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Abstract

Cognitive development is often characterized in term of dis-
continuities, but these discontinuities can sometimes be appar-
ent rather than actual and can arise from continuous develop-
mental change. To explore this idea, we use as a case study the
finding by Stager and Werker (1997) that children’s early abil-
ity to distinguish similar sounds does not automatically trans-
late into word learning skills. Early explanations proposed
that children may not be able to encode subtle phonetic con-
trasts when learning novel word meanings, thus suggesting
a discontinuous/stage-like pattern of development. However,
later work has revealed (e.g., through using simpler testing
methods) that children do encode such contrasts, thus favoring
a continuous pattern of development. Here we propose a prob-
abilistic model describing how development may proceed in
a continuous fashion across the lifespan. The model accounts
for previously documented facts and provides new predictions.
We collected data from preschool children and adults, and we
showed that the model can explain various patterns of learning
both within the same age and across development. The find-
ings suggest that major aspects of cognitive development that
are typically thought of as discontinuities, may emerge from
simpler, continuous mechanisms.

Keywords: word learning, cognitive development, computa-
tional modeling

Introduction
Cognitive development is sometimes characterized in terms
of a succession of discontinuous stages (Piaget, 1954). Al-
though intuitively appealing, stage theories can be challeng-
ing to integrate with theories of learning, which typically
posit that knowledge and skills improve incrementally with
experience. Indeed, one of the central challenges of cognitive
development has been to explain transitions between stages
which appear to be qualitatively different (Carey, 2009).

Nevertheless, at least in some cases, development may only
appear to be stage-like. This appearance can be due, for ex-
ample, to the use of a cognitively-demanding task which may
mask learning, or to the use of statistical thresholding (in
particular, p-value < 0.05) which can create a spurious di-
chotomy between success and failure in observing a given
behavior. In such cases, positing discontinuous stages is un-
necessary. Instead, a continuous model—involving similar
representations across the lifespan—may provide a simpler
and more transparent account of development.

We use a case study from word learning literature. Stager
& Werker (1997) first showed that children’s early ability
to distinguish similar sounds does not automatically trans-
late into word learning skills. Indeed, though infants around
14-month old can distinguish similar sound pairs such as
“dih” and “bih”, they appear to fail in mapping this pair to
two different objects. Follow-up studies have focused on

proposing possible explanations for this observed gap be-
tween speech perception and word learning (e.g., Fennell &
Waxman, 2010; Hofer & Levy, 2017; Rost & McMurray,
2009; Stager & Werker, 1997).

By around 17 m.o, children succeed in the same task
(Werker, Fennell, Corcoran, & Stager, 2002). How does de-
velopment proceed? Early accounts assumed that children
encode words in a binary way: they either fail or succeed in
encoding the relevant phonetic details (simultaneously with
the meanings). This account suggested a discontinuous/stage-
like pattern of development whereby younger children fail to
encode the contrastive phonetic detail, whereas older children
succeed.

Subsequent findings have suggested otherwise. On the
one hand, 14-month-olds—who typically fail in the original
task—succeed when an easier testing method is used, even
under the same learning conditions (Yoshida, Fennell, Swing-
ley, & Werker, 2009). They also succeed when uncertainty
is mitigated via disambiguating cues (e.g., Thiessen, 2007).
On the other hand, adults show patterns of learning similar
to those shown by 14-month-olds when the task is more chal-
lenging and when the similarity between words increases (Pa-
jak, Creel, & Levy, 2016; White, Yee, Blumstein, & Morgan,
2013).

This pattern of evidence points towards another scenario,
where the representations are encoded in a probabilistic
(rather than binary) way, and where development is contin-
uous, rather than stage-like (see also Swingley, 2007). On
this account, correct representations are learned early in de-
velopment, but these representations are encoded with higher
uncertainty in younger children, leading to apparent failure in
relatively demanding tasks. Development is a continuous pro-
cess whereby the initial noisy representations become more
precise. In addition, more precise representations are still im-
perfect: Even adults show low accuracy learning when the
sound contrasts are subtle, e.g., non-native sounds (Pajak et
al., 2016).

We provide an intuitive illustration of how such an account
explains patterns of learning and development in Figure 1.
We observe low accuracy in word learning when the percep-
tual distance between the labels is small relative to the un-
certainty with which these labels are encoded. For example,
in Stager and Werker’s original experiment, children are sup-
posed to associate label 1 (“bih”) and label 2 (“dih”) with ob-
ject 1 and object 2, respectively. Though infants could learn
that the label “bih” is a better match to object 1 than “dih”,
they could still judge the sound “dih” as a plausible instance
of the label “bih”, thanks to the relatively large uncertainty
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of the encoding, and this confusion leads to “failure” in the
recognition task. According to this account, accuracy in word
learning improves if we increase either the perceptual distinc-
tiveness of the stimuli (e.g., through using different-sounding
labels) or the precision of the encoding itself (e.g., across de-
velopment).

Building on this intuition, the current work proposes a
probabilistic model, which we use to both account for previ-
ous experimental findings, and to make new predictions that
have not been tested before. Using new data collected from
both preschool children and adults, we show that the model
can explain various patterns of learning both within the same
age and across development.

Figure 1: An illustration of the probabilistic/continuous ac-
count using simulated data. A word is represented with a dis-
tribution over the perceptual space (indicated in red or blue).
When the uncertainty of the representation is large relative to
the distance between the stimuli (top panel), an instance of
the red category (indicated with a star) could also be a plausi-
ble instance of the green category, hence the low recognition
accuracy score. The accuracy increases when the stimuli are
less similar (left panel), or when the representations are more
precise (right panel).

Model
Probabilistic structure
Our model consists of a set of variables describing the gen-
eral process of spoken word recognition in a referential sit-
uation. These variables are related in a way that reflects the
simple generative scenario represented graphically in Figure
2. When a speaker utters a sound in the presence of an object,
the observer assumes that the object o activated the concept C
in the speaker’s mind. The concept prompted the correspond-
ing label L. Finally, the label was physically instantiated by
the sound s.

A similar probabilistic structure was used by Lewis &
Frank (2013) to model concept learning, and by Hofer &
Levy (2017) to model spoken word learning. However, the

Figure 2: Graphical rep-
resentation of our model.
Circles indicate random
variables (shading indi-
cates observed variables).
The squares indicate fixed
model parameters.

first study assumed that the sounds are heard unambiguously,
and the second assumed the concepts are observed unambigu-
ously. In our model, we assume that both labels and concepts
are observed with a certain amount of perceptual noise, which
we assume, for simplicity, is captured by a normal distribu-
tion:

p(o|C)∼N (µC,σ
2
C)

p(s|L)∼N (µL,σ
2
L)

Finally, we assume there to be one-to-one mappings be-
tween concepts and labels and that observers have success-
fully learned these mappings during the exposure phase:

P(Li|C j) =

{
1 if i = j
0 otherwise

Inference
The learner hears a sound s and has to decide which object
o provides an optimal match to this sound. To this end, they
must compute the probability P(o|s) for all possible objects.
This probability can be computed by summing over all possi-
ble concepts and labels:

P(o|s) = ∑
C,L

P(o,C,L|s) ∝ ∑
C,L

P(o,C,L,s)

The joint probability P(o,C,L,s) is obtained by factoring the
Bayesian network in Figure 2:

P(o,C,L,s) = P(s|L)P(L|C)P(C|o)P(o)

which can be transformed using Bayes rule into:

P(o,C,L,s) = P(s|L)P(L|C)P(o|C)P(C)

Finally, assuming that the concepts’ prior probability is
uniformly distributed1, we obtain the following expression,
where all conditional dependencies are now well defined:

P(o|s) = ∑C,L P(s|L)P(o|C)P(L|C)

∑o ∑C,L P(s|L)P(o|C)P(L|C)
(1)

1This is a reasonable assumption in our particular case given the
similarity of the concepts used in each naming situation in our ex-
periment.
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Figure 3: An overview of the task used in this study.

Task and model predictions
We use the model to predict performance in the word learn-
ing task introduced by Stager & Werker (1997), with a two-
alternative forced choice as in Yoshida et al. (2009). In this
task, participants are first exposed to the association between
pairs of nonsense words (e.g., “lif”/“neem”) and pairs of ob-
jects. The word-object associations are introduced sequen-
tially. After this exposure phase, participants perform a series
of test trials. In each of these trials, one of the two sounds is
uttered (e.g., “lif”) and participants choose the corresponding
object from the two alternatives. An overview of the task is
shown in Figure 3.

We used Equation 1 and the probability distributions de-
fined above to obtain the exact analytical expression for the
probability of accurate responses p(oT |s) (target object oT
given a sound s) in the simple case of two-alternative forced
choice in the testing phase of our experimental task:

P(oT |s) =
1+ e−(∆s2/2σ2

L+∆o2/2σ2
C)

1+ e−(∆s2/2σ2
L+∆o2/2σ2

C)+ e−∆s2/2σ2
L + e−∆o2/2σ2

C

(2)
Figure 4 show simulations of the predicted accuracy (Ex-

pression 2) as a function of the distinctiveness parameters (∆s
and ∆o) and the precision parameters, i.e., the variances of
the distributions p(s|L) and p(o|C). To understand the quali-
tative behavior of the model, we assumed for simplicity that
the precision parameter has similar values in both distribu-
tions, i.e., σ = σC ≈ σL (but we will allow those parameters
to vary independently in the rest of the paper).

The simulations explain some previously documented
facts, and make new predictions:

1) For fixed values of ∆o and σ, the probability of accurate
responses increases as a function of ∆s. This pattern ac-

counts for the fact that similar sounds are generally more
challenging to learn than different sounds for both children
(Stager & Werker, 1997) and adults (Pajak et al., 2016).

2) For fixed values of ∆s and ∆o, accuracy increases when
the representational uncertainty (characterized with σ) de-
creases. This fact may explain development, i.e., younger
children have noisier representations (see Swingley, 2007;
Yoshida et al., 2009), which leads to lower word recogni-
tion accuracy, especially for similar-sounding words.

3) For fixed values of ∆s and σ, accuracy increases with the
visual distance between the semantic referents ∆o. This
is a new prediction that our model makes. Previous work
studied the effect of several bottom-up and top-down prop-
erties in disambiguating similar sounding words (e.g., Fen-
nell & Waxman, 2010; Rost & McMurray, 2009; Thiessen,
2007), but to our knowledge, no previous study in the lit-
erature tested the effect of the visual distance between the
semantic referents.

Experiment
In this experiment, we tested participants in the word learn-
ing task introduced above (Figure 3). More precisely, we
explored the predictions related to both distinctiveness and
precision. Sound similarity (∆s) and object similarity (∆o)
were varied simultaneously in a within-subject design. Two
age groups (preschool children and adults) were tested on the
same task to explore whether development can be character-
ized with the uncertainty parameters, σC and σL. The exper-
iment, sample size, exclusion criteria and the model’s main
predictions were pre-registered.

Methods
Participants We planned to recruit a sample of N = 60 chil-
dren ages 4-5 years from the Bing Nursery School on Stan-
ford University’s campus. Here we report data from N =
55 children. An additional N = 35 children participated but
were removed from analyses because they were not above
chance on the catch trials due to the challenging nature of our
procedure (see below). We also collected a planned sample
of N = 100 adult participants through Amazon Mechanical
Turk. We planned to exclude data from participants who did
not do well on the catch trials (N = 26) and from partici-
pants who were familiar with the non-English sound stimuli
we used in the adult experiment (N = 0), yielding a final sam-
ple of N = 74.

Stimuli and similarity rating The sound stimuli were
generated using the MBROLA Speech Synthesizer (Dutoit,
Pagel, Pierret, Bataille, & Van der Vrecken, 1996). We
generated three kinds of nonsense word pairs which varied
in their degree of similarity to English speakers: 1) “dif-
ferent”: “lif”/“neem” and “zem”/“doof”, 2) “intermediate”:
“aka”/“ama” and “ada”/“aba”, and 3) “similar” non-English
minimal pairs: “ada”/“adha” (in hindi) and “aQa”/“aèa” (in
arabic).
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Figure 4: The predicted probability of accurate responses in the testing phase as a function of stimuli distinctiveness ∆s and ∆o
and representation precision σ (for simplicity, we assume here that σ=σC=σL). Dashed line represents chance.

As for the objects, we used the Dynamic Stimuli javascript
library2 which allowed us to generate objects in four different
categories: “tree”, “bird”, “bug”, and “fish”. These categories
are supposed to be naturally occurring kinds that might be
seen on an alien planet. In each category, we generated “dif-
ferent”, “intermediate” and “similar” pairs by manipulating
a continuous property controlling features of the category’s
shape (e.g, body stretch or head fatness).

In a separate survey, N = 20 participants recruited on Ama-
zon Mechanical Turk evaluated the similarity of each sound
and object pair on a 7-point scale. We scaled responses within
the range [0,1]. Data are shown in Figure 5, for each stimulus
group. These data will be used in the models as the perceptual
distance of sound pairs (∆s) and object pairs (∆o).

Design Each age group saw only two of the three levels of
similarity described in the previous sub-section: “different”
vs. “intermediate” for preschoolers and “intermediate” vs.
“similar” for adults. We made this choice in light of pilot
studies showing that adults were at ceiling with “different”
sounds/objects, and children were at chance with the “simi-
lar” sounds/objects. That said, this difference in the level of
similarity is accounted for in the model by using the appro-
priate perceptual distance used in each age group (Figure 5).

To maximize our ability to measure subtle stimulus ef-
fects, the experiment was a 2x2 within-subjects factorial de-
sign with four conditions: high/low sound similarity crossed
with high/low visual object similarity. Besides the 4 condi-
tions, we also tested participants on a fifth catch condition
which was similar in its structure to the other ones but was
used only to select participants who were able to follow the
instructions and show minimal learning.

Procedure Preschoolers were tested at the nursery school
using a tablet, whereas adults used their own computers to
complete the same experiment online. Participants were
tested in a sequence of five conditions: the four experimental
conditions plus the catch condition. In each condition, par-

2https://github.com/erindb/stimuli
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Figure 5: Distances for both sound and object pairs from an
adult norming study. Data represent Likert values normalized
to [0,1] interval. Error bars represent 95% confidence inter-
vals.

ticipants saw a first block of four exposure trials followed by
four testing trials, and a second block of two exposure tri-
als (for memory refreshment) followed by an additional four
testing trials. The length of this procedure was demanding,
especially for children, but we adopted a fully within-subjects
design based on pilot testing that indicated that precision of
measurement was critical for testing our experimental predic-
tions.

In the exposure trials, participants saw two objects associ-
ated with their corresponding sounds. We presented the first
object on the left side of the tablet’s screen simultaneously
with the corresponding sound. The second sound-object as-
sociation followed on the other side of the screen after 500ms.
For both objects, visual stimuli were present for the duration
of the sound clip (800ms). In the testing trials, participants
saw both objects simultaneously and heard only one sound.
They completed the trial by selecting which of the two objects
corresponded to the sound. The object-sound pairings were
randomized across participants, as was the order of the condi-
tions (except for the catch condition which was always placed
in the middle of the testing sequence). We also randomized
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the on-screen position (left vs. right) of the two pictures on
each testing trial.

Results

We first analyzed the results using a mixed-effects logistic
regression with sound distance, object distance and age group
as fixed effects, and with a maximal random effects structure
(allowing us to take into account the full nested structure of
our data) (Barr, Levy, Scheepers, & Tily, 2013). We found
main effects for all the fixed effects in the regression. For the
sound distance, we obtained β= 0.52 (p < 0.001), replicating
previous findings. For object distance, we found β = 0.83 (p
< 0.001), and this finding confirms the new prediction of our
model. Finally, for the age group, we obtained β = 0.76 (p <
0.001), showing that performance improves with age.

We next fit our model (using Equation 2) to the partic-
ipants’ responses in each age group using non-linear least-
squares. The values of ∆s and ∆o were set based on data from
the similarity judgment task (Figure 5). The model has two
degrees of freedom for each group, i.e., σC and σL. We call
it the double-variance model. Figure 6 (dashed lines) shows
the predictions. The double-variance model captures the be-
havioral patterns in both age groups: starting from a low ac-
curacy recognition when both the sound and object distances
are small, the model correctly predicts an increase in accu-
racy when either the sound distance or the object distance
increases. Further, accuracy is correctly predicted to be max-

imal when both the sound and object distances are high.
The values of the parameters were as follows. Children

had a label-specific uncertainty of σS = 0.83 [0.64, 1.02]3,
and a concept-specific uncertainty of σC = 0.31 [0.11, 0.51].
Adults had a label-specific uncertainty of σS = 0.12 [0.12,
0.13], and a concept-specific uncertainty of σC = 0.17 [0.16,
0.18]. As predicted, the uncertainty parameters were larger
for children than they were for adults, showing that the prob-
abilistic representations becomes more refined (that is, σ be-
comes smaller) across development. The developmental ef-
fect was more important for the label-specific uncertainty.

The double-variance model explained almost all the vari-
ance in the participants’ mean responses. To investigate
whether the model’s strong predictive power was due to over-
fitting, we fit a simplified version with only one degree of
freedom (i.e., a single variance common to both sounds and
objects). This single-variance model also captured the main
qualitative patterns and remained highly predictive (R2 =
0.95). This result suggests that the explanatory power of the
model is largely due to its structure, rather than its degrees of
freedom.

General Discussion
This paper explored the idea that some seemingly stage-like
patterns in cognitive development can be characterized in a

3All uncertainty intervals in this paper represent 95% Confidence
Intervals.
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continuous fashion. We used as a case study the seminal work
of Stager & Werker (1997) showing a discrepancy between
children’s speech perception abilities and their word learning
skills. While much of the previous investigation of this find-
ing has been interested in the source of this discrepancy, here
we have explored how it could arise from continuous devel-
opmental change in perceptual uncertainty.

Building on some previous discussions (e.g., Swingley,
2007; Yoshida et al., 2009), we proposed a model where
perceptual stimuli are encoded probabilistically. We tested
the model’s predictions against data collected from preschool
children and adults and we showed that developmental
changes in word-object mappings can indeed be character-
ized as a continuous refinement (i.e., uncertainty reduction)
in qualitatively similar representations across the life span.

The model made a new prediction which we tested exper-
imentally: Learning similar words is not only modulated by
the similarity of their phonological forms, but also by the vi-
sual similarity of their semantic referents. More generally,
since visual similarity is an early organizing feature in the
semantic domain (e.g., Wojcik & Saffran, 2013), our find-
ing suggests that children may prioritize the acquisition of
words that are quite distant in the semantic space. This sug-
gestion is supported by recent findings based on the investi-
gation of early vocabulary growth (Engelthaler & Hills, 2017;
Sizemore, Karuza, Giusti, & Bassett, 2018).

One limitation of this work is that the model was fit to data
from children at a relatively older age (4-5 years old) than
what is typically studied in the literature (14-18 month-old).
We selected this older age group to optimize the number and
precision of the experimental measures (both are crucial to
model fitting). Data collection involved presenting partici-
pants with several trials across four conditions in a between-
subject design. It would have been challenging to obtain such
measures with infants.

In sum, this paper proposes a model that accounts for the
development of an important aspect of word learning. Our ac-
count suggests that the developmental data can be explained
based on a continuous process operating over similar rep-
resentations across development, suggesting developmental
continuity. We used a case from word learning as an exam-
ple, but the same idea might apply to other aspects of cog-
nitive development that are typically thought of as stage-like
(e.g., acquisition of a theory of mind). Computational mod-
els, such as the one proposed here, can help us investigate the
extent to which such discontinuities emerge due to genuine
qualitative changes and the extent to which they reflect the
granularity of the researchers’ own measurement tools.

All data and code are available online at
https://github.com/afourtassi/kidswitch
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