic permutation of it by changing the basepoint.

In particular, no neighborhood of a point on the interior of the edge in the interior of

the diagram is mapped to X injectively. Next, Figure 3.5.3 illustrates an example of a

reduced disk diagram over X with boundary given by the word a2BAB2ab. It can be

readily checked that the neighborhoods of points on interiors of edges map over locally

injectively. The disk diagram can be viewed as providing a discretized version of the

nullhomotopy of the loop in X as depicted in Figure 3.5.3.

Remark 3.5.3. A standard fact from an algebraic topology or combinatorial group

theory textbook such as in [8, 12] is Van Kampen’s Lemma. Following the setup and

definitions of [13] Van Kampen’s Lemma is restated in the following lemma.

Lemma 3.5.4. Suppose that X is a combinatorial CW complex. A combinatorial loop γ

73



Injectivity and subcomplexes Chapter 3

Figure 3.5.3: A reduced diagram of the pure Salvetti complexX depicting a discretized
nullhomotopy of a loop in X.

in X(1) is nullhomotopic if and only if there exists a reduced disk diagram over X with γ

as its boundary.

Definition 3.5.5. Let H be the hyperplane arrangement corresponding to an Artin

group. A hyperplane in H with the cellular structure inherited from the Coxeter complex

in the Coxeter complex is referred to as a Coxeter hyperplane. When viewing a Coxeter

hyperplane as a subset of the Davis complex, it is called a Davis hyperplane. Note that a

Coxeter hyperplane is a subcomplex of the Coxeter complex, but a Davis hyperplane is

not a subcomplex of the Davis complex. Davis hyperplanes are subsets of Davis complex

that are transverse to the cell-structure of the Davis complex.

A pure hyperplane is the preimage of a Davis hyperplane under the map p : X ! Y

from the pure Salvetti complex to the Davis complex. Given a disk diagram D over X

with map f : D ! X a diagram hyperplane is the preimage of a Davis hyperplane under

the map p ◦ f .

Remark 3.5.6. Note that pure hyperplanes are not connected. For example in dimen-

sion 2, pure hyperplanes are graphs with two components as illustrated in Example 3.5.7.

In general, a pure hyperplane is a codimension 1 cell complex with cell structure inher-

ited from the Coxeter complex that consists of 2 components corresponding to the two

orientations on the edges to that the components of the pure hyperplane bisect. The

remainder of the dissertation refers to a component of a pure hyperplane as an oriented

pure hyperplane.

74



Injectivity and subcomplexes Chapter 3

Also, the diagram hyperplanes are not necessarily connected and may have many

components. However, each of the connected components of a diagram hyperplane is

a 1-manifold. Thus, it is either a circle with no endpoints on the boundary of the disk

diagram or it is 1-manifold with boundary and is a line segment with both of its endpoints

on the boundary. The blue dotted hyperplane in Figure 3.5.7 of Example 3.5.8 depicts a

diagram hyperplane with no points on the boundary.

Example 3.5.7. For type !A2 the Davis complex Y corresponds to the tiling R2 by regular

hexagons. Figure 3.5.4 depicts a portion of a Davis hyperplane in purple running through

a parallel family of hexagons as the perpendicular bisector to the horizontal family of

parallel edges. The preimage of each of these hexagons, is six oriented hexagons so

that there is a corresponding parallel family of oriented hexagons in the pure Salvetti

complex. The parallel family of edges that was bisected by the purple Davis hyperplane

has preimage a parallel family of bigons. Each oriented edge of the bigon is contained

in three oriented hexagons, and each of these three hexagons contains a portion of the

preimage of the purple Davis hyperplane. To depict this in Figure 3.5.4 the 1-skeleton of

the parallel family of oriented hexagons is drawn in two components. One blue component

for the “front” parallel family of oriented edges and one red component for the “back”

parallel family of oriented edges. Note that the corresponding vertices of these two

components are identified in the pure Salvetti complex. Thus, the corresponding pure

hyperplane has two disjoint components, each consisting of consecutive theta graphs,

where a theta graph is the union of three disjoint edges meeting that each have the same

distinct endpoints so that it resembles the greek letter θ.

Example 3.5.8. Let Y denote the Davis complex for A3 so that Y is a closed 3-

dimensional permutohedron, with 1-skeleton depicted on the left of Figure 3.5.5. Let

X be the pure Salvetti complex. Note it consists of the 24 oriented 3-dimensional per-
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Figure 3.5.4: A portion of the pure hyperplane in red and blue that is the preimage
of the Davis hyperplane depicted in purple.

Figure 3.5.5: A convex Davis subcomplex and corresponding pure subcomplex of type A3.
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Figure 3.5.6: A portion of the A3 Davis complex depicted with a convex subcomplex
highlighted in red along with a hyperplane that is not crossed by any loop in the red
subcomplex.

mutohedra. Also depicted in the figure is a convex Coxeter subspace as the shaded red

portion. The corresponding edges of the convex Davis subcomplex K are highlighted in

red. In the middle and right are the corresponding Davis and pure subcomplexes, K

and K ′ respectively. This example illustrates that the preimage K ′ of K in the pure

Salvetti complex does not π1-inject. Note that K consists of a square with two edges

attached to opposite vertices of the square. Thus, the preimage is K ′, which is a full

convex subcomplex, consisting of a torus with two bigons attached to opposite vertices.

Figure 3.5.7 depicts a portion of a left labeling of the edges of the Davis and pure

Salvetti complex so that the portion of Y (1) in the figure has edges labeled a through

e. In particular, this implies that the fundamental group π1(K
′) is generated by loops

a2, b2, c2, d2, where a2 and b2 commute, but there are no relations between the other loops.

Next let γ be a combinatorial loop in X(1) defined by the word Ac2aBD2bAC2aBd2b

and based at the leftmost vertex K. To see that γ is non trivial in K consider the map

that quotients the torus to a single point and induces the map f on fundamental groups

f : Z2 ∗ Z ∗ Z ! Z ∗ Z. If the labels on bigons are maintained under the quotient then

γ is sent to the loop defined by the word c2D2C2d2, i.e. a nontrivial commutator in

Z ∗Z, the fundamental group of the two bigons. To see that γ is nullhomotopic in X see

the following disk diagram in Figure 3.5.7, with boundary γ, when read clockwise with
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Figure 3.5.7: A disk diagram over the Salvetti complex of type A3 with diagram
hyperplane in blue.

basepoint the bottom left vertex.

One key feature to note is that this is a reduced diagram with a component of a

diagram hyperplane that has no boundary. Consider the hyperplane in the Davis complex

Y that is a perpendicular bisector to each of the edges labeled e. This intersects the

portion of Y depicted in Figure 3.5.6 as the dashed blue line. The corresponding diagram

hyperplane is depicted in Figure 3.5.7 in blue as well.

Remark 3.5.9 (Convex subcomplexes do not π1-inject). Example 3.5.8 illustrates an

obstruction to π1-injectivity of convex subcomplexes that can occur in Artin groups of

dimension greater than 1. Notice that loops around the orthogonal c and d hyperplanes

meet in a square of the Davis complex. One can show that any convex subcomplex

that does not contain this square, but contains the edges dual to the hyperplanes meet-

ing in this square has a corresponding full pure subcomplex that does not π1-inject by

constructing a similar example as above in Example 3.5.8.

In type !G2 (see Figure 6.0.2) or in 3 dimensions and above this happens frequently.

78



Injectivity and subcomplexes Chapter 3

However, type !A2, which is the focus of Chapter 4 is a special situation where this

does not happen since it is the unique Euclidean Artin group of dimension greater than

2, where there is no pair of standard generators that commute. That is, no pair of

hyperplanes are orthogonal to each other so that there can be no convex Davis subcomplex

containing bigons dual to orthogonal hyperplanes without the corresponding square in

which the hyperplanes intersect. For type !C2 in Chapter 5 a coarser notion of convexity

is introduced to avoid this obstruction.

3.6 A Scott and Wall type approach

This section synthesizes the various results about injectivity and subcomplexes into

a general approach for proving the solvability of the word problem for Euclidean Artin

groups. This section first recalls the concepts of a graph of groups and a graph of spaces

introduced by Scott and Wall [14]. This approach is then adapted to Euclidean Artin

group. This section concludes with sufficient conditions for the word problem to be

solvable in this context.

Remark 3.6.1 (Graph of groups and graph of spaces). The notion of a graph of groups

is a generalization of an amalgamated free product. An amalgamated free product such

as G = A ∗C B can be expressed as a graph of groups, with a single edge between two

distinct vertices u, v with vertex groups A, B respectively, edge group C, and boundary

morphisms C ↩! A and C ↩! B.

To construct a corresponding graph of spaces, start with CW complexes KA, KB, and

KC such that π1(KX) = X for each X = A,B,C. Note that, π1(KC × I) = π1(KC) = C.

Then glue KC × {0} to KA so that the induced map on fundamental groups realizes the

injection C ↩! A. Similarly glue KC × {1} to KB so that the induced map realizes the

injection C ↩! B. There are various conditions one can impose on KA, KB, and KC to
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guarantee that such maps exist, see [15].

Moreover, the universal cover of this graph of spaces is a “tree-like” graph of spaces

built out of the universal covers 2KA, 2KB, 2KC × I, with underlying tree, T , on which the

group acts without edge inversions.

More specifically, the tree T has vertex set the set of cosets of A and B, that is

{gA : g ∈ G} ⊔ {gB : g ∈ G}, with an edge between gA and hB if they have nonempty

intersection. Moreover, the degree of the vertex gA and hB is the index [A : C] and

[B : C] respectively. Thus, there is a tree of spaces by constructing the universal cover of

the graph of spaces, where each vertex space is the universal cover of the corresponding

vertex space or edge space. Then one can collapse each copy of these universal covers to

a point and obtain the underlying tree, T .

Example 3.6.2. Consider A ∗C B, where A,B,C = Z and C ↩! A is the multiplication

by 11 map and C ↩! B is the multiplication by 7 map. This corresponds to a graph of

groups depicted in Figure 3.6.1 consisting of a single edge, with edge group Z, between

two distinct vertices the left vertex with vertex group Z and the right with vertex group

Z. The boundary morphisms are the multiplication by 11 map and the multiplication by

7 map. To construct the graph of spaces, replace each vertex with a circle, and replace

the edge with a cylinder, i.e. a circle cross an interval. The boundary circle on the left

of the cylinder is attached to the blue circle by the map which winds it around the blue

circle 11 times. Similarly the boundary circle on the right of the cylinder is attached to

the green circle by the map which winds it around the green circle 7 times.

To construct the universal cover, note that each circle is covered by the real line R,

the cylinder is covered by the real line cross an interval R × I, the blue vertex space

has degree 11, with 11 intervals connecting it to copies of R of the opposite color, and

the green vertex space has degree 7, with 7 intervals connecting it to copies of R of the
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Z Z
×11
"−↪ Z ×7

↩−!

Figure 3.6.1: A graph of groups and the corresponding graph of spaces.

Figure 3.6.2: A portion of the universal cover of the graph of spaces.

opposite color. Moreover, collapsing each of the copies of R to a point yields a bipartite

tree with where each blue vertex has degree 11, and each green vertex has degree 7, a

portion of which is depicted in Figure 3.6.2.

A consequence viewing an amalgamated free product as graph of groups with corre-

sponding graph of spaces is the following proposition.

Proposition 3.6.3. If A, B, and C have solvable word problem and C has solvable

membership problem in both A and B, then A ∗C B has solvable word problem.

Proof. By assumption A,B and C have solvable word problem so that the universal

covers 2KA, 2KB, and 2KC × I are constructible. The universal cover of the corresponding

graph of spaces associated to A∗CB can constructed out of 2KA, 2KB, and 2KC×I in a tree
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like fashion. By assumption the membership problem for C in both A and B is decidable

so that the desired result holds.

Definition 3.6.4 (Iterated amalgamated free product). If a group G is written as an

amalgamated free product A ∗C B, then the groups A,B, and C are referred to as the

inputs of the amalgamated free product and G is called the output. Note that an input of

an amalgamated free products may be written as the output of another amalgamated free

product whose inputs are also written as outputs of other amalgamated free products,

etc. A group that is written in such a way in terms of finitely many amalgamated free

products so that there are finitely many inputs and finitely many outputs is called an

iterated amalgamated free product. Note that there is a single global output that is not

written as the input of any amalgamated free in the iterated amalgamated free product,

and there are a set of initial inputs that are not written as the output of any amalgamated

free product.

Example 3.6.5. Suppose that A, B, and C are groups such that A = D ∗F E, B =

G ∗K H, and C = L ∗M N then a group G written as

G = A ∗C B = (D ∗F E) ∗(L∗NM) (G ∗K H).

is an iterated amalgamated free product, with global output G and initial inputs D, E,

F ,G, H, K, L, M , and N .

Corollary 3.6.6. If G is an iterated amalgamated free product such that the initial

inputs have solvable word problem and each of the amalgamated subgroups have decidable

membership problem in the corresponding factors, then G has solvable word problem.

Proof. If G is an iterated amalgamated free product such that the initial inputs have

solvable word problem then repeated applications of Proposition 3.6.3 imply that G has
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solvable word problem.

Remark 3.6.7. The normal form theorem implies the solvability of the word problem

for an amalgamated free product whose inputs have solvable word problem, when the

membership problem for C is decidable. From the perspective of a graph of spaces this

has a topological interpretation for a group G = A ∗C B. Specifically, the image of a

closed loop can be lifted to the universal cover of the corresponding graph of spaces, and

then it can be projected to T . For each loop there is an element of the homotopy class,

which has image in T that is a path without backtracks. Moreover, for a nullhomotopic

loop, one can construct a nullhomotopy so that its image in T does not grow past the

original image.

The approach of Section 3.4 can be seen as a direct analogue of this topological

interpretation. The analogue of the graph of spaces is the Salvetti complex, and the

analogue of the universal cover is the pure Salvetti complex, which is an intermediate

cover of a Salvetti corresponding to the pure Artin group. Then, the π1-injectivity of

convex subcomplexes guarantees that a nullhomotopic loop has a nullhomotopy that

does not grow past the convex hull of the loop. Specifically, the method of proof in

Chapters 4 and 5 uses the topology of the pure Salvetti complex between adjacent parallel

hyperplanes to ensure that every nullhomotopic loop γ in the 1-skeleton of the pure

Salvetti complex has a nullhomotopy that is entirely contained in a canonical convex

subcomplex containing γ. This method can be readily adapted to ensure that there exists

a way of expressing the fundamental group of subcomplexes as an iterated amalgamated

free product so that the amalgamated subgroups at each step have decidable membership

problem.

However, there was one additional requirement that there was an exhaustion of the

Davis complex by compact convex subcomplexes.
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Definition 3.6.8 (Exhaustive family). An exhaustive family of Davis subcomplexes is

a set F of compact Davis subcomplexes of some fixed type Γ such that every compact

Davis subcomplex is contained in a subcomplex of F . Analogously, an exhaustive family

of full pure subcomplexes is a set F of full compact pure subcomplexes of some fixed

type Γ such that every compact pure subcomplex is contained in a subcomplex of F .

Definition 3.6.9 (Reducible with respect to a family). Let F be a family of Davis

subcomplexes. Then a subcomplex K ∈ F is reducible with respect to F or F -reducible

if there exists subcomplexes L,M ∈ F with L ∩M ∈ F such that neither contains the

other and K = L ∪M . Otherwise K is F-irreducible. Analogously for a family of pure

subcomplexes F , a pure subcomplex K ∈ F is F -reducible if there exists subcomplexes

L,M ∈ F with L ∩M ∈ F such that neither contains the other and K = L ∪M .

Remark 3.6.10. Note that decomposition of compact convex subcomplexes in terms of

iterated amalgamated free products extends more generally to exhaustive families of π1-

injective subcomplexes. In particular, a compact subcomplex K of an exhaustive family

F of π1-injective subcomplexes has fundamental group π1(K) that can be expressed as

an iterated amalgamated free product F -irreducible subcomplexes. The proof follows

identically as the one in Section 3.4. Specifically if K is reducible as K = L ∪M , with

L,M , and N = L ∩M ∈ F it is assumed that the subcomplexes L,M , and N π1-inject

in X. Since the maps π1(L) ↩! π1(X), π1(M) ↩! π1(X), and π1(N) ↩! π1(X) are all

injections the maps π1(N) ! π1(L) and π1(N) ! π1(M) must also be injective so that

π1(K) = π1(L)∗π1(N)π1(M). Similarly, if a subcomplex L,M , orN is reducible then it can

be similarly expressed as an amalgamated free product. Since K is compact it has finitely

many cells and this process of expressing each of the pieces of the amalgamated product

as an amalgamated free product of proper subcomplexes in F eventually terminates.

In this fashion a compact subcomplex of F has fundamental group π1(K) that can be
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expressed as an iterated amalgamated free product F - irreducible subcomplexes.

Theorem 3.6.11. Let X be the pure Salvetti complex of some fixed type Γ. If there ex-

ists an exhaustive family F of π1-injective subcomplexes, then the fundamental group of a

subcomplex of F can be written as an iterated amalgamated free product of F-irreducible

subcomplexes. If the iterated amalgamated free product has amalgamated subgroups with

solvable membership problem and the F-irreducible subcomplexes have solvable word prob-

lem then the Artin group of type Γ has solvable word problem.

Proof. Suppose that γ is a combinatorial loop in the 1-skeleton ofX, and let p : X ! Y be

the usual map to the Davis complex. Then the image γY = p(γ) is contained in the Davis

word subcomplex, which is compact. Let K be the preimage of the convex hull of the

Davis word complex under p. Since F is exhaustive there exists a pure subcomplexK ∈ F

containing γ. By Remark 3.6.10 π1(K) can be expressed as an iterated amalgamated free

product of F -irreducible pure subcomplexes. Suppose that the iterated amalgamated

free product has amalgamated subgroups with solvable membership problem and the F -

irreducible subcomplexes have solvable word problem. Then, Corollary 3.6.6 implies that

π1(K) has solvable word problem. Thus, every combinatorial loop in X(1) is contained

in a full compact convex subcomplex with solvable word problem. Therefore, the desired

result follows.
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Chapter 4

Type !A2

This chapter describes a new way to solve the word problem for the Euclidean Artin group

of type !A2 by considering the full convex subcomplexes of the pure Salvetti complex. The

family of full compact convex subcomplexes is an exhaustive family of subcomplexes that

is both coarse enough so that its elements π1-inject and fine enough so that the irreducible

elements have fundamental groups with solvable word problem. This chapter first focuses

on the injectivity of convex subcomplexes of the pure Salvetti complex of type !A2. To do

so I show that any nullhomotopic loop that is contained in a convex subcomplex admits

a nullhomotopy that is entirely contained in that same convex subcomplex. Specifically,

this reduces to showing that a reduced disk diagram must have each component of its

diagram hyperplanes with endpoints on the boundary of the disk. This result paired with

the fact that the convex irreducible Davis subcomplexes are all closed WT permutoheadra

implies that the word problem is solvable in type !A2.

There are two initial observations that are crucial to showing that convex subcom-

plexes π1-inject.

Remark 4.0.1. It is straightforward to observe that there do not exist any two cells

between consecutive parallel hyperplanes of the !A2 arrangment H. See Figure 4.0.1.

86



Type !A2 Chapter 4

Figure 4.0.1: Two consecutive parallel hyperplanes determine a convex Davis subcom-
plex that does not have any two cells.

Remark 4.0.2. Given a parallel family of oriented hexagons in the pure Salvetti complex

of type !A2 consider the smallest subcomplex K that contains a component of a pure

oriented hyperplane. More specifically, choosing a given side of the hyperplane dual to a

parallel family of edges in the Davis complex determines a choice of orientation in their

preimage in the Davis complex as well as an oriented pure hyperplane. The closure of

all of the 2-cells containing that oriented pure hyperplane is K. In the proof of Lemma

3.3.5 and depicted in Figure 3.3.4 the subcomplex consisting of three oriented hexagons

that share the same orientation on a pair of opposite edges is homotopy equivalent to

portion to the oriented pure hyperplane that contains the midpoint of the chosen oriented

edge. In fact, this homotopy equivalence can be extended to all of K, which is homotopy

equivalent to the union of the purple theta graphs depicted in Figure 4.0.2 as well as

either the blue or red families of bigons.

Theorem 4.0.3. Suppose that D is a reduced disk diagram over the pure Salvetti complex

of type !A2. Then there are no components of any diagram hyperplane that are closed loops.

In particular each component of every diagram hyperplane is a 1-manifold with boundary
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Figure 4.0.2: The subcomplex K of the pure Salvetti complex of type !A2 that contains
the image of an innermost disk.

with both of its endpoints on the boundary of D.

Proof. Let X be the pure Salvetti complex of type !A2, let Y denote the Davis complex

of type !A2, and let p : X ! Y be the usual projection. If f : D ! X is a reduced

disk diagram over X such that there exists some component of a diagram hyperplane

that is a circle, then look at corresponding parallel family of hyperplanes in the Davis

complex. The entire preimage of this family inside D is still a 1-manifold that contains

at least one circular component inside D, and then there exists an innermost circular

component H of this 1-manifold. In particular, this innermost circle bounds a disk, E,

which contains no other components of that 1-manifold. Note that the assumption that

H is an innermost circle along with Remark 4.0.1 implies that E does not contain any

complete 2-cells. Thus, H is a nullhomotopic loop in D by a homotopy that avoids the

other components of the preimage of the parallel family.

Since the edges bisected by H all must have the same orientation the image f(H) is

contained in a single oriented pure hyperplane HX , as depicted in Figure 4.0.2 in purple.

Let K be the smallest subcomplex containing HX consisting of the parallel family of
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closed oriented hexagons that are bisected by an edge of HX . The 1-skeleton is depicted

in black, red and blue in Figure 4.0.2. Recall that the purple graph is not part of the

1-skeleton of the pure Salvetti complex but its edges are the bisectors of the hexagons

with vertices at the midpoints of the edges. Note that f(H) is nullhomotopic in K using

f(E). By Remark 4.0.2 K is homotopy equivalent to the HX which is a graph.

Therefore the loop f(H) is nullhomotopic in HX , and, as a consequence, there exists

a backtrack in this graph. That is, there is some edge that the loop traverses and then

immediately traverses again in the opposite direction. The portion of H in D that creates

this backtrack in HX occurs at the midpoint of an oriented edge in D, and consequently

has a neighborhood that is not mapped to X injectively. Therefore, D is not a reduced

disk diagram, and this contradiction implies the desired result.

Corollary 4.0.4. Every full convex subcomplex K of the pure Salvetti complex of type

!A2 π1-injects.

Proof. Let X be the pure Salvetti complex of type !A2, let Y denote the Davis complex

of type !A2, and let p : X ! Y be the usual projection. Suppose that H ⊂ Y is a Davis

hyperplane that does not intersect KY = p(K). Let γ be nullhomotopic loop in K so

that its image γY = p(γ) is entirely contained in one of the halfspaces determined by H,

say H+. Then there exists a reduced disk diagram D with γ as its boundary so that

it must have the diagram hyperplane HD corresponding to H entirely contained in its

interior. If HD is nonempty then HD must be a union of circles. However, Theorem 4.0.3

implies that since D is reduced HD must be empty. Thus, for any Davis hyperplane H

such that one of its halfspaces contains KY the halfspace also contains the image of D

in Y . Thus, there is a null homotopy of γ whose image in Y is entirely contained in KY .

Therefore, any loop that is nullhomotopic in X is nullhomotopic in K so that the desired

result follows.
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Lemma 4.0.5. If K is a convex, reducible, full, compact pure subcomplex of type !A2,

then π1(K) can be written as an iterated amalgamated free product such that each of the

initial inputs are spherical Artin groups and each of the amalgamated subgroups are finite

rank free groups. Moreover, each of the amalgamated subgroups are fundamental groups of

subgraphs of the pure Salvetti complex entirely contained between two consecutive parallel

hyperplanes.

Proof. Suppose that K is convex reducible, full, compact, pure subcomplex of type !A2

and contains at least one oriented hexagon P , and let KY and PY be the corresponding

Davis subcomplex and corresponding unoriented hexagon. Then the set of all separating

hyperplanes of KY has at least one hyperplane from each of the three distinct families

of parallel hyperplanes of type !A2 determined by a positive root of the crystallographic

root system of type A2. Since K is reducible Lemma 3.4.10 implies that KY must

consist of some other edge not contained in PY . Thus, there are two adjacent parallel

hyperplanes H1 and H2 that intersect KY . Thus, KY can be expressed as KY = LY ∪MY ,

where LY is the largest subcomplex of KY entirely contained in the halfspace of H1

containingH2 andMY is the largest subcomplex ofKY entirely contained in the halfspace

of H2 containing H1. Denote NY = LY ∩ MY , and let L, M , and N be the full pure

subcomplexes corresponding to LY , MY , and NY . Remark 4.0.1 implies that N is some

finite subgraph of X so that π1(N) is a finite rank free group. Corollary 4.0.4 implies that

π1(K) = π1(L)∗π1(N)π1(M). Every finite rank free group arising as the fundamental group

of some N as a above, i.e. the corresponding Davis subcomplex NY is contained between

two consecutive parallel hyperplanes, can be written as a free product of finitely many

copies of Z and thought of as an iterated free product with initial inputs the fundamental

groups of bigons. See Example 3.2.6. Continuing in this way it follows that any convex,

reducible, compact, full, pure subcomplex of type !A2 can be systematically written as an
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iterated amalgamated free group such that each of the initial inputs are spherical Artin

groups and each of the amalgamated subgroups are finite rank free groups.

Remark 4.0.6. Let X be the pure Salvetti complex of type !A2. Fixing a parallel family

of hyperplanes H′ determines a natural projection from X to X ′ where X ′ is the pure

Salvetti complex of type !A1 consisting of an infinite path of bigons by identifying H′

with the hyperplane arrangement of type !A1. Note that this map induces a map on

fundamental groups. Specifically, a loop γ in X can be decomposed into a finite list of

consecutive subpaths that only traverse a hyperplane in H′ a single time with a specific

orientation. Then γ in X is mapped to the loop in X ′ that traverses the hyperplanes of

type !A1 in the same order and with the same orientation as the subpaths of γ.

Next, suppose that γ is a combinatorial path in X(1) and that the image of γ in X ′

is a path in X ′ with a backtrack in an edge traversing some hyperplane H. Then there

is a combinatorial subpath of γ in X that starts by traversing some edge bisected by

H, then proceeds to traverse some edges between H and the next consecutive parallel

hyperplane, and ends by traversing H along an edge with the same orientation as at the

start of the subpath. The two edges sharing the same orientation that are crossed at the

start and end of this subpath determine an oriented pure hyperplane HX . Let K be the

smallest subcomplex containing HX , as depicted in Figure 4.0.2. By Remark 4.0.2, this

subpath is homotopic to a path that is entirely contained on one side of H and has image

a trivial path in X ′.

If a path in X is systematically reduced in this way, then its projection to X ′ is a

path whose length continues shortens. This process will stop when the projection to

X ′ has no backtracks. Remark 3.2.12 implies that a path in X with endpoints on one

side of a hyperplane is homotopic to a path that stays on that side of the hyperplane if

and only if there is a finite sequence of reductions that produce a homotopic path whose
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projection to X ′ is a path without backtracks staying on one side of the hyperplane.

Therefore, a path in X with endpoints between two consecutive parallel hyperplanes in

X is homotopic to a path that stays between two consecutive parallel hyperplanes if and

only if there is a finite sequence of reductions that produce a homotopic path whose

projection to X ′ is a trivial path.

Lemma 4.0.7. Every convex reducible, compact, full, pure subcomplex K of the pure

Salvetti complex X of type !A2 has fundamental group that can be written as an amalga-

mated free product of spherical Artin groups, such that the amalgamated subgroups are

free groups with decidable membership problem in each of the factors of the amalgamated

free product.

Proof. By Lemma 4.0.5 π1(K) can be written as an iterated amalgamated free product

such that each of the initial inputs are spherical Artin groups and each of the amalga-

mated subgroups are finite rank free groups, where each of the amalgamated subgroups

are fundamental groups of subgraphs of X entirely contained between two consecutive

parallel hyperplanes. Remarks 4.0.6 and 3.2.12 imply that each of the amalgamated sub-

groups have decidable membership problem in each of the factors of the amalgamated

free product.

The following corollary is a direct consequence of Theorem 3.4.13.

Corollary 4.0.8. The word problem for the Artin group of type !A2 is solvable.
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Chapter 5

Relative convexity and type !C2

This chapter focuses on the Artin group of type !C2. The chapter begins with an example

to demonstrate that there are convex subcomplexes which do not π1-inject. Thus, the

approach used for type !A2 in Chapter 4 does not apply directly. Instead this chapter

defines a new proper subfamily of convex subcomplexes that do π1-inject, and the family

remains exhaustive. Then it is shown that the finite list of irreducible subcomplexes with

respect to this family are free products of spherical Artin groups. Together these two

results imply that the word problem is solvable in type !C2.

5.1 Counterexample to convex π1-injectivity

This section begins with an example to illustrate why convexity is not a sufficient

condition to ensure that a full pure subcomplex π1-injects.

Example 5.1.1. Let X denote the pure Salvetti complex of type !C2, and let Y denote

the Davis complex of the same type. Let K ⊂ Y be the Davis subcomplex depicted in

red in Figure 5.1.1 along with a portion of the left labeling. The subcomplex K consists

of a square and two path of length two with each path attached opposite vertices of the
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Figure 5.1.1: A convex Coxeter subspace of type !C2 whose corresponding pure sub-
complex does not π1-inject.

square. The corresponding pure subcomplex KX is depicted on the right of the figure

and has fundamental group π1(KX) = Z∗Z∗Z2 ∗Z∗Z generated by the loops a2, . . . , g2,

where only the loops d2 and e2 commute in π1(KX).

Next, let γ be the combinatorial loop in X(1) defined by the word

eca2CEdfb2FDecA2CEDFb2fd

based at the right vertex of the square in K. To see that γ is nontrivial in K consider

the map quotienting the union of the torus and the two adjacent bigons to a single point

that induces a map on fundamental groups Z ∗ Z ∗ Z2 ∗ Z ∗ Z ! Z ∗ Z. If the labels

on the bigons are maintained in the quotient then γ is sent to the loop defined by word

a2b2A2B2, which is nontrivial in Z ∗Z, i.e. the fundamental group of quotient consisting

of the two bigons labeled by a and b.
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Figure 5.1.2: A disk diagram illustrating a nullhomotopy of its boundary loop.

However, note that γ is nullhomotopic in X via the disk diagram in Figure 5.1.2.

Thus, KX does not π1-inject.

Remark 5.1.2. Note that the proof of π1-injectivity of convex subcomplexes of type

!A2 from Chapter 4 cannot be immediately adapted to type !C2 because there are 2-cells

between consecutive parallel hyperplanes in the type !C2 hyperplane arrangement. The

vertical dashed hyperplanes in Figure 5.1.1 are two such hyperplanes. Roughly speak-

ing, when there is a 2-cell between consecutive parallel hyperplanes one can construct a

reduced disk diagram with an inner most disk with respect to a parallel family of hy-

perplanes that contains an entire 2-cell. In particular, a disk diagram with an innermost

circle need not be reduced. As a result, it is possible to construct a loop in a convex

subcomplex so that a reduced disk diagram has image outside that convex subcomplex.
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Figure 5.2.1: The type !C2 hyperplane arrangement partitioned into blue and red
families of hyperplanes and the dual Davis complex.

5.2 Relative Convexity

This section introduces a coarser family of subcomplexes by considering convexity

with respect to a subarrangement of the hyperplane arrangement consisting of two or-

thogonal parallel families of hyperplanes. This section concludes by proving that the

subcomplexes that are convex relative to this subarrangement do π1-inject.

Definition 5.2.1 (Dense and sparse families of hyperplanes). Suppose Φ is a crystallo-

graphic root system with two different length roots that defines a Euclidean Artin group

with hyperplane arrangement H. The family of hyperplanes corresponding to the long

roots of Φ is said to be dense, and the family corresponding to the short roots is said

to be sparse. An element of the dense family of hyperplanes is said to be dense, and an

element of a sparse family of hyperplanes is said to be sparse. A diagram hyperplane or a

pure hyperplane is said to be dense or sparse if it has image a dense or sparse hyperplane

respectively.

Remark 5.2.2. Figure 5.2.1 depicts on the left the hyperplane arrangement of type !C2

partitioned into two sets, blue and red. Note that the blue family corresponds to the
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shorter roots and the red family to the longer roots. Thus, the red hyperplanes are the

dense family and the blue hyperplanes are the sparse family of hyperplanes. In fact,

observe that there are no 2-cells contained between consecutive parallel hyperplanes in

the dense family of type !C2.

Note that the right of Figure 5.2.1 is just a π/4 rotation of the image on the left. The

remainder of this chapter will rotate the hyperplane arrangement and Davis complex so

that the dense family of red hyperplanes are the vertical and horizontal hyperplanes are

the dense family in the type !C2 hyperplane arrangement.

Definition 5.2.3 (Relative convexity). Define a relatively convex Coxeter subspace of

the Coxeter complex of type !C2 to be the subcomplex consisting of the union of all open

cells contained in an intersection of open halfspaces determined by hyperplanes in the

dense family. A relatively convex Davis subcomplex is defined to be the cellular dual of

the convex Coxeter subspace, and a relatively convex pure subcomplex is the preimage of

a convex Davis subcomplex under the usual map from the pure Salvetti complex to the

Davis complex.

Remark 5.2.4. Note that the collection of all compact relatively convex subcomplexes

is still an exhaustive family of subcomplexes for type !C2. To see this it suffices to observe

that every compact convex Davis subcomplex is contained in a compact relatively convex

Davis subcomplex. Let K be a compact subcomplex and let K ′ be the relatively convex

Davis subcomplex defined by the intersection of all dense halfspaces containing all of K.

Note that there are only finitely many hyperplanes of the full hyperplane arrangement

of type !C2 that intersect K ′. Therefore, K ′ must be compact as well.

Remark 5.2.5. Given a parallel family of oriented octagons in the pure Salvetti complex

of type !C2 consider the smallest subcomplex K that contains a component of a pure

oriented hyperplane. More specifically, choosing a given side of the hyperplane dual to a
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Figure 5.2.2: The subcomplex of the pure Salvetti complex of type !C2 that contains
the image of the innermost disk

parallel family of edges in the Davis complex determines a choice of orientation in their

preimage in the Davis complex as well as an oriented pure hyperplane. The closure of

all of the 2-cells containing that oriented pure hyperplane is K. Just as in Remark 4.0.2

the subcomplex K is homotopy equivalent the purple graph depicted in Figure 5.2.2 as

well as either the blue or red families of bigons.

Theorem 5.2.6. Suppose that D is a reduced disk diagram over the pure Salvetti complex

of type !C2. Then there are no components of any dense diagram hyperplane that are closed

loops. In particular each component of every dense diagram hyperplane is a 1-manifold

with boundary with both of its endpoints on the boundary of D.

Proof. Let X be the pure Salvetti complex of type !C2, let Y denote the Davis complex

of type !C2, and let p : X ! Y be the usual projection. If f : D ! X is a reduced disk

diagram over X such that there exists some component of a dense diagram hyperplane
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that is a circle, then there exists an innermost circular component H of the same diagram

hyperplane. In particular, this innermost circle bounds a disk, E, which contains no

other components of that diagram hyperplane. Note that the assumption that H is an

innermost circle along with Remark 5.2.2 implies that E does not contain any complete

2-cells. Thus, H is a nullhomotopic loop in D by a homotopy that avoids the other

components of the preimage of the parallel family.

Since the edges bisected by H all must have the same orientation the image f(H) is

contained in a single oriented pure hyperplane HX , as depicted in Figure 5.2.2 in purple.

Let K be the smallest subcomplex containing HX consisting of the parallel family of

closed oriented octagons that are bisected by an edge of HX . The 1-skeleton is depicted

in black, red and blue in Figure 5.2.2. Recall that the purple graph is not part of the

1-skeleton of the pure Salvetti complex but its edges are the bisectors of the octagons

with vertices at the midpoints of the edges. Note that f(H) is nullhomotopic in K using

f(E). By Remark 5.2.5 K is homotopy equivalent to the HX which is a graph.

Therefore the loop f(H) is nullhomotopic in HX , and, as a consequence, there exists

a backtrack in this graph. That is, there is some edge that the loop traverses and then

immediately traverses again in the opposite direction. The portion of H in D that creates

this backtrack in HX occurs at the midpoint of an oriented edge in D, and consequently

has a neighborhood that is not mapped to X injectively. Therefore, D is not a reduced

disk diagram, and this contradiction implies the desired result.

Corollary 5.2.7. Every full relatively convex subcomplex K of the pure Salvetti complex

of type !C2 π1-injects.

Proof. Let X be the pure Salvetti complex of type !C2, let Y denote the Davis complex

of type !C2, and let p : X ! Y be the usual projection. Suppose that H ⊂ Y is a dense

Davis hyperplane that does not intersect KY = p(K). Let γ be nullhomotopic loop in
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Figure 5.3.1: The relatively convex irreducible Davis subcomplexes.

K so that its image γY = p(γ) is entirely contained in one of the halfspaces determined

by H, say H+. Then there exists a reduced disk diagram D with γ as its boundary so

that it must have the diagram hyperplane HD corresponding to H entirely contained in

its interior. If HD is nonempty then HD must be a union of circles. However, Theorem

5.2.6 implies that since D is reduced HD must be empty. Thus, for any Davis hyperplane

H such that one of its halfspaces contains KY the halfspace also contains the image of

D in Y . Thus, there is nullhomotopy of γ whose image in Y is entirely contained in KY .

Therefore, any loop that is nullhomotopic in X is nullhomotopic in K so that the desired

result follows.

5.3 The word problem for type !C2

This section classifies the irreducible relatively convex subcomplexes and proves that

they are free products of spherical pure Artin groups. As a result, this section concludes

that the word problem in type !C2 is solvable.

Lemma 5.3.1. The irreducible relatively convex subcomplexes of the Davis complex of

type !C2 with respect to H′ are either an edge, a path of three consecutive edges of a single

octagon, a square union the four edges adjacent to a single vertex of that square, and a

single octagon, as depcited in Figure 5.3.1
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Proof. Let K be an irreducible relatively convex subcomplex of the Davis complex of

type !C2. Observe that the dense family of hyperplanes in type !C2 is the the union of

two parallel families of hyperplanes, with each hyperplane in the first parallel family

orthogonal to each of the hyperplanes in the second family. By Remark 3.4.8 there can

be at most 2 dense hyperplanes with nonempty intersection with K, otherwise there will

be two parallel hyperplanes. It is straightforward to observe that Figure 5.3.1 depicts the

only four possibilities. When there is no dense hyperplane with nonempty intersection

with K then K must consist of a single edge. When there is one dense hyperplane with

nonempty intersection with K then K consists of three consecutive edges of a single

octagon. When there are two mutually orthogonal dense hyperplanes with nonempty

intersection with K then K either consists of a square union four edges each adjacent to

a different vertex of that square, or K is a single octagon.

Corollary 5.3.2. The fundamental groups of the corresponding relatively convex, irre-

ducible, full, pure subcomplexes are free products of spherical pure Artin groups. Thus,

the fundamental group of each irreducible relatively convex pure subcomplexes has solvable

word problem.

Proof. Consider the four pure subcomplexes corresponding to the four irreducible sub-

complexes of Corollary 5.3.1. The single edge corresponds to a bigon with fundamental

group Z corresponding to a rank one spherical parabolic subgroup of type A1. The path

of three edges corresponds to 3 consecutive bigons with fundamental group free group of

rank 3, F3 = Z ∗ Z ∗ Z, which is a free product of 3 spherical pure Artin groups of type

A1. The square union four additional edges corresponds to a torus wedge four bigons. It

has fundamental group F4 ∗ Z2, i.e. the free product of four spherical pure Artin groups

of type A1 with Z2, the spherical pure Artin group of type A1 × A1. Lastly the octagon

corresponds to the pure Salvetti complex of type C2, which is spherical. Therefore, the
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fundamental group of each irreducible relatively convex pure subcomplex is a free prod-

uct of spherical pure Artin groups, so that Corollary 3.6.6 implies it has solvable word

problem.

Lemma 5.3.3. The set of compact relatively convex subcomplexes is an exhaustive family.

Proof. Let K be a compact Davis subcomplex. Recall, that the dense family of hyper-

planes in type !C2 is the union of two parallel families of hyperplanes, with each hyperplane

in the first parallel family orthogonal to each of the hyperplanes in the second family.

Since K is compact, there exists two hyperplanes in the first family as well as two hyper-

planes in the second family so that K is contained between them. The intersection of the

halfspaces containing K determined by these four hyperplanes is compact and relatively

convex.

Lemma 5.3.4. If K is a relatively convex, reducible, full, compact pure subcomplex

of type !C2, then π1(K) can be written as an iterated amalgamated free product such

that each of the initial inputs have solvable word problem and each of the amalgamated

subgroups are finite rank free groups. Moreover, each of the amalgamated subgroups are

fundamental groups of subgraphs of the pure Salvetti complex entirely contained between

two consecutive parallel hyperplanes.

Proof. Suppose that K is relatively convex reducible, full, compact, pure subcomplex of

type !C2, and let KY be the corresponding Davis subcomplex. Lemma 5.3.1 implies that

there are two dense adjacent parallel hyperplanesH1 andH2 that intersectKY . Thus, KY

can be expressed as KY = LY ∪MY , where LY is the largest subcomplex of KY entirely

contained in the halfspace of H1 containing H2 and MY is the largest subcomplex of KY

entirely contained in the halfspace of H2 containing H1. Denote NY = LY ∩MY , and let

L, M , and N be the full pure subcomplexes corresponding to LY , MY , and NY . Remark
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5.2.2 implies that N is some finite subgraph of X so that π1(N) is a finite rank free

group. Corollary 5.2.7 implies that π1(K) = π1(L) ∗π1(N) π1(M). Every finite rank free

group arising as the fundamental group of some N as a above, i.e. the corresponding

Davis subcomplex NY is contained between two consecutive dense parallel hyperplanes,

can be written as a free product of finitely many copies of Z and thought of as an iterated

free product with initial inputs the fundamental groups of bigons. See Example 3.2.6.

Continuing in this way it follows that any relatively convex reducible, compact, full, pure

subcomplex of type !C2 can be systematically written as an iterated amalgamated free

group such that each of the initial inputs are relatively convex irreducible Artin groups

and each of the amalgamated subgroups are finite rank free groups.

Remark 5.3.5. Let X be the pure Salvetti complex of type !C2. Fixing a parallel family

of dense hyperplanes H′ determines a natural projection from X to X ′ where X ′ is the

pure Salvetti complex of type !A1 consisting of an infinite path of bigons by identifying

H′ with hyperplane arrangement of type !A1. Note that this map induces a map on

fundamental groups. Specifically, a loop γ in X can be decomposed into a finite list of

consecutive subpaths that only traverse a hyperplane in H′ a single time with a specific

orientation. Then γ in X is mapped to the loop in X ′ that traverses the hyperplanes of

type !A1 in the same order and with the same orientation as the subpaths of γ.

Next, suppose that γ is a combinatorial path in X(1) and that the image of γ in X ′

is a path in X ′ with a backtrack in an edge traversing some hyperplane H. Then there

is a combinatorial subpath of γ in X that starts by traversing some edge bisected by

H, then proceeds to traverse some edges between H and the next consecutive parallel

hyperplane, and ends by traversing H along an edge with the same orientation as at the

start of the subpath. The two edges sharing the same orientation that are crossed at the

start and end of this subpath determine an oriented pure hyperplane HX . Let K be the
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smallest subcomplex containing HX , as depicted in Figure 5.2.2. By Remark 5.2.5, this

subpath is homotopic to a path that is entirely contained on one side of H and has image

a trivial path in X ′.

If a path in X is systematically reduced in this way, then its projection to X ′ is a

path whose length continues to shorten. This process will stop when the projection to

X ′ has no backtracks. Remark 3.2.12 implies that a path in X with endpoints on one

side of a hyperplane is homotopic to a path that stays on that side of the hyperplane if

and only if there is a finite sequence of reductions that produce a homotopic path whose

projection to X ′ is a path without backtracks staying on one side of the hyperplane.

Therefore, a path in X with endpoints between two consecutive parallel hyperplanes in

X is homotopic to a path that stays between two consecutive parallel hyperplanes if and

only if there is a finite sequence of reductions that produce a homotopic path whose

projection to X ′ is a trivial path.

Lemma 5.3.6. Every relatively convex reducible, compact, full pure subcomplex K of the

pure Salvetti complex X of type !A2 has fundamental group that can be written as an amal-

gamated free product of spherical Artin groups, such that the amalgamated subgroups are

free groups with decidable membership problem in each of the factors of the amalgamated

free product.

Proof. By Lemma 5.3.4 π1(K) can be written as an iterated amalgamated free product

such that each of the initial inputs are spherical Artin groups and each of the amalga-

mated subgroups are finite rank free groups, where each of the amalgamated subgroups

are fundamental groups of subgraphs of X entirely contained between two consecutive

parallel hyperplanes. Remarks 5.3.5 and 3.2.12 imply that each of the amalgamated sub-

groups have decidable membership problem in each of the factors of the amalgamated

free product.
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The following corollary is a direct consequence of Theorem 3.6.11.

Corollary 5.3.7. The word problem for the Artin group of type !C2 is solvable.
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Future directions

This chapter focuses on directions for future research highlighting where the tools estab-

lished in the previous chapters fall short. This leads to directions for further work.

Remark 6.0.1. Consider first the crystallographic root system of type !G2 depicted in

Figure 6.0.1 with the long roots depicted in red and the short roots depicted in blue. The

figure also depicts the corresponding hyperplane arrangement for type !G2. Since there

are long and short roots there are sparse and dense parallel families of hyperplanes. Thus,

there are two types of parallel families of hyperplanes of type !G2 that are depicted in

Figure 6.0.2, with the color indicating the spacing between the hyperplanes determined

by the length of the corresponding root. Observe that between any two consecutive

parallel hyperplanes in any parallel family there exists a 2-cell, specifically a square. In

fact, by a similar argument as Example 5.1.1, it can be shown that there does not exist

a subfamily of hyperplanes so that the convex subcomplexes with respect to that family

π1-inject. As a result, the methods for type !C2 in Chapter 5 do not directly apply.

Recall that the approach of this dissertation has been to argue that any nullhomotopy

of a loop in the pure Salvetti complex can be entirely contained in a canonical convex

subcomplex K. However, solvability of the word problem for the fundamental group
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Figure 6.0.1: The !G2 root system with a portion of the corresponding hyperplane
arrangement

Figure 6.0.2: The two types of parallel hyperplanes in type !G2.
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[m,m]

[−1, 2]

[−1,∞)

(−∞, 2]

(−∞,∞)

Figure 6.0.3: The poset of convex subcomplexes of the Davis complex ordered by inclusion.

of a subcomplex only relies on guaranteeing that the nullhomotopy has image that is

a bounded distance from K. There are, however, additional difficulties associated with

having fewer π1-injective subcomplexes. It implies that not only is it more difficult to find

a large enough compact subcomplexes L that contain a nullhomotopy of a nullhomotpic

loop, but also decomposing π1(L) as an amalgamted free product of smaller subcomplexes

with nice fundamental groups is more difficult as well.

Remark 6.0.2. Consider the poset P of all full subcomplexes of the pure Salvetti com-

plex X ordered by inclusion. Note that P is also a directed set since inclusion is both

reflexive and transitive, and for every K,L ∈ P there is always some M ∈ P such that

K ⊂ M and L ⊂ M . Thus, (P , {π1(X)}X∈P , iKL) is a directed system in Grp, where

iKL are the maps on fundamental groups iKL : π1(K) ! π1(L) induced by inclusion

K ↩! L. The case when these maps have no kernel is precisely the case when all subcom-
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plexes π1-inject, such as for the 1-dimensional Artin groups. However, the perspective

of this dissertation was to look at the directed system corresponding to the directed set

of full convex pure subcomplexes. For example, consider the poset of full convex pure

subcomplexes of type !A1, where each subcomplex could be described in terms of a subset

of consecutive integers. This is depicted in Figure 6.0.3, where the red vertices represent

a subcomplex, and the green edges represent covering relations. In general, however, the

maps iKL may have very large kernel.

Next, recall the observation of Remark 6.0.1 stating that for a nullhomotopic loop

it suffices to guarantee that there is a sufficiently large compact convex subcomplex

containing a nullhomotopy of the loop. In terms of the language of directed systems,

it suffices to show that the kernels of the maps iKM eventually stabilize as M grows.

That is, if K is the convex hull of the pure word subcomplex of a loop, then the kernel

eventually stabilizes if there is some full compact convex pure subcomplex L such that the

kernel ker iKL is equal to ker iKM for any full compact convex pure subcomplex M ⊃ L.

Remark 6.0.3. The Artin group of type !G2 is a great initial testing ground for future

work because of the aforementioned difficulties, but also because Craig Squier in [16]

proved that the Artin group of type !G2 admits a decomposition as an amalgamated free

product to prove that its word problem is solvable. It would be interesting to try to

adapt this into a statement about the topology of the pure Salvetti complex.

Additionally, in the case of 2-dimensional hyperbolic Artin groups, hyperplanes are

geodesics which diverge so that there are many examples of consecutive parallel hyper-

planes that contain entire 2-cells. This is also true in many Euclidean Artin groups of

dimension 3 or greater. In both cases, the pure Salvetti complexes and their convex sub-

complexes are straightforward to describe. Thus, these are good candidates for future

directions of research.
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(EMS), Zürich, 2018.

[4] J. McCammond, The mysterious geometry of artin groups, Winter Braids Lecture
Notes 4 (01, 2017) 1–30.

[5] H. van der Lek, The Homotopy Type of Complex Hyperplane Complements. PhD
thesis, Katholieke Universiteit Nijmegen, 1983.

[6] M. Salvetti, Topology of the complement of real hyperplanes in Cn, Inventiones
Mathematicae 88 (Oct, 1987) 603–618.

[7] E. Delucchi, Combinatorics of covers of complexified hyperplane arrangements, in
Arrangements, Local Systems and Singularities, pp. 1–38, 2010.

[8] A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge, 2002.

[9] E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17
(1972) 245–271.

[10] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17
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