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, | ABSTRACT
An eéuilibrium'theory of thé length of intense electron bunches
circulatihg in a stofage ring is presented. The consequencg of elec-
trical interaction with various resonant structures is expressed in
terms of quadratures over the‘iﬁpedance of the structures, and imped-
Vance functions for a variety of elements are evaluated. It is shown
that elements héving resonances. &t high frequenéy can, above transi-
tion, cause bunches to increase in length with increasiﬁg current.
The parametric dependence of the bunch lengthening is‘found to be in

good agreement with observations, and numerical.estimates, which are iin

substantial agreement with experiment, are presented.
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I. INTRODUCTION _

It has been observed that the length of bﬁnches in the electron-
positron storage rings at brsay and Frascati:ie a function of the
stored curreht, although no such effect has been observed at Stanford
or Novosibirsk.l | |

| The se observations have stimulated considerable theoretical
2-6

effort.” - Theories based upon coherenf synchrotron fadiatione’j pre-

dicted a shortening of bunches withvinéreasing current, in contradic-

tion with the observations. Resonances associated with clearing-field

5

elect:c'ode.slL and resonances éssociated with radio-ﬁfequeﬁey cavities
have been suggested‘asvthe source.of the phenomenon; _

Ail the above theories are equilibrium calculations; that 1is,
they are theories in which the effective azimuthal potential well is

modified in strength as & result of the high beam current. A recent

analysis6 euggests that the bunch lengthening is due to ah instability‘

of the internal coherent synchrotron:oscillatiohs. The parametric
dependence of thevbunch.lengthening in this theory is not in good
agreement with the observations.

In this paper we present a véry general theory of the equilibrium

length of high-cu;rent bunches. Thus, the theories of Refs. 2 through.

5 are.included as speeial cases in our analysis. ‘Because ﬁhe obser-
vations show that the bunch lengthening is an effect independent of
the number of bunches and inaependent of thevtotal beam current, we
restrict ouf theory to include only the interaction of a bunch with
itself and, in particuler, to include only direct interactioﬁs. (Thus

we neglect the interactibn of a bunch with itself as a result of

A T
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completing a revolution of the storage ring. Such long-term memory
effects éan lead to longitudinal instabilities7 As well as bunch
_lehgthéning,.but presumhbly would predicf effects whiéh have not been
observed.) Té simplify the analysis we neglect gas scattering and
multiple Coulomb scéttering within & bunch; neither effect béing im-
portant in fhe regime in which the experimentai observations have been
made. It is eaSy to ektend our analysis to include thése phenomena.
We also consider only the above-trﬁnsitioﬁ situation; the below-transi-
tion behavior follows trivially. |
In Section IT we obtain an expreséion for bunch 1ength’in térms‘\
of the synchrotfon oscillation frequency. In Section ITIT a general
form for the self-intefactionv(which is derived in'Apﬁendix A) is
employed to obtain the éynchfotron oscillation’frequency as a.quad-
rature either over the self-force Green's function or over thé self-
force impedance.~ In Section IV bunch length formulas for beam infer-
action with structures which resonate at high or at low frequenéies
are obtained. In Section V we summarize the experimental observationsv
on bunch lepgth and show that they can be'fitted by besm interaction
with structures which resonate at high frequencies. Numerical examples
for some_different structures are_presented and general scaling 1aﬁs
derived. Electrical properties of smooth chambers, resonant ca&ities,
electrodes, etc. are discussed in Appendices B thréﬁgh‘E.'
| The fheor& presentéd here is iﬁ good agreement with observétions,
and suggests that the bunch lengthening which has‘been observed is due
to high-frequency resonant elements in the storage rings. In simple

terms, bunch lengthening (above transition) requires inductive coupling

‘
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between the beam‘and its surroundings.8 ‘In contraét to a sﬁooth
chamber (which is capacitive and hence-producesvbgnch'shortening and
negative mass instability), many elements--such as & resonant ca&ity
’at frequéncies belbw its:}esonantrfrequéncy--aré inductive, haye a
much stronger efféct thﬁn thé smooth chamber, and lead to bunch
lengthening. | |
_Tﬁere is, in geﬁeral, the poséibility of bunch sﬂortening, and
this case is inéluded in the general analysis. Hdwever, beéause no
observation of shortening ofvanches in storage rings has been re-
portea, we limitvour examples to those giving bunch lengthening. It
should be noted that this léck.bf observed shorteniﬁg may.be due'oniy
to the difficulty associated withisﬁch observations.
IT. DIFFERENTIAL EQUATION FOR SYNCHROTRON MOTION
In this section we derive the equationé which describe the azi--
muthal motion of electrons under the influence of applied radio-
frequency fields, incdhérénf synchrotron radiatidni(including the
‘quantuﬁ flucﬁuations), and'seif—fields.. As explained in~Section I,
“we consider only a single bunch of electrons and, furthermore, a
~constant guide field. |

In the absence of self-fields the linearized equation describing

synchrotron motion 159
2 |
doe - - do 5 s - v( )
—_— 2 -~ +Q @=-P ) . 2.1
dt2-  s at S s B .

where @ is the phase relative to the synchronous particle,'da is the

radiation damping constant, ﬁys describes the flﬁctuations, and QSQ__
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the smwall-~amplitude synchrotron oscillation frequency—-is given by

2 .
hnw ~ cos®. eV
Q 2 - - »s . s rf . (2.2)
2B ES ' :

Note that we have taken a sign convention for phase ¢ opposite to that
in Ref. 9. In the formula for ng, h is the rf harmonic number, n is
a dispersion coefficient; Es_is'the total energy of the synchronous

particle, and p its velocity in units of light velocity, is the

L

revolution frequency of the synchronous particle, V__ is the peak rf

rf
voltage, and ms the rf phase of the synchronous rarticle. The coeffi-
cient ﬂ is given by
n=8 Tl . , : (2.3)
E=E .
s
Iﬁ the presence of sélfFfields,'which we treat in linear apprOxi-

mation, the only modification to the above formulas is to replace

COSCPS évrf’ in (2.'2)‘; by,

: dau ' S
cosQB.eV¥f te g oo ’ | . (2.4)
' s

where eU is the energy change per revolution of a particle due to self— 
fields and the subscript's indicates evaluation for the synchronous

particle. Thus 952 is changed to 92, where

e ®
2 2 _ oy € dols

=9 ——t= (2.5)
2mp E '

8

If the/fluctuation térmtisrdssumedm to be dominated by quantum effects
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in the synchrotron radiation, the mean square equilibrium bunch length
is given'bylo
5 ac 2 p IS5 e c2h77
A= — =2

3.3]2_ 3 K
%€ R 23" ps uasJ .

(2.6)

S S

where pS is the radius of curvature in the bending magnets, R is the
average radius, X is Planck's constant, y is Es/mce, and (--the momentum

compaction factor--is given by

2 E dRr
X = B ﬁ E-E— . (2"7)
5
We wnite (2.6) in the convenient form
1 : ,

whereiébz is_the mean square equilibrium bunch length in the limit of '
zero bunch current. From (2.6), and using well-known expressions for
the various quantities,therein, we have--in the relativistic limit

(72 >> 1ﬂa) in which one is above transition--that

5 55(3}1ﬁ2msxcmc273 _ ’
A0 = P) : o '(2°9)_

96 J hevV . coso

where Kc is the electron Comptdn wavelength, and JS is a dimensionless
. parameter which relates the energy radiated per electron per unit time,

W, to the damping constant o

S o | (2:10)




1

in the remainder of thié paper we cohgidercondy the  &bove-transition
case and hence, as can:bg seen from (2.2), coswélis positive.
ITI. SELF-FIELDS

The electromagnetic self-fields acting on the bunch afe assumed -
to arise from,the_interacfion betweenithe bunch iﬁself and the material
structuréswhichvare.near thelﬁunch trajector&,.such as,‘for insfance,
rf cavities or monitoring eleétrodes.

It is shown in Appendix A that the force on one electron in the
bunch due to the self-fields can be written, in the ultrarelativistic
limit, as

, _ @ I S :
' eEZ(o$6)= e Jr do* AMo') G(o - o', t), (3.1)
o : .

where o is‘the»distance.from the synchronous particle measured along
the buﬁch‘ o= ﬁggm - ¢s)/h ; Ao) is the linear.charge density of the
bunch,and G is a function which characterizes the particular structure
iﬁteracting with the beam. The energy change of a particle per revolu-
ion, eV, is proportional to‘thé inteéral of (3.1) over one.revolutioh

period,

: T 0 : v
‘au(o)_ = eBc[ dtf. do' A(e') G(a' - o, t). | '(352)
‘ 0 (o4 ' '

Assuming the synchrotron oscillation period to be much larger

than T, and defininé a new function
: o T ‘ . ‘
(-0 = SCJf at G(c' - o), - (3.3)

O .



we can write the energy change eU(o) approximately as

@

(eL.J(q) = ef. vdc’ X(a') 2(0'.-— a)e | (3.)

(o]

Td evaluate the change in'synchrotron oscillation frequency we

need, according to (2.5), the quantity

au

(3.5)

=§§ do’g((j) QZ_\[_STG_Z)

h
O

where ve have used ¢ = R@/h,(which is consistent with our sign conven-~

tion for @). Using (3.5), (2.5), and (2.2),ve have

92 -g? efe @ - (o)

- — [ st —. (5.6)
QS hws cosg eVrf 0 | do

Consistént with the linear approximation, already made, the charge

density A(o) has the form

Ne -0’2/2A2

}\,(0) =_me | -, : | : (3-7)

where N is the ‘total number of electrons in the bunch, and A nust be .

determined as a solution of (2.8), (3.6), and (3.7). Inserting (3.7)

into (3%.6), we obtain

o o
Q@ -Q ~Ne Bc P

= - ' o acli(a)e @ 2. (3.8
Qse S COSCP v (%)1/2 5'[0 o dof(o)e N _( )




It is convenienf,to introduce an impedance Z(w) by
.
' iwT
z(w>.=[ # (per)e™ar, (3.9)
. -0 ‘

so that (3.8) becomes, after we employ the inversion of (3.9) and

after we interchangevthé order of integration,

- | &

© o S -t
3] da)Z(a))f sace 2. P (3.10)
X |

- 0

-

522 -Q 52_ , -Negﬁc '
2 3/2
o (er) ho  cosp_ eV .

Performing the integration over g, we obtain

92 - Qse -2Ne28c @ .
- R 3 f dw Z(w)
2 (2m) b cosp eV . A J
A?m? iﬁl/g Ay 22 22
.1 -Aw /2B e .
X lFl l) 2) - 3 0 -+ 3/2 — € b (5'11)
. 2B ¢ 2 Be N )

where lFl is-a confluent hypergeometric function.‘ In performing the
w integration in (5.11) the contour should be closed in the lower
half—pléne.

In general, to obtain the bunch length A, one must first evalu-
ate ﬁhe impedance function Z(w), or equivalently, the Green's function
Y (o), of the storage ring. Then one evaluates 92, using (3.8) or (3.11),
and then the bunch length from (2.8). In the Appendiceé B through E we
present ﬁ'(o) or z(w) or both for a variety of elements which candsand

do-~appear in storage rings.

For situations where Z(w) is a complicated function (coming, for
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example, from a variety'of resonant elements) and anwn either by com-
putation or from measuremeht, it is conveﬁieﬁt fQ eﬁploy (3.11). 'Féf
simple models it is often easier-to,émployv(B.S) direcfly.
IV. HIGH- AND LOW-FREQUENCY RESONANCES
In the previous section we have obtained a general expression for
9° in terms of the self-force impedance Z(w). - If is‘illuminating to
| consider two limiting cases of fhis'expression. vSuppose, fifétly,

that Z(w) is nonzero only for low frequencies, i.e., for frequencies

such that |o] << wcritlg Be/A. In this case (3.11) becomes
522 -Q 2 . -2Ne2509" '
8 , LF .
5 ~ 575 5 _ _ (4.1)
Qs‘ | (er) ho  cosp_ eV . A : _
with ®upit
B:LF - Z{w)dw. - T (ke2)

crit

If, on the other hand, Z(w) is nonzero only for high frequencies, i.e.,

for frequencies With ]w’ >> ®yit? then
g% -g?  oNeSpOe '
S - FH 4.
2?2 (21) 1y cosp_ ev_. A0 (+:3)
s s q).'s rf : '
with : ) . : : :
' - ’-wcrit
B Z(w)dw - 7 (w)dw -
o . - ] 4
moL.® v W - ,
@it _ -0 v 1

ceri

In deriving (4;2) and (h.h) we have used smAll;grgument and large-

argument expansions for the confluent hypergeometric function.ll Note_'

that érLF and HF have_dlffgrent dimensions. | o
With the aid of (k.1) through (L4.4t) we may readily solve (2.8).

for the bunch length A. In the low frequency case
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2 A2 1/2
A -p o F o F | |
—e AELE N LELE () (4.5)
By 2 i '
where
-2Ne266
Mooy = . (4.6)
= (2W)372hws cqs@s evrf AO
In the high-frequency caée
2 o 7 B | ’
,A,r‘AO l+uHF HF_ > (HF) (A‘Y)
A
where
' -2Ne2¢33c3
Hep 3 - (4.8)

= 373 v
() _hms c?sms eV.e A

Thé parametric_dependence of A may be explicitly exhibited in the
two limiting cases. The functions QFLF and 9:'HFaa..‘r'e, in these limits,
indépéndent of wcrit-[since the Z(w) is assuméd_to‘cut off the inteéra-
tions]. Thus, the F fuﬁctions characterize the structuie, but are
indepéndent of beam energy, beam'current, and bunch length. For
example, in the high-frequency c#se we obtain, from (+.7), (+.8),

and (2.9),

AT = 8y 1+ k | (EF) | (4.9)

where I is the beam current, and the constant k, which depends only

upon machine parameters, is given by

-192 J_(me®)” [ R_\[ 1R
X = S S F cl -8 y (¥.10)
55 m(en) % \a fl T 1, .



C =12«

with I, = ch/e = 17.000 A. Note that applied voltage appears only
through the dependence of Ab upon V - The functional form (4.9) has
been prev1ously obtained by Le Duff and }Ro“blnson.u’5 | |
- V. DISCUSSION AND COMPARISON . WITH OBSERVATIONS

In this sectionvwe]first sumarize the experimental observations
on bunch lengthening in ACO and ADONE. The experimental observations
have been empirically fitted with the phenomenological forumlasl

o 5 | 3 I(ma)

1+ 2x 10 E— P | 5.1
S|P ey s ) o

>
f

A(xs) o6 Tma)Y3r 30 M6

gé7ékns)

For ACO the functional dependence (5 1) is qulte close to (4.9), with
-3,

, , for &3> Ay (ADONE) (5.2)
E(Gev)7/6 , Vif(kev) _ ,

only the E -k factor replaced by E “; however, a recent analysis (prl—

vate communication from J. Le Duff) indicates that the data may be
equally well fitted with E-3 For ADONE the agreement is again quite

7/6 -1/6 . -1

-good, but now E is replaced by E - Actually the ADONE

dependence upon V could be wesker than that given in (5.2).1

It is rather remarkable that the simple model of only high—frequency

resonances yields a formula for the bunch length (4%.9) in such good
accord with the phenomenological formulas (5.1) and (5.2). Such would -

not be the case for low-frequency resonances, and in the remainder of

this section we consider only high-frequency resonances (although either

bunch lengthening or shortening through low-frequency resonances is,
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in principél; possible).

* Also with high frequency resonances, wherentﬁe functional form
(4.9) is aésured, there is the possibility of bﬁnoﬁ lengthening or
shortening corresponding to positive or negati&e values of k. For
‘the inﬁeraotion of a beam wifh a smooth ohamber ohe‘finds, in fact,
bunch shorteoing as was discussed in Ref. 3 and as can be readily seen
from Z(w),‘which is given, for this.case,in Appendix B.

To the contrary,.there are.a Variety of sﬁrﬁéﬁﬁres such'as-rf
cavities, pickup  electrodes, and clearing‘eleotrodes, vhich are aiways
present iﬁ storage rings and which usuallylwill caose bunch lengthening.

We leave the task'of detailed computations‘of.bunch lengtﬁ, for |
any particular machine,Ato the interested reader;J ﬁére, we limit our-

selves to a few illustrative'examples.

Example No. 1: Single-ResOnahce Model
As a special case of the general discussion in Appendix C,
we are led to consider an impedance Z(w) of the form
i L -1 |
AZ((D) = + ——— ) (5'3)
2i o - op + er ® +;wR + 1FR

" so that W is the real frequency of the resonant structure, PR

is the damping constanf, and'Z "is the structure impedance. The

R

sign of Z_, is taken positive, corresponding to-reéohant_éavity.

R
We evaluaté QEHF, where

=0 _ .
crit

g . [m'z(w)am,' e
HF —,—-—2—-—+ —5 . (5.]+)

o J -
@brit w @
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by extending the rangé of integration from -co to op and exclud-
ing the pole at w = 0. The contour must be closed in the lower

half-plane,and thus

2 2
Op - T

Fup = - 2% —3 5 -
(0~ +Tg)

(5.5) |

We assume the damping constant is such as to reduce the induced

fields to a negligible value in a time of the order of one particle

revolution (and hence there will be negligible bunch-bunch coupling),

while--at the same time--the decay of fields during the passage'of
one bunch is negligible. Thus we take I'A << 1 and, since we have
assumed (hlgh-frequency resonance) @A >> 1, we obtain wp >> PR’_

so that

T~ — | (5.6)

The machine barameter k becomes, from (4.10),

' ———7-3& AR (ze) [ 2@P)’ .  (5.7)
k = — -t — 1{(Zyc) ] — —{{(mec . 5.7
55(6rrr)1 2 a\mR R Ky, I

For ngmerical evaluation wé adopt the parameters given in
Table'I, ana-farbitiarily--take @R = iOlO sec_l and ZRC = 33.(cor-
responding to an impedance of 1 kR). We find, for ADONE,

k = 5.1 x 107 _(Gev3ons/mA) so that kl/3 - 0.17, which is to be
compared with the coefficient 0.46 in (5.2). For ACO, k =~ 1070
to 10'“ (.GeV3 ns/mA), (correspbnding to the range in «), which is

to be compared with the coefficient 2 x 107 in (SQl). Clearly
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_if there were more than one resonant structure (baving Zp=1 kQ)
© the coefficient k would be increased.
Table T. Machine parameters employed

in the mmerical examples.

ONE ' AC)
Jg ‘ 1 | - 1.
& 8. x 10°° 0.06 to 0.6
ms 2 X lO7 sec-l 9 x lOa Sec-l
3 . 2
RS 1.7 x 10° em 3.41 x 107 em

Example No. 2: Resonmant Cavity Model

The closedfcavity model of Appendix‘D may be employed to
evaluate Z(w). In the 'approximatibn of a bunch loung coz_npafédmith
the cavity dimensions, Z(w) is given by (D.8),. which is precisely
of the form (5.3). Thus we obtain from the cavity model, in con-

trast to the above evaluation, explicit formulas for the quantities

ZR and ai?’

g = 2eble/ o (5.8)

and

ZRc = 8:5-;5 [1 - cos ( T )] , : (5;9)

where we have taken B = 1, b is the cavity radius,'and L the

R produces bunch lengthening.
The bracket in'(5.9) varies bétween 0 and 2, so we take it

as 1. If we choose b = 7.2 cm, then wp = lOlo sec-l; and if we.

cavity length. Note that sign of Z
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Take L = 1.85 cm then ZRC = 3%, as in the preceding example.

ixample HNo. 3: Electrodes

The interaction of a beam with an electrode is considered
in Appendix E, where it is shown that for an electrode of lerigth
£, terminated at both ends by its characteristic impedance ZO’

the Green's function is

& (o) - -z, [6(9;\ -5 L. {Ef}}, (5.10)
Froﬁ (3.8), B |

2 2
Q - 8
= S

e it S

CECIR:
Ne255c22023 o247/

2

- : . (5.11) -
o
Q (QW)l/Lhm<~ cosp, eV, :

e

S

f
This yields bunch lengthening which, when £ >> A, is a small
effect. 7This appears to be in agreement with the observation on

ADONE that removal of the long clearing~field.electrodes had no

effect on bunch lengthjl If £ < A we have, from (2.8), a formula
of the form of (4.9),
192 [2 \1/2 (Zoc)(moog)BJoﬂRé‘
ko= — | — — . - (5.12)
55 | BW; omCIO - :

Takingethe parametere of Table I, £ = 10 om andv(ZOc) = 0.33%
(corresponding to 10 @), we find for ADONE % = 9.2 x 10-4

(G—eV5 ne/mA)° A hundred of such elements--or ten elements of»
impedance 100 Q--would expiain the_obsefvations. For ACO,‘taking :
a = 0.06, ten 10-9 elements would give the observedveffect, whereas

for o = 0.6, 100 are reguired. Pickup electrodes, in both these -

-machines, could well be described by this model.

V'
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Finally, we turn from examples to some general remarks. In prac-

tice, it i1s extreme bunch lengthening which 1s a serious effect, so

it is interesting to examine scaling laws in this case.

In the limit of bunch length, A, much larger than the natural

length £y, We have, from (4.9), the relation

)
A kI \
=0 5 - | | (5.1%)

E
s

In order to see the general dependence upon parameters we can evalu-
ate k for the single-resonance model, as in (5.7), and also use (2.9)

to obtain

s rf

(55)1[2 1713 1/3J\ \\)\_ ""_';c“e“] '

Cc

a (6ot ] 5 \Y2) R 1/2 [ yey cos@s\l/6

o, 1/3 (2, C)1/3 I 1/5

X | = S - ' (5.14)
e R I, |

The denendence of A/AO upon rf parameters is weak (h 1/6 and V_ /6),
as is the dependence upon beam current (Il/B) The strongest readily
controllable dependence is upon energy (¥~ -3/2 ), and upon momentum com-

raction (071/2

= vr)a The last dependence could explain why bunch
lengthening was not observed at the weak-focusing (vr < 1) Stanford
and Novosibirsk storage rings.

It is interesting, in this same limit of a strong effect, to

examine the parametric dependence of the bunch length itself,



-18-

me YK I
A = 23/27r1/2 - =0 (ZBC) — R,- (5.15)
: heVrf coscpS mR- T Io

It is seen thaf A is inaépendenﬁ of.energy and momenfum compaction and
depends--only weakly-; upon rf paramefers and bean cﬁrreat.

In the limit of a strong effect, the bunch length is set by the
' balance between the potehfial-wellfreducing'self—fofcgs (which are
strongly dependent upoﬁ bunch length) and the applied rf voltage. Thus;
the bunch length is'independent of radiafionrdamping and guantum-
fluctuation undamping. 
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APPENDICES

A. Formal Expressién.for the Self-Force.

We need the axial electric field, E , associated with a rigid
collection of charges moving axially at a constaﬁt speed v. Because

the current, j, and charge, p,.are trivially related, we may write

Ez(z,t) = e YIdt'[dz' 5(z' - vt' - k) oz - z',t - t7,t), (A.1) '

whereyck

function in which the integration over transverse coordinates has already

is the position of particle k at time t = O, and 6 is a Green's

been performed. In writing (A.1) we have assumed & passive system (no

feedback loops). From (A.1)
N .
Ez(z,.t) =e Zfdt,'_a(z -vt' - g, - t',t), (A.2)
k=1 : ’ :

and writing
z =Vt + o, o : ' (A.3)
we obtain the field at the position 6f the ith particle,

Ezi(t) =e Zfdt' E(ci -0, t- t',t). - (A..Ll-)
k=17 -

In (A.4) we have introduced G, where
G(g,7,t) = Glo + vI,T,t). » ; ' (A.S)

Causality implies that 6 is ronzero only in the past light cone,

namely where
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- 2? - B - e)B <, | e

and t - t' > 0. ' : _ (A.7)

Whehowe: employ” (A:B)y) (Awb)idmplies

oy - O
t -t > — for a; > o, , -~ (A.8)
c-v :
0, -0
bt >3 for o, <o+ | (A.9)
c+ vV ,
Hence (A.4) becomes
N oo @ )
Ez'i(t)_: e Z E(ci - k,'r,t)d'r + | E(oi,- »’k,'r,t)d'r . (A.10)
k=1 0 =03 o 040
c+v c-v

The second term in (A.10) should be small, in the relativistic
limit, as the lower limit of the integral is large. ™{f.we neglect. this
term, (A.10) is of the form

N : : v
B, () =e ) Glo, - o,t), (foria, - g, >0) (a12)
k=1

where (A.7) has been employed in writing the restriction on the summa-
tion of k, and G is defined by the t-integration of G. Expressing (A.11)

as an integral,vwe finally obtain
v @
Ez(oi,t) = f do nGo) G(o - ci,t), ' (A.12)
%

where AM(g) is the line charge density.
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B. Impedence Function for a Smooth Chamber
The interaction of a circulating bunch with a smooth‘perfectly

conducting vacuum chamber has been studied in Ref. 3, under the approxi-

» mation of replacing the vacuum chamber with two parallel perfectly con-

ducting infinite planes. A pillbox. model has been studied by A. Entis :
and L. Smith.'?
For the infinite plate geometry, and in the approximstion that

the bunch length is much larger than the distance, H, between the

planes
(o) 1 2H BH 2 (o)
E (o) =-2 1 +21n—|+{— > (B.1)
z ¥ A& | | do

where R is the orbit radius, a is the bunch transverse radius, B = v/c,
and ¥ = (1 - 52)'1/2.

Comparing (B.1l) and (A.12),we may write

1 oH gr\?
G(o) =4 |- |1 +21n—}a|—] l58'(a), (B.2)
y Ta TR :

where 8'(g) is the first derivative of the Dirac delta function, and

the extra factor of 2 arises from the 8~fun¢tion of the limit of the

integral. Thus, from (3.3), (3.9), and (B.2),

S 8mi |1 2H pr\>
Z(w) =-— |5 |l+2In—|+|—]| |o, _ (B.3)
- BCw |7 ma/  \7R

with ws = Bc/R, and with'this formula valid*only'for frequencies

o < TRc/H.

In Ref. 3 it was shown that this {(nonresonant) Z(w) leads, above
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transition, to bunch shortening. In this simple G(o) it is more con-
venient to employ (3.8) directly rather than the formalism of (3.11).

C. Impedance Function for General Resonant Structures

In Appendii A it was shown that the average axial Self—field'is

of the form o _
E_(04,t) = f do AMo) (o - ogst)- 0 (c.1) |
GOv
For a general resonant structure, there will be characteristic

frequencies s where n characterizes the various modes. These fre-

quencies are complex,and
Q)n = (Dn - iPn, . . . (C.Q)

with o > T, resl and T > 0. The impedance function, Z(w), as defined

by (3.3) and (3.9) is simply

L = el 1 T

Z(w) = 5_' e + — ,  (0.3)
— 2i |- (o -2 ) o+ (o +il') : :
n n n _ n n

where the real constants Z, are characteristic impedances:of the struc-

ture. For a cavity model the gonstants Zn are positive, corresponding
to the inductive impedence of a cavity below resonanée. It might be
noted that the I ensure that & (6) 1s'zero for ¢ < 0, and it is also
easy to check thatzz?f(@;ls = %(w),s0 that & (o) is real.

D. TImpedance Function for a Closed Cavity

The model considered in this appendix is a right circular per-
‘fectly conducting cavity with radius b and length L. A bunch having

negligible radial extent and longitudinal charge density described by




LY

.

-(E(a))-—vé—éz Z(1+a)f [ )2]
M I, (mb)

=23~

Az - vt) ie assumed to move at constant speed v along the axis of the
cavity.

The,interaction of:the bunch with the eavity and hence, also,'of
the bunch with itself—-via'the caviﬁy--may be easily calculated by

13

employing the method of Condon. The analysis is sufficiently closely

14,15

similar to calculations in the literature that we merely sketch

the method and present the result.

Taking

a5 0,2,%) = Wi-w), (0.1)

it is easy to compute the w'component of the bunch current (axially

directed):

sz 5%51 (in/yﬁﬁx( ) . - _ (D.2)
where 00 : : ,

~ 1 -ikg,

ME) = 5= f e"\(¢o )ag . - (D.3)

~Q0

Computation of the cavity fields excited by the Fourier cemponent sz
follows the method presented in the references cited. The axial elec-

tric field may then be evaluated at the position z = oy + vt and the

average field experienced (in crossing the cavity) computed as a

function of o.:
0 2

-]

s=1 I:O
g, o D
0 MW ’ wl
e qv)[l - ('l) i COS v—]

RIS

X

o | (D)
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where & is a Kroneker delta, s and'p are integers, and the quantities

b are determined from

Jo(usb) =0, for s =1, 2, **". = - (D.5)
The only poles with nonzero residue in (D.4) are
- 2-1/2 :
©og = c[us + (-L—-) } S . (D.6)
which are just the resonant frequencies of the cavity. These poles
really have a negative imaginary part correspohding to the resistive
-decay of cavity-mode fields.
When (3.3) and (3.9) are employed, the impedance function Z(w)
becomes
, - o . I ® 2 - 2 ol
161 (L +53 )w[(—) - (-—-—) ][l - (-1)® cos ———]
o pO c L v
z2(w) = Z > — (D.7)
2.2 2 2.2 ;2
PIVEl o 3, b)[ _F_.”) - (9) ] @y _ 2 ]
= F J1 g L v [{c) : sp
When L and Db ‘are'_muchv smaller than the length of a bunch, then
the terms s = 1, p= 0 dominates in the sum and
} 161v° [1 - cos %)-L-] 1 1 ‘
Z(w) = 4+ — (p.8)
bL I (. b)e” |w 4+ o - e
1 WP @ F Gy @ Gy
’ ' ‘ T | . 'v)j
where M b = 2.41 and Jl(ulb) = 0.52. In the case.in which the range '
of interesting frequency is such that o << cul; z(w) becomes -

16ilw

Z(a))m- '

c2£ule1(ulb)] 5 (D.9)
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Robinson has given an approximate analysis of a cavity-like
structureS.and obtained an impédance functibn
Li r2
Z(w) = —= | 1n — | w, _ (D.10)

e T
1

which can be seen to be of the same functional form as (D.9).

E. Impedance Function for Electrodes

As long ago as 1967, L. J. Laslett prdduced ah electrodynamical
analysis for clearing electrodeé, and thus supplied the first'modei -
which Could explain bunch lengthening.

Subsequent to his unpuplished work, computatibns fdr general
electrodes'have appeared in the literature.l6 We éummarize these
formulas, in this Appendix, as a convenience for the reader;

From Ref. 16, a beam of radius a ﬁoving at speed v, down the
 axis of a vacuum chamber of radius b, interacts with an electrode which
ié a cylindrical segmeﬁt of angular expent 2®O,-length £, and radiusp
‘ approximately b. The electrode has characteristic impedance Zo‘and is
ferminated, at the ends, with impedances z,(w) and Z,(w). The space
and time Fourier transform of the longitudinal electric field on the

chamber axis, ﬁz(k,w), is given in terms of the double Fourier trans-

form of the beam charge density,.i(k,m), by

8iZ c " ' ‘ |
~ 70 long\2 ¥lo lo >y
B (k,0) = — (K7%)% 78 (x) P O8(k,0) Mk,0), (2.1)
S 2TR ' : : : S
f : P
where _ Klong = —9
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527‘ il(ka/y)'.

.
and g long _ —_—,
ka [Io(kb/yﬂ
Lone - B {2ir (m)[cos éﬁ - cos kz] + sin 59
and PO (k) = - P T — ,
. 2 2 cos — -~ 2iW(w) sin —
C C
2.7

with rp(m) 12

_ zo(zl + zg)
and W(w) = . (E.2)

2o(21 + 2,)

Note that our défihition of Fourier transform differs from that of
Ref. 16 by the interchange k = -k, & = -.
From (3.3), (3.9), and (E.1) ve obtain
817

2(w) - -;—9 (K°76)% g (w/pe) PO%(0/pe,w).  (8.3)

Of particular interest is a pickup electrode which extends around

the full chamber and is terminated in its characteristic impedance.

In the limit of a relativistic beam,[(aa/ﬁcy) << 1, for all w of

importance]
z(w) ~ 8iz P8, | (E.4)
10 1 i(cos é@ - cos é%) + sin £9. _
with R . (£.5)

(cos 22 - i sin £9)
< c

Neglecting terms of order 1/7?, the impedance function can be written,

using (E.4), (E.5), as

- &
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7(w) ~ - zo_(i - e7Rlnb/ey

(E.6)

Tt is convenient in this case to evaluate the function %Ro); using

(3.9) and (E.6) one has

Y (o) = - [a(sc] (-—-—-] &

In the limit of electrodes short compsred with the bunch length,

(E.T)*beComeé

; 27, .8 |
¥ (o)~ -2 8'(1)» (E.8)
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not .in-
fringe privately owned rights; or .

B.  Assumes any liabilities with respect to the use of, or for damages
resylting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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