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Climate change has caused deserts, already defined by climatic
extremes, to warm and dry more rapidly than other ecoregions in the
contiguous United States over the last 50 years. Desert birds persist
near the edge of their physiological limits, and climate change could
cause lethal dehydration and hyperthermia, leading to decline or
extirpation of some species. We evaluated how desert birds have
responded to climate and habitat change by resurveying historic sites
throughout the Mojave Desert that were originally surveyed for avian
diversity during the early 20th century by Joseph Grinnell and
colleagues. We found strong evidence of an avian community in
collapse. Sites lost on average 43% of their species, and occupancy
probability declined significantly for 39 of 135 breeding birds. The
common raven was the only native species to substantially increase
across survey sites. Climate change, particularly decline in precipitation,
was the most important driver of site-level persistence, while habitat
change had a secondary influence. Habitat preference and diet were
the two most important species traits associated with occupancy
change. The presence of surface water reduced the loss of site-level
richness, creating refugia. The collapse of the avian community over
the past century may indicate a larger imbalance in the Mojave and
provide an early warning of future ecosystem disintegration, given
climatemodels unanimously predict an increasingly dry and hot future.

climate change | community collapse | occupancy decline |
Mojave Desert | birds

Species extinctions and population declines have accelerated
over recent decades due to habitat destruction, over-

exploitation, and invasive species (1, 2), with cascading effects on
ecosystem functions and services as well as human well-being (3).
Climate change has emerged as another powerful driver of
species decline, one whose effects are beginning to intensify. It
should lead to shifts in species distributions and rearranged
communities (4), unless climatic disruption acts as a systemic
threat leading to a community collapse (5).
Deserts are important bellwethers of climate change. Already de-

fined by climatic extremes, deserts have warmed and dried more
rapidly over the last 50 y than other ecoregions, both globally and in
the contiguous United States (6, 7). These trends are predicted to
continue through the end of the century (8). Climate change impacts
desert species through the direct effects of thermal and hydric stress,
and indirectly via impacts on habitat and food resources. Negative
effects of increased temperatures have been documented for desert
birds (9), mammals (10), invertebrates (11), and reptiles (12). More-
over, because precipitation and primary productivity are strongly
linked in deserts, drying mediates productivity declines that can per-
meate across trophic levels through an entire desert community (13).
Desert birds comprise a species-rich, easily detectable assem-

blage, and are closely coupled to their physical environment,
which makes them suitable indicators of climatic change (14).
Although desert birds exhibit some adaptive capacity to tolerate
thermal and hydric extremes (15), many already persist at the
edge of their physiological limits (16). Both heat waves and the
chronic deleterious effects that high temperatures can have on
fitness imperil desert birds (14). Furthermore, future warming
and associated lethal dehydration risk could extirpate species
from the Desert Southwest, particularly small-bodied birds (16).

Studies of the effects of climate change on North American
desert birds are limited (17, 18), but continental-scale surveys
suggest arid-land birds are in decline (19). However, the drivers
of this decline have not yet been evaluated.
We assessed how climate change and other stressors have im-

pacted desert bird populations over the past century by resur-
veying sites throughout the Mojave Desert that were originally
surveyed for avian diversity in the early 20th century by Joseph
Grinnell and colleagues. About 85% of desert lands in this region
are largely undisturbed and ecologically intact (20), allowing for
assessment of the impacts of climate change without the con-
founding effects of land-use change. Nevertheless, structural
changes to habitat induced by grazing and increased severity and
frequency of fire are potentially important threats to Mojave birds
(21). Invasive plants occur in the Mojave, but their primary eco-
logical impact has been to increase fire fuel loads and promote
recurrent fires (21). Thus, we used fire return intervals as a proxy
for the primary impact of invasive plants on habitat; see SI Ap-
pendix for a review of invasive plant impacts in the Mojave. We
related changes over the past century in occupancy and richness of
the Mojave avian community to changes in climate (annual pre-
cipitation, average temperature, and maximum temperature),
disturbance (fire and grazing), ecosystem productivity facilitated
by actual evapotranspiration (AET) and inhibited by climate wa-
ter deficit (CWD), and recent weather (precipitation, average
temperature, and maximum temperature of the previous year)
using a dynamic multispecies occupancy model (22). The analysis
quantifies species and community change simultaneously, while
accounting for species and survey differences in detectability.
For breeding birds of the Mojave, we examined (i) the relative

importance of climate change, habitat change, and recent
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weather conditions to avifauna change; (ii) if species’ life-history
traits or phylogeny accounted for change; and (iii) the persistent
characteristics of sites that maintained diversity. We predicted
that persistence of the avian community would be negatively
related to recent and long-term increases in temperature and
disturbance, and positively related to increases in precipitation and
habitat productivity. We also predicted that species would expe-
rience less decline in occupancy than their counterparts if they had
higher mobility, higher dispersal capacity, greater plasticity in re-
source use, and greater reproductive potential and were better
adapted to physiological stress and to desert environments. Ad-
ditionally, we predicted that sites at higher elevations and latitudes
and those with surface water would have refugial properties and
support higher levels of avian diversity in the modern surveys.
Finally, we examined whether the fate of sites varied by manage-
ment unit to better inform conservation needs. We predicted that
sites managed by the US National Park Service (NPS) would fare
better than sites on multiuse public lands because of the greater
level of protection that park status bestows.

Results
Change in the Mojave Avian Community over the Past Century. Change
in the Mojave avian community over the past century was charac-
terized by species loss without replacement at resurveyed sites (Fig.
1). A strong signal of avifaunal decline is apparent from the
community-level measures estimated by the dynamic multispecies
occupancy model, for which there was no evidence of lack of fit to
the data [posterior predictive check (PPC) = 0.13]. Across the
community, the mean probability of species persistence at occupied
sites between the two time periods was moderately low [ϕ = 0.43;
95% credible interval (CRI) 0.31 to 0.55], and the mean probability
of species colonizing unoccupied sites was close to zero (γ = 0.003;
95% CRI <0.001 to 0.009). Only the common raven and Bewick’s
wren had colonization probabilities >0.10. On the other hand,
species persistence probabilities at sites were uniformly distributed
across the community, with mean values ranging from 0.03 to 0.96.
See SI Appendix, Tables S1 and S2 and Dataset S1 for a summary of
posterior distributions for community and species values.
The interplay of colonization and persistence dynamics

resulted in an average modern occupancy probability (ψm = 0.11;
95% CRI 0.07 to 0.15) that was significantly lower than historic
occupancy (ψh = 0.24; 95% CRI 0.17 to 0.32). Of 135 species,
occupancy declined significantly for 39 and increased significantly
for only one, the common raven (Fig. 1A and Dataset S1). Four
species absent historically—the nonnative European starling
(EUST), chukar (CHUK), Eurasian collared-dove (EUCD), and
the invasive great-tailed grackle (GTGR)—now occur at a limited
number of sites (mean ψm 0.02 to 0.15). Species with large sig-
nificant decreases in occupancy probabilities (>0.30) included the
American kestrel, northern mockingbird, prairie falcon, turkey
vulture, western wood-pewee, white-throated swift, western king-
bird, chipping sparrow, mourning dove, sharp-shinned hawk, violet-

green swallow, and Brewer’s sparrow. Most were widespread histori-
cally (ψh > 0.50). Forty additional species (30%) experienced non-
significant declines in mean occupancy probability by 0.20 to 0.35 (n =
18) or by 0.10 to 0.20 (n = 22).
Occupancy declines translated into site-level losses of species

richness (Fig. 1B). Sites decreased on average by 17.9 bird spe-
cies (95% CRI −20.5 to −15.5), or 42% of their richness, from
the historic time period. As a result, 55 of 61 sites experienced a
significant decline in richness. This drop in species richness was
the result of a mean loss of 20.9 species per site (95% CRI −13.0
to −29.3) and a mean gain of 3.0 species (95% CRI 0.6 to 5.6).
The decline in avian occupancy and richness from the historic to
the modern era was not due to lower detectability of species
during our resurveys. Species present at a site during modern
surveys were very likely to be encountered at least once (pm* =
0.94; 95% CRI 0.91 to 0.96), which was significantly higher than
during the historic surveys (ph* = 0.57; 95% CRI 0.48 to 0.65).

Drivers of Mojave Avifauna Change. Decline of Mojave birds over
the past century was driven primarily by climate change and second-
arily by habitat change (Fig. 2 and Table 1). A long-term reduction in
precipitation best described changes in site-level persistence of
Mojave birds and had significant effects for 35 species (Table 1).
Maximum temperature and precipitation in the year before resurveys
affected community persistence to a lesser degree, describing sig-
nificant declines of only five and two species, respectively. More-
over, contrary to expectations, community persistence was positively
related to maximum temperature in the year before resurveys.
Long-term climatic changes of mean and maximum temperature
and mean temperature in the year before resurveys were not im-
portant predictors of community persistence. Only one habitat
factor was related to community persistence—change in AET, with
14 species responding negatively (Fig. 2 and Table 1).
Declines in avian occupancy were distributed relatively evenly

throughout the avian evolutionary tree (Blomberg’s K, P = 0.45).
However, a randomization test found occupancy change clustered
in a few families (SI Appendix, Fig. S4). Corvidae, Troglodytidae,
and Polioptilidae declined significantly less, while Accipitridae and
Falconidae declined significantly more than other families.
The two most important predictors of relative occupancy

change ðψ rÞ were habitat and diet specialization (Fig. 3 and SI
Appendix, Table S3). Together, they accounted for a total Akaike
information criterion weight of 0.89. Arid-land specialists and
habitat generalists declined significantly less than grassland and
forest species (Fig. 3A). Carnivores declined significantly more
than insectivores and herbivores, while omnivores declined sig-
nificantly more than herbivores (Fig. 3B). There was less support
for effects of range margin: Species with patchy distributions
declined significantly more than species without a distributional
limit in the study area (Fig. 3C). Migratory status, elevational
preference, territory type, body mass, and clutch size were poor
predictors of decline (SI Appendix, Fig. S5).
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Fig. 1. Historic and modern species occupancy proba-
bilities and site richness for theMojave avian community
over the past century. Points are posterior distribution
means: blue represents a significant increase (non-
overlapping historic and modern 95% credible inter-
vals), red represents significant decreases, and orange
represents species truly absent from the historic surveys.
(A) Historic and modern occupancy probabilities for 135
bird species. Error bars were omitted for visual clarity. (B)
Historic and modern site richness for 61 resurvey sites.
Error bars represent 95% CRI.
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Two key site-level characteristics were associated with reduced
rates of species loss for Mojave birds (Fig. 4 and SI Appendix,
Table S4). The presence of surface water was the most important
predictor of relative change in richness (Nr), and sites with sur-
face water present experienced 13.4% less decline than sites
without surface water (Fig. 4A). Management unit was the next
most important factor, but protected park lands were not necessarily
less immune to species loss than other public lands (Fig. 4B). Sites in
Death Valley National Park incurred the greatest declines in Nr
compared with all other management units, which did not differ
(Fig. 4B). Higher levels of richness were maintained somewhat
better at higher-elevation sites, with 6.3% less decline inNr for every
1,000 m in elevation gain (Fig. 4C). Latitude had little influence over
the geographic scale we investigated (Fig. 4D).

Discussion
Collapse of a Desert Bird Community. Birds of the Mojave Desert
exhibited a dominant signal of occupancy decline and erosion of
site-level species richness over the last century (Fig. 1). Both
diminished by about half: The average species occupancy prob-
ability declined from 0.24 to 0.11, and sites lost on average 43%
of their species. The decline of birds in the Mojave Desert ap-
pears to be exceptional compared with resurveys of adjacent
ecoregions in the Sierra Nevada (23) and Central Valley (24)
that occurred on the same timescale, at similar geographic scales,
and following the same methods. Whether in the more diverse
Sierras (n = 205 species) or slightly less diverse Central Valley
(n = 122), little change in richness occurred over the past century
(mean of −2.6 and +1.9 species per site, respectively) compared
with the Mojave (n = 135 species) that experienced a loss of 17.9
species per site. Moreover, there were roughly similar increases

and decreases in species-level occupancy in the Sierras (10.2% of
species decreased and 19.5% increased significantly) and the
Central Valley (22.1% decreased and 28.7% increased). In
contrast, there was no counterbalance to decline of species
(28.9%) in the Mojave, where only the common raven increased
significantly in occupancy. Beyond California, studies have found
increases or stability in species richness, affiliated with expan-
sions of warm-adapted species or generalists, though studies
performed thus far have been biased toward temperate regions
(25). The trends we observed in the Mojave are corroborated by
findings of the North American Breeding Bird Survey (BBS).
There has been a 46% decline in the abundance of arid-land
indicator species since the onset of BBS surveys in 1968 (19, 26).
The nearly uniform decrease in site-level richness across the

Mojave and the dominant signal of decline in the occupancy
suggest a community in the process of collapse. Community or
ecosystem collapse is usually the result of multiple causes that
create synergistic effects and feedbacks. For example, climate
change acted in concert with an emerging disease to threaten
global amphibian communities (27), with herbivory to threaten
Arctic avifauna (28), and with a complicated suite of threats to
imperil Hawaiian avifauna (29). Nevertheless, climate change
alone can mediate the collapse of communities (5). Whether the
collapse of Mojave birds will continue is unknown, although
declines of arid-land birds in the BBS may have abated over the
past decade (19). Nevertheless, populations have not recovered
to initial levels, nor have they approached the historic baselines
that our surveys revealed.

The Drivers of Collapse. There is little evidence that the major
drivers of systemic biodiversity loss—disease, pollution, over-
exploitation, and habitat destruction—are operating in the
Mojave. Invasive plants are in the Mojave, but they currently
represent a small amount of cover at most of our sites and across
the Mojave as a whole (30) (SI Appendix). Instead, climate
change, particularly decline in rainfall, was the most important
driver of avian community dynamics in the Mojave Desert. Sites
that received less precipitation in recent decades compared with
early in the 20th century had higher local extinction probabilities
(Fig. 2). Most sites became drier (μ = −3.6%; σ = 5.9%), re-
ceiving up to 20% less precipitation. The causal relationship
between precipitation and avian population dynamics has many
linkages, given the widespread effects precipitation has on arid
communities (13). Dry periods can cause desert birds to operate
at water deficits due to decreased access to water-rich food
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Fig. 2. Relationship of climate change, recent weather, and habitat change to
community-level persistence probability with 95% credible intervals (shaded).
Covariates with 95% CRI nonoverlapping zero are asterisked. PY, previous year.

Table 1. Coefficients of community-level persistence probability
from a dynamic multispecies occupancy model

Covariate β 95% CRI

Species
responses

− +

Climate change
Δ precipitation, mm 1.12 0.43, 1.86 0 35
Δ mean temperature, °C 0.30 −0.01, 0.65 0 0
Δ max temperature, °C −0.04 −0.37, 0.32 0 1

Weather in previous year
Precipitation, mm 0.62 0.19, 1.08 0 2
Mean temperature, °C −1.44 −3.17, 0.19 6 0
Max temperature, °C 1.71 0.01, 3.53 0 5

Habitat change
Grazing intensity, AMU 0.17 −0.15, 0.63 0 0
Fire return interval, y −0.16 −0.47, 0.12 0 0
Δ CWD, mm 0.30 −0.37, 0.90 0 0
Δ AET, mm −0.86 −1.66, −0.12 14 0

Coefficients whose 95% credible interval does not cross zero are bolded.
The count of species with coefficients not overlapping zero is summarized by
the direction of the response.
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resources, which can negatively impact fitness (31). Reproduc-
tion and survival in many arid-land birds are positively related to
precipitation, a response likely mediated through effects on food
availability, predation, and nest parasitism in arid environments
(32, 33). Rainfall in the year before resurveys also had a positive
relationship with local persistence, but the effect was weaker
than the influence of long-term change in precipitation (Table
1). Even though California as a whole experienced a historic
drought from 2012 to 2017, the most severe impacts occurred
outside of the Mojave Desert (34), and in the year before our
resurveys rainfall was within normal variation (i.e., within 1 σ of
30-y averages) for all but three sites.
Climate change influenced the collapse of the Mojave bird

community primarily through precipitation change rather than
temperature change. Long-term warming was not strongly re-
lated to avian decline, but there was an influence of maximum
temperature in the year previous to resurveys (Table 1). Con-
trary to our expectations, however, community persistence was
positively related to the maximum temperature in the year be-
fore resurveys, which could occur for several reasons. First, due
to topographic complexity in the Mojave, there was high vari-
ability in site-level maximum temperatures in the year before
resurveys (μ = 31.8 °C; σ = 5.6 °C). At high-elevation sites,
warming may translate to a longer breeding season, leading to
greater reproductive success (35). Second, observed temperatures
may not yet be hot enough to have biological relevance. The
physiological costs of heat avoidance and dissipation behaviors be-
gin to negatively impact fitness of some desert birds when tem-
perature exceeds 35 °C (9, 36, 37); at temperatures >40 °C,
evaporative water loss accelerates and puts birds at risk for lethal
dehydration (16). These thermal limits were exceeded at only 26
and 9% of sites, respectively. Albright et al. (16) suggested that body
size would be an import predictor of decline and extirpation in
desert bird communities based on its relationship with heat-related
dehydration. Body size, however, was a poor predictor of decline in
our study (SI Appendix, Table S3), which also supports our con-
clusion that the thermal environment did not appear to be a sub-
stantial contributor to Mojave bird declines.
Habitat change was less important than climate change in

driving avian community collapse. Although fire and grazing can
impact birds in arid systems (38), neither strongly influenced
avian community response in our study. Only change in AET was
related to avian persistence and, contrary to our expectations, it
had a negative relationship at the community level and for 14
species (Fig. 2 and Table 1). AET is strongly correlated with
annual net primary productivity in the Mojave Desert (39). Our
results imply that some Mojave birds responded negatively to
long-term habitat change in the form of vegetation growth. The
cause of this response and whether it is associated with native or
nonnative vegetation growth warrant further investigation. Pre-
cipitation is used in calculating AET, and the opposing direction
of the community response to these two factors appears con-
flicting. However, species that responded negatively to a change
in AET differed from those species that responded positively to
precipitation change. Heterogeneity among species in response
to environmental change is relatively common in avian commu-
nities (4), and is expected given the taxonomic diversity that
comprises the Mojave bird community.

Winners and Losers. There was an apparent lack of climatological
“winners” among the Mojave avifauna. The only species occur-
ring in historic surveys that increased significantly was the
common raven, likely due to the proliferation of anthropogenic
food resources (40). Relative change in occupancy was randomly
dispersed across the phylogenetic tree, with corvids, wrens, and
gnatcatchers declining less severely than others (SI Appendix,
Fig. S4). Arid-land specialists, habitat generalists, and more
broadly distributed species were also more resilient to decline,
but these groups still decreased, just to a lesser degree (Fig. 3).
The void left by declining species in many avian communities
affected by climate change has been filled, at least partly, by an
influx of species for whom the region has become more favorable
(23–25, 35). While the Sonoran Desert immediately south of the
Mojave holds the anticipated pool of more desert-hardy species, we
found no expansion or increase of Sonoran-representative birds
already present in the study area (e.g., phainopepla, verdin, and
black-throated sparrow). Although these absences may represent
delays in immigration, birds are a highly mobile taxa and avian
communities have responded rapidly to changing climate with lag
times as short as 1 to 3 y (41), which suggests that the decline may
represent a meaningful change in the community baseline.
Declines in occupancy occurred broadly in Mojave birds,

across both common and rare species (Fig. 1). Globally, analo-
gous population declines have been identified for one-third of all
terrestrial vertebrate species, regardless of rarity (2). Decline of
widespread species is an often overlooked aspect of biodiversity
loss that has far-reaching implications for ecosystem function. In
the Mojave, carnivores were impacted more severely than other
dietary guilds (Fig. 3). This trend was also reflected in our family
clustering analysis, in which falcons and accipiters experienced
significantly greater declines than other families (SI Appendix,
Fig. S4). This result is in accordance with theoretical and em-
pirical evidence for greater sensitivity of higher trophic levels to
climate change, either due to amplification of declines at lower
trophic levels or to a temporal mismatch with prey resources (42).
Loss of predators has led to trophic downgrading and greatly altered
the structure and function in other ecosystems (43).

Conservation Implications. Our results provide evidence that bird
communities in the Mojave Desert are collapsing to a new, lower
baseline that supports about half the local species richness that was
present a century ago. The disintegration of avian biodiversity may be
an indication of a larger imbalance in theMojave and an early-warning
indicator of future ecosystem collapse. Birds serve many functional
roles—predators, pollinators, scavengers, and seed dispersers—and
their decline could have cascading effects on ecosystem function and
many ecosystem services (43). Moreover, the warming and drying that
are unequivocally projected to occur in the Mojave Desert over the
next century could further exacerbate or compound the current de-
cline in the avian community (8). Sites with higher levels of pre-
cipitation, with surface water, and at higher elevations (Fig. 4) may
provide refugia in the face of future climate change. Desert springs
across the region are drying from groundwater removal (44), and
changes in water management policies are needed to reverse this
trend. Installation of artificial water sources may mitigate hydric stress
and buoy avian diversity, but it is a temporary measure.
Collapse of the Mojave bird community has occurred without

regard to the protected status of desert lands. The strongest
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based on distributional extent in the study area. Er-
ror bars represent 95% confidence intervals.
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declines were in the largest national park in the continental
United States, Death Valley, where 90% of the land is desig-
nated as wilderness. Protected areas are only partly effective in
mitigating population declines caused by the broad-reaching
consequences of human activities (45), and combating climate
change will require global policy efforts in addition to local ac-
tions to reduce greenhouse gas emissions. The Mojave, though
relatively undeveloped, is experiencing considerable pressure
from the renewable energy sector (46). Protecting biodiversity
while reducing dependence on fossil fuels will require smart
development of green energy.
Community collapse of the Mojave avifauna represents a pre-

cursor to defaunation that would have been overlooked if we had
not had access to the original faunal surveys of Joseph Grinnell
and colleagues from the early 20th century. Data used to docu-
ment declining wildlife populations typically trace to the 1960s or
1970s (3, 47). Although similar changes may be occurring in other
ecoregions that lack comparable historical data, the harsh nature
of desert environments makes them more likely to become less
suitable for life and offers a prescient warning for biodiversity loss
as future climates are pushed further toward extremes.

Materials and Methods
Bird Surveys. Surveys of avian diversity were performed at 61 sites across the
Mojave Desert spanning a broad latitudinal (33.6° to 37.5°), longitudinal
(−117.7° to −114.8°), and elevational range (−17.8 to 3396.2 m) (SI Appen-
dix, Fig. S1). The majority of sites (58 of 61) were on federal lands managed
by the NPS, US Bureau of Land Management (BLM), US Forest Service (USFS),
and US Fish and Wildlife Service (SI Appendix, Fig. S1). Only one site expe-
rienced development from the historic time period; resurvey of this site
occurred <1 km away in habitat matching historic descriptions.

Historic surveys were conducted between 1908 and 1968, with 70% of the
surveys occurring between 1917 and 1947. Historic survey data (species en-
counters, geographic locations, and metadata) were extracted from field
notes archived at theMuseumof Vertebrate Zoology, University of California,
Berkeley. Historic surveys followed a precursor of the line-transect method
and provided a record of detection/nondetection data for all species en-
countered. Historic data at each site were restricted to surveys that occurred
within the breeding season of a single year to ensure closure during the
primary sampling period. To reduce bias that a small number of heavily
sampled sites might have on estimated detection probabilities, we limited
historic data to ≤10 surveys within a single year. Seven historic surveys fol-
lowed a removal protocol (48), and were analyzed as such.

Modern resurveys occurred between 2013 and 2016 and followed standard
avian variable-distance point countmethods and protocols established by the
Grinnell Resurvey Project (23). Transects consisted of 10 sampling points
separated by >250 m that spanned the area, elevational extent, and vege-
tation heterogeneity of historic survey routes. Bird counts from modern
surveys were reduced to detection/nondetection data per site for compari-
son with historic data. Six sites surveyed in the modern time period had no
historic counterpart, but provide useful information for detection and dis-
tribution. See SI Appendix for additional description of protocols.

The historic dataset encompassed 204 surveys at 55 sites, with a mean of
3.46 surveys per site. The modern data included 183 surveys at 61 sites, with 3
surveys per site. A total of 135 breeding species were included in the anal-
ysis. Potential for breeding was determined by overlap of expert-defined

breeding ranges (49) with survey sites. Northbound migrants (n = 26) and
vagrant species (n = 9) were excluded. Nocturnal birds and obligate water-
birds were not adequately surveyed by our methods and were excluded
from analysis. Species were analyzed using a revised taxonomic treatment.
Four species (EUCD, EUST, CHUK, and GTGR) known to colonize the Mojave
after the completion of historic surveys (50) were treated as being truly
absent from the historic data.

Occupancy Model for Community Dynamics. A dynamic, multispecies, occu-
pancy model (22) was used to explicitly model the persistence and coloni-
zation dynamics that occurred between the historic and modern time
periods. Survey data were assumed to be the result of imperfect observation
of the true incidence of a species at a site. Occupancy dynamics were
modeled as a first-order Markovian process (i.e., incidence of a species in the
modern period was assumed to depend on the incidence state of the historic
period). Covariates were included as a linear combination of effects with a
logit-link transformation for each of the four probabilities estimated by the
model [detection (p), historic occupancy (ψ), local persistence (ϕ), and local
colonization (γ)]. The species-specific intercept and coefficient values were
governed by normal distributions, which were in turn drawn from community-
level hyperdistributions. The hyperdistributions for the intercept terms and the
mean of the coefficients were assigned vague priors. We fit the model with a
weakly informative prior applied to the variance of the coefficient hyper-
distributions, which behaves as a type of regularization (51). Regularization
limits the effects of collinearity in the covariates and prevents overfitting,
allowing us to evaluate a global model of community response (51). For full
model and prior specification, see SI Appendix.

Model Covariates. To evaluate community dynamics between time periods,
we fit covariates to each probability modeled. Survey era was included as a
categorical covariate of detection to explicitly capture differences between
the two time periods (22). Julian day and its quadratic term were included in
the detection model to allow for detectability to vary during the breeding
season. Initial occupancy covariates included elevation and its quadratic
term, and historic climate averages (annual precipitation, mean annual
temperature, and maximum annual temperature). Since the model-
estimated mean colonization probability was very low (γ = 0.003; 95%
CRI <0.001 to 0.009), we only included one nuisance covariate on coloni-
zation to avoid overfitting—years elapsed between historic and modern
surveys. This covariate was also included for persistence.

Covariates chosen to assess the drivers of community persistence fell into
three categories: climatic change (annual precipitation change, annual mean
temperature change, annualmaximum temperature change), recentweather
(precipitation, mean temperature and maximum temperature of the year
before the modern surveys), and habitat change (grazing intensity, mean fire
return interval, CWD change, AET change). Vegetation descriptions from the
historic surveys were qualitative in nature, so we were unable to evaluate
effects of fine-scale habitat change on community dynamics, including the
potential effects of invasive plant species beyond their impact on altered fire
regimes (SI Appendix). Environmental covariates were calculated from the
Basin Characterization Model (BCM) (52), using a 5-km window to capture
local variability. Change covariates were calculated from differences between
historical climate (1906 to 1965) and modern (1986 to 2015) climate averages.
Historic climate averages and weather of the previous year were also extracted
from the BCM. Mean fire return interval for each site was calculated from fire
perimeter spatial databases of Cal Fire’s Fire and Resource Assessment Pro-
gram (frap.fire.ca.gov) and the Nevada BLM. Current grazing intensity data
(animal unit mo per ha; AUM) were provided by NPS, USFS, and BLM regional
offices. All covariates were centered and scaled before inclusion.

Model data were preprocessed in R version v3.4.0 (53) and fit using
Markov chain Monte Carlo as implemented by JAGS v4.3.0 (54). We retained
13,000 samples of the posterior (40 chains; burn-in: 10,000 iterations; thin-
ning: 100 iterations). Chains were considered converged when the Gelman–
Rubin statistic was ≤1.1 for all stochastic nodes. We used a PPC to test
goodness of fit (see SI Appendix for details). We use “significant” to describe
effects that have a high probability of being nonzero (i.e., 95% CRIs non-
overlapping with zero), or to describe two values that have a high proba-
bility of being different (i.e., nonoverlapping 95% CRIs).

Species Traits and Site Characteristics as Predictors of Change. Species-specific
traits were evaluated for their potential to account for occupancy change:
dietary breadth, fecundity, elevational preference, range margin, dis-
persal ability, body size, and territoriality (SI Appendix, Table S5). We
tested the importance of traits as predictors of relative occupancy change
(ψ r = ½ψm −ψh�=ψhÞ between historic ðψhÞ and modern ðψmÞ surveys using
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weighted linear regressions. To account for uncertainty in estimates, weights
were calculated from the inverse variance of the posterior distribution of ψ r,
giving higher weight to estimates with lower uncertainty (55). We trans-
formed the data (log[1 + ψ r]) to linearize the ratio for both increases and
decreases in occupancy (55) and added 0.016, the equivalent of one site
being occupied, to occupancy probabilities to adjust for zero estimates that
occurred for some species in either time period.

Phylogenetic signal was evaluated to ascertain the independence of
species and to identify taxonomic clades that experienced similar responses.
We downloaded 500 trees from birdtree.org, 250 of each of the Ericson and
the Hackett backbones (56). We calculated Blomberg’s K for all 500 trees to
test whether a phylogenetic signal in ψ r was present across the evolutionary
tree (57, 58). We also examined whether response was clustered within
taxonomic families, as defined by the American Ornithological Society,
through a randomization test; ψ r was calculated for each family and com-
pared with 10,000 random draws of the same number of species as in the

family (58). Species introduced after the historic surveys were excluded from
the phylogenetic and trait analyses because their occupancy change was
assumed to be related to invasion biology.

Species richness was calculated for each posterior sample as the sum of the
species incident at the site during each time period. Site characteristics (el-
evation, latitude, management unit, and presence of surface water) were
tested as predictors of relative change in richness (Nr = ½Nm −Nh�=Nh) using
weighted linear regressions in the same fashion as ψ r.
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