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ABSTRACT

While conventional nutrition research has yielded biomarkers such as doubly labeled water for energy metabolism and 24-h urinary nitrogen
for protein intake, a critical need exists for additional, equally robust biomarkers that allow for objective assessment of specific food intake and
dietary exposure. Recent advances in high-throughput MS combined with improved metabolomics techniques and bioinformatic tools provide
new opportunities for dietary biomarker development. In September 2018, the NIH organized a 2-d workshop to engage nutrition and omics
researchers and explore the potential of multiomics approaches in nutritional biomarker research. The current Perspective summarizes key gaps and
challenges identified, as well as the recommendations from the workshop that could serve as a guide for scientists interested in dietary biomarkers
research. Topics addressed included study designs for biomarker development, analytical and bioinformatic considerations, and integration of
dietary biomarkers with other omics techniques. Several clear needs were identified, including larger controlled feeding studies, testing a variety
of foods and dietary patterns across diverse populations, improved reporting standards to support study replication, more chemical standards
covering a broader range of food constituents and human metabolites, standardized approaches for biomarker validation, comprehensive and
accessible food composition databases, a common ontology for dietary biomarker literature, and methodologic work on statistical procedures for
intake biomarker discovery. Multidisciplinary research teams with appropriate expertise are critical to moving forward the field of dietary biomarkers
and producing robust, reproducible biomarkers that can be used in public health and clinical research. Adv Nutr 2020;11:200–215.
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Introduction
Prevailing dietary intake assessment methods (e.g., FFQ) rely
heavily on self-reported dietary recall and have a variety of
systematic and random measurement errors. A systematic
underreporting of dietary intake, especially of total calories
and absolute amounts of macronutrients, in weight-loss trials
has been well documented (1). This problem is further
exacerbated by the increasing prevalence of “ready-to-eat
meals” in the Western diet, with incomplete ingredient lists
and inability of the participants to complete the cumber-
some and complicated dietary questionnaires. In addition,
imperfect or incomplete food composition databases can lead
to inaccuracies when food intake data are converted to the
corresponding nutrient intake data. Finally, differences in
individual metabolism, due to genetics or the gut micro-
biome, add complexity to intake measurements. Ideally, self-
reported dietary intake information should be independently
validated against a biologic or chemical marker that provides
an accurate measure of the dietary intake and exposure. For
example, candidate biomarkers, such as alkyl resorcinols for
measuring wheat and rye intake, are beginning to be used in
epidemiologic studies (2). However, such objective markers
of intake are limited to few nutrients and do not exist for most
foods and dietary patterns.

Recent advances in high-throughput MS and NMR spec-
troscopy combined with improved metabolomic, genomic,
and metagenomic techniques are now making it possible
to identify new and improved dietary biomarkers. Several
studies have demonstrated the feasibility of this combined
multiomic approach (3–5). To explore the potential of
multiomics approaches in dietary biomarker development
and to identify related challenges and approaches to address
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them, the NIH organized a workshop on “Omics Approaches
to Nutritional Biomarkers” from 26 to 27 September 2018
in Bethesda, MD. This workshop engaged nutrition and
omics researchers from the United States, Canada, and
several countries in Europe, all of whom participated in
scientific presentations and focused breakout sessions to
discuss various aspects of dietary biomarker development.

Table 1 presents a summary of the challenges and the re-
sulting recommendations from the workshop. Each challenge
is discussed in greater detail below. The recommendations
are intended to serve as a guide for scientists wishing to
identify, develop, validate, or use dietary biomarkers in their
research programs.

Dietary Biomarker Definitions and Their Utility
in Nutrition Research
A dietary biomarker enables an objective measure of either
dietary intake, its impact on host physiology or its modi-
fication of disease risk (6). Following a broader paradigm
for biomarker utility, diet-related biomarkers are typically
classified into 3 groups: 1) exposure biomarkers, 2) suscep-
tibility markers, and 3) outcome biomarkers. An exposure
biomarker provides an objective measure of dietary intake of
a particular food or nutrient (7). A susceptibility biomarker
provides information about resilience or susceptibility to
effects caused by food components, such as susceptibility
to iron overload from meat consumption. In contrast, an
outcome biomarker is used to assess how physiologic and
clinical outcomes are affected by nutrient exposures (8). In
addition to this “classical” set of biomarkers, several other
dietary biomarker classification schemes have also emerged
in the field of nutrition, depending on how a biomarker
changes in relation to intake and length of exposure (6, 9).

No single classification scheme covers all the aspects of
dietary biomarker functions and features (9). The same com-
pound may be classified in different categories depending on
the purpose of use. For example, total plasma homocysteine
concentrations indicate folate status and serve as a marker
of nutrient status and a biomarker of treatment response to
folate supplementation (10). Most of these biomarker clas-
sification schemes assume a unidirectional interaction, with
specific dietary components affecting physiologic systems.
However, it is increasingly recognized that the relationship
between dietary components and physiologic systems is
bidirectional. In fact, dietary components affect the host’s
physiology, which in turn has an impact on how these dietary
substances are metabolized (Figure 1). Moreover, the food-
host metabolic interaction is embedded in a broader cultural
and environmental system that influences the type and extent
of food exposure and affects the metabolic end products (i.e.,
biomarkers) detectable in human biospecimens.

The application of metabolomics allows a better char-
acterization of this bidirectional relationship between diet
and physiology, enabling the measurement of both nutrient
and nonnutrient metabolites that could serve as candidate
biomarkers (11). However, nonnutrient markers are not well
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TABLE 1 Strategies and approaches for advancing dietary biomarker development1

Challenges Recommendations/resources needed

Define dietary biomarkers and their utility in nutrition research
Multiple dietary biomarker definitions in use Adopt a universally accepted biomarker classification scheme with a

well-developed ontology for use by the nutritional epidemiology and
dietary biomarker community

Lack of publicly available comprehensive databases
on dietary biomarkers

Develop or expand well-curated, publicly available international databases
on dietary biomarkers such as Exposome-Explorer and Phenol-Explorer
for prioritization of candidate biomarkers

Lack of comprehensive food composition databases Develop and maintain comprehensive food composition databases
Approaches to studying biomarkers

Studies are often conducted with no clear regard for
human heterogeneity

Capture information on host factors (e.g., genetics, gut microbiome,
behavioral and cultural practices) that may help to explain heterogeneity
in dietary biomarker measures

Current feeding studies are “siloed” and often single
studies conducted for a shorter duration, involving
smaller sample sizes

Conduct larger CFSs, testing a variety of foods and dietary patterns across
diverse populations to identify universal candidate biomarkers

Shortage of appropriately collected specimen
repositories for dietary biomarker development

Collect a variety of biospecimens (e.g., fecal samples, blood cells, saliva,
toenails, hair) as part of feeding studies to discover and validate both
short- and long-term dietary biomarkers

Leverage existing biospecimen repositories from feeding studies and
prospective cohorts to validate dietary biomarkers

Encourage long-term storage of biospecimens from completed feeding
studies for dietary biomarker development studies

Lack of standardized specimen collection and
processing protocols for omics analysis

Implement well-standardized specimen collection and processing
protocols to ensure reproducibility, comparability, and generalizability
across studies

Cumbersome sampling procedures and lack of
integration of advanced devices for sample
collection

Develop new sampling techniques for efficient collection and wider
acceptance and improved adherence in large studies (e.g., dried blood
spots) and adopt wearables and smartphone devices that allow for
continuous metabolite monitoring

Analytical and statistical considerations of biomarker development
Metabolite coverage and reproducibility Encourage sharing of spectral data and chemical databases of biologically

feasible structures of metabolites
Support internationally co-ordinated efforts for providing resources on

food constituent libraries and biomarker data from various laboratories
Facilitate distribution of relevant metabolite standards (e.g., Food

Compound Exchange)
Shortage of strategies to evaluate variation within and

between laboratories
Develop standardized approaches for evaluating laboratory variation and

normalizing for drift and differences across laboratories
Shortage of statistical methods for handling

measurement error and applying to dietary
exposure assessment

Conduct methodologic work on statistical procedures for intake biomarker
discovery and disease application

Sharing sensitive metadata across laboratories is
difficult

Establish secure portals accessible via cloud computing and portability
environments for sharing metadata

Lack of minimum reporting standards for statistical
analytic pipeline/workflow for nutritional
metabolomics studies

Establish minimum reporting standards to support study replication

Dietary biomarker discovery and validation
Dietary biomarker development is lengthy with no

clear validation criteria
Adopt a universal dietary biomarker validation strategy that is accepted by

the nutrition research community
Untargeted metabolomics produces multiple

metabolites with no quantitative measures
Develop targeted and quantitative assays for validation studies after initial

biomarker identification
Areas where more data are needed

Lack of comprehensive food composition databases Create and maintain truly comprehensive food composition databases by
expanding existing databases, such as FooDB, in terms of chemical
coverage and breadth of human food intake

Integrate more fully the various food composition databases using shared
links, common identifiers, and common ontologies

Extend food composition databases to archive experimentally acquired or
accurately predicted referential MS/MS and/or NMR spectra data to
facilitate food or dietary biomarker identification

(Continued)
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TABLE 1 (Continued)

Challenges Recommendations/resources needed

Lack of concerted efforts and community resources
necessary for dietary biomarker development

Support international efforts to prepare, acquire, or synthesize authentic
food-specific compounds and their MS/MS and/or NMR spectra and
enable access via open-source databases (e.g., GNPS, MoNA, FooDB,
HMDB, the Metabolomics Workbench, and MetaboLights)

Support international efforts to prepare, acquire, or synthesize authentic
gut-derived, liver-derived, or similarly biotransformed food compounds
and their MS/MS and/or NMR spectra. Facilitate access, via open-source
databases such as GNPS, MoNA, FooDB, HMDB, the Metabolomics
Workbench, and MetaboLights

Improve algorithms and open-access software to more accurately predict
metabolic biotransformation products (mimicking liver, microbial, or
promiscuous biotransformations) to facilitate in silico metabolomics

Improve algorithms and open-source software to more accurately predict
MS/MS spectra (at multiple collision energies and on different platforms),
NMR spectra, collisional cross-section data (for IMS data), and GC or HPLC
retention times of small molecules

Specificity is a challenge for dietary biomarker
development

Use combinations of biomarkers from either a single study or pooled data
from several feeding studies to increase marker specificity

Develop reference ranges for biomarkers across different populations and
age ranges (children compared with adults)

Integration of dietary biomarkers with other omics techniques
Neither genomics nor metabolomics tools alone

provide complete understanding of how dietary
components are metabolized

Integrate other omics methods in dietary biomarker analysis with a view to
understanding the impact of individual variation and personalized
responses

Identify and further explore the effect of SNPs on dietary biomarker
measures

Improve tools (databases, software, statistical methods) to facilitate the
integration of genomics, metagenomics, proteomics, and metabolomics
data in nutritional studies

Lack of systematically collected catalogs of SNPs Continuously update databases or catalogs of SNPs, genes, and gene
signatures that alter the metabolism, presence, or abundance of known
and potential dietary biomarkers

Other critical elements
Lack of concerted efforts for biomarker development Foster collaboration among multidisciplinary researchers

Encourage public–private partnerships for collecting and sharing the data
on dietary biomarkers that would not be otherwise freely available

Train early career scientists in dietary biomarker development
Lack of common ontology for dietary biomarker

literature
Support standard ontology efforts through development of newer and

broader algorithms for electronically mining the literature
Convene taskforces for developing common data elements for dietary

biomarker research
1CFS, controlled feeding study; GNPS, Global Natural Products Social Molecular Networking; HMDB, Human Metabolome Database; IMS, Ion Mobility Separation; MoNA,
MassBank of North America; SNP, single-nucleotide polymorphism.

integrated in the current paradigm of biomarker classifica-
tions, and no common biomarker ontology can address all
these classifications. In recognition of these challenges, Gao
et al. (9) developed a detailed dietary biomarker classification
framework that integrates both nutrient and nonnutrient
markers from food components.

Under this new classification scheme, exposure bio-
markers (which may be single biomarkers or combinations
of multiple biomarkers) are further classified into food
component intake biomarkers (FCIBs), biomarkers of food
intake (BFIs), and dietary pattern biomarkers (DPBs). FCIBs
are typically metabolites of chemicals present in different
foods and include both nutrients and nonnutrients. BFIs,
on the other hand, are associated with a given food type
or food group and mostly consist of nonnutrients, such as

proline betaine for citrus fruit consumption. DPBs are used
to distinguish between different dietary regimens such as
Mediterranean, Western, or Nordic diet patterns. DPBs can
include both FCIB and BFI markers from a variety of foods
found in a specific dietary pattern. This new type of diet-
related biomarker classification scheme appears to offer both
breadth and flexibility as it allows the same markers to be
used for a variety of different purposes (9).

Currently, only a few reliable intake biomarkers are
known. These include 24-h urinary nitrogen for protein
intake, doubly labeled water (DLW) for total energy expendi-
ture measurements, and 24-h urinary sodium and potassium
for sodium/potassium intake. Unfortunately, methods such
as DLW analysis are very expensive, while 24-h urinary
nitrogen or urinary sodium and potassium measurements
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FIGURE 1 Bidirectional interaction between dietary components
and physiologic systems embedded in food consumption driven
by food environments and further influenced by cultural and
lifestyle factors. Consumption of nutrients such as fatty acids,
amino acids, vitamins, trace elements, and bioactive compounds
has an impact on host physiology, affecting both the health status
and susceptibility to disease. Metabolism of dietary components is
also influenced by the genetic make of an individual. In addition,
dietary components may directly affect gut microbiota
composition and function, which may exacerbate metabolic and
physiologic outcomes, further influencing disease susceptibility.
Host physiology and altered susceptibility to disease in turn affect
how these dietary substances are metabolized.

are too cumbersome for regular participant compliance to be
used in large studies (12).

One approach that appears to be particularly promising
for finding biomarkers of macronutrient intake is the use
of isotope ratio mass spectrometry (IRMS) (13). Naturally
occurring differences in the stable isotope ratios (SIRs) of
lighter elements among foods such as carbon (13C compared
with 12C, measured as δ13C) and nitrogen (15N compared
with 14N, measured as δ15N) are reliably incorporated into
tissues and can be measured by IRMS. One of the advantages
of this method is that SIRs are very stable and can be
measured in a variety of biologic specimens, including
blood, hair, and toenails. Biomarkers for macronutrient food
components such as carbohydrates and protein have been
explored using SIR analysis (14–16).

Another approach is MS-based metabolomics, which is
opening the door to measuring both micronutrient and
nonnutrient biomarkers to reliably predict food intake. For
example, the Phenol-Explorer database contains information
about >500 nonnutrient plant polyphenols that are specific
for particular foods or food groups (17). Using standard
metabolomic methods and the Phenol-Explorer database to
annotate polyphenol metabolites in urine, it was possible to
measure >80 polyphenol metabolites in 24-h urine samples
and to identify good predictors of intake from some of
their main food sources such as citrus fruit, coffee, tea,
and wine as estimated with 24-h dietary records (18). More

recently, using a targeted assay for 34 dietary polyphenols
measured in urine, it was possible to study variations of
urinary excretion according to geographic variations of the
diet in 4 different countries, enabling the identification of
those phenolic compounds most strongly associated with
intake of 110 plant-derived food groups (19). A recent study
used a nonnutrient biomarker alkylresorcinol metabolite
in plasma for whole-grain consumption to demonstrate its
protective effect on the risk for ischemic stroke, revealing
its potential clinical utility (2). These examples illustrate
that metabolomics, when combined with the right kinds
of databases, can be used to identify some useful dietary
biomarkers.

Approaches to Studying Biomarkers
Study designs
Dietary intake biomarker development is best approached
as an iterative process, involving a well-integrated method-
ologic strategy from biomarker discovery through validation.
Biomarker development should also rely on sufficiently
robust study designs to identify candidate biomarkers that
subsequently can be successfully validated (20). While
controlled feeding studies (CFSs) are particularly informative
for both biomarker discovery and validation, other study
designs may be used to capture the characteristics of dietary
variation and identify candidate dietary biomarkers for a
wide diversity of foods.

Cross-sectional studies are routinely used for initial
dietary biomarker exploration for capturing the continuous
distribution of dietary constituents in the habitual diets,
including food groups, or of dietary patterns (7). Key
challenges of using cross-sectional studies to discover dietary
biomarkers lie in the limitations of common dietary assess-
ment instruments used, such as dietary recalls, food diaries,
and FFQs (21). Additional challenges relate to measurement
errors in dietary self-reporting (22), the inadequacies of
food-composition tables, and the limited generalizability
of diet-biomarker associations to other populations. Most
reported candidate dietary biomarkers arise from foods that
are routinely consumed and potentially more accurately
recalled by participants (23, 24). In contrast, foods that are
consumed infrequently are often difficult to capture with a
recall or an FFQ and typically will result in the sporadic
appearance of measurable biomarkers in blood or urine.
In such cases, cross-sectional studies may be ineffective to
identify such biomarkers, unless they have unusually long
half-lives. These biomarkers may be less easily identified and
would likely be among the more lipophilic metabolites (7).
Such biomarkers may not effectively replace traditional self-
report dietary assessment methods of longer-term exposure,
but their integration with dietary intake data may provide a
more accurate assessment of exposure.

In contrast to cross-sectional studies, which are often used
for dietary biomarker discovery, CFSs are primarily used
to evaluate the effects of diet on biologic and physiologic
processes in humans. Nonetheless, feeding known amounts
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of specific foods or nutrients to study participants also
provides an opportunity to evaluate biomarkers of dietary
exposure (25). Typically, CFSs use the same standardized
menus for all participants, thereby reducing the variation in
nutrient intake and the variance introduced by food type, as
well as by the handling, storage, preparation, and processing
of the food. These studies permit the testing of several
factors, such as the magnitude of consumption and duration
of feeding (e.g., short term compared with long term),
and can provide rich data on biomarker nutrikinetic and
nutridynamic properties, similar to drug metabolism (26,
27). CFSs also allow the assessment of metabolite variability
due to host physiology, the type of intervention (e.g.,
dietary component, food, dietary pattern), the biomarker
performance, and when and how often the samples should
be collected.

In CFSs, dietary constituents or foods may be adminis-
tered at the same dose to all participants (28), various doses
to provide a range of exposures (29), or doses based on
body weight (30). These diets also depart from participants’
habitual intake and consequently need adequate duration for
biomarker equilibration. An alternative to a set-menu CFS
is a variable-menu CFS that preserves the normal variation
in nutrient and food consumption at the individual level in
the study population. This approach requires individualized
menu plans for each participant that mimic their habitual
food intake as estimated by using a 4-d food record
and adjusted for energy requirements, on the basis of
calibrated energy estimates and standard energy estimating
equations (31).

To date, most CFSs have been conducted for shorter
durations, with small sample sizes and a limited capacity
to capture interpersonal heterogeneity. In addition, these
studies are often expensive and laborious to conduct, thereby
necessitating several methodologic compromises (limiting
the sample size, reducing the study duration, etc.) that
may potentially affect the final study results. There is no
clear consensus on the choice of feeding study designs or
sample sizes needed for dietary biomarker development and
validation. Recently, there have been attempts to combine a
variety of study designs such as crossover, controlled feeding,
and cross-sectional studies for biomarker explorations from
discovery phase to testing them in free-living populations on
habitual diets (32, 33). The final design depends, in large part,
on the specific questions being addressed.

When substantial information is available on certain
biomarkers, there may be no need to start from the
beginning of the biomarker discovery process. Small, short-
term feeding studies that yield candidate biomarkers may
be followed by studies that characterize biomarker time and
dose response. Likewise, validation and testing of biomarker
performance may be done in separate cohorts, and the
process may be repeated with necessary corrections, until an
optimal biomarker performance is achieved.

The replication of initial biomarker studies in different
populations is often necessary to generalize the results,
to accommodate population heterogeneity, and to properly

account for food choice diversity and dietary patterns. Ideally,
the first validation study should be conducted in a similar
population to the initial discovery cohort, favoring repeated
measures to minimize intraperson variation in biomarker
measures. Existing large cohorts, such as the Women’s Health
Initiative, the Framingham Health Study, and the Nurses’
Health Study, can be leveraged for large validation studies.
However, it is important to recognize the limitations of the
dietary assessment methods and the biosampling protocols
used in these types of studies. Collaborative multicenter
feeding studies using habitual diet feeding study designs
such as the one employed by the Nutrition and Physical
Activity Association Study provide an excellent opportunity
for recruiting diverse populations and exploring several
nutritional factors and candidate biomarkers (34). Citizen
science projects, such as the American Gut Project (35),
may also be useful to validate candidate biomarkers because
they rapidly generate large sample sizes, involve broad
national and international participation, and help to capture
biomarkers of more prolonged exposure to a particular
diet.

Criteria such as high sensitivity and high specificity
for the dietary intake of interest are fundamental to good
biomarkers that can be quantified in terms of the area under
the receiver operating characteristic curve (AUROC). In
addition, a potential food or diet intake biomarker should
be able to explain a sizable fraction of the feeding study
variation in the given diet. The AUROCs allow setting a
cutoff value for a given biomarker, ranging from 0.5 with
random association to 1.0 with strong association between
the biomarker and dietary consumption, and rely on the
continuous performance of the biomarker on a binary
outcome (36). The specific cut point to be met in applying
these criteria may depend on the context of the feeding
study. It may also have to be adjusted to reflect the accuracy
of estimated intake in the feeding study (e.g., accuracy of
food composition databases), as well as the study duration
and other aspects of the feeding study design. Investigators
proposing novel biomarkers need to provide convincing
evidence of a close correspondence between the actual intake
and the biomarker estimated intake, rather than simply
demonstrating a positive correlation between the two. While
the AUROCs are useful for dietary biomarker research,
their utility highly depends on the availability of good gold-
standard markers with which they can be compared for their
classification (36).

Biologic sampling
Regardless of the study design, careful consideration of
the types of biologic samples collected and analyzed is
fundamental to ensuring meaningful outcomes. In terms
of dietary biomarkers, urine appears to provide better
metabolite coverage compared with plasma due to the
relative lack of interfering proteins and the fact that many
dietary biomarkers are in higher concentrations in urine (11).
Several factors affect the choice of biospecimen matrix for
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dietary biomarkers. Different specimens may yield different
candidate biomarkers due to their unique physiologic origins
or their different duration of exposure. Specimens such
as saliva and sweat may provide insight on short-term
dietary exposures, whereas RBCs better capture medium-
term exposure (11, 37, 38), while toenails (39) and hair
appear to be promising matrices for long-term exposures
(40, 41). Assessment of biomarkers in more than 1 matrix
(both plasma and urine) will also provide information on the
distribution and dynamic range of biomarkers in the system
and their half-lives (11).

Archived biospecimens from well-conducted dietary
interventions are potentially very useful resources for
biomarker discovery and validation. However, precise in-
formation on the stability of certain dietary biomarkers
upon storage and sample handling practices, especially for
multisite studies is needed. It is important to determine
potential confounders that contribute to metabolite variabil-
ity. Currently, there are several large repositories for plasma
and serum (42). Unfortunately, there are not many cohort
studies with repositories containing urine samples. While
urine is often the preferred biomatrix for dietary biomarker
studies, it is also important to remember that many use-
ful dietary biomarkers have been identified in plasma,
although sample collection requires trained phlebotomists
(7). Indeed, the dietary metabolites with the strongest food
correlations in population studies tend to replicate in both
blood and urine and predict habitual diets (24). For this
reason, it is still useful to expand dietary biomarker studies
in blood-based (plasma) specimens. Overall, the lack of
appropriately collected, publicly accessible repositories of
specimens from intervention and cross-sectional studies
represents a continuing impediment to dietary biomarker
discovery and development. Certainly, encouraging the long-
term storage of biospecimens from completed feeding studies
will expedite the biomarker discovery and development
process.

There is a critical need to standardize specimen collection
and sample processing protocols to ensure greater repro-
ducibility, comparability, and generalizability across studies
(43). For instance, Lloyd et al. (44) conducted a systematic
validation of biomarkers of habitual citrus fruit intake and
demonstrated that both spot and overnight fasting urine
samples provide a good correlation with FFQ data. Garcia-
Perez et al. (43) explored the timing of urine collection and
compared the quantification of biomarkers in spot urine with
24-h urine samples.

Although repeated samples are highly desirable for
accurate quantitative measurement, single samples may
also be reasonably informative, especially for frequently
consumed foods (45). This is especially true for biomarkers
showing good reproducibility over time, which are well
suited for prospective studies involving larger cohorts (45,
46). Furthermore, sample handling (standing time, storage
temperature, and freeze/thaw cycles) affects many metabo-
lites, which obviously affects the robustness of any identified
metabolite biomarkers. However, if samples are handled

consistently, then biomarker-outcome associations (e.g., in
nested case-control studies) can still perform well. Nonethe-
less, standardized sample handling practices should be
encouraged.

The development of new sampling techniques is also
becoming important to enable more efficient, cost-effective
sample collection and better coverage in larger cohort
studies. This is particularly important for studies with
geographically isolated cohorts (47). For example, dried
blood spots are proving to be an inexpensive method for
sample collection and storage; they require minimal spe-
cialized equipment and offer several advantages, including
convenient transportation (48). Novel gastrointestinal tract
sampling methods are emerging that may identify novel
dietary biomarkers related to intake and food microbial
metabolism (49). Advances in wearable technology that
can continuously monitor metabolites or allow intermittent
sampling will likely complement and expedite the biomarker
development process.

Analytical and Statistical Considerations in
Biomarker Development
Analytical and technological issues
High-throughput, untargeted metabolomics approaches
have revolutionized dietary biomarker development,
allowing unbiased interrogation of both nutrients and
nonnutrients. Several analytical methods, including NMR,
MS combined with LC, and GC, have been used for dietary
biomarker research. These methods differ in their sensitivity,
sample processing requirements, and metabolite coverage.
NMR is a robust, relatively unbiased, inherently quantitative
method that allows novel metabolite identification and
requires little sample processing. However, NMR suffers
from low sensitivity, enabling detection and/or quantification
of 30–100 different, more abundant metabolites in a given
biologic sample. GC-MS is ideal for detecting a variety
of nutrients (amino acids, sugars, organic acids, steroids,
fatty acids, and volatile metabolite analysis), and it is
sufficiently sensitive to detect ≤300 different chemicals in
certain biomatrices. However, GC-MS requires extensive
sample workup and sample derivatization, making it more
time-consuming and more difficult to quantify compounds
than NMR. High-resolution LC-MS is a highly sensitive
technique that allows the detection of ≤10,000 features
and the identification of between 400 and 1500 different
chemicals depending on the platform and method (targeted
compared with untargeted). LC-MS is particularly suitable
for detecting nonnutrient metabolites that occur in very
low concentrations. As a result, it is gaining popularity as
the preferred platform in both metabolomics and dietary
biomarker studies. One of the limitations of LC-MS is
that no single LC system can cover all metabolite classes.
Hydrophilic interaction chromatography typically must be
used to separate more polar metabolites, reversed-phase
chromatography must be used to analyze neutral and
nonpolar metabolites, and chemical derivatization may be
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required to detect lower-abundance metabolites. While
obtaining relative quantitation of compounds using LC-MS
is straightforward and typical in metabolomics, determining
the absolute concentration of compounds is more difficult
and requires expensive isotopically labeled standards as
well as multipoint calibration curves. Ideally, data from a
variety of metabolomics platforms should be interrogated for
discovering and/or quantifying candidate dietary biomarkers
of specific dietary exposures.

Interlaboratory reproducibility of untargeted LC-MS
metabolomics data is another challenge and is heavily
influenced by the instrument type and design. Nevertheless,
Cajka et al. (50) have recently shown that 9 different mass
spectrometers can give rise to nearly identical results for
identical biologic samples if detection saturation is avoided.
Metabolite identification, coverage, and reproducibility are
also influenced by experimental conditions that include sam-
ple processing, storage, mode of detection, instrument run,
and choice of data reduction methods used. No standardized
and universally accepted protocols and pipelines exist for
untargeted LC-MS–based metabolomics. Furthermore, LC-
MS methods from individual laboratories are not freely
shared among the community, further reducing confidence
and reproducibility. The variability can be minimized by
adopting appropriate quality control measures such as proper
blanks, controls, and standards in the experimental runs.
There are now efforts within the metabolomics community
to develop such standards and protocols to improve reliability
and reduce variability within and across studies. It is also
important to adopt the use of pooled reference samples (such
as standard reference materials) to adjust for instrumental
differences and batch variations over time. To improve the
quality of data processing and metabolite identification,
there is a critical need for sharing the raw data, including
quality control measures and blanks for data processing.
Interlaboratory comparison of assays, with appropriate stan-
dards, should be encouraged to ensure cross-validation of
assays.

Data analysis and metabolite identification for
biomarker discovery
While thousands of “features” can be detected on untargeted
LC-MS–based metabolomics platforms, the actual identi-
fication of metabolites continues to be a major challenge.
Raw data from MS instruments must undergo several
processing steps before they can be statistically analyzed and
compared. These steps involve the removal of adducts, peak
identification and peak alignment, spectral deconvolution,
compound identification (via matching to an MS/MS spec-
trum), and multivariate statistical analysis. Many software
tools, including commercial packages, offer a wide range of
excellent features, but they all differ in their algorithms for
picking MS peaks (51–53). As a result, there is only a 50–
70% overlap between the MS peaks detected by different
packages, from the same raw data files using identical or
near-identical settings (54). Clearly, more standardization of

the data analysis pipelines and peak picking algorithms is
needed.

Compound identification, which is the next step after
spectral alignment and peak detection, typically involves the
comparison of MS/MS spectral features with well-curated
MS databases. However, there is considerable diversity in
the types of MS instruments and the types of MS spectra
that can be collected on these instruments. As a result, it
is often difficult to find a comprehensive MS database that
fits with the type of MS spectra being collected other than
the instrument-specific database provided by the vendor.
Because the vendor-specific databases are often costly or
do not cover the compounds of interest, there is a growing
need for comprehensive, open-access MS databases that
provide MS spectra for multiple platforms and that support
broad metabolite identification activities. One such database
is the MassBank of North America (MoNA) (55). MoNA
is an open-access MS database that actively harvests and
displays a large portion of the public MS/MS fragment
spectral data for metabolites into a single, web-accessible
resource containing >130,000 experimental MS/MS spectral
records from authentic compounds (including many food
compounds) and nearly 140,000 predicted spectra generated
for lipids.

Several other public databases also contain large, freely
available collections of reference metabolite MS/MS spectral
data covering multiple MS platforms (56–58). However,
these databases are also populated with a large fraction
(sometimes >80%) of predicted spectra commonly gener-
ated using programs such as MetFrag (59), CFM-ID (60),
or Mass Frontier (61). While still useful, these predicted MS
spectra are not as accurate or as correct as experimentally
collected MS spectra. Indeed, the dearth of experimental
MS spectra collected for authentic compounds continues to
be a major challenge in metabolite annotation. Recently, an
effort known as the Food Compound Exchange has been
launched to help address this problem (62). This community-
driven concept, which was sponsored by the Food Biomarker
Alliance (63), allows researchers from around the world
to freely share metabolite standards and experimentally
collected metabolite and food constituent spectra in a
collaborative manner. Efforts such as the Food Compound
Exchange should help create key community resources to
expedite biomarker discovery (62). Clearly, more support
is needed for these types of community-driven, bottom-up
efforts.

Dietary biomarker discovery
After the candidate metabolites have been identified (either
through targeted or untargeted metabolomic approaches),
the next challenge is to identify the most useful or important
biomarkers from the collection of identified metabolites.
Biomarker discovery and biomarker assessment are often
aided by the availability of specialized statistical software
packages. These packages typically use multivariate statistics
and feature selection and/or machine learning to identify 1
or more compounds that maximize the sensitivity and/or
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specificity of the biomarker or biomarker panel for the
dietary exposure on a receiver operating characteristic
(ROC) curve. While ROC curves mainly enable the strati-
fication of individuals based on their consumption of dietary
components, it may be difficult to identify individuals with
sporadic consumption. Maximizing the AUROC by selecting
the right chemical or the right combination of chemicals is
often a central goal of biomarker identification or biomarker
discovery. Several freely available webservers and software
packages such as MetaboAnalyst and Galaxy have emerged
over the past decade to provide not only comprehensive web-
based tools for routine metabolomic data analysis and func-
tional interpretation but also tools for metabolomic-based
biomarker discovery suites (64, 65). However, advanced sta-
tistical tools are essential for validating dietary biomarkers,
integrating multiomics data in nutritional studies, correcting
measurement errors in self-reported dietary reports (66), and
generating disease-diet biomarker regression models (67).
There is a clear need for greater standardization, including
standardized reporting (or minimum reporting standards),
for the statistical analysis of nutritional metabolomics data.
Similarly, standardized processes for evaluating study relia-
bility, data normalization, handling multiple testing effects,
performing study replications, and cross-validation or exter-
nal validation are also needed. In this regard, it would be
particularly useful for the community to have statistical code
repositories to foster greater uniformity and greater levels of
reproducibility.

Dietary Biomarker Validation
LC-MS–based dietary biomarker discovery can provide hun-
dreds of candidate biomarkers, but these biomarkers need
to be thoroughly validated to be meaningfully used in large
cohort studies. The goal of validation is to ensure that newly
discovered biomarkers can reliably and reproducibly predict
dietary intake of food components. Biomarker validation
requires analytical and biologic testing of the performance
of the biomarkers. It also requires an assessment of their
specificity to food components and their robustness in
larger cohorts. While several concepts exist regarding the
validation of biomarkers, there are no universally accepted
validation criteria for dietary intake biomarkers. Dragsted et
al. (20) have recently devised an 8-step validation process
that systematically assesses candidate biomarker plausibility,
dose response, time response, robustness, reliability, stability,
analytical performance, and reproducibility. Each criterion is
important for establishing overall biomarker validity but may
be evaluated in a different order, depending on the status of
the candidate dietary biomarker.

Standardized dietary biomarker validation criteria allow
the grading of markers based on their performance.
Biomarker plausibility evaluates the credibility of the asso-
ciation between the biomarker and its food components.
Plausibility can be based on a variety of sources of evidence,
including research literature or in silico analysis of pre-
dictable biomarkers from compounds in the existing food

composition databases and/or experimental data from
metabolomics. Biomarker kinetics (including dose response
and temporal response to a single acute exposure) can
be used to determine the suitability of the biomarker
over heterogeneous food intake distributions and variable
biomarker half-lives. Time-related response to multiple
exposures (e.g., medium- or longer-term feeding studies)
may yield information on the distribution pattern of the
biomarker across biologic tissues (RBCs, hair, nails, etc.).
The robustness and reliability criteria are used to determine
how the biomarker behaves in a mixed meal or as part of
a normal diet in the real world among diverse populations
(i.e., generalizability) and how it performs in comparison
with other known biomarkers or other gold standards.
Analytical performance criteria are used to determine the
biomarker performance in both qualitative and quantitative
terms, using known chemical standards ensuring a higher
level of confidence in the biomarker performance. Cross-
validation of the biomarker across laboratories confirms the
reproducibility of the biomarker against food intake and
completes the entire validation process.

This 8-step view of biomarker validation covers the entire
spectrum of biomarker development from discovery through
validation, using similar strategies and analytical platforms
as they move from one step to another, depending on
the purpose of the biomarkers. When there is substantial
information available on a biomarker or a set of biomarkers,
some of these validation steps may be eliminated to make
more significant strides toward validation. Initial studies
can employ small-scale acute feeding studies, followed by
other studies enabling characterization of other elements
such as dose and temporal response relationships or the
testing of the candidate biomarker performance in separate
cohorts. Wider acceptance and adoption of such a systematic
approach by the research community will expedite dietary
biomarker research, bridge the gaps between discovery and
validation, and turn biomarker development into a tractable
process.

Areas Where More Data Are Needed
The paucity of validated dietary intake biomarkers represents
a fundamental challenge for food and nutrition research, and
it highlights the need to acquire more data about the chemical
compounds found in food and their fate after ingestion.
Some are metabolically inert, and the biomarker compound
found in blood, urine, or feces is identical to the compound
found in a specific food (i.e., proline betaine for citrus
consumption). In other cases, the consumed nutrients or
nonnutrients are metabolically transformed by endogenous
processes or the gut microbiota. This leads to chemical by-
products that are very different from the ones originally
ingested in the food (e.g., microbial product equol from
daidzein after soy consumption). Therefore, to develop a
large set of robust, specific, and fully validated food-specific
biomarkers, it will be necessary to do 2 things: 1) acquire
more data about the chemical constituents found in food (the
“food metabolome”) and 2) acquire more data about the way
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that these chemical constituents are biologically transformed
in the human body.

More than 150 food composition databases exist; however,
most of these databases contain a relatively small number
(10–100) of nonunique compounds for a vast number of
foods. For instance, the USDA nutrient composition database
(68) contains chemical data for nearly 250,000 different
foods, but it only lists an average of 50 chemical compounds
in each food item. While this information is useful for
general nutritional assessment, it is not useful for identifying
potential food-specific biomarkers.

More recently, a small number of online, electronic
databases have emerged with more detailed chemical com-
position data for a smaller number of “raw” or mildly
processed foods (Table 2) (57, 58, 69–72). However, their
utility in the nutrition research community is limited by
their lack of visibility and their lack of standardization or
integration with each other. Another issue relates to the
fact that these databases are still relatively incomplete. Most
raw foods contain >10,000 different compounds, yet the
average compound coverage in even the most comprehensive
food composition database is <1000 compounds per food
item. Indeed, untargeted analyses of hundreds of different
foods by the Dorrestein laboratory at the University of
California at San Diego (UCSD) has found that <5% of the
detected MS peaks in any given food item can be assigned
using these databases (73) (PC Dorrestein, UCSD, personal
communication, 2018). This highlights an even more serious
problem with today’s food composition databases; that is,
they do not have sufficient authentic reference NMR or
MS/MS spectra to permit broad and accurate compound
identification. The availability of more authentic reference
spectra would permit identification of more food-specific
compounds in both foods and in human biofluids or
excreta. Fewer than 1000 food-derived compounds have
had their NMR or MS/MS spectra experimentally collected
and deposited into food-specific databases (72). The lack of
authentic chemical standards for food constituents and the
lack of authentic referential spectra are the 2 most serious
data-related issues hampering the identification, discovery,
or validation of food-specific biomarkers.

To find better food-specific biomarkers, it is important
to know more about the way that these chemical con-
stituents are biologically transformed in vivo. The fact that
gut microbial activity influences the presence/abundance
of certain food-specific metabolites adds another layer of
complexity to food-specific biomarker identification. Indeed,
the interindividual variation due to differences in host
genetics and the gut microbiome suggests that some degree
of personalization may be required to properly interpret a
number of food-specific biomarkers.

While steady progress is being made to identify food-
specific, liver-specific, and other tissue-derived and micro-
bially derived biomarkers, many challenges still exist. Just as
with food constituents mentioned above, there is a profound
shortage of authentic chemical standards and authentic
reference NMR or MS/MS spectra for these important

compounds. Fewer than 200 of these compounds appear
to exist in chemical or spectral libraries, yet they probably
number in the tens of thousands in human biofluids or
excreta (72).

Because biotransformed compounds are difficult to isolate
and expensive to synthesize via classical organic synthetic
chemistry, there are 2 emerging approaches to address these
problems. One approach is to enzymatically synthesize these
compounds, while the other approach is to computationally
generate them (in silico metabolomics). The biosynthetic
approach involves adding purified precursors to an artificial
gut (74), to homogenized fecal material (75), or to isolated
liver microsomes (76) and allowing the selected biomatrix
to perform the work. The limitation of this approach is
that substantial effort is required to purify the products
from each biomatrix and to collect the required MS/MS
or NMR spectra. Furthermore, as highlighted earlier, there
are relatively few precursor molecules (<1000) available to
feed such a biosynthetic pipeline. So, while the experimental
approach will likely generate many novel and authentic
compounds, it is unlikely to generate enough compounds to
cover >10–20% of the desired chemical space.

The in silico approach involves using computational
approaches to generate metabolite structure by modeling
biotransformation reactions (phase I, phase II, and microbial
reactions) on a known set of food constituent precursors.
Several commercial programs effectively model these bio-
transformation processes, as well as a new freeware tool such
as BioTransformer (77). Once the compound structures are
computationally generated, it is possible to identify them
in real samples by matching the observed MS/MS spectra
using tools such as CSI-FingerID (78), molecular networking
approaches via Global Natural Products Social Molecular
Networking (57), or through the comparison of observed
MS/MS spectra with predicted MS/MS spectra via CFM-
ID (60). The advantages of this in silico approach are that
it is fast, inexpensive, and not limited by the availability
of physical compounds. The disadvantages are that the
predictions are not sufficiently accurate, and no authentic
compounds or authentic spectra are generated.

Biomarker measurement should be sensitive enough
to capture dietary exposure information and should fall
within the dynamic range of measurable limits commonly
found in a population. However, dynamic ranges for most
biomarkers are not currently known. In addition, from the
personalized nutrition and health perspective, ranges may
differ depending on physiologic status and vary among
adults and children. Capturing this variation is important
to understand response compared with nonresponse to a
dietary exposure. To ensure sensitivity, concentration ranges
(for different age groups) for each biomarker should be
well defined (79, 80). Developing and establishing reference
ranges across different populations, including children and
adults, for a variety of dietary markers is helpful before
planning larger studies.

Another area where more data are needed concerns the
half-life of putative dietary biomarkers. How fast a dietary
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TABLE 2 Food metabolite databases1

Database Description Unique features Reference

GNPS Global Natural Products Social Molecular
Networking: database of raw, processed, or
identified MS/MS data

Food-specific data and includes MS/MS spectra from a
large (>3500) number of different foods

(57)

HMDB Human Metabolome Database on
small-molecule metabolites found in the
human body

A variety of endogenous metabolites with >1000
biotransformation products; data on 3056
metabolites linked to 2192 SNPs with 6777 specific
metabolite-SNP interactions; data on 2901
metabolites that vary with physiology and data on
5498 metabolites that vary with pathophysiologic
conditions

(58)

PhytoHub Plant-based metabolite database on
phytochemicals present in foods commonly
ingested with human diets

Plant metabolites with 578 biotransformation products (69)

Exposome-Explorer Biomarkers of exposure to environmental risk
factors for diseases

Data on 145 dietary biomarkers including their
concentrations in various populations, type of
biospecimens analyzed, the analytical techniques
used, their reproducibility over time, and correlations
with food intake

(70)

Phenol-Explorer First comprehensive database on polyphenol
content in foods

Plant polyphenol metabolites with 375
biotransformation products

(71)

FooDB Database on food constituents, chemistry, and
biology

Data and referential MS and NMR spectra on >26,000
food chemicals found in >720 raw or lightly
processed foods

(72)

1SNP, single-nucleotide polymorphism.

compound is absorbed and how long it stays in the system
before elimination can affect the timing of sampling and the
utility of the biomarker. For example, food components with
faster absorption and elimination kinetics have a very narrow
window for sampling (e.g., proline betaine for citrus fruits)
(44). Similarly, some biomarkers from microbial metabolism
(e.g., urolithin) can be detected only 30–45 h after the
intake of ellagitannin (81, 82). Metabolites with very short
half-lives can provide information only about recent dietary
intake, and timing of sampling contributes to variability in
measurement and the estimate of intra- and interpersonal
variation (83). Depending on study objectives, it may be
desirable to combine the metabolites with short half-lives
with self-reported dietary intake measurements or with
additional select biomarkers with sufficiently longer half-
lives (e.g., lipophilic metabolites) to reduce intraindividual
variation (7, 84). Comprehensive knowledge of the half-life of
metabolites will certainly enhance biomarker identification
approaches and expedite biomarker development. To this
end, high-throughput methods for evaluating half-lives of
metabolites (i.e., biomarkers) are needed to help advance the
field.

Integration of Dietary Biomarkers with Other
Omics Techniques
Dietary biomarkers are primarily small molecules derived
from either the food itself or the digestion and biotransfor-
mation of specific food-derived compounds. However, the
abundance and the type of potential dietary biomarkers can

be significantly altered by physiologic parameters, which can
contribute to significant interindividual variability.

Gut microbial metabolism also plays a vital role
in determining which circulating metabolites may be
present. This has become apparent in relation to several
classes of phytochemicals, including the Brassica-derived
glucosinolates and flavonoids present in a variety of
plant foods (85, 86). A well-known example is the
bacterial conversion of the soy isoflavone daidzein to
equol, which, due to interindividual differences in gut
microbial community composition, occurs in only a
subset of individuals upon soy consumption (87, 88).
The ability to characterize the gut microbiome and its
functional capacity (via 16S rRNA gene sequencing and
metagenomics, respectively) has helped to explain the
variation in production of some putative dietary biomarkers.
However, the fact that so many compounds (both endo-
genous and food derived) are affected by microbial
metabolism suggests that these effects must be considered in
selecting reliable dietary biomarkers (89).

Host genetics also has an important role in determining
both the type and abundance of certain dietary biomarkers.
Of note is the impact of single-nucleotide polymorphisms
(SNPs) on both nutrient metabolism and dietary preferences
affecting the metabolites that can be detected and potential
biomarkers. Metabolome-wide association studies (MWASs)
or genome-wide association studies with metabolomics have
linked metabolite levels to many human SNPs (90–92). So
far, these studies have identified thousands of SNPs and
thousands of metabolites that appear to covary. Some of these
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TABLE 3 Gene variants and dietary intake association1

Closest gene Reference SNP cluster ID Dietary intake association Reference

MCM6 (intron) rs182549 Lactose intolerance (94)
MCM6 (intron) rs4988235 Lactose intolerance (94)
MCM6 rs3754686 Proxy for milk intake (95)
ALDH2 rs671 Alcohol intolerance (96)
ADH1B rs1229984 Alcohol aversion (97)
ADH1C rs698 Alcohol dependence (98)
KLB rs11940694 Increased alcohol consumption (99)
TAS2R38 rs713598 Brassica vegetable and coffee

aversion
(100)

TAS2R38 rs1726866 Brassica vegetable and coffee
aversion

(100)

TAS2R38 rs10246939 Brassica vegetable and coffee
aversion

(100, 101)

OR10A2 rs72921001 Cilantro/coriander aversion (102)
CYP1A1 rs2472297 Increased coffee consumption (103)
CYP1A1 rs2470893 Increased coffee consumption (103)
AHR rs6968865 Increased coffee consumption (103)
FGF21 rs838133 and rs838145 Sweet tooth (candy preference);

increased carbohydrate and lower
fat consumption

(104–106)

RARB rs7619139 Increased carbohydrate consumption (104)
DRAM1 rs77694286 Increased protein consumption (104)
FTO rs1421085 Increased protein consumption (104)
1SNP, single-nucleotide polymorphism.

SNPs are known to account for ≤60% of the variability of
circulating levels of certain metabolites (93).

Given the significant effects of genetics on metabo-
lite levels, it is essential that anyone conducting dietary
biomarker studies carefully consider genetic data when
selecting or identifying potential dietary biomarkers. The
dietary biomarker community has 2 options: 1) use previ-
ously collected MWAS data to exclude certain metabolites
as potential dietary biomarkers (due to their strong genetic
control) or 2) use genetic/SNP data to adjust or recalibrate
dietary biomarker data to work for specific individuals. Both
approaches are feasible; however, over the short term, it is
likely that the use of pre-existing MWAS data to exclude or
disqualify proposed dietary biomarkers will be the easiest
and most cost-effective approach.

A number of interesting applications of genetics to dietary
biomarkers are also starting to emerge. Some of the most
fascinating ones may lie with the impact of SNPs on
dietary preferences. Individuals who have adverse reactions
to certain foods are unlikely to consume them and therefore
should not have nutrient markers for those foods. On the
other hand, individuals who have cravings for certain foods
will likely have an abundance of markers for those foods.
Several examples of how SNPs affect dietary preferences (and
therefore dietary biomarker levels) are described in Table 3
(94–106).

Overall, the existing evidence strongly suggests that
genomics, microbiome analysis, and metagenomics can play
a role in the detection, identification, validation, and quan-
tification of many known and putative dietary biomarkers.
Therefore, the use of other omics (i.e., nonmetabolomic)

techniques in dietary biomarker analysis can serve to
complement the metabolomic information that is normally
collected for dietary biomarker studies.

Pathways to Precision Nutrition
Simply stated, precision nutrition is the nutritional analog of
precision medicine. More specifically, it is nutrition or dietary
guidance designed to optimize health, facilitate disease
prevention, and enhance therapeutic benefit through molec-
ular (metabolomic, genomic, proteomic, metagenomic) pro-
filing at the level of the individual. Precision nutrition
approaches require a keen understanding of how genetic-
metabotype-diet interactions affect dietary biomarker levels
and determine nutrient status. There are classical examples
wherein genetic variation (i.e., SNPs) influences metabolic
differences by influencing dietary requirements and re-
sponses to different diets. For example, dietary choline
deficiency produces liver or muscle dysfunction in most
men and postmenopausal women. Fortunately, most pre-
menopausal women are actually protected against choline
deficiency, because of the hormonal induction of phos-
phatidyl ethanolamine-N-methyltransferase (PEMT), an en-
zyme that enables endogenous synthesis of choline (107).
However, a SNP in PEMT (rs12325817) prevents induction
by estrogen, making a subset of these women susceptible to
choline deficiency, which illustrates how polymorphisms in
enzymes, in critical metabolic pathways, can impair nutrient
metabolism (108). Unfortunately, these kinds of diet-related
SNPs can only be confirmed by challenging individuals with
differential diet regimens (low and high).
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From this example of differential choline metabolism, it
is apparent that precision nutrition approaches require data
on both dietary intake and SNPs. Yet, to date, no catalogs
of SNPs can inform dietitians or other clinicians about
specific nutrient requirements that might serve as the basis
for practicing precision nutrition. Therefore, there is a critical
need for catalogs of gene signatures that alter the metabolism
of nutrients. These SNPs need to be confirmed for whether
they can predict changes in a biomarker’s relationship to an
individual’s nutrient status.

Systematic integration of SNP data together with the
broader metabotype-based biomarkers will certainly advance
precision nutrition efforts. The metabotype-based personal-
ized nutrition approach uses a broader metabolic phenotype
that characterizes biologic diversity between and within
individuals. For example, comprehensive metabolite and/or
lipidomic profiles may provide insights in relation to the
response or not to dietary challenges.

Precision nutrition efforts are also emerging through
integrated studies of the microbiome and metabolome.
In particular, Zeevi et al. (109) showed how a machine-
learning algorithm that integrates metabolomic data,
dietary habits, physiologic measurements, physical activity,
and gut microbiota can predict personalized postprandial
glycemic response to complex (regular) meals. This result
was further validated in a separate cohort of 100 test
subjects and then again in a blinded randomized controlled
dietary intervention of 26 individuals. Implementing these
molecularly informed custom diets led to significantly lower
postprandial glycemic responses and consistent alterations in
the gut microbiota of these test subjects. This is an excellent
example of a well-conducted, carefully validated biomarker
study. It also demonstrates the remarkable potential of
precision nutrition and shows how customized dietary
guidance can be computationally designed to optimize health
and enhance therapeutic benefit through comprehensive,
multiomic molecular profiling.

Conclusions
It is evident that there are gaps and challenges to establishing
nutrient or food-specific biomarkers. There are also some
compelling ideas and novel resources that are starting to
emerge that may help to address these challenges. Clearly,
more human feeding studies, with well-chosen designs, are
needed to fuel the dietary intake biomarker development
process.

In addition, it is important to appreciate that dietary
biomarker development is a multidisciplinary enterprise
and benefits from engaging several collaborative efforts.
Fostering collaborations among analytical or natural prod-
uct chemists, omics (metabolomics, genomics, proteomics,
metagenomics) specialists, physicians, dietitians and nutri-
tionists, statisticians, epidemiologists, and bioinformaticians
is critical for advancing the field. Chemists are needed
to measure, synthesize, or isolate the appropriate chemical
standards and to collect the relevant referential spectra.
Omics specialists are needed to perform large-scale omics

studies to discover or validate the appropriate biomarkers.
Physicians, dietitians, nutritionists, and epidemiologists are
needed to design the diets or dietary interventions, assemble
the cohorts, collect the samples, and acquire the meta-
data. Statisticians need to be involved at various levels of
biomarker development to help with biomarker discovery
and validation, assist with data modeling, and account
for measurement error. Bioinformaticians are needed to
consolidate or integrate the data, develop data exchange
standards, create ontologies, and bring some order to this
very diverse array of data types. Finally, dedicated study
participants are needed to generate the specimens.

Interestingly, such a multifaceted collaboration aimed
at discovering food-based biomarkers has recently been
undertaken by several countries in the European Union (and
Canada) under the Joint Programming Initiative, a Healthy
Diet for a Healthy Life. Over the past 4 y the initiative, called
FoodBAll or the Food Biomarker Alliance, has generated
a wealth of data on dietary biomarkers (63). In particular,
FoodBAll brought chemists, omics (metabolomics, tran-
scriptomics, genomics) scientists, dietitians, clinicians, statis-
ticians, and bioinformaticians together to work, collaborate,
and create much-needed resources. The result has been a
number of useful tools, databases, chemical libraries, white
papers, guidelines, and other resources that are starting to
form the basis for using dietary biomarkers in nutritional
epidemiology (63). This effort has stimulated a keen interest
by many other scientific groups and communities around
the world to extend and expand these promising ideas and
resources. More support for these kinds of concerted and co-
ordinated activities is essential to advance dietary biomarker
research and to establish precision nutrition as an integral
part of the drive toward precision health.
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