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Abstract
Background. The Ras signaling pathway is commonly dysregulated in human malignant peripheral nerve sheath 
tumors (MPNSTs). It is well known that galectin-1 (Gal-1) is essential to stabilize membrane Ras and thereby induce 
the activation of Ras. However, the role of Gal-1 in MPNST progression remains unknown. The aim of this study 
was to examine whether Gal-1 knockdown could have an effect on the Ras signaling pathway.
Methods.  Cell viability, apoptosis assay, and colony formation were performed to examine the effects of inhibition 
of Gal-1 in MPNST cells. We used a human MPNST xenograft model to assess growth and metastasis inhibitory 
effects of Gal-1 inhibitor LLS2.
Results.  Gal-1 was upregulated in MPNST patients and was highly expressed in MPNST cells. Knockdown of Gal-1 
by small interfering (si)RNA in Gal-1 expressing MPNST cells significantly reduces cell proliferation through the 
suppression of C-X-C chemokine receptor type 4 (CXCR4) and the rat sarcoma viral oncogene homolog (RAS)/
extracellular signal-regulated kinase (ERK) pathway, which are important oncogenic signaling in MPNST develop-
ment. Moreover, Gal-1 knockdown induces apoptosis and inhibits colony formation. LLS2, a novel Gal-1 allosteric 
small molecule inhibitor, is cytotoxic against MPNST cells and was able to induce apoptosis and suppress colony 
formation in MPNST cells. LLS2 treatment and Gal-1 knockdown exhibited similar effects on the suppression of 
CXCR4 and RAS/ERK pathways. More importantly, inhibition of Gal-1 expression or function by treatment with ei-
ther siRNA or LLS2 resulted in significant tumor responses in an MPNST xenograft model.
Conclusion.  Our results identified an oncogenic role of Gal-1 in MPNST and that its inhibitor, LLS2, is a potential 
therapeutic agent, applied topically or systemically, against MPNST.

Key Point

1.  Targeting Gal-1 by siRNA or Gal-1 inhibitor LLS2 impairs MPNST progression.
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Neurofibromatosis type 1 (NF1) is the most common form of 
neurofibromatosis, which affects about 100 000 Americans. 
The most common nerve-associated tumors in NF1 are 
neurofibromas, which are mostly benign and broadly 
classified into dermal and plexiform subtypes. Although 
neurofibromas are benign tumors, plexiform neurofibromas 
can undergo transformation into malignant peripheral nerve 
sheath tumors (MPNSTs), which have a fairly poor prognosis 
(5-year survival of <50%) and are a leading cause of death for 
NF1 patients.1 Unfortunately, there is no effective treatment 
for this disease. There is great clinical need to develop novel, 
efficacious, and less toxic topical and systemic medical treat-
ment against this debilitating disease.2

Galectin-1 (Gal-1), a 14 kDa lectin, is a member of a family 
of galectins with an affinity for β-galactosides. Gal-1, in its 
dimeric form, is involved in the regulation of proliferation, 
apoptosis, cell cycle, and angiogenesis. Its level is elevated 
in many other human cancers (ovarian,3 prostate,4 lung,5 
breast,6 kidney,7and pancreatic cancer8). Mechanistically, 
Gal-1 is known to stabilize activated H-Ras (G12V) at the 
plasma membrane, which is essential for induction of 
the rat sarcoma viral oncogene homolog (RAS)/extracel-
lular signal-regulated kinase (ERK) oncogenic signaling 
pathway.9 In addition, elevated RAS/mitogen-activated 
protein kinase (MAPK) activity is found in neurofibroma 
and MPNST cells derived from NF1 patients, due to the 
loss of function of neurofibromin, which is a negative reg-
ulator of Ras.10–12 These results indicate that inhibition of 
Gal-1 function is a promising therapeutic approach against 
NF1-associated neurofibroma and MPNST.

In addition to neurofibromin, elevated C-X-C chemokine 
receptor type 4 (CXCR4) has previously been reported to 
promote MPNST tumor progression.13 CXCR4/CXC li-
gand 12 triggers the activation of phosphatidylinositol-3 
kinase and β-catenin signaling to stimulate cyclin D1 
expression and cell-cycle progression. The CXCR4 an-
tagonist AMD3100 has growth-inhibitory effects on pri-
mary cultured mouse and human MPNST cells, tumor 
allografts, and spontaneous genetically engineered mouse 
models of MPNST. Thus, inhibition of CXCR4 expression 
could suppress MPNST growth. However, the molecular 
mechanisms that regulate CXCR4 expression in MPNST 
are still unknown.

In our previous study, we developed the one-bead two-
compound (OB2C) screening method, which is a highly ef-
ficient drug screening platform.14 Through this screening 

platform, we have recently identified a benzimidazole 
small-molecule compound, LLS2, as a pro-apoptotic 
agent and potent Gal-1 inhibitor. Binding of LLS2 to Gal-1 
decreased membrane-associated H-Ras and K-Ras and 
contributed to the suppression of the RAS/ERK pathway. 
LLS2 can cause apoptosis in colon, pancreatic, ovarian, 
prostate, and breast cancer cells and inhibit the tumor 
growth in ovarian cancer xenografts.14

In this study, we found that upregulation of Gal-1 plays a 
crucial role in CXCR4 and RAS/ERK pathways for MPNST. 
Knockdown of Gal-1 by siRNA or treatment with LLS2 ef-
fectively induces apoptosis in MPNST cells, and inhibits the 
growth of MPNST cell lines in vitro and in vivo. Given these 
results, we reason that Gal-1 is an excellent therapeutic target 
against MPNST, and that LLS2 is an excellent lead compound 
for the development of novel therapeutics against MPNST.

Materials and Methods

Analysis of Gal-1 Expression in Human 
Neurofibroma and MPNST

Human peripheral nerve tumor tissue array was obtained 
from US Biomax (SO1001a). The detailed procedure of 
immunohistochemistry is described in our published study.15 
The expression of LGALS1, CXCR4, and NF1 in MPNST and 
neurofibroma was identified from the Oncomine database 
(https://www.oncomine.org/resource/login.html). Datasets 
were generated from the studies by Henderson16 and 
Nakayama.17 LGALS1, CXCR4, and NF1 are expressed rela-
tive to housekeeping genes in MPNST and neurofibroma. All 
data are log transformed and median centered per array.

Cell Lines

Normal human schwann cells (huSC) were purchased from 
Sciencell. MPNST-derived cell lines sNF02.2 (NF1+/−) and 
sNF96.2 (NF1−/−) were purchased from American Type Culture 
Collection. HuSC was maintained in human Schwann cell 
medium (Sciencell). MPNST sNF02.2 and sNF96.2 cells 
were maintained in Dulbecco’s modified Eagle’s medium 
supplemented with 10% fetal bovine serum and 1% penicillin/
streptomycin, and grown in 5% CO2 at 37oC. Mycoplasma 
testing was routinely performed every month.

Importance of the Study

MPNST is a malignant tumor with a fairly poor prognosis 
(5-year survival of <50%) and is a leading cause of increased 
death for neurofibromatosis type 1 patients. Surgery to re-
move neurofibromas is the main treatment for MPNST. For 
unresectable or metastatic diseases, chemotherapeutic 
drugs are only marginally effective. However, there are 
no effective systemic therapies for MPNST patients. Ras 
signaling pathway is commonly dysregulated in MPNST 
patients. Ras pathway and downstream effectors are 

implicated in the pathogenesis of MPNST. Here we show 
that Gal-1 was upregulated in MPNST. Our preclinical data 
demonstrate that inhibition of Gal-1 expression or function 
by treatment with either siRNA or LLS2 resulted in sig-
nificant tumor responses in an MPNST xenograft model. 
Given these results, we reason that Gal-1 is an excellent 
therapeutic target against MPNST and that LLS2 is an 
excellent lead compound for the development of novel 
therapeutics against MPNST.

https://www.oncomine.org/resource/login.html
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Plasmids and Gene Knockdown

NF96.2 and NF2.2 cells were seeded on 6-well plates. Two 
small interfering (si)RNAs targeting the different region 
of LGALS1 mRNA were used to decrease Gal-1 expres-
sion (siGal-1 #1: HSS106025 [Invitrogen] and siGal-1 #2: 
s194592 [Ambion]). Cells were transfected with 40 nM neg-
ative control mimic or mixed siRNA against Gal-1 using 
Lipofectamine 2000 transfection reagent (Life Technologies) 
according to the manufacturer’s instructions. NF96.2 cells 
were transfected with 1 μg control (sc-108060, Santa Cruz) 
or Gal-1 short hairpin (sh)RNA plasmid (sc-35441-SH, 
Santa Cruz) or pcDNA-H-Ras or pcDNACXCR4. Cell lysates 
were collected at 72 h after transfection and subject to im-
munoblotting to check protein expression.

Cell Viability and Apoptosis Assay

For cell viability, 5 × 103 NF96.2 and NF2.2 cells were 
seeded into 96-well plates per well. Cells were allowed to 
attach for 24 h prior to drug treatment for 72 h. After 24 h, 
medium was removed and the cells were treated with the 
indicated concentrations of LLS2 or siRNA. Ten millimolar 
LLS2 stock solutions (100X) were prepared in 100% di-
methyl sulfoxide (DMSO); 10 mM LLS2 was diluted 1:100 
with cell culture medium to produce 100 µM LLS2 in 1% 
DMSO, and then was two-fold serially diluted in cell culture 
medium. After the indicated timepoints, cell viability was 
determined by assay by MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide). For apoptosis assay, 
caspase-3/7 activity was measured after treatment with 
0.25% DMSO or 25 μM LLS2 or siRNA for 72 h by using a 
luminescent caspase-Glo 3/7 assay kit (Promega). Early ap-
optosis was detected using the fluorescein isothiocyanate 
annexin-V Apoptosis Detection Kit (BD Biosciences).

Ras Activation Assay

Activated Ras was detected using the Ras Activation Assay 
Kit (17–218, Millipore) according to the manufacturer’s 
instructions. Briefly, shRNA transfected or LLS2 treated 
cells were lysed and Raf-1 Ras-binding domain (RBD) 
agarose beads were added to 200 µg cell lysates for 30 min 
at 4°C followed by centrifugation at 14 000× g for 10 s at 
4°C. After washing, the agarose-bound Ras was incubated 
in 2X Laemmli reducing sample buffer (126 mM Tris/HCl, 
20% glycerol, 4% sodium dodecyl sulfate [SDS], 0.02% 
bromophenol blue), which will subsequently be resolved 
on SDS–polyacrylamide gel electrophoresis (PAGE) and 
detected by western blotting with an anti-Ras antibody (05-
516, Millipore).

Immunoblotting Analysis

Cells were lysed in a radioimmunoprecipitation assay 
buffer (50 mM Tris-HCl pH 7.5, 0.5% sodium deoxycholate, 
1% NP-40 [nonyl phenoxypolyethoxylethanol], 0.1% 
SDS, 150 mM NaCl, 2 mM EDTA, 50 mM NaF, 1 mmol/L 
dithiothreitol, 2 mg/mL aprotinin, and 2 mg/mL leupeptin)14 
and incubated on ice for 20 min. After centrifugation at 

12 000× g for 20 min at 4 oC, total cell lysates were col-
lected and quantified by bicinchoninic acid assay. Twenty 
micrograms of each lysate was boiled in 2X Laemmli SDS-
PAGE sample buffer (126 mM Tris/HCl, 20% glycerol, 4% 
SDS, 0.02% bromophenol blue) at 95oC for 10 min, followed 
by separation on 12% SDS-PAGE gels and transference 
to polyvinylidene difluoride membrane (Bio-Rad). After 
blocking with 10% nonfat dried milk in Tris-buffered saline 
(20 mM Tris pH 7.5, 150 mM NaCl) for 1 h, the membrane 
was incubated with the specific primary antibodies against 
Nf1, CXCR4, phospho-MEK (Ser217/221), MEK, phospho-
ERK(Thr202/Tyr204), ERK, or beta-actin (14623, 97680, 9154, 
8727, 4377, 9107, 3700, Cell Signaling) at 4°C overnight. The 
membrane was washed in TBS-T (20 mM Tris pH 7.5, 150 
mM NaCl, 0.1% Tween 20) three times. The membranes of 
CXCR4, phospho-MEK (Ser217/221), MEK, and phospho-
ERK(Thr202/Tyr204) were incubated with anti-rabbit immu-
noglobulin G (IgG) horseradish peroxidase (HRP)–linked 
secondary antibody (7074, Cell Signaling) at 37°C for 1 h. 
The ERK and beta-actin membranes were incubated with 
anti-mouse IgG HRP-linked secondary antibody (7076, 
Cell Signaling) at 37°C for 1 h. After washing with TBS-T 3 
times, electrochemiluminescence substrate (Amersham) 
was added and chemiluminescence signal was detected by 
a charge-coupled device camera (Bio-Rad).

Colony Formation Assays

Five hundred NF96.2 cells transfected with shRNA 
targeting control or Gal-1 were seeded into 24-well ultra-
low attachment plates (Corning). The growth medium was 
replaced every 3 days. The colonies were formed after 2 
weeks and then treated with 0.25% DMSO or 25 μM LLS2. 
Colonies were imaged for colony size calculation 5 days 
post treatment. Colony diameter larger than 50 µm was 
counted manually from 3 different wells.

In Vivo Xenograft Tumor Assays

The Institutional Animal Care and Use Committee of the 
University of California Davis approved animal experiments 
in this study. LLS2 stock solutions (6X) were prepared in 
50% absolute alcohol and 50% cremophor to make 15 mg/
mL. Prior to administration, each was diluted with saline to 
produce 2.5 mg/mL solutions. Female congenital athymic 
Bagg albino/c nude (nu/nu) mice were purchased from 
The Jackson Laboratory. Resuspended in 100 μL of 50% 
Matrigel (BD Biosciences) were 5 × 106 NF96.2 cells con-
stitutively expressing luciferase, which were subcutane-
ously injected into the right side of the mouse dorsal flank. 
After 12 weeks implantation, the tumors were formed (~75 
mm3). Mice were randomly divided into control and treat-
ment groups, with 6 mice per group. Mice were given a ve-
hicle 8.7% alcohol/8.7% cremophor or 25 mg/kg LLS2 daily 
i.v. administration for 5 successive days. Three weeks after 
treatment, mice were sacrificed and tumors were excised 
and weighed. For lung metastasis model, luciferase-tagged 
NF96.2 cells were intravenously injected into nude mice, 
followed by LLS2 treatment (15 mg/kg once daily for 5 days) 
3 weeks later. After 12 weeks implantation, bioluminescence 
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signals were detected by the IVIS 200 Imaging System 
(Caliper LifeSciences), 5 min after intraperitoneal injection 
of 100 mg/kg D-luciferin.

Statistical Analysis

Expression level of Gal-1 was scored as follows: 0, negative; 
1, low intensity; 2, moderate intensity; 3, high intensity; and 
4, very high intensity. Two pathologists have visually scored 
immunohistochemistry data. All in vitro studies were 
performed in triplicate in 3 different experiments. Two-
tailed Student’s t-test was used for comparison between 
variables. All results were expressed as mean ± SD and a 
P-value <0.05 was considered statistically significant.

Results

Gal-1 Expression in Human MPNST

Given that Ras is a well-known oncogenic driver and Ras 
activity is regulated by Gal-1, we predicted that Gal-1 is 
a therapeutic target for MPNST. We first examined the 
LGALS1 transcript levels in human NF1 from 2 Oncomine 
datasets of Henderson16 and Nakayama,17 and found that 
LGALS1 was significantly higher in neurofibroma and 
MPNST (Fig. 1A). It has been known that loss of NF1 is 
associated with activation of RAS/MAPK signaling in NF1 
patients.18 Overexpression of CXCR4 has been reported in 
NF1 patients.13 As expected, downregulation of NF1 and 
upregulation of CXCR4 were observed in NF1 patients of 
these 2 datasets. In addition, the protein expression level 
of Gal-1 was detected in human normal nerve tissue, 
neurofibroma, and MPNST. Significantly higher level 
of Gal-1 expression was observed in MPNST compared 
with normal nerve tissue and neurofibroma (all P < 0.001; 
Fig. 1B), as determined by 2-tailed Student’s t-test.

Effects of Depletion of Gal-1 in MPNST Cells

NF96.2 (NF1−/−) and NF02.2 (NF1+/−) MPNST cell lines with en-
dogenous Gal-1 expression were chosen for further elucida-
tion of Gal-1 function in MPNST (Fig. 2A, B). NF96.2 and NF2.2 
MPNST cells were transfected with siRNA against Gal-1, and 
as expected, expression of Gal-1 was found to be reduced as 
evaluated by western blot (Fig. 2B). In addition, knockdown 
Gal-1 was able to reduce cell growth (Fig. 2C) and induce apop-
totic membrane blebbing (Fig. 2D) and caspase activity (Fig. 2E). 
SiGal-1–mediated apoptosis was further confirmed by using 
annexin-V to detect membrane surface phosphatidylserine, 
an earlier event of apoptosis (Supplementary Fig. 1A). These 
results indicate that Gal-1 knockdown can reduce MPNST cell 
viability and induce apoptosis.

Gal-1 Knockdown Exhibits Antitumor Activity In 
Vivo

We next evaluated the effects of Gal-1 knockdown on 
MPNST tumor growth. Before in vivo testing, we performed 

colony formation assay. This anchorage-independent 
growth assay is believed to be a good predictor of in vivo 
activity. Stable knockdown of Gal-1 was generated by 
transfection of shRNA plasmid targeting Gal-1. Knockdown 
Gal-1 using shGal-1 plasmid also impaired NF1−/− NF96.2 
cell growth (Fig. 3A and Supplementary Fig. 2A). NF96.2 
cells formed colonies after 2 weeks (Fig. 3B). In contrast, 
Gal-1 knockdown in NF96.2 cells exhibited significant inhi-
bition in colony formation (Fig. 3B and Supplementary Fig. 
2B). To examine Gal-1‒mediated tumorigenicity in vivo, 
NF96.2 luciferase-tagged cells expressing control shRNA 
or shGal-1 were subcutaneously injected into nude mice. In 
vivo tumorigenesis studies showed that Gal-1 knockdown 
significantly suppressed tumor growth in nude mice (Fig. 
3C, D). The xenografts were excised and weighed at the 
end of the experiment to confirm in vivo bioluminescence 
imaging results (Fig. 3E). This finding strongly suggests an 
oncogenic role of Gal-1 in MPNST development.

Ras Signaling Was Inhibited by Gal-1 Knockdown

Gal-1 is known to stabilize activated Ras at the plasma 
membrane,9,19 which was also observed in MPNST cells 
(Fig. 4A and Supplementary Fig. 3). The RAS pathway is 
frequently activated in MPNST.10–12 Given that Gal-1 is es-
sential to stabilize membrane Ras and thereby induce the 
activation of Ras,9 we examined whether Gal-1 knock-
down could have an effect on the Ras signaling pathway. 
We utilized a Ras pull-down activation assay to determine 
activated Ras level. We also assessed the expression level 
of CXCR4, phosphorylated MEK, and phosphorylated ERK, 
all of which are important therapeutic targets in cancers. 
Knockdown of Gal-1 with shRNA resulted in a significant 
decrease in expression of active Ras (Fig. 4B), CXCR4 
(Fig. 4C), and reduced phosphorylation of MEK and ERK 
in NF96.2 and NF2.2 cells (Fig. 4D). To further confirm 
whether Gal-1 knockdown suppressed MPNST cell prolif-
eration and induced apoptosis by downregulating Ras and 
CXCR4, pcDNA-H-Ras(G12V) or pcDNA-CXCR4 vector and 
shGal-1 plasmid were co-transfected into NF96.2 or NF2.2 
cells (Fig. 4B, C). Restoration of H-Ras(G12V) or CXCR4 was 
found to inhibit apoptosis and cell death in Gal-1 shRNA 
transfected cells (Fig. 4E, F). Together, these data strongly 
indicate that Gal-1 knockdown leads to suppression of the 
CXCR4 and Ras/ERK pathways, thereby inhibiting cancer 
cell proliferation.

Pharmacological Inhibition of Gal-1 with LLS2 in 
MPNST Cells

The strong growth inhibitory effects of Gal-1 specific 
siRNA on MPNST cells suggest that Gal-1 is an excellent 
therapeutic target for NF1. LLS2, a novel small-molecule 
inhibitor against Gal-1, identified from screening the 
one-bead two-compound combinatorial library, was re-
cently demonstrated in our laboratory to be effective 
against ovarian cancer SKOV3 xenograft models.14 Here 
we tested whether LLS2 exerts similar antitumor effects 
against MPNST cells. We found that LLS2 is indeed cyto-
toxic against NF96.2 and NF2.2 cells, with half-maximal 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz093#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz093#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz093#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz093#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noz093#supplementary-data
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inhibitory concentration values of 21.3 and 31.2 μM, re-
spectively (Fig. 5A). In addition, LLS2 was found to be 
able to induce apoptosis (Fig. 5B, Supplementary Fig. 1B) 
and suppress colony formation in these MPNST cells (Fig. 
5C). Treatment with LLS2 at 25 μM for 24 h recapitulated 
siGal-1–mediated reduction of active Ras, CXCR4, 
phospho-MEK, and phospho-ERK in NF96.2 and NF2.2 
cells (Fig. 5D, E).

LLS2 Has Antitumor Activity in an NF1−/− NF96.2 
Xenograft Model

We further evaluated the effects of LLS2 on MPNST tumor 
growth. We implanted NF96.2 cells into nude mice via subcu-
taneous injection. Tumors were excised and weighed at the 
end of the experiment. Mice bearing the NF1−/− NF96.2 cells 
were treated with LLS2 (25 mg/kg i.v. for 5 successive days 
when tumors reached 75 mm3). LLS2 significantly reduced 
NF96.2 tumor growth (P < 0.001; Fig. 6A–C); mean tumor 
volume was 238.2 mm3 for the LLS2-treated group compared 
with 1141.1 mm3 for the control group. No adverse effects 
such as weight loss were observed in any treated mice. To 
consider the aggressive nature of MPNST, a lung metastasis 
model was established to evaluate the metastasis-inhibitory 
effect of LLS2. Luciferease-tagged NF96.2 cells were tail-vein 
injected and treated with LLS2 (15 mg/kg i.v.) at week 3 for 5 
days. Bioluminescence was used to follow the tumor burden 
over time. As shown in Fig. 6D, at 12 weeks, no sign of tumor 

was detected in the LLS2 treated mice. In contrast, significant 
tumor burden was observed in control mice treated with ve-
hicle. These studies clearly demonstrate the therapeutic ef-
ficacy of LLS2 in inhibiting both primary tumor growth and 
metastasis in vivo.

Discussion

In this study, we present our discovery of the oncogenic 
role of Gal-1 and the tumor suppressive effects of LLS2, a 
benzimidazole small-molecule Gal-1 inhibitor, in MPNST. 
Gal-1 is overexpressed in NF1-associated MPNST patients. 
Inhibition of Gal-1 in MPNST cells via either siRNA-
mediated knockdown or LLS2 treatment resulted in a de-
crease in expression of CXCR4 and active Ras, leading to 
the suppression of the downstream MEK-ERK signaling 
pathway (Fig. 4). From these important findings across clin-
ical and in vitro models, we provide the first evidence that 
aberrant RAS activation is regulated by Gal-1 in MPNST.

NF1 is a common genetic disorder caused by defects in the 
gene NF1 encoding protein neurofibromin. NF1 functions in 
part as a Ras GTPase-activating protein (GAP), converting 
active Ras-GTP to inactive Ras-GDP.20 By accelerating GTP 
hydrolysis to GDP, neurofibromin is a negative regulator 
of Ras.21 NF1 mutations in neurofibromas and MPNSTs re-
sult in elevated level of active Ras-GTP.11,12 Ras is initially 
translated on ribosomes as inactive protein, before attaching 
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Fig. 1  Gal-1 expression in human MPNST. (A) NF1, CXCR4, and LGALS1 transcript levels from 2 Oncomine datasets. Henderson, MPNST, 
4 patients16; Nakayama, MPNST, 3 patients.17 Data, representative units according to Oncomine output. (B) The expression levels of Gal-1 were 
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to the cell membrane after prenylation and palmitoylation.22 
Activated Ras at the plasma membrane is essential for in-
duction of the oncogenic signaling pathway, and activated 
Ras/membrane interaction is stabilized by Gal-1. Moreover, 
overexpression of Gal-1 has been shown to increase 
membrane-associated Ras, Ras-GTP, and active ERK.9 In 
our study, we observed that knockdown of Gal-1 decreased 
the expression of activated Ras, which is consistent with 
prior findings. Conversely, Ras inhibition by salirasib or 
farnesylthiosalicyclic acid, a Ras farenesylcysteine mimetic, 
has been reported to reduce Gal-1 expression in NF1−/− 
MPNST cells.23 According to these studies, upregulated 
Gal-1 might contribute to the oncogenicity in NF1−/− cells via 
Gal-1/Ras autocrine or paracrine pathways.

CXCR4 has been implicated as a key molecular player 
regulating cancer development and progression, including 
MPNST.13,24–26 How CXCR4 is upregulated in cancers, how-
ever, remains unclear. In this study, we demonstrated 
that shRNA-mediated Gal-1 knockdown decreased the ex-
pression level of CXCR4, leading to the inhibition of cell 
growth. In addition, transfection of pcDNA-H-Ras(G12V) 
plasmid into Gal-1 shRNA transfected cells increased the 
expression of CXCR4 (Supplementary Fig. 4), suggesting 
that Gal-1 regulates CXCR4 expression via RAS signaling. 
In support of our finding, Huang et al reported that Gal-1 
can regulate CXCR4 expression through ERK/nuclear 
factor-kappaB activation, contributing to kidney cancer 
progression, and suggested that a Gal-1–CXCR4 axis is a 
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therapeutic target for kidney cancer.27 Thus, Gal-1–targeted 
therapy leading to dual suppression of CXCR4 and Ras 
signaling is a potential strategy for the treatment of 
MPNST.

It is known that Gal-1 binds to oncogenic H-Ras and activates 
the ERK signaling pathway, resulting in cell transforma-
tion.9 Interestingly, low Gal-1 expression was also observed 
in plexiform neurofibroma (Fig. 1B). Based on these clinical 
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observations, we hypothesized that Gal-1 expression in plex-
iform neurofibroma is involved in malignant transformation 
and that inhibition of Gal-1 function may prevent or abrogate 
progression of plexiform neurofibroma into MPNST. Further 
studies to investigate the malignant transformation effects of 
Gal-1 in plexiform neurofibroma are currently ongoing.

The Ras signaling pathway is frequently dysregulated in 
MPNST. Understanding the molecular mechanisms in con-
trol of Ras-related signaling pathways is important for the 
development of new rational therapies against this disease. 

Lonafarnib is a potent orally administered farnesyl trans-
ferase inhibitor (FTI) that interferes with Ras prenylation 
and palmitoylation.28 It is under clinical development for the 
treatment of progeria and various types of cancer, including 
glioma, glioblastoma, and breast cancer.29–31 Another FTI 
that produced promising results in clinical trial is tipifarnib.32 
Downstream effectors of Ras, including Raf, MAPK, and 
ERK, are also critical for Ras signaling. Some compounds 
that inhibit these molecular targets have entered clinical 
trials in various cancer types. For example, binimetinib, 
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an FDA-approved inhibitor of MEK 1 and 2, is currently 
undergoing phase III trials, in combination with other drugs. 
Binimetinib in combination with encorafenib (a B-raf inhib-
itor) is being evaluated in advanced melanoma (National 
Cancer Institute, NLM# NCT01909453). Combination 
encorafenib, binimetinib, and cetuximab (an anti–epi-
dermal growth factor receptor antibody) is being evaluated 
in patients with advanced colorectal cancer (National 
Cancer Institute, NLM# NCT02928224). These promising Ras 
pathway inhibitors may have great therapeutic potential 
against MPNST. LLS2 inhibits the Ras pathway via a mech-
anism totally different from that of the above-mentioned 
drugs. It is conceivable that LLS2 may potentiate the ther-
apeutic effects of these drugs, not only against MPNST, but 
also against a variety of cancers such as melanoma, colon 
cancer, and pancreatic cancer. Work is currently under way 
in our laboratory to explore these possibilities.

Supplementary Material

Supplementary data are available at Neuro-Oncology 
online.
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