
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Distributed Contour Trees

Permalink
https://escholarship.org/uc/item/9k99z474

Author
Morozov, Dmitriy

Publication Date
2014-04-23

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9k99z474
https://escholarship.org
http://www.cdlib.org/


Distributed Contour Trees ∗†

Dmitriy Morozov‡ Gunther H. Weber§

June 4, 2014

Abstract

Topological techniques provide robust tools for data analysis. They are used, for example, for feature
extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a
topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are
fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements.

We study the parallel analysis of contour trees. After describing a particular representation of a
contour tree, called local–global representation, we illustrate how different problems that rely on contour
trees can be solved in parallel with minimal communication.

1 Introduction

To make sense of the world around us, it is common in natural sciences to encode physical phenomena
as scalar functions. Sometimes this is done directly, as when pressure measurements are recorded during
physical experiments. Other times such functions are derived from the data, e.g., when the geometry of
a shape is encoded in its distance function. It is rarely feasible to understand such functions directly:
the data sets have become too large. Data analysis and visualization techniques, therefore, focus on
extracting salient features that elucidate interesting behavior in the data. In this context, topological
techniques are particularly attractive because they provide robust descriptors and help quantify the
significance of detected patterns.

Broadly speaking, topological data analysis can be viewed as a two-step process. First, we compute
a topological descriptor that summarizes the given data set. Then we use this descriptor to extract
the relevant information. In this work we focus on a way to describe the connectivity of isosurfaces
of a scalar function. Familiar in two dimensions as contours on a topographic map, isosurfaces consist
of all points in the domain of a function that have the same value. Isosurface extraction [10, 13, 15]
is a versatile technique in visualization and data analysis. One reason is that isosurfaces often have
an immediate physical interpretation. For example, isosurfaces for certain charge densities in molecular
simulations indicate boundaries of atoms or molecules; in combustion simulations, an isotherm (isosurface
of temperature) can represent the location of the flame.

∗This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the U.S.
DOE under Contract No. DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory) through the grant “Topology-based
Visualization and Analysis of High-dimensional Data and Time-varying Data at the Extreme Scale,” program manager Lucy
Nowell.
†Disclaimer. This document was prepared as an account of work sponsored by the United States Government. While this

document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the
Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any
legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof or the Regents of the University of California.
‡Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 50F-1650, Berkeley,

CA 94720. Email: dmitriy@mrzv.org.
§Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS 50F-1650, Berkeley,

CA 94720 / Department of Computer Science, University of California, Davis, One Shields Avenue, Davis, CA 95616. Email:
GHWeber@lbl.gov

1



By varying the function value and computing the corresponding isosurfaces, it is possible to explore
the behavior of the data. In this process, it is useful to know the values where interesting changes occur.
A contour tree [2] is a standard tool to describe such changes. It is a graph whose nodes represent
extrema and saddles where the number of connected components of the isosurface changes. Applications
of the contour trees include speeding up isosurface extraction by identifying and extracting each one
of their connected components by region growing [22]; manipulating individual connected components
of “flexible isosurfaces”: for example, hiding a connected component that encloses relevant portions of
the isosurface [3]; and segmenting data for volume rendering [24]. Arge and Revsbaek [1] consider the
problem of I/O-efficient contour tree simplification. Contour trees are a special case of Reeb graphs [18],
which have been used, among many other applications, for shape matching [9], tracking burning regions
in combustion simulations [23], and identifying pore structures in porous media [21].

In the above two-step view of topological data analysis, the first step is performed once — there is
only one contour tree, Morse–Smale complex, persistence diagram, etc. associated with a scalar function
— but the second step, such as the extraction of a specific isosurface, depends on additional parameters.
Therefore, a user usually repeats it over and over again (often in an interactive setting) as she explores
the structure hidden in the input.

As the size of the available data grows, it is natural for researchers to turn to larger, parallel computers
to meet their analysis needs. Most of the work on parallelization of topological computation focuses on the
first step of the above process, on using multiple processors to compute a particular topological descriptor.
Cole-McLaughlin and Pascucci [16] study parallelization of merge tree computation. Gyulassy et al. [7]
study parallel computation of Morse–Smale complexes. Shivashankar et al. [20, 19] consider the same
problem in shared memory (and on GPUs). Without focusing on the details of those procedures, we note
that their outcome is always the same: a single, monolithic topological descriptor1. Such a representation
makes it difficult to take advantage of the multiple available processors during the analysis step.

We suggest taking a holistic view and develop techniques that focus not only on how long it takes to
compute a descriptor, but also on how efficiently we can analyze it in parallel. In an earlier work [14],
we introduced a local–global representation of a merge tree. Explained in detail in Section 3, it combines
local information (the immediate responsibility of a given processor) with extra global information that
specifies where the local data fits globally. In this chapter, we show that having such representations of
two merge trees serves as a local–global representation of a contour tree. Specifically, it provides enough
information to answer queries about level sets of a function on a simply connected domain.

2 Background

Scalar functions. The central object of our study is a continuous scalar function, f : X → R. We
assume its domain X is simply connected, meaning any loop inside it can be contracted to a point. For
computational purposes, we restrict our view further. We assume that X is a simplicial complex, and
function f is defined on its vertices and is linearly interpolated on the interiors of its simplices.

Given a scalar function f : X→ R, we say that two points x, y ∈ X are related, x ∼ y, if they belong
to the same component of the level set f−1(f(x)) = f−1(f(y)). A Reeb graph is a quotient space of X
with respect to this relation, X/∼; in other words, we construct a Reeb graph by continuously contracting
the level set components of f to points. Intuitively, a Reeb graph tracks connectivity of level sets of the
function — how they merge and split — as we vary the level set threshold. When the domain of our
function is simply connected, the Reeb graph is a tree, called a contour tree [2].

If instead of the level sets of a function, we examine its sublevel sets, i.e. the sets of the form
f−1(−∞, a], we get a merge tree. Specifically, we say that two points x and y are related, if they have
the same function value, and they belong to the same component of the sublevel set f−1(−∞, f(x)] =
f−1(−∞, f(y)]. The quotient space of X with respect to this relation is called a merge tree of the function.
Intuitively, it tracks the evolution of sublevel sets of f as we vary the defining threshold parameter a.
(Symmetrically2, we can consider the merge tree of −f , which tracks the evolution of the superlevel sets
of f .) Below we use Xa = f−1(−∞, a] and Xa = f−1[a,∞) to denote the sublevel and superlevel sets of
f , respectively.

1The algorithm of [7] is an exception. It computes many descriptors, Morse–Smale complexes of smaller portions of the
domain. However, this information is not sufficient to resolve the Morse–Smale complex of the entire function. In particular,
[7] ignores how one would use such a representation for the actual analysis. In our terminology, these descriptors are the local
representations.

2Sometimes authors make distinction between merge trees of super- and sub-level sets, calling the former join and the latter
split trees. We prefer a unified terminology in this chapter.

2



xm0
s1 m1

x

m0

s1

m1
m2

s2
m2

s2

Figure 1: Local–global representation of a vertex x. On the left, the lines represent the contours of the
relevant saddles. On the right, the local–global subtree induced by x.

The full merge tree of the function f consists of the following nodes. Its leaves represent the minima
of the function; its root is the global maximum. Its internal nodes correspond to those saddles of the
function where multiple sublevel set components merge. It is often convenient to implicitly add each of
the remaining vertices to the branch of the merge tree that represents the component of the sublevel set
where the vertex first appears. Such additional vertices always have degree two in the merge tree.

Carr et al. [2] give a linear-time algorithm that combines merge trees of functions f and −f into a
contour tree of function f .

Parallel setup. We assume that we have a collection U = {Ui} of sets that cover the domain of our
function, X = ∪ U . We assume that |U| = p, and we are given p processors, each responsible for a single
set in U . Specifically, we use the same indexing for processors as for the cover sets and say that processor
Pi is responsible for the set Ui. We note that this formulation fits especially well with the so-called in
situ analysis, where an external code decides how the input data is split among the different processors.
In this case, the initial set Ui is the union of the in situ blocks assigned to processor Pi; we make no
assumptions about the topology of Ui. The processors communicate by message passing.

3 Local–global representation.
Let TX denote the full merge tree of the function f . In an earlier work [14], we introduced a local–global
representation of a merge tree. Its key idea is the following. In a distributed setting, where the domain
of the function is split among many processors, in addition to the information about the connectivity of
the sublevel sets restricted to the local portion of the domain, one may record how these sublevel sets
fit into the domain globally. Such global information creates only minor overhead; it can be computed
efficiently in parallel; and, most importantly, it minimizes the need for communication during analysis.
In this section, we review this representation.

Local–global merge tree. A local–global representation of the full tree TX is defined with respect to a
subset U ⊆ X; we denote it by TX(U). For each vertex x ∈ U , we record all the sublevel set components
that contain it. We represent each component by the minimum of the function inside it. At first, x
belongs to the component of m0 in Xf(x). As we increase the threshold of the function, this component
grows until eventually, at s1, it merges into the component of m1, which, in turn, merges into the
component of m2 at s2, and so on. We get a sequence of minima and saddles, m0, s1,m1, s2,m2, . . . ,mn,
with

mn < mn−1 < . . . < m0 ≤ x ≤ s1 < . . . < sn.

Setting s0 = x for convenience, in the sublevel sets Xa, for a ∈ [si, si+1), x belongs to the component
with the lowest minimum mi; see Figure 1. It is important to note that the minima mi and the saddles si
do not necessarily belong to U — hence, the “global” part of the representation. A reader familiar with
the theory of persistent homology [6] will notice that the pairs (mi, si+1) belong to the 0–dimensional
persistence diagram of function f .

Naturally, all the relevant information appears in the merge tree TX, which, after all, records all the
components of all the sublevel sets of the function. We can think of the local–global representation
of a vertex as a subtree of TX (to be precise, a subdivision of this representation is a subtree of TX).
Accordingly, we can represent the local–global representations of multiple vertices compactly as a subtree
of TX, thus avoiding duplication of the minima whose components contain many of the local vertices.

3



Dataset Measure
Processors

32 64 128 256

prone16 local [nodes] 272,241 143,659 75,335 41,418

512× 512× 463 local–global [nodes] 289,735 154,018 82,598 45,778

time [s] 33.4 + 17.2 15 + 13 6.6 + 9.6 2.6 + 7.8

vertebra16 local [nodes] 69,693 38,236 19,708 10,277

512× 512× 512 local–global [nodes] 77,939 43,565 23,684 12,901

time [s] 40 + 6.3 15.6 + 5.1 7.4 + 3.8 2.9 + 3.4

backpack16 local [nodes] 203,792 102,019 67,698 39,951

512× 512× 373 local–global [nodes] 211,324 121,723 72,391 43,147

time [s] 23.6 + 10.5 10.8 + 8.3 5.2 + 6.1 2.1 + 6.3

Table 1: Maximum local and local–global tree sizes on any processor. In all cases, we count only the critical
nodes in the trees. The time is listed as the time to compute the local tree plus the extra time to compute
the local–global tree using our parallel algorithm [14]. Data from http://volvis.org: prone16 is a CT scan of
an abdomen; vertebra16 is a rotational angiography scan of a head with an aneurysm; backpack16 is a CT
scan of a backpack.

By definition, the local–global representation of TX with respect to U is the tree formed as the union of
(subdivided) representations of all the vertices in U .

Construction. It is easy to extract a local–global representation from the full merge tree TX. To do so,
we perform a post-order traversal that identifies the branches of the tree that contain the vertices in U
as well as the branches (with deeper minima) that they merge into.

An important contribution of [14] is an algorithm that computes the local–global representation in
parallel without assembling the entire tree TX first. In log p iterations, the processors can interleave
merging and sparsification steps to compute TX(Ui) with respect to their local subsets of the domain.
Another significant argument in favor of this representation is its size. In all our experiments, the local–
global tree TX(U) is only slightly larger than the merge tree TU of f|U , the function restricted to U . In
other words, most of the global merging data is the same for the vertices in the local domain and, thus,
creates only minor overhead; see Table 1.

Analysis routine. To understand why the local–global representation is useful, consider the following
problem. Given a threshold t, we would like to find the volume of the component of the sublevel set Xt

that contains a given point x. This component may be distributed across many processors, all but one
of which know nothing about x. However, very little communication is actually required. The processor
Pi responsible for x, i.e., x ∈ Ui, identifies the minimum m in the component of Xt that contains x.
It does this by first marching up from x towards the root of the tree TX(Ui) until it finds a saddle s
with f(s) ≤ t, but f(s′) > t for its parent s′. Pi then finds the lowest minimum m in the subtree
of s. (We will re-use this operation multiple times in the following section, so from now on we call it
component(x, t, TX(Ui)).)

Processor Pi broadcasts m (and t) to the rest of the processors. Each processor Pj finds all the
vertices in Uj that fall into the component of Xt that contains m. To do so, it traverses up from m until
it identifies the last saddle s before the traversal crosses the threshold t. (Naturally, if m is not in TX(Uj),
Pj has nothing to do.) The processor then counts the number of the local vertices in the subtree rooted
at s. The processors combine their counts via a standard reduction.

The entire process has only two communication steps: the initial broadcast and the final reduction;
the rest of the work is performed by the processors independently.

4



4 Contour Tree
Carr et al. [2] give an algorithm to combine merge trees of f and −f into a contour tree of f . However,
since we are not trying to compute the full contour tree anyway, we do not need to combine the trees.
Instead, we use the algorithm of [14] on each processor Pi to compute the local–global merge trees T+

X (Ui)
and T−X (Ui) of the functions f and −f with respect to the cover set Ui.

Chiang and Lu [4] use an implicit representation of a contour tree as two merge trees. It is, however,
unclear how to use their scheme in our (distributed) setting, since they label edges of the contour tree
by the edges of the merge trees. To do so in a distributed setting, one would have to assemble the entire
merge tree on a single processor, an expensive operation we carefully avoid. Below, instead, we use
extrema as level set labels.

In this section, we describe three problems efficiently solved using contour trees; one can interpret
them as operations on “flexible isosurfaces” [3]. We explain how to solve these problems in the dis-
tributed setting using the local–global representation. In all cases, our emphasis is on minimizing the
communication between processors.

4.1 Levelset component

Imagine a user interactively exploring a data set. She picks a point x and wants to see the component of
the level set f−1(f(x)) that contains x. Imagine that the data set is so large that it does not fit in the
memory of a single processor; therefore, it is distributed across multiple compute nodes.

x

f−1(f(x))

U

Figure 2: The level set f−1(f(x)) consists of three components. Bold line highlights the intersection of the
component that contains point x with the cover set U . Of the five components of the level set inside U only
four belong to this intersection.

Each processor must find the intersection of its local domain with the level set component that
contains the given point x. As Figure 2 illustrates, this intersection need not be connected. We solve
this problem in three steps:

1. First, we identify the component of the level set that contains point x. Suppose that x ∈ Ui. The
processor Pi identifies the component of the sublevel set Xf(x) and the component of the superlevel

set Xf(x) that contain x. As before, it identifies the component by its minimum (or, symmetrically,
maximum), which it finds by the traversals of the subtrees rooted at x, component(x, f(x), T+

X (Ui))
and component(x, f(x), T−X (Ui). We denote these extrema by minx and maxx. Processor Pi

broadcasts this pair to the rest of the processors.

2. Each processor Pj records all the local points in the subtree of T+
X (Uj) at level f(x) that contains

minx. We denote these points by Subx(Uj); they are exactly the vertices of the intersection of the
set Uj with the sublevel set component that contains x. Similarly, Pj records all the points in the
subtree of T−X (Uj) at level f(x) that contains maxx as Supx(Uj). Naturally, if minx or maxx do
not belong to their respective trees, the sets Subx(Uj) or Supx(Uj) are empty.

3. A simple (brute-force) way to extract a level set is to filter all the maximal simplices of the domain
detecting those that have both a vertex below the prescribed threshold f(x) and one above it. We
modify this procedure and find all those maximal simplices in Uj that contain a vertex in Subx(Uj)
and a vertex in Supx(Uj). Every maximal simplex that has such a pair of vertices is not only
intersected by the level set f−1(f(x)), but it intersects the component of this level set that contains
x.

5



We note that the only required communication is the broadcast of the identification of the queried
component, namely, the pair (minx,maxx). The rest of the procedure identifying the local contribution
to a level set is carried out completely independently. Naturally, an extra fourth step is necessary to
somehow collect the data, but its details depend on our specific goal. Computing total volume of the
level set component requires a single reduction; compositing such a distributed level set for rendering is
a well-studied topic in visualization [12, 11, 17].

Correctness. Why does the above procedure find on each processor Pj the intersection of Uj with the
component of the level set f−1(f(x)) that contains x? The following theorem implies the answer.

Theorem 1. If X is simply connected, then a component of the sublevel set Xb can intersect a component
of the superlevel set Xa in at most one component of the interlevel set f−1[a, b].

Proof. Informally, the statement and the proof of the theorem are simple: if a component of Xb intersected
a component of Xa in two components of f−1[a, b], then we could take two paths from the first component
to the second. The first path would lie entirely in Xb, while the second path would lie entirely in Xa.
Composed together these paths would form a non-contractible loop in X, contradicting the assumption
that X is simply connected.

To make this proof formal, we turn to the Mayer–Vietoris long exact sequence, a standard tool in
algebraic topology. To proceed, we need the notion of homology, which we have not defined. Fortunately,
we only need its very basic form. Using coefficients in a field, the 0–th homology group of a space Y ,
denoted by H0(Y ), is a vector space spanned by the components of Y . Similarly, the first homology
group, H1(Y ), keeps track of 1–dimensional cycles. If X is simply connected, its first homology group is
0, H1(X) = 0.

The necessary portion of the Mayer–Vietoris sequence has the following form:

. . .→ H1(X)
∂∗
→ H0(f−1[a, b])

(i∗,j∗)−→ H0(Xb)⊕ H0(Xa)→ . . .

The linear map ∂∗ is induced by the intersection of 1–dimensional cycles in X with the interlevel set
f−1[a, b]; the maps i∗ and j∗ are induced by the inclusions of the interlevel set into the respective sub-
and super-level sets.

The Mayer–Vietoris sequence is exact, which, by definition, means that the image of the map ∂∗ is
equal to the kernel of the map (i∗, j∗). Since H1(X) = 0, the image of ∂∗ is also 0. Therefore, the kernel
of (i∗, j∗) is 0, meaning that the inclusion of components of f−1[a, b] into the components of Xb and Xa

is an injection. Were a component of Xb to intersect a component of Xa in two components, the inclusion
of these components back into Xb and Xa would not be injective, i.e., we would get a contradiction.

Let Lvlx denote the component of the level set f−1(f(x)) that contains x. We denote its intersection
with Uj by Lvlx(Uj). The following corollary implies the correctness of our three-step algorithm. Recall
that we assume that f is linearly interpolated on the interiors of the simplices.

Corollary 2. A simplex σ ∈ Uj has a vertex u in Subx(Uj) and a vertex v in Supx(Uj) if and only if
the point y on the edge (u, v) with f(y) = f(x) belongs to Lvlx(Uj).

Proof. Let a = b = f(x). Suppose u ∈ σ belongs to the component of x in Xb, and v ∈ σ belongs to
the component of x in Xa. Let y be the point on the edge (u, v) with f(y) = f(x) (such a point exists
because the function is continuous; it is unique because the function is linearly interpolated). Point y
also belongs to the components of x in Xb and in Xa. Since these two components can intersect in at
most one component of f−1(f(x)), y belongs to the same component of the level set as x.

Conversely, if point y on the edge (u, v), with f(y) = f(x) and f(u) < f(v), belongs to Lvlx(Uj), then
y belongs to the boundaries of the components of Xa and Xb that contain x. Since the function is linear
on the edge (u, v), vertex u belongs to the component of Xb that contains x and, therefore, to Subx(Uj).
Similarly, vertex v belongs to the component of Xa that contains x and, therefore, to Supx(Uj).

Remark 3. We note that one cannot uniquely identify a branch of the contour tree of f by a minimum–
maximum pair in the respective merge trees T+

X and T−X . However, what Theorem 1 and Corollary 2
imply is that, at a fixed level a, such a pair uniquely identifies a point on the contour tree.

Component labeling. A variation on the problem of finding a single component is the consistent
assignment of labels to all components of a level set. For example, the user may want to decorate each
component of a level set f−1(a) with a unique color.

6



s

t

A B

X Y Z

A B

X Y Z

Figure 3: An interlevel set of a contour tree (left). The graph of paired components (right).

To solve this problem, each processor Pi extracts all the different components of the level set f−1(a)
that intersect its local domain Ui. It identifies each component as the intersection of components in the
sub- and the super-level sets by finding the minimum in Xa and the maximum in Xa that identify each
component. As noted before (and as Figure 2 illustrates), locally disconnected components may get the
same identification.

There are multiple ways to assign consistent labels to the components. Perhaps the simplest approach
— the one requiring no communication — is for each processor to simply hash its minimum–maximum
pairs. The components get consistent values across all the processors (since the extrema pairs are global);
with high probability, all the assigned values are unique.

4.2 Interlevel set

Imagine that we are interested in a branch of the contour tree, or, more generally, a monotone path in
the contour tree between two points x and y (we assume that such a path exists). Often such paths
correspond to interesting features in the data [24].

Theorem 1 suggests that each point on this path is uniquely identified by a minimum–maximum pair
as well as the function value. Assume f(x) < f(y). Processor Pi responsible for point x, i.e., x ∈ Ui,
finds the local–global representation of x in the tree T+

X (Ui). In other words, it finds all the minima mx
i

and saddles sxi that describe the components of the sublevel sets of the function that contain point x.
Similarly, processor Pj responsible for point y finds its local–global representation in the tree T−X (Uj),
the maxima my

i and the saddles syi . The two processors broadcast these sequences of critical points.
The two representations together uniquely identify each point on the path from x to y in the contour

tree. Specifically, let z be a point on this path. Let a = f(z) and suppose that a ∈ [sxi , s
y
j ]. The

component of z in the level set f−1(a) is the unique intersection of the component of Xa that contains
the minimum mx

i and of the component of Xa that contains the maximum my
j .

Having received the broadcasts from Pi and Pj , each processor identifies its local contribution to the
path x–y. As before, all the processors compute independently, except for the initial broadcast and the
final collective operation (for example, to compute the total volume of the feature).

4.3 Contour tracking

Consider another problem. The user has extracted a level set f−1(s) for some threshold s. The software
has identified its different components and highlighted them with distinct colors. Now the user would
like to vary the threshold a little and extract a nearby level set f−1(t), with t > s. When visualizing
it, we would like to preserve the colors of the different components as much as possible, to maintain
consistency with the level set f−1(s).

To solve this problem, we want to match the components of the two level sets. Specifically, we want
to find which components of the lower and of the higher level sets map into the same components of the
interlevel set f−1[s, t]. Put another way, we want to find the components of f−1(s) and f−1(t) connected
in the contour tree restricted to the interlevel set f−1[s, t]; see Figure 3.

Each component x of the level set f−1(s) is identified by a minimum–maximum pair (minx,maxx).
Similarly, each component y of the level set f−1(t) is identified by the pair (miny,maxy). Recall that
Theorem 1 tells us that if a component of Xt intersects a component of Xs, then it does so in at most
a single component of f−1[s, t]. Therefore, to check if the component x and the component y belong to
the same component of f−1[s, t], it suffices to check if x belongs to the component of Xt identified by

7



32 64 128 256 512

1

10

Number of processors

S
ec

on
d

s

Local–global: prone16 vertebra16 backpack16
VisIt: prone16 vertebra16 backpack16

Perfect scaling:

Figure 4: Times to extract a level set component that contains a prescribed point using the local–global
representation, and the times to label all the components of a level set in VisIt. (Local–global representation
times are taken as the average of ten runs each; VisIt times show the best of ten runs.)

miny and if y belongs to the component of Xs identified by maxx. To be precise, we test the following
equalities:

miny = component(x, t, T+
X (U∗));

maxx = component(y, s, T−X (U∗)).

If both equalities are true, we know that the component of x in the superlevel set Xs intersects the
component of y in the sublevel set Xt. Each processor can find all such intersections locally. The
result is a bipartite graph on the components of the two level sets, which is constructed without any
communication. As in Figure 3, this graph may not be a matching, so an auxiliary rule is necessary to
break the ties.

5 Experiments

To experiment with the local–global representation, we implemented the algorithm of Section 4.1. Given
a local–global representation of merge trees T−X and T+

X , the processor that contains a given point x
locates the minimum–maximum pair that identifies the connected component of x in its level set and
broadcasts the pair to the rest of the processors. Each processor finds the intersections of the components
of the sublevel and superlevel sets that contain point x with its local domain. If neither one of these
intersections is empty, the processor iterates over every tetrahedron of the Freudenthal triangulation of its
local domain Ui. For each tetrahedron, we check whether it contains a point in the sublevel set component
and another point in the superlevel set component. If it does, we find and record its intersection with
the level set f−1(f(x)).

As a reference for the running times, we extract the same level sets and label their connected compo-
nents using VisIt [5], a state-of-the-art visualization tool. VisIt uses the algorithm described by Harri-
son et al. [8] for the parallel connected component labeling. Although the two procedures are seemingly
different — extracting a component of the level set that contains a given point versus labeling all the
components of the level set — the comparison is not absurd. In VisIt, to extract a prescribed compo-
nent, one must first label all the components and then filter out all but one of them. In other words, we
measure a lower bound for the running time of this operation. At the same time, using local–global rep-
resentation, labeling the components requires no communication, as Section 4.1 explains. Accordingly,
specific component extraction is a more involved (and, therefore, interesting) procedure.

Figure 4 shows the times it takes to perform these procedures for the same data sets as Table 1. The
clear trend is the steady decline of the running times, for the local–global representation, as we increase
the number of processors.

8



6 Conclusion
We have presented the idea of local–global representations of contour trees and explained how it can
be used for fast parallel analysis of the level sets of a function on a simply connected domain. These
representations are small, only slightly larger than the merge trees of the local domain. Our earlier
work [14] presents an efficient parallel algorithm to compute them.

Local–global representations scale down well as we increase the number of processors and, thus,
really stand out when it comes to analysis. As our Section 4 explains, because they incorporate all the
necessary global information, these compact representations let us perform variety of tasks with minimal
communication.

The most logical directions for future work are extending our construction to the more general case of
Reeb graphs and devising a seed point scheme, similar to the work of van Kreveld et al. [22], compatible
with the local–global representation. For the latter, there is a natural map from the local to the local–
global merge tree. By storing both trees and this map, we believe it is possible to improve the parallel
algorithms for level set component extraction.

References

[1] L. Arge and M. Revsbaek. I/O-efficient contour tree simplification. In Algorithms and Computation
(LNCS 5878), pages 1155–1165. Springer Verlag, 2009.

[2] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. Comp. Geom.
Theor. Appl., 24(2):75–94, 2003.

[3] H. Carr, J. Snoeyink, and M. van de Panne. Flexible isosurfaces: Simplifying and displaying scalar
topology using the contour tree. Comp. Geom. Theor. Appl., 43(1):42–58, 2010.

[4] Y.-J. Chiang and X. Lu. Progressive simplification of tetrahedral meshes preserving all isosurface
topologies. Computer Graphics Forum, 22(3):493–504, 2003.

[5] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller,
C. Harrison, G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E. W. Bethel, D. Camp,
O. Rübel, M. Durant, J. M. Favre, and P. Navrátil. VisIt: An end-user tool for visualizing and
analyzing very large data. In High Performance Visualization—Enabling Extreme-Scale Scientific
Insight, pages 357–372. CRC, 2012.

[6] H. Edelsbrunner and J. Harer. Persistent homology—a survey, volume 453 of Contemporary Math-
ematics, pages 257–282. AMS, 2008.

[7] A. Gyulassy, V. Pascucci, T. Peterka, and R. Ross. The parallel computation of Morse–Smale
complexes. In IEEE IPDPS, pages 484–495, 2012.

[8] C. Harrison, H. Childs, and K. P. Gaither. Data-parallel mesh connected components labeling and
analysis. In Proc. 11th EG PGV, pages 131–140, 2011.

[9] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully automatic
similarity estimation of 3D shapes. In Proc. 28th Ann. Conf. on Comp. Graph. and Interact. Tech.,
SIGGRAPH ’01, pages 203–212, 2001.

[10] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construction
algorithm. Computer Graphics, 21(4):163–169, 1987.

[11] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume rendering using binary-swap
compositing. IEEE Comp. Graph. Appl., 14(4):59–68, 1994.

[12] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of parallel rendering. IEEE
Comp. Graph. Appl., 14(4):23–32, 1994.

[13] C. Montani, R. Scateni, and R. Scopigno. A modified look-up table for implicit disambiguation of
marching cubes. The Visual Computer, 10(6):353–355, 1994.

[14] D. Morozov and G. H. Weber. Distributed merge trees. In Proc. ACM Symp. Principles and Practice
of Parallel Programming, pages 93–102, 2013.

[15] G. Nielson. On marching cubes. IEEE Trans. Vis. Comp. Graph., 9(3):341–351, 2003.

[16] V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of level sets. Algorith-
mica, 38(1):249–268, 2003.

9



[17] T. Peterka, D. Goodell, R. Ross, H.-W. Shen, and R. Thakur. A configurable algorithm for parallel
image-compositing applications. In Proc. SC, pages 4:1–4:10, 2009.

[18] G. Reeb. Sur les points singuliers d’une forme de pfaff complètement intégrable ou d’une fonction
numérique. CR Acad. Sci., 222:847–849, 1946.

[19] N. Shivashankar and V. Natarajan. Parallel computation of 3D Morse–Smale complexes. Computer
Graphics Forum, 31:965–974, 2012.

[20] N. Shivashankar, M. Senthilnathan, and V. Natarajan. Parallel computation of 2D Morse–Smale
complexes. IEEE Trans. Vis. Comp. Graph., 18(10):1757–1770, 2012.

[21] D. M. Ushizima, D. Morozov, G. H. Weber, A. G. Bianchi, J. A. Sethian, and E. W. Bethel.
Augmented topological descriptors of pore networks for material science. IEEE Trans. Vis. Comp.
Graph., 18(12):2041–2050, 2012.

[22] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small
seed sets for isosurface traversal. In Proc. Ann. Symp. Comp. Geom., pages 212–220, 1997.

[23] G. H. Weber, P.-T. Bremer, M. S. Day, J. B. Bell, and V. Pascucci. Feature tracking using reeb
graphs. In Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Ap-
plications, pages 241–253, 2011.

[24] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann. Topology-controlled volume
rendering. IEEE Trans. Vis. Comp. Graph., 13(2):330–341, 2007.

10




