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A PHENOMENOLOGICAIL MODEL FOR A TOCAL
. *
. REGGE FOLE - REEGE CUT INTERACTION
+
G. I. Ghandour

Department of Physics and Lawrence Berkeley>laboratory
University of California, Berkeley, Californis 9k720

April 24, 1974
ABSTRACT

In the gohtext of the MultiperipheralvModel, we use an

effective-range approximation and the formula for the diécbntinuity

of the partial wave amplitude across the AFS cut t§ construct a model
amplitude‘that incorporates the Reggeon-Pomeron cut in addition to the
simple Regge pole. We use this amplitude in an attempt to explain the
structure of the high energy differential cross section at small t,

as observed at ISR. The model explains in addition the discrepancy
between the valges for thé rho-intercept obtained from the differential
cross sectién on the one hand and the difference éf ﬂtp total cross
sections, at higher energy, on the other. We can also understand the

absence of such a discrepancy in the case of the omega trajectory.

-

I. INTRODUCTION
The forward angular distribution of pp elastic scattering
has been, in recent years, the object of extensive experimental
investigationé.l An interesting phenomenon has been detected, at
intersecting storage-ring energies, of a change in slope of the
diffraction peak. In the very small % region (4] <0.15 (GeV/c)e)
the slope is,> 12 - 13 (GeV/c)-e, and then flattens fo about
11 (cev/e)™ in the larger t region (0.2 < |t] < 0.5 (GeV/c)?).
A similar situation seems to occur at accelerator energies,2 and
possibly in np elastic scattefing,? as was pointed out in Ref. &4.
Anothér interesting phenomenon, this one concerning the
intercept of the rﬁo Regée trajectory, has afisen from the Serpukhov
data5 for the total cross section difference
p p. ap

o L AP
A% = [ctot %ot

J

where a power law fit gives a value
ap(o) = 0.68 t o.» : o (r.1)

while from differential cross section data for n-p i non, one can

extract an effective, linear, rho trajectory

ozsz(t) X 0.5 + t . (1.2)
A discrepancy thus exists between the results of two different deter-

minations of the intercept of the rho trajeétory. This discrepancy is
compéunded by the fact that in the case of the omega Regge trajectory,

which is believed to be exchange-degenerate7 with the rho, the

intefcept obtained from the difference



is close to the value given by (1.2).

Earlier attempts to understand the above phenomena were based
on the idea that the relevant Regge trajectory, due to the unitarity
effegt of a nearby singularity in the partiasl wave amplitude, exhibits
substantial curvature near t = O. BSuch curvaturé is indeed expected
theoretically8 from the vicinity of the 2x threshold. However,
numerical estimates of this effect on the curvafure of the Pbmerong'
and the rholo trajectories, owing.to the smallness of ‘their coupling
to the .wwr  channel, turned'out too small tq account for the exper-
imental observations.

A aifferent mechanism for positive curvaturg of thé Pomeron
trajectory was anticipated from a particular version of the Multi-
peripﬁeral Modelll as aAresult of interaction between the leading pole
and the leading branchrpoint.le’13 The magnitude of the effect, in
this médel, is essentially.determined by the value of the triple
Pomeron coupling. This latter coupling has been estimated by the
Deck mo&ellh-and also extracted from experimental data on inciﬁsive’

15,1617 mye value thus obtained was too small for this

reactions.
particular Vgrsion of the Mﬁltiperipheral Model to account'for £he‘
experimental oﬁservations.

1 In this paper we attempt to explain all the experimental
observations presented above as the result of a commbn‘phenomenonf
namély the interaction between the leading pole and tie leading branch

- point. The emphasis is not only on the ecurvature of the leading Regge

trajectory but also on the fact that, in our model, the pole¥cut

.

interaction turns out to be localized very near t = 0. The leading
pole and the leading branch point are defined here as in the recent
version of the Multiperipheral Model, namely the multifireball

8
expansion.l » 19

Thus, the Pomeron'is defined.as the mechanism behind_
the reguilarities shared by allAdiffractive processes, at high energy.
In a given energy range, it.can be simplated by an effective, fac-.
torizable, Regge pole.20 The intercept of this Pomeron_isbtéken to be
slightly bélow one in accordance with Finkelstein-Kajantie.21 A
J=-plane amplitude, containing the pole-cut interactibn, is constructed
by an effective-range type expansion in the combiﬁed complex j and

t Dplanes, using the formula for the discontinuity across the leading

15,22 Our model is very

cut as obtained in the Multiperipheral Model.
similar to the version of the Multiperipheral Model mentioned in the
previous paragraphl2 but differs from it by the definition and exper-
imental determination of the parameters.
The sign of the Pomeron-Reggeon cut, in our model as in the

s . e ‘ 23,2k,25
Multiperipheral Model, is the positive one. Several authors
have proposed a hegative sign for the cut, a choice that White26 has -

shown to be unavoidable,from a mathematical point of view. This,.

however, does not necessarily contradict our pbsition'since the pole

and cut we are dealing with are effective ones (appropriate to a finite

range of energies), defined from experiment in an operational way and
simulating the combined effect of a complicated aggregate of Regge

singularities. We will propose an ékperimental test fof this sign in‘
term of the behavior of the intercept of the effective rho trajectory

as a-function of energy.
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The presentation is arranged as follows. In Sec. II, the
'effective-range formalism is described. An.explicit modél is suggested
in Sec. ITI. In Sec. IV, the parameters of the leading pole of our
model amplitude are bootstrapped in term of some input parameters
whose determination from experiment is described in Sec. V. Section VI
contains a discus;ion of the results and the conclusion. The details

of some calculations are presented in the Appendices.

- evidently dealing with the AFS branch point.

-6-

II. THE EFFECTIVE-RANGE FORMALISM

We consider the t-channel process

P(tl)‘ + 3(t2)——j)P(t3) + R(tu) (I1.1)

where P(t) and R(t) are respectively Pomeron and Reggeon (Pomeron,

rho, etc.) of mass t. We designate by B(j,t;t th) the

l’ tg’ ts’
appropriate (reduced, definite signature) j-plane amplitude, defined

as in the Multiperipheral Model.18’19’22

We assume, as usual in the
Multiperipheral Model, that this amplitude of scattering between
Reggeons has the usual properties of real analyticity in the variables

j and t, as if the Reggeons were particles. We also assume that

this amplitude has a pole at j = aR(t), corresponding to the exchange

-of the Reggeon R, and a branch point at J = afﬂ(t), corresponding

to the double exchange of a Pomeron P and a Reggeon R, the IR

branch point. The position of this branch point and the discontinuity

across the associated cut are given by19’22

dat' at”

dise, B(j,t; t.,t.,t,,%,) = 1 r[‘ t,
s v s ) 2 =
3 1’ V9?3l f&?b o (t,67,5")]

% B(j;ts tl’ E’t'yt”)
.

X B (365 8087 t,),)80 +1- ap(s!) - ap(8"))
(11.2)

where aP(t) and Qﬁ(t) are the Pomeron and Reggeon trajectories, and
2
Mx,y,2) = X2 + y2 + 2 =~ 2xy - 2yz - 2zx

is the usual phase-space factor. The range of integration is such that

Mt,t't") € 0. The normalization is as in Refs. 27 and 28. We are-

23



Near the pole, we have

at' at” 2 : ] 1
glts t,t,) &lt; tyrty) _ p{Jst) = j[ T g (t,t7) 8(3 + 1 - ap(tr) - op(eh)) .
B(J:t tll 07 B’th’) _/\J >\(t)t, ”)]2 .
3= (t) 3 - o(t) ( ) (11.9)
IT.3 .
vhere g(t; tl’te) is the (Pomeron-Reggeon)-Reggeon, (FR)R; vertex We consider now the function
function 14 | ' 'ac(t) 1
. . 1 dj s
N . . R(J)t’) = ; J - jv D(J'Jt)
The key assumption which allows us to carry out the effective ’ '
_ -
range approach is that the dependence of our amplitude on the masses
of the external Reggeons, for j near (t factors out in the . .
‘ ’ %R )s ‘ : ) ;L_ fi at' at" i g2 (t',4") (11.10)
following manner: 23 - "
ollowing mwanner j‘j [A(t,t',6")]% 3 +1 -_aP(t') aR(t )
B(J’t3 tlth’tB’tu) X g(tl,te) B(J,t) g(tﬁ,th) s (II.4). where the delta function has been used to perform the j' integration.

" " . This function has the same branch point, in the complex j-plane, as
where g(tl,tz) is like an ‘off-mass-shell” form factor, normalized

. does B-l(j,t), and its discontinuity across the associated cut is
N .

(0,0) 1 . . (11.5) such as to cancel that of B'l(j,t) so that the function defined by
g pd = . . .

and B(j,t) - is the amplitude when all the external Reggeons have zero . . Y(j,t) = B'l(j,t) + R{j,t) (r1.11)

masses. Such factorization may be obteined from (II.3) if g(t; tl’tE)

: does not have the branch point. We expand this function in a power
factors accordingly. - Now .

series around t =0 and j = ah(O), keeping only the linear terms.

‘ o s
. (t) v
B(3,t) Raheed 3 - t (11.6) We write this expansion in the form
Jrogle)  ° % : :
. . 5 ~ 1 [ O( )] (II 12)
where g(0) is related to g , Oof Ref. 1k by » - Y(et) X - . .
R
2 1 2 . .
0 = . II.
g (0) 16x gPR,R ( 7) where
I 0 0 0 _
Equation (II.2) can now be written in the form . a (¢) = 1- Xpo ot bt (11.13)
i =15 it) ‘ | d 0 o d b ° are real These are the parameters of the
dlscj B (5,t) = - po(3,t) (11.8) and Yo, X, an R . .

- ' ) model.
where .
’ Substituting (II.12) into (II.11) we get



0
"R

5 - alt) - 7° R(5,E)

B(J,t) (I1.14)

If R(j,t) consists of a reguler part in addition to the
singular part containing the branéh point, only the singular part needs
to be substituted in (II.lh). The regular part gets>absorbed in

vY(j,t) . ‘

The trajectory aR(t) is obtained from,(II.lF) by solving for

the real zero of the denominator
ap(8) = @ (t) + 7 Rlag(e),8) - (11.15)

0 R L
The trajectory aR(t) coincides with op (¢) if the interaction term
7RO R(j,t) were identically zero. Hence, we may call the linear
aRo(t), the free trajectory, and aR(t) the interacting trajectory.

Also, it will be seen.in Sec. V that 7RO' is the square of the triple

Regge coupling &R R at t 5 -0.15 (GeV/c)E, where the interaction
: ’
term has almost died away. This coupling is very small compared to

: 14,19 0
the usual couplings of strong interactions.” ’77 (

Thus, Qg t) ‘can
be thought of as the unperturbed form of aR(t), fhe péfturbation
being bfought in by the term 7RO R(aR(t),t). The presence of 'aR(tj
in the perturbation suggests a bootstrap scheme that has been '
exploited in Ref. 12 and which we will make use of in Sec. IV.

Chew and Snider,12 using the Multiperipheral Model, have
arrived at a form similar to (II.14) for the case when the Reggeon R

is a Pomeron. In their model, the multiperipheral kernel is split

into two piecesf .a low energy component, assumed to be regular, gives

~10=-

rise to the unperturbed trajectory aPp(t), ﬁhich is linear by
assumption; and a singular high energy component produces the
perturbation. The high energy component corresponds to the cut and
the two compohents contain the whole story. Anaslogous to this model

is the two-component model first proposed by WilsonBo and developed by

a number of‘qthers31 who used it quite successfully in fitting
‘multiplicity distributions in high-energy hadronic collisions, and .
which has béen recently generalized to the multifireball expansion
and the perturbative approach to the Pomeron.l9’32 The Chew-Snider
model illustrates how, in the Multiperipheral Model, one does not
consider multi-Reggeon cuts separately. Our model, which in fact was
inspired . by theirs, can be presented using their formalism but,
splitting the multiperipherél kernel into a'reéular piece and an
entirely singuiar one. This amounts to a different definition of

o O(

P t) who now receives contribution from the regular part of their

high energy component of the kernel. The linearity of aRO(t), in
our model, is a consequence of the effective range approximation.

The effective range approach and the closely related N/D

- method have been, in the past, a valuable tool for use in the energy

plane. Recently, they have been used in the j-pléne to obtain models

for the Pomeron (Refs. 33, 34, 35). Of these, the Ball-Zachariaseth

" model has been formulated within the context of the Multiperipheral

Model but, unlike ours, the Pomeror intercept is one and the triple-
Pomeron vertex vanishes at t = 0. An asymptotically self-consistent
amplitudé with a singularity structure very different from ours has
been obtained. 1In the self—consistent model by Bronzan,35 the Pomeron

trajectdry is singular as it collides with the cut. This collision
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does not occur in our model, our trajectory being analytid for t < O.
While in these models,55’3h’55 the rise of the total cross
36

section” as observed at ISR, and later confirmed at NAL, is (or can
be) 1ncorporated.and attributed to the collisioﬁ of two singularties
producing a double pole at t = O, this point has been bypassed by oﬁr
model, since we ignore all effects such as secondary real poles,

s-channel absorption, and secondary complex poles (the -j-plane’

manifestation of the phreshold mechanism57 for the rising cross
sectmon). Whether there is a comnection (or an influence) of such
mechanisms on the experimental phenomena we are attempting to
uﬁderstand is not clear to us even though some phenomenological fits,38
basedbon the dual absorptive model, tend to support such a connection.
Starting with'Gribov and Migda1,38 a class 6f~models,uo’hl’h2
formulated within the context of Reggeon calculus, has arrived at a
form similar to (II.14) in the course ofvmodifying a bare Pomeron
propagator. In these models, the sign of the two-Pomeron cut is
negative and the intercept of the Pomeron is assumed to be exactly one.
Consistency within the model, then, forces the requirement that the
triple Pomeron vertex vanishes at t = O. All models that incorporate

b3

this requirement were in trouble after Brower and ﬁeis discovered
that the Pomeron must{ then, decouple from a large number of processes
iﬁvthe forward direction. Escapes from the decoupling arguments were,
however, achieved; either by departure from the simple Regge pole .
nature of the»Pbmeron;BM orvby the addition of enhanced absorptive
correction to the conventional Regge pole contribution;ho or by the

nonlinearity of the Pomeron trajectory, near t = O, that results

from Pomeron interau:ﬁt:ions.b'2

-12-

Evidence for the nonvanishing, at t = 0, of the triple
Pomeron vertex exists from the pion dominance model,_lh and from the
recent fitl7 to all available data on Dpp = px, which indicate that
the triple Pomeron coupling shows no tendency to-vanish_at t = 0.
Nonvanishing of this vertex, at this poiht, and an intercept less than

one for the Pomeron are vital features in our model.
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III. A MODEL FOR R(j,t)
In this section we will not attempt_to derive an expression
for the interaction term R(j,t), since this would require the knowledge
of g(t'?tV) and the trajectories aP(t) and aR(t) appearing in the
definition of R{j,t) as given by (II.10). We will instead, as is
usually done when selecting an interaction lagrangian in field theories,
use the criterions of simplicity, .maniability, ;nd plausibility. The
actual Jjustification must éventually come from comparing the model and
bits predictions with experiment. In the spirié of the effective range
approach, however, the model amplitude that results from the choice
of R{Jj,t) must have the beforehand known singularities with their
respective strenéthes and no other singularity in the regiom of
expected validity of the expansion.
The simplest and most naturai choice of g(t',t") is the one
that has already been used in meny versions of the Multiperipheral

ModellE,lB,hh

g(t',t") = exp [%(Lpt' + )\Rt)]‘ (111.1)

where xP and xR are real mmrers associated with the Pomeron and

Reggeon trajectories. Using this form in (II.10) we get

N explat! + A t"] -
R(j,t)" = e TRTW e — . (11.2)
(A@ttWI 3+l o-ogt') - (")

Next, we use for the trajectories, under the integrals, the

lineari8ed approximation

14

aP(t) 1 - xp+ byt (111.3%)

2

o (t)

- + A
1 - x4 bt ‘ (111.4)

~1h4-

. h -
We rewrite R(J,t), using the identity > »

1

I+ 1 - ap(tt) - aple”)

dy expl -y(3 +1 - ap(t’) - ap(t"))]
A A

and the result of the following integration, performed in Appendix A

: . 7p ¥n t
1 at! at" " PR
- - exply_t' + 7 t"] = - exp[————-]
) a(g, e, 12 F R ’p 7P_+ ?R
to obtain
, b, + by bp + by %pR (o5 + )
[ Oghp - gby)”
A iy - R (t) ‘]
x ok exp { y oy bR)j (3 - o)) 3
"p*"a
Bpro (3-ap(t)) (@1.5)

where We have identified the well-known trajectory of the branch point
prR

PRy
bp + by

The singularity of R(j,t) comes from the lower limit of

X - - (111.6
aER(t) 1-xp-xg+ ( )
integration. Since our concern here is to obtain an amplitude with
only the singularities at aR(t) and a}R(t)’ we simplify (III.5) by

substituting for J- the linearized form of aR(t) everywhere except

at the lower 1imit of integration. Then we use (see Appendix B)
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dy exp {-y - XJ = z v (~&n u) -
RV ’
. y . | ¥ = (n!)

+ terms regular at u =0,

and keep only the first term (-4n u), since v 1is second order small

in an expansion where Xp

abstract for R(j,t) the model's form

and t are the small parameters. We thus

0

0 pe oy o Rt ' '

g R(5t) e - e tn(j - ag(t)) (111.7)

where
: o

€Ro = by + bR exp b e bR _ (111.8)

and
®2 +12 b2
KRO ) ,XR p_* Py )2+ 2hp Pg ) _ (111.9)
(bp + 1)

Substitubing into (II.14) we obtain our model's amplitude

0
) - 'R . -
B(j,t) = - . (II1.10)

3 - 28) + 6 exp(n%) tn(y - ag(s))

An amplitude of this type except with a square-root instead of
the log-cut, and an arbitrary sign for ERO, has been discuésed'in

Ref. 35.

-16-

IV. THE BOOTSTRAP EQUATIONS AT "t = O
The first bootstrap equation expresses the fact that the same -
trajectory aR(t) which appears in Fq. (Iil.z) for R(j,t), 1is
given by the leading pole of (111.10), That is

0
o M°t
e

o (t) - dho(t)_¥ % talag (8) - ap(8)] = o (1v.1)

This eqpatioﬁ and its first derivative with respect to t give,

at t=0
X - xRO - ERO tmxy = 0 | : (1v.2) |
eRo b2 K »
R
- b o+ in Xp + = 0 (1v.3)
bR €R KR sz_+ ijxP .

where the notation is as defined by (II.13), (III.3) and (III.4). Also-

Eq. (III.6) for the cut has been used here.

The residue of the pole at aR(t) is

0

7R T ,
7R(t) = R ‘ (1v.4)
: exp(xR %)
L oTRm—m
Near: t =vQ, we write
rg(8) ® 7 explns) . | (w.s)

The second bootstrap equation expresses the requirement that
the same” A of (1v.5) also appear in Eq. (III.2) for R{j,t). Thus,
at t = 0, we get from (IV.4) and its first derivative with respect

to t, taking (IV.5) into account’
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, 0
I — . (xv-6)
" SR /*p
and
0 2 8]
. 0!
o= _OER : = - N (Iv.7)
, R+ Xp [ (bp+plxy S
where xRO is given by (III.9), or
2 2 2 » _
(b + b7 )A, + 2b° A
)\Ro _ Pp *h )'Rz S | (17.8)
(bp + Bg)
From the case when R 1is also & Pomeron, we get
0 0 :
Xp - Xp = € inx, = 0. (1v.9)
0
€ b :
0 0,0 P P
bp - bp + €5 A tnxp + = 0 . (1Iv.10)
2% :
, P
0
. . € b .
"PO - - ___________1; P : (1v.11)
2(2€P + xP)xP ) :
, 0 _ .
gy = b S , - (1va2)
P 1 + € O/x"
Pp/7p ' '

Of the above two bootstrap conditions the second is somewhat
controversial. The two Reggeons R in the (RP,R) vertex may ver&
well play different roles and iﬁtroduce different t-dependence in the -
vel;tex function. Also the approximation involved in getting (IV.8) is
somewhat crude,.especiall& when R 1is different from P. .We therefore
regard Eg. (IV.8)‘with caution‘aﬁd leave iﬁ to the next section, where

the model is compared with experiment, to decide on its wvalue.

-18-

If Eq. (IV.8) is taken seriously, then Mg cen be eliminated
between (IV.7) and (IV.8) and the xRO thus obtained can be sub-

stituted in (IV.3) to yield for by the equation

0 0
: R 0 € ]
[(bP Fpg)l? o+ —ERT: (bg + sz)} {(bR - b )by + b + % b2
0 xRo_ “x, :
, 2 _ 2.2
eRo v (bp + by Jog
- 2(xR° - xR)(bP + bR)KP bR2 = 0. (1v.13)

If Eq. (IV.8) is not retained, then, by

determined by other considerations, as will be seen in the next section.

‘would have to be
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V. COMPARISON WITH EXPERIMENT

V.A. The Effective Trajectory -

Almost all the information that'is available'to us for the
choice.of the numerical valueé of our input perameters is extracted
from experimental data using models that incorporate only Regge poles.
It is therefore important that we extract, in our model, an effective
tyajeétory which, at a given‘engrgy, simulateé thebcombiped éffect of
'oﬁr pole and cut. . .

The Mellin transform of B(j,t)r for £t <0 .gives the
imagihary part, A(s,t), of the scattering amplitude, M(s,t), above

the s-channel threshold

i +8

Als,8) = ImM(s,t) = st a3 s? B(3,t)

2ni

-im+d
where & 1is to the right of all the j-plane singularities of B(j,t).
Our emplitude, given by (II1.10), has a real pole at j = ozR(t) and
. a cut running from = -0 to §= aPR(t). A1l other singularitieé
are on the unphysical sheet of the j-plane, therefore, by appropriate
- modification of the comtour of integration,.we get

(t)
. R

. aR(t) 1 . 3 .
A(s,8) = og(e) s 7 - = aj s* dise, B(J,t),

o , - (v.A.1)

04

where the discontinuity. of B(j,t) across the j-plane cut,

disc’j B(j,t), is obtained from:(III.10)

20~

At

Xy o _ 0
-. 7R GR e

dise, B(j,t) = 2>

. _
r o] 0
.0 N . o Mgt
Jrog(t)+e e tn(oge(t) -3)] + |neg e
(V.A.2)
The éffective trajectory and the corresponding effective
residue are defined by the relation
eff
: (t)
Most) = 7)o (V.A.3)
or
eEf .\ 3 | i e
oh(8) = smEy [mAGE)] . , (V.A.l)

Instead of having one effective pole to simulate the combinéd..'
pole-cut system, one might be tempted to approximate the ¢ut itself
by an effective pole. The location of this polé wﬁu;d be Vhere_the
discontinuity, given by (V.A.2), has its peak value. This occurs st

j . solution of the equation
' ) N o0 :
: . t _ ‘

5 - al(e) '+ g e)\_R tnlog(t) - §) = o - (V.A5)
This equation has in general two real solutioms, or none. . If it has
no real solution, then, the peak of the discontinuity is at the value
of j where the derivative with respect to j of the denominator of
(V.A.2) vanishes, that is at

0

. t
o= ag(®) - €Ro_e>\R . | (V.A.6)
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- The effective residue, at this effective pole, would be given by the
ares, under the peak, the integrated discontinuity

o (t)

eff( )

7PR a3 disc B(J,t) (v.A.7)

Y L

-0 )
Our model amplitude, as given by (III.10), satisfies an
: upsubtrécted dispersion relation in j from which we can abstract a

éuh rulelzbthat‘the integrated cut discontinuity blus the pole residue

is equal to the residue of the unperturbed pole, 7RO
: eff o0
7p(t) + g (t)_ = 7R (v.A.8)

whence a simple éxpréssién for 7eff(t) is obtained.

The interaction term ER exp()\R t) n(j - aIR(t)>’ which
appears in (111.10), becémés vanishingly small for t < -0.15 (GeV/c)e.
This happens because €Ro is very small and hRo is very large, as
will be seen in the féilowing subsections. Thus, for
"t 5 -0.15 (GéV/c)E, we expect the effective trajectory, given by

(v.A.4), and the effective residue to reduce to the unperturbed values.

© Ve will make use. of this point in determinlng our input ;arameters

from experlment in the following subsections.

V.B. The Slopg}Parameter of ITotoanroton Scattering

Ih this case the R trajectory is abemeron.

For the unperturbed Qalue of the triple Pbmeron coupling we use
the result of Ref. 16, exfracted ffom inclusive data at
t = -0.15 (GeV/c_)z- | '

-1 (v.B.1) |

0 ' '
8ppp 0.25‘G§V

o0
Hence

0 1 0 2 © -3 -2

'R = 1% Sprp ° 1.24 x 1077 GeV (v.B.2)

where the 16r comes from our normalization, as noted in (II.7).

Equation (III.8) for GPO becomes

7 2

0 .
g .
_EPo _ Seep exp<bﬁ XP> . . (v.B.3)
321 by, P

The slope of the Pomeron trajectory, as ekxtracted from the ISR
data for proton proton elastic differential cross section,l has an

-2
average value of 0.37 t 0.08 (GeV/c) for t in the range

0.05 < |t] < 0.10 (GeV/c)e, and 0.10 t 0.06 (Gev/c)"2 for t

in the range 0.10.< [t| < 0.30 (GeV/c)Q.' Here we use

o
)

o = 0.3 (Gev/c)™ (V.B.4)

and

o’
[}

P 0.1 (Gev/e)2 . : (v.B.5)
Then we determine x, and A, by (Iv.11), (v.B.1) and (V.B.3), we get

xp = 0.00 . ' . (v.B.6)

and.

*p

. 0
Equation (IV.9) then determines Xp

26.11 (GeV/e)2 . . (V.B.7)

kP' = 0.016 . ' . (v.B.8)

With aPo(t), 759, EPO and a linear approximation for
aPP(t) determined, our model for the Pomeron trajectory is completly

'specified. The curvature of the cut trajectory, near t =0, has been
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‘neglected, since it is much smaller-than that of the pole trajectory,

as can easily be seen from
aPP(t) = eaP(t/u) - 1.

In Fig. 1 we show the discontinuity of B(j,t) across the
j- plane cut, as given by (V A.2), for t = 0. The peak value is at
= aPP(O) - ePo,’ The 1ntegrated dlscontinulty, which is the ares
under the curve is almost equal to the residue of the Pbmeron pole.
Thus, at t_=:0, the Pomeron pole and two-Pomeron cut are eqpally
" important, in our model.

So far, the amplitude we wrote was for Pomeron-Reggeon
"scattéring". The simplest way to obtain a similar émplitude for
proton-proton séattering is to use the reéult of.Ref. 12 which amounts
to replacing 7;9 in the numerator of (III.10) by é’tpdependent
factor 7P(t), which we parametrize by v

At

7,8 = vy e? . . o (B)

This term is essentially the square of the Pbmeron-proton-ﬁroton
vertex._ Thus, the'absorptive part for proton proton scattering_is.:
_calculated from the aﬁsorptive part for Pomeron-Pomeron "scatﬁering”
by the:relation »

7 (%)

App(s,t_) X ;3;)— A(s,t) . (v.B.10)

It follows that the elastic cross section for proton proton

has the standard high-energy form

]

- he
i

PP
dse&

: . 2
i ] 1
P - 4 i s - - s D
3t LT iA(s, t Ii cot 3 7 Q (t)[ (v.B.11)
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where we ignored spin, a simplification legitimate near t = O.

The slope parameter is defined by

P_ ) g - [ >/< tof | | _(V'B'lz)

" We solve Eg. (IV.1) for aP(t), then calculate A(s,t) using
(V.A.1), and do/dt using (V.B.11), end finally p using (V.B.12).

We use for XP the value
A, =beT5 (Gev/e)F - (v.B.13)

which is obtained by fitting the experimental data on the slope
parameter in the outer t-region (the unperturbed region in our model)

to the Regge forml

P =2n +ea s ' (v.B.1k)

-In Fig. 2, we show our result for the slope parameter, as a
function of t, for £n's = 8. In Fig. 3, we show the same for
tn s = 6. The slope parameter, at t = 0, is shown in Fig. L as ¢n.s

is varied. For t S -0.1 (GeV/c)2 the slope parameter'can,be

. calculated from (V.B.14) with ' = 0.1. We obtain for the effective

‘Pomeron trajectory,. as defined by (V.A.L), the expansion .

a;ff(t) X 0,99 + 0,25t + O.75t2 oo (V.B.15)

A quélitative agreement with experiment is thus obtained with
our oversimplified model ﬁithout adjusting any free parameter. However,
if we were to relax the second bootstrap condition, we could regard

P

N, as a free paraméter. Also, the values of the triple Pomeron

coupling and the Pomeron slope at 't = 0, are known only roughly. By
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. 0. : .
varying XP 3 gPPP and bP within reasonable 1imits:we can improve

the agreement of our results with experiment.

V.C. The Intercept of the Rho Trajectory

In?this case the R trajgctory is‘a rho.

The unperturbed trajectory is ﬁhe one obtained by fitting the
differential cross sec@ion data for =« p - ﬁon, in the unperturbed

region -t % 0.15 (GeV/c)z.. We take

., . A , o
@ () = 0.55 +t . (v.c.1)

We determine xp by adjusting the intercept of the effective trajectory,

at the Serpukhov energy (¢tn s ~ 5), to come out to be 0.68 in

accordance with (I.1). We find

x, = 0.2 . (v.c.2)

The slope of the rho trajectory can, in principle, be obtained
from (IV.l}). This equation, however, has no real root while aR(t)
is, in our model, essentially real. We therefore abandon, at this
point, the second bootstrap condition, and instead concéntrate on
the requirement that the inteiaction be localized near t = 0. To
1Vob£ain a large value of.'xbo we need a negétive value of bD such,‘

‘that !bpl <bp . Teking for b the value

b = -0.2 (Gev/c)'2 : ((V.C.B)
‘we get for xpo, erm Eg. (IV.3) 7

xéo - 27.38 (CeV/e)™2 ‘ o (v.c.k)
We now determine »epo, using.(IV.E). We get

'epo' - 0.04 o _ © (v.c.5)
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and from (II1.8) we obtain

2

0 1 0 -3, e
= x 1.38 ! .C.
7, %7 €pp, p 1.38 x 1077 GeV (v.c.6)
or
: . . v.C.
€Po,0 0.26 GeV o (v.c.7)

This value of -ggp’p is very reasonable when compa?éd to the
énalogous gPP',P' obtained from the-Dgck model.lh'.There exists mo -
experimental determinatioh og this coupling that we know of.

The discontinuity of B(j,t) across the j-plane cut, for
t ; 0, 1is shown in Fig. 5. There are two peaks, one of them is

0 , the other is between

between aPé(O) and aPp(O) -,
aPp(O) - epo and apo(o), rather close to apo(o). The ares under
tﬁe second peak is the largest and is much larger than the rho residue.
Thus, at t = 0, the cut dominates over the pole in our model for
Pomeron rho scattering".

The effective rho trajectory, as defined by (V.A.4), is shown
in Fig. 6 for iLn s=5 and fns =3, Also shown'in‘Fig. 6 is the-

Serpukhov result fof the intercept at 4m s ~ 5, and the results for

. the effective trajectory, as found in Ref. h6, from the experimentall

date on x"p - 7°n at £.50 and ns~2-3.5. The agreement with
experiment is satisfactory. The predicted variation with energy of the
intercept of this effective trajectory is shown in Fig._7. The
intercept is_expectea to increase, with increasing ehergy, until it
reaches a saturation value which corresponds to the intercept‘o§~the

rho trajectory jtself. .
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V.D. The Intercept of the Omega Trajectory

The case of the omega trajectory can be understood, in our

model, if the triple Regge coupling gIh;a) is much smaller than ng
)y P

8ryyw < Bpp v (v.D.1)

That such is indeed the case is expected in the Deck modellh
and.iﬁ the Multiperipheral Modélhs in geﬁeral,‘whepe the triple Regge
céuplingS'are determined,'essentially, py the triangle of pions shown
in Fig. 8. The coupling of the omege. trajectory to two pions is zero

because of G-parity conservation.
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VI. DISCUSSION AND CONCLUSION
We ignored in this paper the t-channel unitarity effect of the
n . threshold on‘the’Pomefon9 and fhe‘rholo trajectories. The
combined effeét of this threshold and the j-plane cut can be studied
by appiyiﬁé-the effective range formalism to a coupied two-channel
system, the two channels being the PR and the nn channels.
R{j,t) of.(III.lO) will ﬁhen contain an addipional‘férm due.to'the

e threshold, and additional small curvature, near t = C, will be

~ found in the output trajectory.

Although we do not know whether to expect our model to remain
valid for positive t, since the choice (III.1) of the form factors is
then doubtful, we can speculate’thaﬁ because the pole and branch point
widen their separation the perturbatiqﬁ becomes -smaller and aR(t)
appréaches VaRO(t) -as 't increases positively.

We used in.Sec. V an energy scale factor o =1 GeVz. Thus
s must be understoodvas (s/so); A different choice for s can make

0

sO:= 0.5 GeVE, then,

same differencé.-'For example, Were we to choose
our results for: in s =8 must bé’readvfrom the resuits_of Sec. V at
ins =28 - tn So = 8 = in 0.5;_ Evidently such a change does not make
mugh differéncejfor large values of in s, 

The intercept of the effective rho trajectory is expectea, in
our model,‘to increase with increasing energy, until it reaches a
saturation value. corresponding to the intercept of the rho pole. This‘
behévior is a consequeﬂcé of our éhoice of the positive sign for the
Pomeron-rho cut. ‘If we weré to choose the negative sign, the opposite

behavior would be expected. Similar behavior of the intercept of the

Pomeron trajectory is also expected, while the experimental results

.
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_on the rise of the total cross sect;on seem toinva;idate our model. We
must remember, however, that lower Regge singularitigs,_which might
account for the rise of the total cross section, have been omitted
here. Analogous mechaﬁisms can eventually éffect the behavior of the

_intercept of the effective rho trajectory. Thus, we can only say that
if the intercept-of>the.effectiVé‘rho trajectory is seeﬁ to increase
with energy, then, the negative signﬂfor the effective Pomeron-rho cut
wquid seem to be ruled out.

- If the concept of exchange-degenerate trajectories is valid,
at relatively low energy, the mechanism displayed by our model seems
‘to bresk that éxchange-degeneracy at higher energy, unless a very
apéropriate exchange-degeneracy exists between the tripie Regge

'couplihgs involved. Arguments for such exchange degeneracy have beén,

. so faf,-either ad hoc or in conflict with G-parity conservation,h7 a
principle which also was relevant in our model as the probable reason
Beﬁiné the difference of-beh;vior between the'omeéa'and rho trajec-
tories. |

. We feel that the most interesting aspect of our model is the

. close relationship betveen the magnitude ofitriple.Regge couplings and

zalow-t deviations of tfajectories from'linearit&.- Definitiye meas-

urément of these deviations would yield independent evidence about the
¥

. corresponding triple Regge couplings.
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APPENDIX A
Consider the integral i fm ) ] £ 7 ) .é.
. _ j av exp|-(rp + 7p)(v - )| I (rg - 7p) [-vt] )
' " .
1(t) = % — 46 45 explygt! + 7pt") (a.1) 0
[-A(t,81,t")2 ' ( )2
[P S [ARNRE S Y
where | _ TRt 7 ROTEIR T gt
Me,tt") = 68+t ® e e® lote - 26t - 2pt” e I SR 7R7p t]
v ' _ _ AT ’ TRT7p R
-and the range of integration is such that A(%,t',t") < O.
The change of va.riablesh5
t -
t' = u o+ I+ (ut1? cos §

' 1
- [ut)? cos [

=t

t" = u +

" reduces I(t) +to the form

. 0 A ' . ‘
(t) ‘= % du,j ag exp‘[(‘rR + 7P)(u+ %) + (7R - 715) {ut]
-~ 0 : ’

N~

3],

(a.2)

Then we use

N~

4

t ] ag exp[hR - 7p)lut]? cos ;25} = Iol(yR - 7p) lut] ]‘
B 5 .

where IO is a Bessel function. And
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“ APPENDIX B
Consider the integral
~ -
i(wv) = Y oexp ly-L7]. (8.1)
A l y y .
“u

. Expanding the second exponential we gei

0] ’ [¢ o]
7 - n
) - N P E [ B e (s.2)
’ ;.._—3 j y
n=0 “u
we have
00
] S exp(y) = 2L exp(-ut)
: y . - u t
u
1
- Lo, (2.3)

where En+l(u) is the exponential integral for which we have the

‘handbook expansion

; : : n. o' -
- (u)? ; 1 )2
En+l(u) = _n_l)_ =vn v ¢+ Z o Z Tm“%%?ﬁ
| | | ntn

(B.4)

valid for larg ul < n ; ¢ 1is the Euler constant (0.577-+-). Putting

R
'_l

it all together, we get

@
n
-li—zg (-tn u) + terms regular at u = O.

S (al)

I(u,v) p
n=0

10.
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FIGURE CAPTIONS

The discontinuity of B(j,t = 0) across the cut for the case

" when R 1is a Pomeron. For purposes of relative normaslization

Fig. 2.

Fig. 3.
Fig. k.

Fig. 5.

Fig. 6.

‘Fig. T.

the rectangle centered at j = dP(O) has been given an area
corresponding to the Pomeron residue.

The slope parametervof the prqton-proton elastic differential

- cross section as function of t for ins =208, The straight

line is the unperturbed.vaiue. The date points are from
Barbiellini, et al.l

Similar plot to Fig. 2 for {n s'= 6.

The slope parameter of the proton-proton elastic differential
cross section as function of ¢n s for t =0,

Similar plot to Fig. 1 for the case when R 1is a rho.

The effective rho trajectory: (i) at in s = 5;

(i1) "77""" at {in s = 3. The straight line is the unperturbed
trajectory apo(t) = 0.55 + t. The data point at t =0 is
the Serpukhov result. The data points at t < 0 are from

Ref. L6 andICOrrespond to ins~2 -3.5.

'The.intercept of the effective rho trajectory as function bf

in s.
The Pomeron-omega-omege triple Regge vertex in the Multi-

peripheral Model.
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any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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