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Improving 3D U-Net for Brain Tumor
Segmentation by Utilizing Lesion Prior

Po-Yu Kao1, Jefferson W. Chen2, and B.S. Manjunath1

1 University of California, Santa Barbara, California, United States
{poyu kao, manj}@ucsb.edu

2 University of California, Irvine, California, United States

Abstract. We propose a novel, simple and effective method to inte-
grate lesion prior and a 3D U-Net for improving brain tumor segmenta-
tion. First, we utilize the ground-truth brain tumor lesions from a group
of patients to generate the heatmaps of different types of lesions. These
heatmaps are used to create the volume-of-interest (VOI) map which con-
tains prior information about brain tumor lesions. The VOI map is then
integrated with the multimodal MR images and input to a 3D U-Net for
segmentation. The proposed method is evaluated on a public benchmark
dataset, and the experimental results show that the proposed feature
fusion method achieves an improvement over the baseline methods. In
addition, our proposed method also achieves competitive performance
compared to state-of-the-art methods.

Keywords: Brain tumor segmentation · Feature fusion · Volume-of-
interest · 3D U-Net · Lesion prior

1 Introduction

Primary central nervous system (CNS) tumors refer to a heterogeneous group
of tumors arising from cells within the CNS and can be benign or malignant.
Malignant primary brain tumors remain among the most difficult cancers to
treat, with a 5-year overall survival rate no greater than 35%. The most com-
mon malignant primary brain tumors in adults are gliomas. In a patient with
a suspected brain tumor, magnetic resonance imaging (MRI) with gadolinium
is the investigation tool of choice [13]. Manual segmentation of brain tumors on
MR images is a challenging and time-consuming task. Therefore, an automatic
and accurate brain tumor segmentation tool benefits radiologists and physician
on both diagnosis and treatment planning.

Convolutional neural networks have achieved state-of-the-art performance in
the recent Multimodal Brain Tumor Image Segmentation Benchmarks (BraTS)
[6,7,9,15]. These works focus on designing a new network architecture, loss func-
tion, data augmentation, and training and testing procedure in order to improve
the performance of brain tumor segmentation. Another method proposed by Kao
et al. [10,11] utilizes an existing brain parcellation to bring location information
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of brain into patch-based neural networks that improves the brain tumor seg-
mentation performance of networks. Inspired by their work, we directly integrate
lesion prior with multimodal MR images and input the fused information to a
3D U-Net. The proposed lesion prior fusion method includes two steps: (i) we
first create a volume-of-interest (VOI) map from the ground-truth brain tumor
lesions, and (ii) this VOI map is then integrated with the multimodal MR images
and input to a 3D U-Net for the brain tumor segmentation. The main contribu-
tion of this paper is the integration of lesion prior to a 3D U-Net architecture
that improves the brain tumor segmentation performance of the 3D U-Net.

2 Materials and Methods

2.1 Dataset

Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) 2017 [1–
3, 14] provides 285 subjects in the training set and 46 subjects in the valida-
tion set. Multimodal MR images are provided for each subject, but ground-
truth lesion mask is only available for the training subject. These MR images
include T1-weighted, contrast-enhanced T1-weighted, T2-weighted, and fluid-
attenuated inversion recovery scans, and the ground-truth lesion mask comprises
the enhancing tumor (ET), edema (ED), and necrotic & non-enhancing tumor
(NCR/NET). The dimension of each image is 240× 240× 155 in the x, y and z
direction, and the voxel resolution is 1mm3. The provided data are intra-subject
registered, interpolated to the same resolution and skull-stripped.

2.2 Volume-of-interest Map

The volume-of-interest (VOI) map is built in the Montreal Neurological Institute
(MNI) 1mm space [5], and each voxel of the VOI map has a label ranging from
0 to 9, which represents different probabilities of observing the brain tumor
lesions. First, we build the heatmaps of different types of brain tumor lesions in
the MNI space, see the workflow in Fig. 1. We apply inter-subject registration

Fig. 1. The workflow of building the heatmaps of different types of brain lesions.

which registers the ground-truth lesions of each BraTS 2017 training subject
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from the subject space to the MNI space using FLIRT [8] from FSL. We then
split the brain lesions of each subject into three binary masks, and each binary
mask only contains information of one type of lesion. For each type of lesion, we
apply element-wise summation to the binary masks of all 285 training subjects
and create the heatmap of this type of lesion. Fig. 2 shows the heatmaps of
different brain tumor lesions from BraTS 2017 training subjects in the MNI
space.

ED NCR/NET ET

Fig. 2. The heatmaps of different brain tumor lesions. The brighter voxels (yellow)
represent higher intensity values. Best viewed in color.

The heatmaps of different brain lesions are then used to create the VOI
map. The VOI map construction accounts for the fact that the whole tumor
is a superset of ET, NCR/NET and ED, and the tumor core includes ET and
NCR/NET. In addition, ETs are usually observed in patients with high-grade
gliomas whose survival rate is considerably lower than patients with low-grade
gliomas. Based on these observations, we create Algorithm 1 to generate the VOI
map and prioritize the order of the VOI labels.

Note that the VOI labels are based on the thresholds which are chosen from
the percentiles of non-zero voxels of heatmaps. For each lesion type, we sort the
frequency counts of the non-zero voxels, and the heatmaps are used to gener-
ate these frequency counts. The percentile thresholds (hed, hncr, het) are selected
from these sorted frequency counts. We then use these percentile thresholds to
create the VOI label mapping. Any given voxel location in the VOI map has
probabilities of being different types of lesion. We examined different thresholds,
and (α, β, γ) = (50, 65, 80) percentiles yield the best overall segmentation per-
formance. Fig. 3 shows the VOI map and the distribution of brain tumor lesions
occurring in the different labels of VOI map. This distribution is computed by
dividing the total voxel value of lesions in the heatmaps by the total volume of
the corresponding VOI label. This distribution shows that (i) the prior proba-
bilities of different lesions depend on their corresponding labels in the VOI label
map, and (ii) lesions have higher probabilities to happen in the larger VOI labels.

2.3 3D U-Net

Data pre-processing. Intensity normalization is the procedure of mapping
intensities of different MR images into a standard scale, and it is an essential
step to avoid initial biases and improve the performance of the network. For each
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Algorithm 1: Build the VOI map from the heatmaps of lesions.

input : A heatmap Hed of ED of size w × l × d
A heatmap Hncr of NCR/NET of size w × l × d
A heatmap Het of ET of size w × l × d

output: The VOI map V of size w × l × d
hed,1, hed,2, hed,3 ← α, β, γ percentile of non-zero voxels of Hed;
hncr,1, hncr,2, hncr,3 ← α, β, γ percentile of non-zero voxels of Hncr;
het,1, het,2, het,3 ← α, β, γ percentile of non-zero voxels of Het;
for i← 1 to w do

for j ← 1 to l do
for k ← 1 to d do

if Het[i, j, k] ≥ het,3 then
V [i, j, k]← 9;

else if Hncr[i, j, k] ≥ hncr,3 then
V [i, j, k]← 8;

else if Hed[i, j, k] ≥ hed,3 then
V [i, j, k]← 7;

else if Het[i, j, k] ≥ het,2 then
V [i, j, k]← 6;

else if Hncr[i, j, k] ≥ hncr,2 then
V [i, j, k]← 5;

else if Hed[i, j, k] ≥ hed,2 then
V [i, j, k]← 4;

else if Het[i, j, k] ≥ het,1 then
V [i, j, k]← 3;

else if Hncr[i, j, k] ≥ hncr,1 then
V [i, j, k]← 2;

else if Hed[i, j, k] ≥ hed,1 then
V [i, j, k]← 1;

else
V [i, j, k]← 0;

end

end

end

end

VOI map

Fig. 3. The VOI map (background-0, red-1, green-2, blue-3, yellow-4, orange-5, pink-6,
purple-7, grey-8, and brown-9) and the distribution of brain tumor lesions (green-ED,
blue-NEC/NET, and red-ET) observed in the different labels of VOI map from BraTS
2017 training subjects. Best viewed in color.
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MR image, we first clip it at [0.2 percentile, 99.8 percentile] of non-zero voxels
to remove the outliers and subsequently normalize every voxel within the brain
with respect to their mean and standard deviation. That is, x̄i = (xi − µ)/σ
where i is the index of voxel inside the brain, x̄i is the normalized voxel, xi is
the corresponding raw voxel, and µ and σ are the mean and standard deviation
of the raw voxels inside the brain, respectively.

Network architecture. The proposed network architecture shown in Fig. 4 is
based on 3D U-Nets [4, 6]. Different colors of blocks represent different types of
layers. The number of convolutional kernels is indicated within the white box.
Group normalization [17] is used, and the number of groups is set to 4. Trilinear
interpolation is used in the upsampling layer.

Fig. 4. The proposed network architecture. conv(3): 3× 3× 3 convolutional layer, GN:
group normalization, D(0.3): dropout layer with 0.3 dropout rate, maxpool(2): 2×2×2
max pooling layer, and conv(1): 1× 1× 1 convolutional layer. Best viewed in color.

Training and testing procedure. The proposed network is trained with ran-
domly cropped patches of size 128× 128× 128 voxels and batch size 2. A larger
input patch capture more contextual information of the brain. In every epoch, a
cropped patch is randomly extracted from each subject. The network is trained
for a total of 300 epochs. The weights of network are updated by Adam al-
gorithm [12] with an initial learning rate l0 = 10−3 following the schedule of
l0 × 0.1epoch, L2 penalty weight decay of 10−4, and AMSGrad [16]. For the
loss function, the standard multi-class cross-entropy loss with the hard negative
mining is used to solve the class imbalance problem of the dataset. We only
back-propagate the negative (background) voxels with the largest losses (hard
negative) and the positive (lesions) voxels to the gradients. In our implementa-
tion, the number of selected negative voxels is at most three times more than
the number of positive voxels. In addition, data augmentation is not used for
both training and testing. At the testing time, we input the entire image of size
240 × 240 × 155 voxels into the trained 3D U-Net for each patient to get the
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predicted lesion mask. Training takes approximate 12.5 hours, and testing takes
approximate 1.5 seconds per subject on an Nvidia 1080 Ti GPU.

2.4 Integrate the VOI Map and a 3D U-Net

Fig. 5 shows the pipeline of integrating the VOI map and a 3D U-Net for brain
tumor segmentation. First, we register the VOI map from the MNI 1mm space to
the subject space using FLIRT [8] from FSL, and this registered VOI map is then
split into 9 binary masks. Each binary mask only contains information of one
VOI label. Afterward, these binary masks are concatenated with the multimodal
MR images. In the end, we input this 13-channel (4 image channels + 9 VOI
channels) image to a 3D U-Net for both training and testing.

Fig. 5. The pipeline of integrating the VOI map and a 3D U-Net.

2.5 Evaluation Metrics

The employed evaluation metrics are the (i) Dice similarity coefficient (DSC)
and the (ii) 95 percentile of the Hausdorff distance (H95). DSC is the quotient
of similarity and ranges between 0 and 1 which is defined as

DSC =
2|G ∩ P |
|G|+ |P |

where |G| and |P | are the number of voxels in the ground-truth label and predict
label, respectively. Hausdorff distance dH(X,Y ) measures how far two subsets
{X,Y } of a metric space are from each other which is defined as

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

where d is the Euclidean distance, sup is the supremum, and inf is the infimum.
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3 Experimental Results and Discussion

First, we examine if the proposed lesion prior fusion method improves the brain
tumor segmentation performance of the proposed 3D U-Net. Therefore, we train
two identical 3D U-Nets with and without additional VOI map using 285 subjects
of BraTS 2017 training set. BraTS 2017 validation set is used to evaluate the
performance of these networks. The quantitative results are shown in Table 1.
From the first two rows of Table 1, our proposed lesion prior fusion method
improves the performance of 3D U-Net, particularly for the DSC of ET (3.5%),
and H95 of ET (2.56) and whole tumor (2.39).

Table 1. Quantitative results of the different models on BraTS 2017 validation set.
Higher DSC and lower H95 indicate better segmentation performance. These results
are given by the official online evaluation website. Results are reported as mean. Tumor
core (TC) is the union of necrosis & non-enhancing tumor and enhancing tumor (ET).
Whole tumor (WT) is the union of edema, necrosis & non-enhancing tumor and en-
hancing tumor. The underlined numbers highlight the improvement of VOI map, and
the bold numbers highlight the best performance.

DSC H95
Model Descriptions ET WT TC ET WT TC

Single 3D U-Net (baseline) 0.695 0.896 0.762 6.79 6.92 11.38
Single 3D U-Net + VOI (proposed) 0.730 0.899 0.764 4.23 4.53 10.93

Ensemble of five 3D U-Nets (baseline) 0.723 0.902 0.763 5.99 4.75 10.58

Ensemble of five 3D U-Nets + VOI (proposed) 0.744 0.903 0.780 5.01 3.86 9.71
Isensee et al. [6] 0.732 0.896 0.797 4.55 6.97 9.48
Kamnitsas et al. [9] 0.738 0.901 0.797 4.50 4.23 6.56

Second, we examine if the proposed lesion prior fusion method improves
the performance of the ensemble of 3D U-Nets. Thus, we train two identical
ensembles with and without additional VOI map using 285 subjects of BraTS
2017 training set. Each ensemble has five identical networks with different seed
initializations, and the output of ensemble is averaged from five networks. BraTS
2017 validation set is used to evaluate the performance of ensembles, and the
quantitative results are shown in Table 1. From the middle two rows of Table 1,
our proposed lesion prior fusion method also improves the tumor segmentation
performance of the ensemble of five 3D U-Nets, particularly for the DSC of ET
(2.1%) and tumor core (1.7%). The reason why the VOI map has the greatest
improvement on the ET is that the percentiles of ET heatmap have the highest
priorities while we create the VOI map. In addition, the proposed VOI map,
directly built from the heatmaps of brain lesions, has inhomogeneous labels
within neighboring voxels that carry more precise information of brain tumor
lesions to the 3D U-Net.

In the end, we compare the performance of our proposed method with the
state-of-the-art methods [6,9]. From Table 1, the baseline model has worse per-
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formance than the state-of-the-art methods but it achieves a competitive per-
formance by integrating the proposed VOI map. It is noted that the ensemble
of Kamnitsas et al. [9] contains 7 different types of models but our proposed
ensemble only consists of five 3D U-Net.

4 Conclusion

We have proposed a novel method to integrate prior information about the lesion
probabilities into a 3D U-Net for improving brain tumor segmentation. Our
experimental results demonstrate that the proposed lesion prior fusion approach
improves the segmentation performance of the baseline model. Moreover, the
proposed lesion prior fusion method can be easily integrated with other network
architectures to further potentially enhance their segmentation performance.
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