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Chordal Conversion Based Convex Iteration
Algorithm for Three-Phase Optimal Power
Flow Problems

Wei Wang

Abstract—The three-phase optimal power flow (OPF) problem
has recently attracted a lot of research interests due to the need
to coordinate the operations of large-scale and heterogeneous
distributed energy resources in unbalanced electric power distribu-
tion systems. The nonconvexity of the three-phase OPF problem is
much stronger than that of the single-phase OPF problem. Instead
of applying the semidefinite programming relaxation technique,
this paper advocates a convex iteration algorithm to solve the non-
convex three-phase OPF problem. To make the convex iteration
algorithm computationally efficient for large-scale distribution net-
works, the chordal conversion based technique is embedded in the
convex iteration framework. By synergistically combining the con-
vex iteration method and the chordal based conversion technique,
the proposed three-phase OPF algorithm is not only computation-
ally efficient but also guarantees global optimality when the trace
of the regularization term becomes zero. At last, to further improve
the computational performance, a greedy grid partitioning algo-
rithm is proposed to decompose a single large matrix representing
a distribution network to many smaller matrices. The simulation
results using standard IEEE test feeders show that the proposed
algorithm is computationally efficient, scalable, and yields global
optimal solutions while resolving the rank conundrum.

Index Terms—Chordal conversion, convex iteration, distribution
system operator, three-phase optimal power flow.

NOMENCLATURE
E FY Real part and imaginary part of the voltage at
node k with phase p.
e Standard basis vector.
N Conductance and susceptance between node i
with phase p and node k with phase m in the
line admittance matrix.
Conductance and susceptance between node i
with phase p and node k with phase m in the
admittance matrix.
G The set of nodes with controllable generations
in the power distribution network.
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Matrix defined for voltage magnitude calcula-
tion for node i with phase p.

The set of all nodes in the power network.
Total number of decomposed areas.

Number of areas to search for further partitions
at the current stage.

Fixed real and reactive load at node k with phase
D

Fixed real and reactive power generation at
node k with phase p.

Real and reactive power injection at node k with
phase p.

Lower and upper limit of real power capacity
of controllable distributed generation at node k
with phase p.

Real and reactive power flow from node i with
phase p to node k with phase m.

Lower and upper limit of reactive power ca-
pacity of controllable distributed generation at
node k with phase p.

Nodal voltage vector.

Voltage at node k with phase p.

Lower and upper limit of voltage magnitude at
node k with phase p.

Sub-matrix of X associated with nodes in the
[-th extended sub-area.

Sub-matrix of X*' associated with nodes in
the /-th extended sub-area intersected with the
r-th extended sub-area.

Line admittance between node i with phase p
and node k with phase m.

Admittance matrix.

Admittance matrices defined for real and reac-
tive power injection calculation.

Admittance matrices defined for real and reac-
tive power flow calculation.

Admittance matrices defined for real and
reactive power injection calculation associ-
ated with the branches in the [-th extended
area.

Admittance matrices defined for real and reac-
tive power flow calculation associated with the
nodes in the /-th extended area.

0885-8950 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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I. INTRODUCTION

N THE past 20 years, wholesale power markets operating in
I transmission systems have been effective at coordinating the
operations of thousands of centralized power plants. Recently
the growth in volume and diversity of DERs and smart buildings
is transforming the operation of power systems and the design
of electricity markets. As DERs and smart buildings continue
to penetrate the electric power distribution systems, dynamic
resource management and optimization on a large-scale system
with thousands of DERs becomes difficult. This difficulty can
be addressed with a distribution system market approach where
electricity customers can proactively participate in the resource
dispatch and price formation processes. The market approach
has been advocated by many researchers and policy makers. For
example, the New York Public Service Commission kicked off
a proposal called Reforming the Energy Vision (REV) which
attempts to develop distribution system operators (DSOs) that
coordinate and facilitate the planning and operations of various
DERs and smart buildings. Leaving aside the policy debates sur-
rounding the DSO markets, the operation of DERSs relies on a
key algorithm, the three-phase OPF algorithm, which still needs
significant development. The discrete control elements includ-
ing switches and transformer taps also play a very important role
in distribution system operations [1]-[4]. However, it is beyond
the scope of this paper.

The single-phase OPF problem for the transmission system
has been studied extensively in the past 50 years. The trans-
mission system can be treated as a single-phase system in the
OPF problem due to the relatively balanced electricity loads
across three phases and periodically transposed transmission
lines. The single-phase OPF problem is highly non-convex
due to the nonlinear relationship between voltage and power
injections. This problem can be solved by numerous algorithms
including Newton-based methods [5], [6], linear and quadratic
programming [7], nonlinear and polynomial programming [8],
interior point methods [9], and heuristic optimization methods
[10]. However, none of them guarantees a global optimum. To
obtain a global optimum, a SDP relaxation method was recently
proposed [11]. The method first transforms the OPF problem
to a semidefinite programming problem (SDP) where the only
non-convex constraint is a rank-one constraint. If the rank-one
constraint is dropped, then convex optimization techniques can
be used to solve the problem. The global optimality of this
convex relaxation method has been proven for single-phase tree-
networks [12] and a small group of mesh networks [13] with
some small perturbations in the admittance matrix. Nonetheless,
a rank-one solution can not always be achieved with the convex
relaxation algorithm. The exactness of the convex relaxation has
been investigated in [14], [15]. The convex relaxation approach
has been leveraged to develop heuristic algorithms that solve
rank-constrained optimization problems [16]-[18]. However,
the convergence of these algorithms cannot be guaranteed.

Aside from the rank-one conundrum, the centralized SDP
algorithm does not scale very well with the size of the
problem [19]. Many researchers attempted to develop and im-
plement distributed algorithms to solve the centralized SDP
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problem. Reference [20] introduced three distributed schemes
to solve the single-phase OPF problem: the auxiliary prob-
lem principle (APP), the predictor-corrector proximal multi-
plier method (PCPM), and the alternating direction multiplier
method (ADMM). The ADMM has been widely adopted in
developing distributed OPF solvers due to its simplicity and
convergence properties [19], [21]-[23]. Although decompos-
ing the main problem into multiple sub-instances of smaller-
sized problems makes the solver more efficient, the ADMM
can be very slow to converge to high accuracy [24]. In decom-
posing the main problem many researchers have leveraged the
chordal based matrix completion theory through graph parti-
tioning [25]-[32]. The heuristic matrix combination algorithm
and the clique amalgamation method were developed to further
improve the computational efficiency of single-phase OPF algo-
rithms by searching for better network decomposition schemes
[26], [33].

To coordinate the operations of DERs in the electric power
distribution systems, we must solve the three-phase OPF prob-
lem. The single-phase OPF problem is insufficient for two rea-
sons. First, the electricity loads on three phases are unbalanced in
the distribution systems. Second, the distribution feeders are not
transposed. Only a few researchers have studied the three-phase
OPF problem [23], [34]. A quasi-Newton method based ap-
proach was developed after transforming the OPF problem with
implicit function theorem in [34]. Authors in [23] developed a
distributed semidefinite programming solver for the three-phase
OPF problem based on ADMM and the Lagrangian relaxation
method. However, neither of the algorithms guarantees conver-
gence or global optimality. Furthermore, these algorithms are
not computationally efficient enough to handle realistic distri-
bution feeders with thousands of buildings and customers.

The main goal of this paper is to develop a computationally ef-
ficient and scalable three-phase OPF algorithm which is capable
of finding global optimal solutions. Specifically, we first revisit
the rank conundrum in solving three-phase OPF problems. A
counter example of a three-phase network is provided to show
that rank-one solution can not be guaranteed with the SDP re-
laxation method. To find a global optimal solution efficiently,
this paper proposes an innovative three-phase OPF algorithm by
synergistically combining the convex iteration technique and the
chordal based conversion algorithm. We also propose a greedy
algorithm to find an appropriate grid partitioning scheme which
results in lower computational complexity. Numerical simula-
tions are conducted on the IEEE test feeders to validate the
computational efficiency and scalability of the proposed algo-
rithm and the optimality of the solutions. The simulation results
show that the proposed algorithm can find feasible and global
optimal solutions even when the SDP relaxation method fails.
Furthermore, the greedy grid partition algorithm is shown to
be effective in finding an appropriate chordal conversion which
makes the overall algorithm computationally efficient. Finally,
the simulation results from the IEEE 123-bus and 906-bus test
feeders demonstrate the scalability of the proposed algorithm.

The remainder of this paper is organized as follows: Section II
formulates the three-phase OPF problem in SDP format with
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voltages in rectangular form. Section III first presents the convex
iteration method and the chordal based conversion technique to
solve the non-convex optimization problem. It then describes
how to synergistically combine these two methods. In addition,
a greedy grid partition algorithm is proposed. The numerical
study results of the IEEE distribution test feeders are presented
in Section IV. The conclusions are stated in Section V.

II. FORMULATION OF THE THREE-PHASE ACOPF

The SDP formulation of single-phase alternating current OPF
(ACOPF) problem was derived with voltages in rectangular form
[13]. Reference [23] extended the SDP formulation to three-
phase ACOPF problem with complex voltages. In this section,
we formulate the three-phase ACOPF problem with voltages in
the rectangular form.

A. Matrix Definition
For a three-phase n-node distribution network, define the
voltage vector as:

Vé [EllvEfvEf"'EészaEg,vFllvaaFf"'Fl F2 F3}T

n?o n? n

where E} and F} are the real and imaginary parts of complex
voltage at node k with phase p.
Define the matrix ¥/, as

A
v = e3(k—1)+pe§(k71)+PY M

where Y is the admittance matrix of the distribution network
[23] and e3(j,_1) is the standard basis vector with the [3(k —
1) + p]-th element being 1, the only non-zero entry.

A

ek 1)1p = [0,0,0,...,1,0,...,0]" )

Define the admittance matrices to be used for power injection
calculations as:

v o % Re (V) + \Ifii) (" — "IZ:) N
Im(W0 — 0"y Re(W? + wb™)
Y 2 _% Im(‘lfi’,TJr yZ'T) Re(¥? — \I,i)T) o
Re(W" — oty Im(T% + \IlzT)

Then the real and reactive power injection equations can be
rewritten as follows:

Pl =Tr{Y;vvTy (5)
’Zm] = TT{?iva} 6)

Define the admittance matrices %, , Y7, , and ??k to be used
for branch flow calculations as follows:

>

3
T
p 2 pm pm
i = €3(i—1)+p E (63(i71)+m Yk T Gk-1)+m " Yip )
m=1

T T
Re(W + W57 )  Im(¥3 — W5)
Im(‘l’fk - \I’fk,T) Re(‘l’fk + \I’fkT)

Y, £ (7)

=
DN =
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T T
< A 1| Im(9, + 95" )  Re(V) —¥77) ®
ik = "5
2 Re(q’fkT —wh) Im(9), + ‘I’fkT)

where y!}" is the line admittance between node i with phase p

and node k with phase m.
Then the branch power flow connecting node ¢ and node &
with phase p can be rewritten as follows:

Sho=Tr{Y, VVT} + jTr{Y;,VVT} )
Define matrix M/ as:
T
, €3(k—1)+pC3(k— 0
M A (k=1)+p3(k—1)+p . (10)
0 E3(k—1)+pC3(k—1)+p

Then the square of voltage magnitude can be rewritten as:

VPP =Tr{MVV"} (11)

B. Three-Phase ACOPF Problem

The objective of the three-phase ACOPF problem in a distri-
bution system is to maximize total social welfare, minimize to-
tal power purchase cost, or minimize distribution system losses.
The three-phase OPF problem can be formulated in X = V'V 7T
with matrices defined in Section II-A as follows:

Formulation 1:

min C(X) (12)
subject to:
P, —Ph =Tr{Y;X}, keN\G (13)
o= Q) =Tr{Y;X}, keN\G (14)
Py — Py <Tr{Y!X}<P,-Ph, keG (15)
Q -@Q), <Tr{Y,X}<Q,-Q}), , keG (16)
Tr{Y’ XY +Tr{Y, X} < (Sh,™)?, i,ke N (17)
(VP2 <Tr{M!X} < (V})?, kEN (18)
X=vvT (19)

Equation (19) is equivalent to the following two equations:
X >0
rank(X) =1

(20)
21

In this paper, the objective function (12) is chosen to minimize
the total power purchase cost.

(22)

where ¢ and P! are the supply offer price and genera-
tion quantity at controllable generation node k£ with phase p.
Equations (13) and (14) enforce real and reactive power bal-
ance constraints for load buses. Equations (15) and (16) repre-
sent real and reactive power generation capacity constraints for
buses with distributed generations. Power flow constraints are
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modeled in (17). Voltage constraint is enforced in (18). Equation
(19) can be replaced by a positive semidefinite constraint and a
rank constraint. The rank constraint is a non-convex constraint.

III. CONVEX ITERATION AND CONVERSION METHOD
A. Rank-One Conundrum Revisited

The rank constraint makes it difficult to solve the reformu-
lated OPF problem. Many researchers tried to solve the OPF
problem by applying the semidefinite relaxation technique in
which the rank constraint is dropped [11], [13], [15], [23], [27],
[33]. Some heuristic methods were developed to recover a rank-
one solution for single-phase networks when the semidefinite
relaxation technique fails [16], [17]. The existence of global op-
timal rank-one solution has been proved for single-phase radial
network in [12]. It is claimed in [23] that semidefinite relaxation
is “exact” for the three-phase OPF problem in a radial network.
However, no rigorous proof was provided. The semidefinite re-
laxation technique did result in global optimal solution in the
numerical tests [23]. However, the results are obtained when
the supply offer prices of the three phases are exactly the same.
In practice, it is not realistic to assume that the supply offer
prices from distributed energy resources on three phases will be
the same [35]. A counter example is given in this subsection to
prove that semidefinite relaxation is not “exact” for three-phase
OPF problems.

In order to prove the “exactness” of SDP relaxation for OPF
problems of single-phase tree-networks, the geometry of the
feasible power injection region is analyzed [12]. Similarly, the
feasible power injection region of a three-phase two-node net-
work is studied here. It can be assumed that a network consists of
two three-phase nodes connected by a typical distribution line.
Define P!, PZ, P} and Pj, P#, Ps as the power injections of
the three phases at node 1 and node 2 respectively. Assuming the
voltage magnitudes are around 1 per unit, the power injections
can be calculated with the differences in voltage angles.

The 2-bus three-phase network is analyzed under two sce-
narios. In the first scenario, it is assumed that the supply offer
prices of DERs are the same for all three phases. Then, the OPF
problem is equivalent to optimize over the feasible injection re-
gion of power summed over three phases. The feasible region
on the plane of power injection at node 1 versus node 2, i.e., P}
versus P, is depicted in Fig. 1.

In the second scenario, it is assumed that the supply offer
prices are different on the three phases. In this case, the above-
mentioned equivalence is no longer valid. The projection of the
six-dimensional feasible power injection region onto P} versus
Pj plane for the second scenario is depicted in Fig. 2.

In the first scenario, the supply offer prices of the three differ-
ent phases are the same. Therefore, the feasible power injection
region on the P, and P» plane is approximately an ellipsoid
as shown in Fig. 1. By dropping the rank constraint, the new
feasible region can be obtained by taking the convex hull of the
original region, which is the same ellipsoid. The optimal solu-
tion is located on the Pareto front of the feasible power injection
region. Therefore, relaxing the rank constraint doesn’t influence

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 2, MARCH 2018

350
300 |

==Pareto front of the feasible region
— Pareto front of the convex hull

250 |
200 |
150 |
100 |
50

P,(MW)

-50 |
-100 |

-150 L L L L
-100 0 100 200 300

P, (MW)

Fig. 1.  Feasible power injection region of a two-node network with the same
supply offer prices on three phases.
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Fig. 2. Feasible power injection region of a two-node network with different
supply offer prices on three phases.

the optimal solution as the Pareto front of the two feasible power
injection regions are the same.

In the second scenario, the supply offer prices of DERs on
three phases are different. The projection of the feasible power
injection region onto the P} and P} plane is non-convex as
shown in Fig. 2. Taking convex hull will enlarge the original fea-
sible region. Therefore, the Pareto front of the relaxed problem
is different and the solutions with semidefinite relaxation tech-
nique will have higher ranks. To resolve the rank conundrum,
we advocate the adoption of the convex iteration technique to
solve the three-phase OPF problem.

B. Convex Iteration

Instead of directly dropping the rank constraint in
Formulation 1, we advocate the adoption of the convex iteration
technique to express the rank-constrained optimization problem
as iteration of the convex problem sequence (23) and (24) [36]
in Formulation 2:

Formulation 2:

n}}nC(X) +wTr(XW)
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subject to
XeB
X0
Wrélg_r\gx Tr(X*W) (23)
subject to
0=wW=I
Tr(W)=Nx —1 (24)

where B denotes the feasible region of X defined by (13)—(18),
W* represents the optimal solution to semidefinite program
(24), and X* denotes the optimal solution to semidefinite pro-
gram (23). The size of X and W are both Nx x Nx. The
closed-form solution of the second convex optimization prob-
lem (24) is

W =U(;,2: Nx)U(:,2: Nx)" (25)

where U can be obtained from the eigenvalue decomposition

X*=UAUT (26)
The result achieved from SDP relaxation can be used as a starting
point, as the convex hull usually provides a tight lower bound.
The initial value of the direction matrix can be chosen as the
Zero matrix.

It has been proved that the convex iteration algorithm always
converges and the global optimality can be achieved when the
objective function of the second step in the iteration vanishes
[36]. In other words, a global optimal solution can be obtained
if the convex iteration algorithm converges and the linear regu-
larization term T'r (X *TV) becomes zero. The optimal direction
matrix W, is defined as any positive semidefinite matrix yield-
ing optimal solution X * of rank one. Therefore , the following
two problems are equivalent when W, is found.

min C(X) +wTr(XW;,,) ;ntm gg(? )B
st. XeB = X =0
X =0 ranT{(X) =1

It should be noted that the convex iteration algorithm is dif-
ferent from the relaxation of the rank-constrained optimization
problem. However, at global optimality, the convex iteration
formulation is equivalent to the relaxed problem. The convex it-
eration algorithm was successfully applied in other applications
including sensor-network localization and compressed sensing
[36]. By contrast, penalization methods [17], [ 18] tries to recover
arank-one solution from the lower bound of the optimal solution
by minimizing either the voltage difference or reactive power
loss. The recovered rank-one solution is only near-optimal or
local-optimal.

C. Intuition of Convex Iteration Algorithm

The derivation of the convex iteration algorithm can be intu-
itively explained as follows. For a rank-one positive semidefinite
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matrix, the largest eigenvalue is also the only non-zero eigen-
value, i.e.,

Tr(X) = MX)i = hmax(X) 27)

The rank-one constraint is equivalent to the following constraint:

Tr(X) — Amax(X) =0 (28)
where the largest eigenvalue can be obtain by:
max u! Xu
[[u]lz=1
Therefore, constraint (28) can be rewritten as:
{Hllﬁn Tr(X(I - uuT))} =0
U2 = 1
This is equivalent to:
in Tr(X = 2
{1?3%%0 r( W)} 0 (29)

By multiplying the equality constraint (29) with w and adding
it to the objective function (12), the original problem in
Formulation 1 can be rewritten as:

min C(X) +wTr(XW)
XW

subject to
XeB
X =0

I=W=0 (30)

As shown in the above optimization problem formulation,
the rank-one constraint is re-expressed as a bilinear term in
the objective function. For a traditional bilinear optimization
problem, iterative linear programming method can be applied
to find the optimal solution(s). In the context of semidefinite
programming, the optimization problem (30) can be tackled by
iteratively solving the convex problem sequence (23) and (24).

The meaning of the direction matrix W can also provide us
some intuition about the inner working of the convex iteration
algorithm. Let’s define matrix subspace S,, as

Sy E{I-W)X([IT-W)|X e SN} 31)

It can be shown that the orthogonal compliment of S,, is

SF={WXW|x € sV} (32)

The optimal solution to semidefinite program (23) X* can
be decomposed into two components (33). The first com-
ponent is the projection of X* onto subspace S,,, which is
(I —W)X*(I —W). The second component is the projection

of X* onto subspace S;-, which is W X*W.
X'=I-WMXUI-W)+WX'W (33)

According to Eckart-Young Theorem, the best rank-one ap-
proximation of X* in terms of Frobenius norm distance is:

X+ =U(,1)AQ, DU )T (34)
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It can be shown that the following equality holds:

(I-W)X*(I-W)=U(:,)AQ, 1)U DT (35)

Therefore, the projection of X* onto S, is X*. Hence, polar
direction —W can be regarded as pointing toward the set of all
rank-1 positive semidefinite matrices whose nullspace contains
that of X™*.

D. Chordal Conversion

Coming back to Formulation 1 and first setting aside the rank
constraint, a SDP programming problem needs to be solved. In
most of the SDP solvers, the primal-dual interior-point method
is adopted. The disadvantage of the primal-dual interior-point
method is that it is time-consuming to construct the dense
Schur complement matrix when solving large-scale problems.
To address this drawback, the underlying aggregated sparsity of
the power network is exploited by researchers [27], [33]. The
semidefinite completion theory allows us to exploit the chordal
sparsity of radial distribution networks [37]. The semidefinite
completion theorem states that a symmetric matrix is positive
semidefinite completable if and only if all of the small matri-
ces associated with the maximal cliques of the graph derived
from the whole matrix are positive semidefinite. This property
allows the SDP problem to be converted into another form with
smaller-sized positive semidefinite variables. The details of the
conversion method are described in [26], [38]. When decompos-
ing the graph of large networks, the intersections of maximal
cliques are not empty. Thus, equality constraints of the inter-
section areas are introduced which may increase the dimension
of the Schur complement matrix. Decisions need to be made to
determine the trade-off between the sparsity and order of the
Schur complement matrix. Some heuristic algorithms of clique
amalgamation were developed in [26], [33].

By adopting chordal conversion, the original three-phase OPF
problem (Formulation 1) can be reformulated as follows:

Formulation 3:

Na
H}(inlg;cl (X571 (36)

subject to:
Xt e B, 1=1,2,---Ny4 (37
le(r) _ szt(l), Ir=1,2,---Ny (38)
Xt =0, 1=1,2,-- Ny (39)
rank(X{*) =1, 1=1,2,---Ny4 (40)

where B is the feasible region of X £t satisfying
P — P =Tr{Y!X/"), ke 4
v qQn =TV X, ke A
PPy <Tr{Y! VX" <P} — Ph ke A\ G

Qy —@p, < (Y Xy < Q) - QY ke A\ G

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 33, NO. 2, MARCH 2018

r{Y? O xe2 e (Y8 Y X2 < (8700 ke ANG
W) <M Xy < (V})?, ke A

A is the set of nodes in the [-th area. Af** denotes the set of
nodes in the [-th extended area which is defined as the union of
A; and the nodes of the other areas directly connected to the /-th
area. A more detailed description of the extended area concept
is provided in [23]. V/**! denotes the voltage vector with the
nodes in A7, X¢**") is the sub-matrix of X¢*! collecting
the columns and rows of X' corresponding to the voltages of
AchJt(” — {A;’(I?t e A?wt}.

The decomposition of rank constraint (21) is obvious. If ma-
trix X is rank-one, then all the sub-matrices X/*" are rank-one.
If all the sub-matrices X f” are rank-one, then voltage vector V'
can be constructed with the results of singular value decompo-
sition of all sub-matrices X**. Consequently, matrix X can be
obtained from V.

E. Chordal-Conversion-Based Convex Iteration

By synergistically combining the chordal conversion method
and the convex iteration technique, we propose a new iterative
three-phase OPF solution algorithm as follows.

Formulation 4:

Step 1:
Ny N4
min Y G (X{7) + D wn Tr(X{*Wy) @)
=1 =1
S.t.
Xt e BO, 1=1,2,--- Ny (42)
Xf“(r) _ szt(w’ l,r=1,2,---Ny (43)
X =0, 1=1,2,-- Ny (44)
Step 2:
Wi Up2: Nxp) U2 N 49)

where the size of X/ is Nle X NX;*:M . Uj is obtained from

the singular value decomposition.

X5 =U;NUS (46)

At a global optimum where the trace regularization term
equals to zero, Formulation 4 becomes the convex equivalent
of Formulation 3. The feasible set in Formulation 4 contains
all rank-one symmetric matrices. An optimal rank-one solution
Xyt from Formulation 4 will also minimize the objective func-
tion of Formulation 3.

The convergence to global optimality from an arbitrary ini-
tial point is not guaranteed. However, the algorithm will always
arrive at a stalling point when the trace regularization term no
longer decreases due to the monotonically non-increasing objec-
tive function sequence [36]. To re-start the algorithm with new
search directions, the randomization technique can be lever-
aged [36]. Specifically with rank-one constraints, the direction
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matrices can be reinitialized as:
W, =U,;(:,2: Ny ) (U; (2 Nygo )~
+ rand(Nxext, 1)Uj (z, nh

However, the re-start process may fail by converging to another
or the same stalling point with a rank larger than one. In addition,
the re-start process could make the algorithm much more time-
consuming.

E. Greedy Partition of the Grid

The computational efficiency of the chordal conversion based
convex iteration algorithm depends heavily on the choice of grid
partition scheme. This subsection develops a greedy algorithm
to find an appropriate grid partition scheme. The algorithm de-
velopment is motivated by the relationship between the com-
putational complexity of the SDP problem in the first step of
Formulation 4 and the nonzero elements in the search direction
matrix.

A closer look is taken firstly at the computational efficiency of
the interior point method which is adopted by most of the exist-
ing SDP solvers including SeDuMi [39], SDPA, and MOSEK.
As SeDuMi is one of the most popular open source SDP solver
package, it is chosen for illustration purpose in this subsection.

The SDP in Formulation 4 is first transformed to the standard
conic form. The standard conic form of the SDP in formulation
4 can be written as follows.

minc’ z

Ax =0
reSTt

where z is the vectorized primal variable and S is the semidefi-
nite cone. In the primal-dual interior point method, scaling tech-
nique [40] is widely used. AHO [41], NT [42], and HKM [43]
scaling are the most popular ones. With NT scaling adopted in
SeDuMi, the scaling factor D [40], [44] is introduced to obtain
the search direction in its iterative wide region method. Pre-
conditioned gradient method is adopted in SeDuMi to obtain
the inverse of ADA”. In the preconditioning step, Cholesky
decomposition of matrix AD AT is performed. This is the most
computationally expensive process in solving large-scale SDP
problems. The computation cost of Cholesky decomposition
heavily depends on the number of none-zero elements in matrix
ADAT . Therefore, to reduce the computation time, a greedy
grid partition algorithm should search for the grid partition
scheme which results in the least number of non-zero elements
in matrix ADAT.

For linear programming, the process of selecting the matrix
ADAT with the smallest number of non-zero elements can
be accomplished by selecting matrix AA”. This is because
the sparsity patterns of the matrices ADA” and AA” are the
same. Although this relationship doesn’t hold for semidefinite
programming, it still provides a good approximation. In other
words, as long as the sparsity pattern does not vary a lot among
different grid decomposition schemes, the partition scheme with
smaller-sized AAT matrix is more computationally efficient in
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Algorithm 1: Greedy algorithm for grid partition.

Initialize n, =1
while 1 do
if n, = 0 then
break
else
Ntemp = Ms
fori=1:n,do
search for a possible cut in subarea i;
if there exists a cut which reduces the size of AAT
then
search along the edges in subarea ¢; find the cut
which reduces the size of AAT the most,
Ngemp = Niemp + 1 and record the edge as a cut.
else
subarea 7 is finalized, i.e.
no more search will be performed in subarea ¢;
Nemp = Ntemp — 1.
end if
end for
Ns = Ntemp
end if
end while

general. Based on this approximation, a greedy algorithm is
developed to find the partition scheme which yields a AA”
matrix with the smallest size. The greedy algorithm can be
carried out as in algorithm 1.

IV. NUMERICAL STUDY

The proposed chordal based convex iteration algorithm with
greedy grid partition scheme is implemented in YALMIP [45].
Simulations are conducted on the IEEE 4-bus, 10-bus, 13-bus,
34-bus, 37-bus, 123-bus, and 906-bus three-phase test feeders
to validate 1) the optimality and feasibility of the solutions
from the proposed convex iteration algorithm, 2) the compu-
tational efficiency of the greedy grid partition scheme, and 3)
the scalability of the chordal conversion based convex iteration
algorithm. A Dell workstation with a 64-bit Intel Xeon Quad
Core CPU at 3.30 GHz with 16 GB of RAM is used to perform
the simulations.

A. Solution Optimality and Feasibility

The IEEE three-phase test feeders are modified to account
for scenarios where the supply offer prices on the three phases
are different. In the IEEE 4-bus test feeder, the loads on three
phases at node 4 are set as 1800 KW , 1600 KW, and 1400 KW.
The supply offer prices of the three phases are set as $1/KWh,
$0.5/KWh, and $0.2/KWh. Distribution generations are as-
sumed to be located on node 4 with a generation capacity of
200 KW per phase. In the 10-bus test feeder [23], the loads
on the three phases are set as 700 KW, 530 KW, and 600 KW
to create unbalanced scenario. The supply offer prices of the
three phases are set as $1/KWh, $0.3/KWh, and $0.6/KWh.
Distributed generations are placed on node 5 and 7 with a
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TABLE I

COMPARISON OF TRADITIONAL METHODS AND THE CONVEX ITERATION
METHOD WITH DIFFERENT PRICES FOR DERS

Test system

Prices of three
phases ($/kWh)

Objective value ($/hour)
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TABLE II

COMPARISON OF THE SDP RELAXATION METHOD AND THE CONVEX
ITERATION METHOD WITH DIFFERENT PRICES FOR THREE PHASES

Powell Interior Convex
Point Iteration
4-bus test feeder 1/0.5/0.2 3121.9 31219 31219
0.9/0.45/0.18 3091.9 3091.9 3086.9
10-bus test feeder 1/0.3/0.6 1229.2 1229.2 1229.1
0.8/0.24/0.48 1191.4 1191.4 1191.3
13-bus test feeder 0.6/0.3/1 2345.4 2345.4 23454
0.48/0.24/0.8 2290.2 2290.2 2290.2
34-bus test feeder 1/0.9/0.8 832.7 832.7 830.8
0.9/0.81/0.72 816.5 816.5 815.4
37-bus test feeder 0.6/0.3/1 1740.3 1740.3 1739.5
0.54/0.27/0.9 1675.9 1675.9 1675.4
123-bus test feeder 1/0.3/0.6 2414.6 2414.5 2413.6
0.8/0.24/0.48 2205.6 2205.6 2205.0
906-bus test feeder 0.6/0.7/0.5 38.4 38.3 38.2
0.54/0.63/0.45 37.9 37.9 37.7

generation capacity of 50 KW per node per phase. In the IEEE
13-bus test feeder, the load profile on the three phases is kept
the same as 1175 KW, 1039 KW, and 1252 KW. Distributed
generations are placed on node 611, 652, 671, and 634 with a
generation capacity of 50 KW per node per phase. The supply
offer prices of the three phases are set as $0.6/KWh, $0.3/KWh,
and $1/KWh. For the IEEE 34-bus test feeder, 50% load pro-
file is adopted to avoid incorporating discrete control variables
of the voltage regulators. The loads on the three phases are
303 KW, 292 KW, and 289.5 KW. The distributed generations
are placed on node 814, 836, and 890 with generation capacity
of 20 KW per node per phase. The supply offer prices of three
phases are set as $1/KWh, $0.9/KWh, and $0.8/KWh. For the
IEEE 37-bus test feeder, the distributed generations are placed
on node 701, 704, 707, 711, 744, 730, and 734 with generation
capacity of 50 KW per node per phase. The supply offer prices
of three phases are set as $0.6/KWh, $0.3/KWh, and $1/KWh.
For the IEEE 123-bus test feeder, the distributed generations are
placed on node 7, 18, 25, 35, 44, 54, 72, 76, 89, 97, and 105,
with generation capacity of 50KW per node per phase. The sup-
ply offer prices of three phases are set as $1/KWh, $0.3/KWh,
and $0.6/KWh. For the IEEE European LV test feeder with 906
nodes, the distributed generations are placed on node 145, 155,
391, 707, and 745 with generation capacity of 0.5 KW per node
per phase. The supply offer prices of three phases are set as
$0.6/KWh, $0.7/KWh, and $0.5/KWh.

To illustrate the optimality and feasibility of solutions under
the proposed algorithm, a comparison of the solutions obtained
from traditional methods, including Powell method [46], [47]
and interior-point method [48], [49], and the proposed convex
iteration method is shown in Table I. Additional test scenarios
are created by varying the supply offer prices of the DERs.

As shown in Table I, the proposed convex iteration approach
achieves lower objective values on 11 out of 14 test scenar-
ios. The traditional methods arrive at the same solution as the

Test system Method Rank of Objective
solution value ($/hour)
4-bus test feeder SDP relaxation 3 3085.6
convex iteration 1 3121.9
10-bus test feeder SDP relaxation 7 1216.3
convex iteration 1 1229.1
13-bus test feeder SDP relaxation 3 2319.5
convex iteration 1 23454
34-bus test feeder SDP relaxation 6* 831.8
convex iteration 1 830.8
37-bus test feeder SDP relaxation 1* 1739.5
convex iteration 1 1739.5
123-bus test feeder ~ SDP relaxation 6% 2413.6
convex iteration 1 2413.6
906-bus test feeder ~ SDP relaxation 6% 38.2
convex iteration 1 38.2

proposed convex iteration method on the other 3 test scenarios.
As the size of the test feeder increases, it becomes more diffi-
cult for the traditional methods to match the performance of the
proposed convex iteration algorithm.

To illustrate the global optimality and feasibility of the pro-
posed algorithm, another comparison of solutions derived from
the SDP relaxation method [11], [13], [23] and the proposed
convex iteration method with the default setting is shown in
Table II.

It can be seen from Table II that the SDP relaxation method
does not yield a rank-one solution by directly removing the rank
constraint. For the IEEE 4-bus, 10-bus and 13-bus test feeders,
the grids do not need to be partitioned. For the IEEE 34-bus,
37-bus, 123-bus, and 906-bus test feeders, the same grid parti-
tion scheme is adopted for both the SDP relaxation and the pro-
posed convex iteration methods. The star symbol, *, represents
the highest rank among all partitioned areas. The SDP relaxation
method only succeeds in finding a feasible rank-one solution for
the 37-bus test feeder. The high rank solutions in other cases do
not have any physical meaning. In most cases, the solution of the
SDP relaxation method provides a lower bound of the original
non-convex optimization problem. For the 34-bus test feeder, the
SDP solver stops at a near-global optimal solution of the relaxed
problem, which has a higher value than that of the convex itera-
tion method. The numerical difficulty is caused by the extremely
long and short distribution lines [50]. On the other hand, the
proposed chordal conversion based convex iteration algorithm
always produces a rank-1 solution, which is the global optimum.

If the prices are set to be $1/KWh for all three phases, the
original problem is equivalent to minimization of the total power
losses. As shown in Table III, the SDP relaxation method is able
to find the global optimum for the three small-scaled systems,
which is consistent with the analysis in Section III-A and refer-
ence [23].

At last, a comprehensive comparison between the penalized
SDP method [18] and the proposed convex iteration algorithm
is conducted. The comparison results are shown in Table IV.
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TABLE III
COMPARISON OF THE SDP RELAXATION METHOD AND THE CONVEX
ITERATION METHOD WITH SAME PRICES FOR THREE PHASES
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TABLE V
COMPUTATION TIME OF IEEE 4-Bus TEST FEEDER

Number of Computation ~ Number of Number of
Test system Method Rank of solution  Power loss (kW) partition areas time (s) iterations Nonzero Elements
4-bus test feeder SDP relaxation 1 3259 1 0.346 4 3.92 x 10*
convex iteration 1 325.9 2 0.373 4 2.95 x 10*
10-bus test feeder SDP relaxation 1 12.2 2 0.373 4 2.95 x 102
convex iteration 1 12.2 0.484 4 3.63 x 10
- 4 0.577 4 4.25 x 10*
13-bus test feeder SDP relaxation 1 89.4
convex iteration 1 89.4
34-bus test feeder SDP rel.axati'on 6* 38.3 TABLE VI
convex iteration 1 375 COMPUTATION TIME OF IEEE 13-Bus TEST FEEDER
37-bus test feeder SDP relaxation 1 26.4
convex iteration 1 26.4 ]
- Number of Computation ~ Number of Number of
123-bus test feeder ~ SDP relaxation 6* 32 partition areas time (s) iterations Nonzero Elements
convex iteration 1 34.7
906-bus test feeder ~ SDP relaxation 7* 1.5 1 68.397 20 212 x 102
convex iteration 1 1.3 2 10.789 14 5.39 x 10;
3 9.659 15 4.22 x 10°
*4 8.714 16 3.61 x 10°
TABLE IV 4 7.732 16 3.18 x 10°
COMPARISON OF THE PENALIZED SDP METHOD AND THE CONVEX 5 6.567 13 3.24 x 10°
ITERATION METHOD 6 6.602 14 277 x 10°
7 5.768 14 2.27 x 10°
8 6.020 14 227 x 10°
. 2 . 1 o . .
Test system Method eig”/eig Pov:r :IZ_]](B\(;;;OI’I 9 6.374 15 227 % 10
erro 13 8.019 16 2.53 % 10°
4-bus test feeder penalized SDP 9.1 x 107 5.6 x 1073
convex iteration 2.6 x 1077 39 x 1073
R : -7 -3
[bustestfeeder - penalized SDP 770, 220, are 15.8738, 0.0004, 0.0004, 0.0002, 0.0002, and 0.0001. The
. : p.u. complex voltage of the boundary node 50 obtained from
13-bus test feeder penalized SDP 3.8 x 1077 0.2208 K imati diff t Th 1 It
convex iteration 3.2 x 10~° 0.0629 “110“ h_onlf apgro’“m? ton acie L eren " g ;glrip ex }:’Od age
of the boundar oint under the penalize method are
34-bus test feeder penalized SDP 1.2 %107 3.24 Y ,p P . .
convex iteration 6.0 x 10~ 241 [1.0167—0.02834,—0.5260—0.89645,—0.5035+ 0.8964] and
37-bus tost feeder penalized SDP 3.0 x 100 54 '[1.0170 - 0.02807, — 0.5262 — 0.89697, —.O..5OZ.14 + 0.89677]
convex iteration 3.0 X 10~ 1.54 in two different extended areas. The power injection error under
123-bus test feeder  penalized SDP 2.8 x 10~ 13.21 the penalized SDI.D mthod is also much larger than that of the
convex iteration 1.2 x 1078 1.21 proposed convex iteration method.
906-bus test feeder  penalized SDP 5.1 x 1072 6.7
convex iteration 6.0 x 1078 2.3

For the IEEE 4-bus, 10-bus, and 13-bus test feeders, the com-
parison is performed without graph partition. Although the pe-
nalized SDP method did obtain a rank-one solution, the ratio of
the second largest eigenvalue of matrix X to its largest eigen-
value is much larger than that of the proposed convex iteration
method. Moreover, as shown in Table IV, the power injection
error obtained from SVD of the rank-one solution of the pe-
nalized SDP method is much larger than that of the proposed
convex iteration method.

For the IEEE 34-bus, 37-bus, 123-bus, and 906-bus test
feeders, the comparison is performed with the same graph
partition scheme obtained from the greedy algorithm. For IEEE
34-bus, 123-bus, and 906-bus test feeders, the penalized SDP
method fails to find a rank-one solution. In IEEE 123-bus,
one of the partitioned areas containing nodes 44, 47, 48, 49,
and 50 is selected for verification. Under the penalized SDP
method, the non-negligible eigenvalues of the variable matrix

B. Effectiveness of the Greedy Grid Partition Scheme

To validate the effectiveness of the proposed greedy grid par-
tition scheme, simulations are conducted on the IEEE 4-bus and
13-bus test feeders under all possible grid partition scenarios.
An exhaustive search for all possible partition scenarios is con-
ducted. The computation times of all scenarios are recorded.
The results are then grouped by the number of partitioned ar-
eas. The computation times being reported in Tables V and VI
are the shortest computation times for each number of partition
areas using MOSEK. The computation times obtained from the
greedy partition scheme is denoted by .

It can be seen from Tables IV and V that the computation time
of the proposed algorithm is approximately proportional to the
number of nonzero elements in matrix ADA” . The greedy al-
gorithm successfully found grid partitioning schemes with very
reasonable computation times. In the IEEE 4-bus test feeder,
the computation time with the greedy partition scheme is almost
the same as the shortest computation time found by exhaustive
search. In the IEEE 13-bus test feeder, the computation time
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TABLE VII
SCALABILITY OF THE PROPOSED ALGORITHM

Test Computation ~ Number of Number of Rank of
system time (s) iterations Nonzero Elements  Solution
4-bus 0.373 4 2.95 x 10? 1
10-bus 12.127 29 2.53 x 10° 1
13-bus 8.714 16 3.61 x 10° 1
34-bus 4.161 3 1.25 x 106 1
37-bus 3.261 1 2.06 x 106 1
123-bus 27.182 3 4.93 x 106 1
906-bus 79.799 3 132 x 107 1

with the greedy partition scheme is only 3 seconds longer than
the shortest computation time.

C. Scalability of the Proposed Algorithm

As shown in Table VII, the computation times of the three-
phase OPF problems on all seven IEEE test feeders is within 2
minutes using the entry level Dell workstation. The combination
of the chordal based conversion technique and the greedy grid
partition scheme made the proposed algorithm computationally
efficient.

V. CONCLUSION

This paper develops a chordal conversion based convex itera-
tion algorithm to solve the three-phase OPF problem. A greedy
grid partition scheme is also developed to improve the compu-
tational efficiency of the proposed algorithm. The simulation
results show that the greedy algorithm can find an appropriate
grid partition scheme which has similar computation time to that
of the best partition found from the exhaustive search. At last,
the scalability of the proposed algorithm is validated through
simulations on the IEEE 123-bus and 906-bus test feeders. The
proposed OPF algorithm can find the global optimal solutions
within 2 minutes on an entry level Dell workstation. However,
it should be noted that it is possible for the proposed convex
iteration approach to converge to a local optimum and the re-
start strategy may fail. Therefore, the proposed convex iteration
algorithm does not guarantee convergence to global optimum
solution(s) in all distribution feeders.
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