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ABSTRACT 

In the context of the Multiperipheral Model, we use an 

effective-range approximation and the forll!Ula for the discontinuity 

of the partial wave amplitude across the AFS cut to construct a model 

amplitude that incorporates the Reggeon-Pomeron cut in addition to the 

simple Regge pole. We use this amplitude in an attempt to explain the 

structure of the high energy differential cross section at small t, 

as observed at ISR. The model explains in addition the discrepancy 

between the values for the rho-intercept obtained from the differential 

cross section on the one hand and the difference of + 
1Cp total cross 

sections, at higher energy, on the other. We can also understand the 

absence of such a dis·crepancy in the case of the omega trajectory. 

I. INTRODUCTION 

The forward angular distribution of pp elastic scattering 

has been, in·recent years, the object of extensive experimental 

investigations.
1 

An interesting phenomenon has been detected, at 

intersecting storage-ring energies, of a change in slope of the 

diffraction peak. In the very small t region (It I< 0.15 (GeV/c)2 ) 

the slope is, 
2 . 

12 - 13 (GeV/ c r , and then flattens to about 

f -2 
11 (GeV c) in the larger t region (0.2 < It I < 0.5 (GeV/c)2 ). 

2 A similar situation seems to occur at accelerator energies, and 

possibly in np elastic scattering, 3 as was pointed out in Ref. 4. 

Another interesting phenomenon, this one concerning the 

intercept of the rho Regge trajectory, has arisen from the Serpukhov 

data5 for the total cross section difference 

r n P 
0
tot 

l 

+ -, 
Jl pI 

otot i' 
J 

h la fl•t . 1 6 w ere a power w g1ves a va ue 

a (o) 
p 

0.68 ~ 0.02 

whil~ from differential cross section data for 

extract an effective, linear, rho trajectory6 

(I.l) 

- 0 n P. -. n n, one can 

(I .2) 

A discrepancy thus exists between the results of two different deter-

minations of the intercept of the rho trajectory. This discrepancy is 

' compounded by the fact that in the case of the omega Regge trajectory, 

which is believed to be exchange-degenerate7 with the rho, the 

intercept obtained from the difference 
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t:,Kp or 

is close to the value given by (I.2). 

up 1 
~otJ 

Earlier attempts to understand the above phenomena were based 

on the idea that the relevant Regge trajectory, due. to the unitarity 

effect of a nearby singularity in the partial wave amplitude, exhibits 

substantial curvature near t = 0. Such curvature is indeed expected 

theoretically
8 

from the vicinity of the 2:n: threshold. However, 

numerical estimates of this effect on the curvature of the Pomeron9 

and the rho10 trajectories, owing_to the sinallness of their coupling 

to the :n::n: channel, turned out too small to account for the exper­

imental observations. 

A different mechanism for positive curvature of the Pomeron 

trajectory was anticipated from a particular version of the Multi-

- 11 
peripheral Model as a result of interaction between the leading pole 

and the leading branch point.12
' 13 The magnitude of the effect, in 

this model, is essentially determined by the value of the triple 

Pomeron coupling. This latter coupling has been estimated by the 

14 . 
Deck model · and also extracted from experimental data on inclusive 

re~ctions. 15,l6, 17 The value thus obtained was too small for this 

particular version of the Multiperipheral Model to account for the 

experimental observations. 

In this paper we attempt to explain all the experimental 

observations presented above as the result of a cO!Iimon phenomenon, 

namely the interaction between the leading pole and the leading branch 

point. The emphasis is not only on the curvature of the leading Regge 

trajectory but also on the fact that, in o1rr model, the pole-cut 

-4-

interaction turns out to be localized very near t = 0. The leading 

pole and the leading branch point are defined here as in the recent 

version of the Multiperipheral Model, namely the multifireball 

expansion.18,l9 Th us, the Pomeron is defined as the mechanism behind 

the n=gillarities shared by all diffractive processes, at high energy. 

In a given energy range, it can be simulated by an effective, fac-

20 torizable, Regge pole. The intercept of this Pomeron is taken to be 

slightly below one in accordance with Finkelstein-Kajantie.21 
A 

j-plane amplitude, containing the pole-cut interaction, is constructed 

by an effective-range type expansion in the combined complex j and 

t planes, using the formula for the discontinuity across the leading 

cut as obtained in the Multiperipheral Model.l9, 22 Our model is very 

similar to the version of the Multiperipheral Model mentioned in the 

12 previous paragraph but differs from it by the definition and exper-

imental determination of the parameters. 

The sign of the Pomeron-Reggeon cut, in our model as in the 

Multiperipheral Model, is the positive one. Several authors23, 24, 25 

have proposed a negative sign for the cut, a choice that White26 has 

shown to be unavoidable from a mathematical point of view. This, 

however, does not necessarily contradict our position since the pole 

and cut we are dealing with are effective ones (appropriate to a finite 

range of energies), defined from experiment in an operational way and 

simulating the combined effect of a complicated aggregate of Regge 

singularities. We will propose an experimental test for this sign in 

term of the behavior of the intercept of the effective rho trajectory 

as a function of energy. 
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The presentation is arranged as follows. In Sec. II, the 

effective-range formalism is described. An explicit model is suggested 

in Sec. III. In ~ec. IV, the parameters of the leading pole of our 

model amplitude are bootstrapped in term of some input parameters 

whose determination from experiment is described in Sec. v. Section VI 

contains a discussion of the results and the conclusion. The details 

of some calculations are presented in the Appendices. 

-6-

II. THE EFFECTIVE-RANGE FORMALISM 

We consider the t-channel process 

(II.l) 

where P(t) and R(t) are respectively Pomeron and Reggeon (Pomeron, 

rho, etc.)· of mass t. We designate by B(j,t;t1,t2,t3
,t4) the 

appropriate (reduced, definite signature) j-plane amplitude, defined 

as in the Multiperipheral Model. 18,l9, 22 We assume, as usual in the 

Multiperipheral Model, that this amplitude of scattering between 

Reggeons has the usual properties of real analyticity in the variables 

j and t, as if the Reggeons were particles. We also assume that 

this amplitude has a ·pole at j = ~(t), corresponding to the exchange 

of the Reggeon R, and a branch point at . j = aFR(t), corresponding 

to the double exchange of a Bomeron P and a Reggeon R, the FR 

branch point. The position of this branch point and the discontinuity 

across the associated cut are given byl9, 22 

disc. B(j,t; 
J 

1 rr dt' dt" ... 
t 1,t2,t3

,t4 ) = J::t);J :b. B(J,t; J [-A.(t,t',t").J2 

* )( B (j,t; t',t",tyt4)o(j +1- aP(t')- ~(t")) 

(II.2) 

where ap(t) and ~(t) are the Pomeron and Reggeon trajectories, and 

A.(x,y, z) 
2 2 2 

- x· + y + z - 2xy - 2yz - 2zx 

is the usual phase-space factor. The range of integration is such that 

A.(t,t't") ~ 0. The normalization is as in Refs. 27 and 28. We are 

evidently dealing with the AFS branch point.23 
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Near the pole, we have 

g(t; tl,t2) g(t; t3,t4) 

j - on(t) 
(II.3) 

where g(t; t 1,t2 ) is the (Pomeron-Reggeon)-Reggeon, (P.R)R; vertex 

function. 14 

The key assumption which allows us to carry out the effective 

range approach is that the dependence of our amplitude on the masses 

of the. external Reggeons, for j near on(t), factors out in the 

following manner: 

(II.4) 

where g(t1,t2 ) is like an "off-mass-shell" forin factor, normalized 

by 

g(O,O) = 1 (II.5) 

and B(j, t) is the amplitude when all the external Reggeons have zero 

masses. Such factorization may be obtained from (II.3) if g(t; t
1

, t
2

) 

factors accordingly. Now 

B(j, t) ,...--.... , .. _./ 

j --+ ~(t) 

i(t) 
j - ~(t) 

where g(O) is related to gPR,R of Ref. 14 by 

where 

Equation (II.2) can now be written in the form 

disc. B-1(j, t) 
J 

- p(j,t) 

(II.6) 

(II. 7) 

(II.8) 
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(' 

p(j, t) if dt 1 dt" 

J [-A.(t,t 1 ,t")l~ i(t 1,t") 5(j + 1- ap(t 1
)- on(t")). 

(II.9) 

R(j, t) 

We consider now the function 

1 
1( 

d i I ---=-- p(j I J t) 
j - j I 

1 r r dt I dt" ;:r ,t 1 1 JJ [-A.(t,t 1,t")l2 j + 1 - CXp( t I ) - on ( t 11
) 

(II.lO) 

where the delta function has been used to perform the j 1 integration. 

This function has the same branch point, in t~ complex j-plane, as 

does B-1 (j,t), and its discontinuity across the associated cut is 

such as to cancel that of B-l(j,t) so that the function defined by 

( ) -1(. ) Y j,t = B J,t .f. R(j,t) (II.ll) 

does not have .the branch point. We expand .this function in a power 

series around t = 0 and j = ~(o), keeping only the linear terms. 

We write this expansion in the form 

Y( j, t) 

where 

ono(t) 

0 
and ;R , 

0 
~' 

model. 

::: 1 
0 
/R 

1 -

and 

[j - ono(t)l 

0 b 0 t ~ + R 

are real. 

(II.l2) 

(II.l3) 

These are the parameters of the 

Substituting (II.l2) into (II.ll) we get 
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B(j,t) ~ 0 . 
j - DR

0
(t) - YR R(j,t) 

(II.l4) 

If R(j,t) consists of a regular part in addition to the 

t · · th branch po~ nt, only the singular part needs singular part con a1n1ng e ~ 

to be substituted in (II .14). The regular part gets abs.orbed in 

Y(j,t) 

The trajectory DR(t) is obtained from (II.l4) by solving for 

the real zero of the denominator 

(II.l5) 

0 
The trajectory ~(t) coincides with DR (t) if the interaction term 

~'RO R(j,t) were identically zero. Hence, we may call the linear 

DR0(t), the free trajectory, and ~(t) the interacting trajectory. 

Also, it will be seen.in Sec. 
0 V.that /R is the sqUare of the triple 

Regge coupling t ~ -0.15 (GeV/c)2, where the interaction 

term has almost died away. This coupling is very small compared to 

. 14,19 a... o(t) . the usual couplings of strong interactJ.ons. Thus, ~ can 

be thought of as the unperturbed form of DR(t), the perturbation 

being brought in by the term yR
0 

R(DR(t),t). The presence of. ~(t) 

in the perturbation suggests a bootstrap scheme that has been 

exploited in-Ref. 12 and which we will make use of in Sec. IV. 

Chew and Snider, 12 using the Multiperipheral Model, have 

arrived at a form similar to (II.l4) for the case when the Reggeon R 

is a Pomerori. In their model, the multiperipheral kernel is split 

into two pieces: a low energy component, assumed to be regular, gives 

-10-

rise to the unperturbed trajectory ap0(t), which is linear by 

assumption; and a singular high energy component produces the 

perturbation. The high energy component corresponds to the cut and 

the two components contain the whole story. Analogous to this model 

30 is the two-component model first proposed by Wilson and developed by 

a number of others3l who used it quite successfully in fitting 

multiplicity distributions in high-energy hadronic collisions, and 

which has been recently generalized to the multifireball expansion 

. 19,32 and the perturbati ve approach to the Pomeron. The Chew-Snider 

model illustrates how, in the Multiperipheral Model, one does not 

consider multi-Reggeon cuts separately. Our model, which in fact was 

inspired by theirs, can be presented using their formalism but, 

splitting the multiperipheral kernel into a 'regular piece and an 

entirely singular one. This amounts to a different definition of 

ap 
0 

( t) who now receives contribution from the regular part of their 

high energy component of the kernel. The linearity of ~0(t), in 

our model, is a consequence of the effective range approximation. 

The effective range approach and the closely related N/D 

method have been, in the past, a valuable tool for use in the energy 

plane. Recently, they have been used in the j -plane to obtain models 

::.'or the Pomeron (Refs. 33, 34, 35). . 34 Of these, the ~11-?bcharJ.asen 

model has been formulated within the context of the Multiperipheral 

Mode1 but, unlike ours, the Pomeron intercept is one and the ·triple 

Pomeron vertex vanishes at t = 0. An asymptotically self-consistent 

amplitude with a singularity structure very different from ours has 

33 been obtained. In the self-consistent model by Bronzan, the Pomeron 

trajectory is singular as it collides with the cut. This collision 
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does not occur in our model, our trajectory being analytic for t ~ 0. 

While in these models, 33,34,35 the rise of the total cross 

section36 as observed at ISR, and later confirmed at NAL, is (or can 

be) incorporated and attributed to the collision of two singularties 

producing a double pole at t = 01 this point has been bypassed by our 

model, since we ignore all effects such as secondary real poles, 

s-channel absorption, and secondary complex poles (the j-plane 

manifestation of the ~hreshold mechanism?i7 for the rising cross 

section). Whether there is a connection (or an influence) of such 

mechanisms on the experimental phenomena we are attempting to 

understand is not clear to us even though some phenomenological fits, 38 

based on the dual absorptive model, tend to support such a connection. 

. . 38 40 41 42 
Starting with Gribov and Migdal, a class of-models, ' ' 

formulated within the context of Reggeon calculus, has arrived at a 

form similar to (II.l4) in the course of modifying a bare Pomeron 

propagator. In these models, the sign of the two-Pomeron cut is 

negative and the intercept of the Pomeron is assumed to be exactly one. 

Consistency within the model, then, forces the requirement that the 

triple Pomeron vertex vanishes at t = o. All models that incorporate 

this requirement were in trouble after Brower and Weis43 discovered 

that the Pomeron must~ then, decouple from a large number of processes 

in the forward direction. Escapes from the decoupling arguments were, 

however, achieved; either by departure from the simple Regge pole 

nature of the Pomeron; 34 or by the addition of enhanced absorptive 

correction to the conventional Regge pole contribution;
40 

or by the 

nonlinearity of the Pomer6n trajectory, near t = 0, that results 

42 
from Pomeron interactions. 

-12-

Evidence for the nonvanishing, at t = 01 of the triple 

14 
Pomeron vertex exists from the pion dominance model, and from the 

recent fit17 to all available data on pp ~ px, which indicate that 

the triple Pomeron coupling shows no tendency to vanish at t = 0. 

Nonvanishing of this vertex, at this poillt, and an intercept less than 

one for the Pbmeron are vital features in our model. 
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III. A MODEL FOR R(j,t) 

In this section we will not attempt to derive an expression 

for the interaction term R(j,t), since this would require the knowledge 

of g(t',t") and the trajectories o:p(t) and ~(t) appearing in the 

definition of R(j,t) as given by (II.lO). We will instead, as is 

usually done when selecting an interaction Lagrangian in field theories, 

use the criterions of simplicity, .maniability, and plausibility. The 

actual justification must eventually come from comp3.ring the model and 

its predictions with experiment. In the spirit of the effective range 

approach, however, the model amplitude that results from the choice 

of R(j, t) must have the beforehand known singularities with their 

respective strengthes and no other singularity in the region of 

expected validity of the expansion. 

The simplest and most natural choice of g ( t ', t") is the one 

that has already been used in uany versions of the Multiperipheral 

Modell2,13,44 

g(t',t") exp [ ~ (~t' (III.l) 

where ~p and ~ are real ~s associated with the Fbmeron and 

Reggeon trajectories. Using this form in (II.lO) we get 

R(j,t). 1 Jf . dt' dt" 

T( (-A.(t,t',t"))~ 

exp(~t' + ~t"l 
(III.2) 

j + 1 - ~(t f) - ~(t ") 

Next, we use for the trajectories, under the integrals, the 

lineartled approximation 

(III .3) 

(III. 4) 
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. 45 
We rewrite R(j,t), using the identity 

1 [ dy exp[ -y(j + 1- ~(t')- ~(t"))l 
j + 1- ~(t')- ~(t'') 

and the result of the following integration, :t:erformed in Appendix A 

to obtain 

R(j, t) 1 [~ + ~ 
b + h... exp bp + h... P -R -R 

1 

2 

r -(~.::...b..::..P_-_~..::..~~) (j ~ exp -y -
Y L (bp + ~)3 

~+~ 
bp+~ (j-o:PR(t)) 

- ~(t)) ~ J 

(III.5) 

where we have identified the well-known trajectory of the branch point 

(III.6) 

The singularity of R(j,t) comes from the lower limit of 

integration. Since our concern here is to obtain an amplitude with 

only the singularities at ~(t) and ~(t), we simplify (III.5) by 

substituting for j the linearized form of ~(t) everywhere except 

at the lower limit of integration. Then we use (see Appendix B) 
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[ ~ exp [-y- ~ l 
u 

I 
n=O 

n· 
v 

(n) )2 ( -tn u} 

+ terms regular at u = 0, 

and keep only the first term ( -tn u}, since v is second order small 

in an expansion where xp and t are the small parameters. We thus 

abstract for R(j,t) the model's form 

where 

and 

0 
YR R(j, t} ----"" 

~ot 
- ~O e tn(j - o:ffi(t)_) (III. 7) 

~0 YRO ('-p + ~ \ 
--- exp bp + ~ xp} .(rrr.8) 

~0 
2 2 2 

"R (bp + bR ) + 2'-p bR 
2 

(bp + ~) 
(III.9) 

Substituting into (II.l4) we obtain our model's amplitude 

B(j,t} 

0 
rR 

j- ~0(t) + ~0 
exp("R

0
t) tn(j- o:PR(t)) 

(III.lb) 

An amplitude of this type except with a s~uare-root instead of 

the log-cut, and an arbitrary sign for 0 
~' has been discussed in 

Ref. 35· 
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IV. . THE BOOTSTRAP EQUATIONS AT t = 0 

The first bootstrap e~uation expresses the fact that the same 

trajectory ~(t) which appears in Eq. (III.2) for R(j,t), is 

given by the leading pole of (III.lO). That is 

~(t) - ~o(t) + ~o 
"Rot 

e tn[~(t) - o:FR(t)] = 0 • (IV .1) 

This e~uation and its first derivative with respect to t give, 

at t = 0 

0 0 
~ - ~ - ~ tn xp = 0 (IV.2) 

0 0 2 
b_-b +LoA.....o, ~ bR 
-R R 1:{ . :rt <-n xp + = 0 (IV .3) 

where the notation is as defined by (II.l3), (III.3) and (III.4). Also 

Eq. (III.6) for the cut has been used here. 

The residue of the pole at ~(t) is 

rR(t) 

1 + 

Near t = 0, we write 

0 
YR 

~ o_ exp(~ ot) 

~(t) - o:FR(t) 

rR(t) ~ rR exp(~t) 

(IV.4) 

(IV.5) 

The second bootstrap e~uation expresses the re~uirement that 

the same "R of (IV.5) also appear in Eq. (III.2) for R(j,t). Thus, 

at t = 0, we get from (IV.4) and its 'first derivative with respect 

to t, taking (IV.5) into account 
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0 
J'R 

J'R 
1 ~0/xp + 

(IV.6) 

and 

~0 [ -.' -, 
ol 

~ 0 
(bp +. bR)xp 

~~ 
~ + xp .· J 

(IV.7) 

where ~0 is given by (III. 9 ), or 

~0 (IV.8) 

From the case when R is also a Pomeron, we get 

0 0 0 xp- xp - €p tn xp (IV.9) 

0 

bp b 0 0 ~0 tn xp 
€p bp 

0 - p + €p + 
2xp 

(IV.lO) 

~0 (IV .11) 

(IV.l2) 

Of the above two bootstrap conditions the second is somewhat 

controversial. The two Reggeons R in the (RP,R) vertex may very 

well play different roles and introduce different t-dependence in the · 

vertex function. Also the approximation involved in getting (IV.8) is 

somewhat crude, especially when R is different from P. We therefore 

regard Eq. (IV.8) with caution and leave it to the next section, where 

the model is compared with experiment, to decide on its value. 

If Eq. (IV .8) is t&ken seriously, then ~ can be eliminated 

between (IV.7) and (IV.8) and the ~0 
thus obtained can be sub­

stituted in (IV.3) to yield for bR the equation 

~0 

0 . (IV.l3) 

If Eq. (IV.8) is not retained, then, bR would have to be 

determined by other considerations, as will be seen in the next section. 
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V. COMPARISON WITH EXPERIMENT 

V.A. The Effective Trajectory 

Almost all the information that is available to us for the 

choice of the numerical values of our input parameters is extracted 

from experimental data using models that incorporate only Regge poles. 

It is therefore important that we extract, in our model, an effective 

trajectory which, at a given energy, simulates the ccmbined effect of 

our pole and cut. 

The Mellin transform of B(j,t) for t < 0 gives the 

imaginary part, A(s,t), of the scattering amplitude, M(s,t), above 

the s-cbannel threshold 

A(s, t) ImM.(s,t) 1 
2rri 

iCD+5 J djsjB(j,t) 

-iCD +5 

where 5 is to the right of all the j-plane singularities of B(j,t). 

Our amplitude, given by (III.lO), bas a real pole at j = ~(t) and 

a cut running from j -CD to j = aFR(t). All other singularities 

are on the unphysical sheet of the j-plane, therefore, by appropriate 

_modification of the contour of integration, we get 

A(s,t) yR(t) s 
~(t) ~ /IR(t) 

-CD 

dj sj disc. B(j,t), 
J 

where the discontinuity of B(j,t) across the j-plane cut, 

discj B(j, t ), is obtained frcm · (IILlO) 

(V.A.l) 
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0 
-.rrro o A.-t 

R ~ eR 
discj B(j,t) r o 2 o ]2 . 

o o"Rt o~t lj-~(t)+~ e tn(~(t)-j)] + [rr~ e 

(V.A.2) 

The effective trajectory and the corresponding effective 

residue are defined by the relation 

A(s, t) 

or 

a;ff (t) 

eff 

7
eff( _) ~ (t) 
R t s 

d 
[tn A(s,t)} C\(tn s) 

(V.A.3) 

(V.A.4) 

Instead of having one effective pole to simulate the ccmbined 

pole-cut system, one might be tempted to approximate the cut itself 

by an effective pole. The location of this pole would be where the 

discontinuity, giv'en by (V.A.2 ), bas its peak value. This occurs at 

j solution of the e~uation 

. 0 (t) . 0 "R 0 t ( ( ) ) . 
J - ~ . + 'E e tn aFR t - j = 0. (V.A.5) 

This e~uation bas in general two real solutions, or none. If it bas 

no real solution, then, the peak of the discontinuity is at the value 

of j where the derivative with respect to j of the denominator of 

(V.A.2) vanishes, that 

j = aFR(t) -

is at 
0 

E: 0 ~ t 
R e (V.A.6) 



-21-

The effective residue, at this effective pole, would be given by the 

~under the peak, the integrated discontinuity 

!'~(t) 1 
l'( 

(V.A.7) 

Our model amplitude, as given by (III.lO ), satisfies an 

unsubtracted dispersion relation in j from which we can abstract a 
12 . . 

sum rule that the integrated cut discontinuity plus the pole residue 

is equal to the residue of the unperturbed pole, 

(V.A.8) 

whence a simple expression for /'~f(t) is obtained. 

The interaction term ~O exp(~0t) tn(j - o:ffi(t)), which 

appears in (III.lO), becomes vanishingly small for t $ -0.15 (GeV/c)2 • 

0 0 
This happens because ~ is very small and ~ is very large, as 

will be seen in the following subsections. Thus, for 
. 2 

t ~ -0.15 (GeV/c) , we expect the effective trajectory, given by 

(V.A.4), and the effective residue to reduce to the unperturbed values. 

We will make use. of this point in determining our input parameters 

from experiment in the following subsections. 

V.B. The Slope Iarameter of Proton-Proton Scattering 

In this case the R trajectory is a Pomeron. 

For the unperturbed value of the triple Fbmeron coupling we us~ 

the result of Ref. 16, extracted, from inclusive data at 

t = -0.15 (GeV/c)
2

: 

0 ~ -1 gppp 0.25 GeV . (V.B.l) 
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Hence 

(V.B.2) 

where the 16T£ comes from our normalization, as noted in (II.7). 

Equation (III.8) for 
0 

EP becomes 

/ 0 2 

gppp (~ 
. 32T£ bp exp bp 

The slope of the Pomeron trajectory, as extracted from the ISR 

1 data for proton proton elastic differential cross section, has an 

I -2 
average value of 0.37 :t 0,08 (GeV c) for t in the range 

0.05 < ltl < 0.10 (GeV/c)2, and 0.10 t 0.06 (GeV/c)-
2 

for t 

in the range 0.10 < It I < 0.30 (GeV/c )
2

• Here we use 

and 

b 0 
p 0.1 (GeV/cr

2 
• 

(V.B.4) 

(v .B.5) 

The~ we determine xp and ~ by (IV.ll), (V.B.l) and (V.B.3), we get 

and 

~ = 26.11 (GeV/cr
2 

• 

0 
Equation (IV.9) then determines xp 

0 6 xp = 0.01 . 

(V.B.6) 

(V.B.7) 

(V.B.8) 

0 0 
With o:p (t), l'p, 

0 EP o.nd a linear approximation for 

o:pp(t) determined, our model for the Pomeron trajectory is completly 

specified. The curvature of the cut trajectory, near t = 0, has been 
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neglected, since it is much smaller-than that of the pole trajectory, 

as can easily be seen from 

aPP(t) = 2ap(t/4) 1 . 

In Fig. 1 we show the discontinuity of B(j,t) across the 

j-plane cut, as given by· (V.A.2 ), for t = 0. The peak Value is at 

j = aPP(o) _ E o p The integrated discontinuity, which is the area 

under the curve is almost equal to the residue of the Pomeron pole. 

Thus, at t = o, the Pomeron pole and two-Pomeron cut are equally 

important, in our model. 

So far, the amplitude we wrote was for Fbmeron-Reggeon 

"scattering". The simplest way to obtain a similar amplitude for 

proton-proton scattering is to use the result of Ref. 12 which amounts 

to replacing lpo in the numerator of (III.lO) by a t.-dependent 

factor rp(t), which we parametrize by 

rP(t) 
')... t 

l e p 
p (V.B.9) 

This term is essentially the square of the Pomeron-proton-proton 

vertex. Thus, the absorptive part for proton proton scattering is 

calculated from the absorptive part for Pomeron-Pomeron "scattering" 

by the relation 

A ( s, t) 
pp 

l ( t) 
~ ~ A(s,t) • 
~ 0 

lp 

(V.B.lO) 

It follows that the elastic cross section for proton proton 

has the standard high-energy form 

do PP 
et 
~ r-J 

r ( ';) 
~ 
l 0 

p 

2 

I 2 I 1 12 jA(s,t)! i - cot 2 11 ap(t) (V.B.ll) 
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where we ignored spin, a simplification legitimate near t 

The slope parameter is defined by 

p ~t tn [ ( ~~ )/( ~~) t=J • 

o. 

(V.B.12) 

We solve Eq. (IV.l) for ap(t), then calculate A(s,t) using 

(V.A.l), and dcr/dt using (v.B.ll), and finally p using (V.B.12). 

We use for ~ the value 
p 

r.. =4.75 (GeV/cr
2 

p 
(V .B.l3) 

which is obtained by fitting the experimental data on the slope 

parameter in the outer t-region (the unperturbed region in our model) 

1 to the Regge form 

p = 2r.. + 2a' tn s . 
p 

(V.B.l4) 

In Fig. 2, we show our result for the slope parameter, as a 

function of t, for tn s = 8. In Fig. 3, we show the same for 

tn s = 6. The slope parameter, at t = 0, is shown in Fig. 4 as tn.s 

is varied. For t :5 -0.1 (GeV/c)2 the slope parameter can be 

calculated from (V.B.l4) with ex' = 0.1. We obtain for the effective 

Pomeron trajectory, as defined by (V.A.4), the expansion 

a;ff(t) ~ 
. 2 

0.99 + 0.25t + 0.75t + •.• (V.B.l5) 

A qualitative agreement with experiment is thus obtained with 

our oversimplified model without adjusting any free parameter. However, 

if we were to relax the second bootstrap condition, we could regard 

r..P as a free parameter. Also, the values of the triple Pomeron 

coupling and the Pomeron slope at t = o, are known only roughly. By 
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varying ~, 
0 

gppp and bp within reasonable limits ~Te can improve 

the agreement of our results with experiment. 

V.C. The Intercept of the Rho Trajectory 

In.this case the R trajectory is·a rho. 

The unperturbed trajectory is the one obtained by fitting the 

differential cross section data for - 0 :n: P-+ :n: n, in the unperturbed 

region -t ~ 0.15 (GeV/c)2 • We take 

0.55 + t . (V.C.l) 

We determine x by adjusting the intercept of the effective trajedory, p 

at the Serpukhov energy (tn s- 5), to come out to be 0.68 in 

accordance with (I .1). We find 

X 
p 

0.2 • (V.C.2) 

The slope of the rho trajectory can, in principle, be obtained 

from (IV.l3). This equation, however, has no real root while ~(t) 

is, in our model, essentially real. We therefore abandon, at this 

point, the second bootstrap condition, and instead concentrate on 

the requirement that the interaction be localized near t = o. To 

obtain a large value of 
0 

A.P we need a negative value of bp 

that Taking for b the value 
p 

-0.2 (GeV/c)-2 

·we get for A. 0 
p , from Eq. (IV.3) 

:>-.. 
0 = 27.38 (Gev/cr2 ' p 

We now determine 

E 
p 

0 

0 
€ 

p 

0.04 

using (IV.2). We get 

such. 

(V.C.3) 

(v.c.4) 

(v.c.5) 
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and from (III.8) we obtain 

(v.c.6) 

or 

(V.C.7) 

0 
This value of gPp, P is very reasonable when comp:~.red to the 

. .. k d 1 14 Th . t analogous gPP' P' obtained from the vee mo e • ere ex~s s no , 
experimental determination o~ this coupling that we know of. 

The di'scontinuity of B(j,t) across the j-plane cut, for 

t = 0, is shown in Fig. 5. There are two peaks, one of them is 

between app(O) and aPp(O) 

ap (0) - e 
0 

and a 
0

(0), p p p 

0 
- E · , the other is between 

p 
0 rather close to a (0). The area under 

p 

the second peak is the largest and is much larger than the rho residue. 

Thus, at t = 0, the cut dominates over the pole in our model for 

Pomeron rho "scattering". 

The effective rho trajectory, as defined by (V.A.4), is.shown 

in Fig. 6 for tn s = 5 and tn s = 3. Also shown in Fig. 6 is the 

Serpukhov result for the intercept at tn s - 5, and the results for 

the effective trajectory, as found in Ref. 46, from the experimental 

tn s - 2 ·- 3. 5. The agreement with 

experiment is satisfactory. The predicted variation with energy of the 

intercept of this effective trajectory is shown in Fig. 7. The 

intercept is expected to increase, with increasing energy, until it 

reaches a saturation value which corresponds to the intercept. of the 

rho trajectory itself. 
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V.D. The Intercept of the Omega Trajectory 

The case of the omega trajectory can be understood, in our 

model, if the triple Regge coupling gp is much smaller than gp 
~w ~P 

g << g • 
P~w Pp, p (V.D.l) 

That such is indeed the case is expected in the Deck mode114 

and in the Multiperipheral Mode145 in general, where the triple Regge 

couplings are determined, essentially, by the triangle of pions shown 

in Fig. 8. The coupling of the omega trajectory to two pions is zero 

because of G-parity conservation. 

-28-

VI. DISCUSSION AND CONCLUSION 

We ignored in this paper the t-channel unitarity effect of the 

1(1( threshold on the Pomeron9 and the rho10 trajectories. The 

combined effect of this threshold and the j-plane cut can be studied 

by applying the effective range formalism to a coupled two-channel 

system, the two channels being the PR and .the :rr:rr channels. 

R(j,t) of (III.lO) will then contain an additional term due to the 

:rr:rr threshold, and additional small curvature, near t = o, will be 

found in the output trajectory. 

Although we do not know whether to expect our model to remain 

valid for positive t, since the choice (III.l) of the form factors is 

then doubtful, we can speculate that because the pole and branch point 

widen their separation the perturbation becomes smaller and onCt) 

0 
approaches on (t) as t increases positively. 

We used in. Sec. Van energy scale factor s0 = 1 GeV2. Thus 

s must be understood as (s/s0 ). A different choice for s0 can make 

some difference. For example, were we to choose s0· = 0.5 GeJl-, then, 

our results for tn s = 8 must be read from the results of Sec. Vat 

tn s = 8 - tn s
0 

= 8 "- tn 0.5. Evidently such a change does not niake 

much difference for large values of tn s, 

The intercept of the effective rho trajectory is expected, in 

our model, to increase with increasing energy, until it reaches a 

saturation value corresponding to the intercept of the rho pole. This 

behavior is a consequence of our choice of the positive sign for the 

Pomeron-rho cut. If we were to choose the negative sign, the opposite 

behavior would be expected. Similar behavior of the intercept of the 

Pomeron trajectory is also expected, while the experimental results 
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on the rise of the total cross section seem to invalidate our model. We 

must remember, however, that lower Regge singularities, which might 

account for the rise of the total cross section, have been omitted 

here. Analogous mechanisms can eventually affect the peha vior of the 

intercept of the effective rho trajectory. Thus, we can only say that 

if the intercept of the effective rho trajectory is seen to increase 

with energy, then, the negative sign for the effective Pomeron-rho cut 

would seem to be ruled out. 

If the concept of exchange-degenerate trajectories is valid, 

at relatively low energy, the mechanism displayed by our model seems 

to break that exchange-degeneracy at higher energy, unless a very 

appropriate exchange-degeneracy exists bet'l<(een the triple Regge 

couplings involved. Arguments for such exchange degeneracy have been, 

so far,. either ad hoc or in conflict with G-parity conservation, 47 a 

principle which also was relevant in our model as the probable reason 

behind the difference of behavior between the omega and rho trajec-

tories. 

We feel that the most interestin~aspect of our model is the 

close relationship between the magnitude of triple Regge couplings and 

low-t deviations of trajectories from linearity. Definitive meas-

urement of these deviations would yield independent evidence about the 
' 

corresponding triple Regge· couplings. 
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APPENDIX A 

Consider the integral 

I(t) l ff dt' dt" 
= 1( [-A.(t,t',t")2 

exp[r t' + r t") p R 

where 

A.(t,t',t") = t
2 

+ t• 2 + t"
2 

- 2tt' - 2tt"- 2t't" 

and the range of integration is such that A.(t,t',t") ~ 0. 

The change of variables 
45 

t' u + 

t" = u + 

t 
4 + 

t 
4 -

reduces I(t) to the form 

1 

[ut]2 cos /J 

1 

[utl~ cos ¢ 

(A.l) 

I (t) ~l 
-CD 

rn ~ 
du. Jo d¢ expl(rR + r~(u + i) + (rR - rp)[utl~ cos ¢]. 

(A.2) 

Then we use 

./ 

~ 1 
-0 

[ 

1 1 
d¢ exp (rR - rp)[ut ]~ cos ¢ j 

. r 
Iol<rR- rp)[utl~l 

. J 

where I 0 is a Besse.l function. And 
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~ 

jo 
dv expt(rR + rp)(v- %) ] :t0~rR- rpH-vtl~) 

2 
1 [ t (rR-rP) t] 

r :;:-r exp (rR + rp) 4 - r + r 4 
R P R P 

r rRrP ] exp . t 
rR + rp l rR + rp 

l 



I (u, v) 

Consider the integral 

fs;t;) 

I 
-u 

~ exp [-y 
y 
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APPENDIX B 

v 
y 

l . 

Expanding the second exponential we get 

I (u, v) 

we have 

r u 

00 

)'' 
, ____ } 

( -l)n 

n=O 

~rl exp(-y) 
y 
• 

roo n v 
n! 

}u 

....5L 
n+l y 

dt 
tn+l 

1 
n En+l(u) 

u 

.(B.l) 

exp( -y) (B.2) 

exp(-ut) 

(B.3) 

where E 
1 

( u} is the exponential integral for which we have the n+ 

handbook expansion 

n 

En+l(u) 
(-ut 

n! 
.,-tn u - a: + r~ 

m=l 

00 

~ 
min 

(-u)m 
(m - n)m! 

(B.4) 

valid for larg u/ < rr; ~ is the Euler constant (0.577···). Putting 

it all together, we get 

I (u, v) ; 

00 

\ 
L 
n:O 

n 
_v __ (-tn u) + terms regular at 
(n! )2 

u = 0. 
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FIGURE CAPI'IONS 

Fig. 1. The discontinuity of B(j,t = 0) across the cut for the case 

when R is a Pomeron. For purposes of relative normalization 

the rectangle centered at j = op(o) bas been given an area 

corresponding to the Fb~eron residue. 

Fig. 2. The slope parameter of the proton-proton elastic differential 

cross section as function of t for tn s = 8. The straight 

line is the unperturbed value. The date points are from 

Barbiellini, et al. 
1 

Fig. 3. Similar plot to Fig. 2 for tn s·= 6. 

Fig. 4. The slope parameter of the proton-proton elastic differential 

cross section as function of tn s for t = 0. 

Fig. 5. Similar plot to Fig. l for the case when R is a rho. 

Fig. 6. The effective rho trajectory: (i) --at tn s = 5; 

(ii) -~---- at tn s = 3. The straight line is the unperturbed 

traJ'ectory ~ 0(t) 0 55 t Th d ~P • + . e ata. point at t = 0 is 

the Serpukhov result. The data points at t ~ 0 are from 

Ref. 46 and corre~pond to tn s ~ 2 - 3.5. 

Fig. 7. The intercept of the effective rhotrajectory as function of 

tn s. 

Fig. 8. The Pomeron-omega-omega triple Regge vertex in the Multi-

peripheral Model. 
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